WO2023045616A1 - 一种燃料电池系统在线活化方法及活化装置 - Google Patents

一种燃料电池系统在线活化方法及活化装置 Download PDF

Info

Publication number
WO2023045616A1
WO2023045616A1 PCT/CN2022/112346 CN2022112346W WO2023045616A1 WO 2023045616 A1 WO2023045616 A1 WO 2023045616A1 CN 2022112346 W CN2022112346 W CN 2022112346W WO 2023045616 A1 WO2023045616 A1 WO 2023045616A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
time
humidity
threshold
Prior art date
Application number
PCT/CN2022/112346
Other languages
English (en)
French (fr)
Inventor
赵兴旺
刘维
李飞强
Original Assignee
北京亿华通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京亿华通科技股份有限公司 filed Critical 北京亿华通科技股份有限公司
Priority to AU2022350248A priority Critical patent/AU2022350248A1/en
Publication of WO2023045616A1 publication Critical patent/WO2023045616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04529Humidity; Ambient humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04641Other electric variables, e.g. resistance or impedance of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of batteries, and in particular relates to an online activation method and an activation device for a fuel cell system.
  • Fuel cell vehicles are new energy vehicles with broad development prospects, which have many advantages such as short hydrogen refueling time and long driving range.
  • Fuel cell systems usually include fuel cell stacks and peripheral hydrogen, air, cooling and other component systems.
  • Fuel cell stacks include proton exchange membranes, catalyst layers, gas diffusion layers, bipolar plates, etc., where proton exchange membranes need It maintains good performance under humidity. If it is too dry, it will lead to an increase in proton conduction resistance and a decrease in performance.
  • the invention provides an online activation method and activation device for a fuel cell system, which can solve the technical problems that the activation operation of the fuel cell is performed afterward, which affects the driver's driving experience and is not conducive to the service life of the fuel cell system.
  • a fuel cell system online activation method comprising:
  • start-up time difference When the start-up time difference is greater than a threshold start-up time, acquire ambient atmospheric humidity of the fuel cell system within the start-up time difference;
  • Whether to activate the fuel cell system is determined according to the first comparison result and the second comparison result.
  • the determining whether to activate the fuel cell system according to the first comparison result and the second comparison result includes: when the ambient atmospheric humidity is greater than the threshold humidity , and when the first time is less than the start-up time difference, the fuel cell system is activated.
  • the activating the fuel cell system when the humidity of the ambient air is greater than the threshold humidity and the first time is less than the time difference between starting up includes: judging according to the following formula Activating the fuel cell system: RH0>RH, and T1 ⁇ n ⁇ T0;
  • RH0 is the ambient atmospheric humidity
  • RH is the threshold humidity
  • T1 is the first time
  • T0 is the time difference between starting up
  • n is a proportional coefficient, n ⁇ 0 ⁇ 1.
  • the acquiring the ambient atmospheric humidity of the fuel cell system within the start-up time difference includes:
  • the method further includes acquiring the activation result of the fuel cell system, and when the activation result is less than a threshold activation result, continue to activate it until the activation result is greater than or equal to the threshold Activation results.
  • the method further includes obtaining the humidity, internal resistance or voltage of the proton exchange membrane of the fuel cell system, when the humidity of the proton exchange membrane is greater than the threshold humidity, or the internal resistance value is less than the threshold resistance value, or the voltage is less than the threshold voltage to stop activation.
  • the method further includes obtaining the change trend of the ambient atmospheric humidity of the fuel cell system within the start-up time difference, and obtaining the change time period corresponding to the change trend, according to the The fuel cell system is activated for the changing time period and the changing trend within a first time period.
  • the activating the fuel cell system according to the change time period and the change trend includes: when within the change time period adjacent to the startup time, the When the change trend is a downward trend, the fuel cell system is activated.
  • an online activation device for a fuel cell system comprising:
  • the first obtaining module is used to obtain the power-on time difference between the last power-off time of the fuel cell system and the current power-on time;
  • the second acquisition module is used to acquire the ambient atmospheric humidity of the fuel cell system within the start-up time difference
  • a first comparison module configured to compare the ambient atmospheric humidity with a threshold humidity to obtain a first comparison result
  • a third acquisition module configured to acquire the first time when the ambient atmospheric humidity is greater than the threshold humidity
  • the second comparison module is used to compare the difference between the first time and the power-on time to obtain a second comparison result
  • An activation module configured to determine whether to activate the fuel cell system according to the first comparison result and the second comparison result.
  • An activation module configured to activate the fuel cell system when the ambient air humidity is greater than the threshold humidity and the first time is less than the start-up time difference.
  • the activation module is configured to activate the fuel cell system when the ambient atmospheric humidity is greater than the threshold humidity and the first time is less than the start-up time difference .
  • the method provided by the embodiment of the present invention checks the fuel cell system before starting the vehicle to determine whether it needs to be activated, and pre-activates the activation step, thereby improving the life of the fuel cell system stack and slowing down the life decay of the stack. And improve the driver's driving experience.
  • Fig. 1 shows a schematic flow chart of an online activation method for a fuel cell system
  • Figure 2 shows a schematic diagram of a fuel cell system application
  • Fig. 3 shows a schematic flow chart of an online activation method for a fuel cell system
  • Fig. 4 shows a schematic structural diagram of an online activation device for a fuel cell system.
  • the term “comprise” and its variants mean open inclusion, ie “including but not limited to”.
  • the term “or” means “and/or” unless otherwise stated.
  • the term “based on” means “based at least in part on”.
  • the terms “one example embodiment” and “one embodiment” mean “at least one example embodiment.”
  • the term “another embodiment” means “at least one further embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same object. Other definitions, both express and implied, may also be included below.
  • an embodiment of the present invention provides an online activation method for a fuel cell system, please refer to FIG. 1 and FIG. 2 , the method includes:
  • S106 Determine whether to activate the fuel cell system according to the first comparison result and the second comparison result.
  • the method provided by the embodiment of the present invention can know the length of idle or downtime of the vehicle by obtaining the power-on time difference between the last power-off time of the fuel cell system and the current power-on time; when the power-on time difference is greater than the threshold power-on time, it means that the fuel cell vehicle is stationary If the time is too long, it may cause the proton exchange membrane of the fuel cell system to dry out.
  • the ambient atmospheric humidity of the fuel cell system when the vehicle is stopped can be known, and it is related to the threshold
  • the relative humidity we can know the impact of the ambient atmospheric humidity on the proton exchange membrane in the fuel cell system; by obtaining the first time when the ambient atmospheric humidity is greater than the threshold humidity, we can know the time the fuel cell system has been left standing under the ambient humidity , by comparing the difference between the first time and the start-up time, it is possible to judge the standing time of the fuel cell system within the start-up time difference and under the condition that the ambient humidity is greater than the threshold humidity, and then know the humidity of the proton exchange membrane in the fuel cell system, and then judge Whether to activate the fuel cell system.
  • the method provided by the embodiment of the present invention checks the fuel cell system before starting the vehicle to determine whether it needs to be activated, and pre-activates the activation step, thereby improving the life of the fuel cell system stack and slowing down the life decay of the stack. And improve the driver's driving experience.
  • the method provided by the embodiment of the present invention obtains the operating data of the fuel cell system through the cloud server.
  • the fuel cell vehicle is equipped with a fuel cell system and a data collector (T-box). box, the real-time running data of the fuel cell vehicle is sent to the cloud server through the T-box, and the cloud server can be connected to obtain various information of the fuel cell system, such as fuel cell system startup time and shutdown time, weather information, time information, geographic location information, etc. .
  • the resting time of the fuel cell system can be judged according to the last shutdown time of the fuel cell system and the current startup time, that is, the resting time of the fuel cell vehicle.
  • the so-called ambient atmospheric humidity refers to the degree of humidity in the air. It indicates the degree of water vapor content in the atmosphere from the saturation of the atmosphere at that time.
  • the relative humidity percentage is used to express the degree of ambient atmospheric humidity. At a certain temperature, the lower the relative humidity in the atmosphere, the faster the water vapor evaporates; conversely, the higher the relative humidity in the atmosphere, the slower the water vapor evaporates. Therefore, the ambient atmospheric humidity will affect the humidity of the proton exchange membrane, and the embodiments of the present invention determine the humidity of the proton exchange membrane by obtaining the ambient atmospheric humidity.
  • the embodiment of the present invention further obtains the ambient atmospheric humidity of the fuel cell system within the start-up time difference, and then judges whether to The fuel cell system is activated.
  • the embodiment of the present invention does not limit the threshold power-on time, which can be determined according to the performance of the fuel cell system carried by the fuel cell vehicle.
  • the ambient humidity of the fuel cell system can be judged.
  • the atmospheric humidity of the fuel cell vehicle is high, the proton exchange membrane is not easy to dry.
  • the fuel cell vehicle When the atmospheric humidity environment is small, the proton exchange membrane is easy to dry. Therefore, the ambient atmospheric humidity is compared with the threshold humidity to obtain a first comparison result.
  • the first comparison result includes that the ambient atmospheric humidity is greater than the threshold humidity, or the ambient atmospheric humidity is less than the threshold humidity.
  • the ambient atmospheric humidity will change with time.
  • the ambient atmospheric humidity at noon in the day will be lower than the ambient atmospheric humidity at night, the ambient atmospheric humidity in summer will be greater than that in winter, and the fuel cell vehicle will The length of stay in an environment with high humidity will affect the humidity of the proton exchange membrane. Therefore, in the embodiment of the present invention, by obtaining the first time when the ambient atmospheric humidity is greater than the threshold humidity, it can be judged that the fuel cell system is left standing in an environment with a humidity greater than the threshold. time, and then it can be judged whether the proton exchange membrane is dry.
  • the ambient air humidity of the fuel cell system is 50%, which is greater than the threshold humidity of 45%, and the fuel cell system stays in this environment for 3 days.
  • the start-up time difference between the times is 5 days, that is to say, the fuel cell system is left standing for 5 days, 3 days of which are in an environment with low humidity.
  • S106 Determine whether to activate the fuel cell system according to the first comparison result and the second comparison result.
  • determining whether to activate the fuel cell system according to the first comparison result and the second comparison result includes: when the ambient atmospheric humidity is greater than a threshold humidity and the first time is less than the time The battery system is activated.
  • the ambient atmospheric humidity is greater than the threshold humidity, it means that the fuel cell vehicle has been in an environment with high humidity, and the proton exchange membrane will not lose too much water, but when the first time is less than the start-up time difference, it means that the fuel cell The vehicle is in a high-humidity environment, but the time in this environment is relatively short, which can easily cause dehydration of the proton exchange membrane. At this time, the fuel cell system needs to be activated.
  • activating the fuel cell system includes: judging to activate the fuel cell system according to the following formula: RH0>RH , and T1 ⁇ n ⁇ T0;
  • RH0 ambient atmospheric humidity
  • RH threshold humidity
  • T1 first time
  • T0 start-up time difference
  • n proportional coefficient
  • RH0 can be 50%; where T1 is the time sum of humidity RH0>RH, n is a proportional coefficient ranging from 0 to 1, for example, it can be 0.5, and T0 is the difference between the power-on time of this power-on and the last power-off.
  • the interval between this start-up and the last shutdown is 30 days, and the number of days when the ambient humidity is greater than 50% is 20 days. Since 20>0.5 ⁇ 30, it indicates that the fuel cell system has not been started for a long time, but the environment The atmospheric humidity is high, and there is no need to worry about the drying of the proton exchange membrane.
  • the interval between this startup and the last shutdown is 30 days, and the number of days when the ambient humidity is greater than 50% is 10 days. Since 10 ⁇ 0.5 ⁇ 30, it indicates that the fuel cell system has not been turned on for a long time, but the The ambient atmospheric humidity is low, which may easily cause the proton exchange membrane to lose water and dry out.
  • the embodiment of the present invention does not limit the threshold humidity, which can be specifically determined according to the performance of the fuel cell system carried by the fuel cell vehicle.
  • obtaining the ambient atmospheric humidity of the fuel cell system within the start-up time difference includes:
  • the humidity sensor installed in the fuel cell system can obtain the sum of the humidity values of the fuel cell system within the time difference, and obtain the average ambient atmospheric humidity through the difference between the sum of the humidity values and the start-up time.
  • the method further includes obtaining an activation result of the fuel cell system, and when the activation result is less than a threshold activation result, continue to activate it until the activation result is greater than or equal to the threshold activation result.
  • the method also includes obtaining the fuel cell system proton exchange membrane humidity, internal resistance value or voltage, when the proton exchange membrane humidity is greater than the threshold value humidity, or the internal resistance value is less than the threshold resistance value, or the voltage is less than the threshold value Activation stops at voltage.
  • the humidity of the activated exchange membrane is obtained through the cloud server.
  • the humidity of the activated exchange membrane is greater than the threshold humidity, it means that the fuel cell system returns to normal and the activation can be stopped, or the internal resistance of the activated exchange membrane can be obtained through the cloud server. If the internal resistance value is less than the threshold resistance value, it means that the proton exchange membrane can work normally, and then the activation can be stopped, or the voltage of the activated nephew exchange membrane can be obtained through the cloud server. When the voltage is less than the threshold voltage, it means that the proton exchange membrane returns to normal. Activation is stopped at this point.
  • the standing time of the fuel cell system exceeds the threshold start-up time, and the humidity of the atmospheric environment is low in most days, it means that the proton exchange membrane of the fuel cell system is in a dry state at this time. It can be changed by changing the operating conditions of the working point during normal operation, such as reducing the operating temperature of the fuel cell system, and/or reducing the air flow of the fuel cell system, and/or making the fuel cell system work at or beyond the rated power, In order to achieve the purpose of wetting the proton exchange membrane of the fuel cell system.
  • the above-mentioned reduction of the operating temperature of the fuel cell system can be sent to the fuel cell system controller through the cloud server, and/or the air flow rate of the fuel cell system can be reduced, and/or the fuel cell system can be operated at or beyond the rated power. Instructions, through the fuel cell system controller to control the fuel cell system to change the state of the proton exchange membrane.
  • the fuel cell system controller can obtain the humidity, internal resistance value or voltage of the proton exchange membrane of the fuel cell system, and transmit the above values to the cloud server.
  • the method further includes obtaining the change trend of the ambient atmospheric humidity of the fuel cell system within the start-up time difference, obtaining a change time period corresponding to the change trend, and performing an operation on the fuel cell system according to the change time period and the change trend. activation.
  • the humidity of the ambient air where the fuel cell system is located will change with time, for example, the humidity will increase during the day and decrease at night, or it will change with the change of the ambient air temperature.
  • the change trend of ambient atmospheric humidity includes an upward trend and a downward trend. Both the upward trend and the downward trend correspond to a certain period of time within the start-up time difference.
  • the embodiment of the present invention obtains the change time period corresponding to the change trend, and according to the change time period and the change trend Activation of the fuel cell system.
  • activating the fuel cell system according to the change time period and the change trend in the first time includes: when the change trend is a downward trend in the change time period adjacent to the start-up time , to activate the fuel cell system.
  • the ambient atmospheric humidity first rises for a period of time, and then decreases for a period of time, and the ambient atmospheric humidity has been decreasing during the period before the start-up, indicating that although the ambient atmospheric humidity was Rising, but the ambient air humidity is decreasing during the time before the start-up, and when the ambient humidity drops at a high rate, it means that the proton exchange membrane will lose moisture quickly.
  • the rate at which the ambient atmospheric humidity rises and falls within the start-up time difference can be obtained, and the time when the proton exchange membrane of the fuel cell system dries up can be judged according to the rate. If the ambient atmospheric humidity continues at this rate If the proton exchange membrane dries up, it will lose water and dry in a short period of time. At this time, the fuel cell system can be activated to improve the efficiency of the fuel cell system and avoid problems such as failure of the fuel cell vehicle during use. .
  • the method provided by the embodiment of the present invention further includes powering on the fuel cell system and transmitting data to the cloud server in real time.
  • the connection provides the power for the T-box and the fuel cell system controller to work, and can also contain various high-voltage power sources; the data here includes but is not limited to the start-up command and command of the fuel cell engine.
  • the fuel cell system is turned on and enters self-inspection.
  • Self-inspection usually refers to checking the status and faults of various sensors and actuators.
  • FIG. 3 Please refer to FIG. 3 further.
  • the embodiment of the present invention further explains and illustrates the method provided by the embodiment of the present invention through FIG. 3 .
  • the fuel cell system is powered on, and the data is transmitted to the cloud server in real time.
  • the cloud server calculates the startup time difference T0 between the startup time and the last shutdown time, and the cloud server queries the atmospheric humidity RH0 of the environment where the fuel cell system is located within the startup time difference T0. If the startup time difference T0>T (threshold time), If the start-up time difference T0 ⁇ T (threshold time), the fuel cell system enters a normal operating state and does not need to be activated; if the start-up time difference T0>T (threshold time), the relationship between the ambient atmospheric humidity RH0 and the threshold humidity RH is judged.
  • the cloud server sends an activation command to the fuel cell system controller, enters the activation process, and judges whether the activation result meets the standard value. If it is satisfied, the activation ends and the fuel cell system enters normal operating state.
  • the normal operating state refers to the output power under the normal working condition point operating conditions to drive the fuel cell vehicle to run.
  • the embodiment of the present invention also provides an online fuel cell system activation device, please refer to Figure 4, the device includes:
  • the first obtaining module 401 is used to obtain the power-on time difference between the last power-off time of the fuel cell system and the current power-on time;
  • the second acquisition module 402 is used to acquire the ambient atmospheric humidity of the fuel cell system within the start-up time difference
  • the first comparison module 403 is used to compare the ambient atmospheric humidity and the threshold humidity to obtain a first comparison result
  • the third obtaining module 404 is used to obtain the first time when the ambient atmospheric humidity is greater than the threshold humidity
  • the second comparison module 405 is used to compare the difference between the first time and the power-on time to obtain a second comparison result
  • the activation module 406 is configured to determine whether to activate the fuel cell system according to the first comparison result and the second comparison result.
  • the activation module 406 is configured to activate the fuel cell system when the ambient atmospheric humidity is greater than a threshold humidity and the first time is less than the start-up time difference.
  • the activation module 406 is configured to determine to activate the fuel cell system according to the following formula: RH0>RH, and T1 ⁇ n ⁇ T0;
  • RH0 ambient atmospheric humidity
  • RH threshold humidity
  • T1 the first time
  • T0 the time difference between starting up
  • n a proportional coefficient
  • the second acquiring module 402 is configured to acquire the average ambient atmospheric humidity of the fuel cell system within the start-up time difference, and use the average ambient atmospheric humidity as the ambient atmospheric humidity.
  • the device further includes a fourth acquisition module, configured to acquire the activation result of the fuel cell system, and when the activation result is less than a threshold activation result, continue to activate it until the activation result is greater than or equal to the threshold activation result.
  • a fourth acquisition module configured to acquire the activation result of the fuel cell system, and when the activation result is less than a threshold activation result, continue to activate it until the activation result is greater than or equal to the threshold activation result.
  • the device further includes a fifth acquisition module, configured to acquire the humidity, internal resistance or voltage of the proton exchange membrane of the fuel cell system, when the humidity of the proton exchange membrane is greater than the threshold humidity, or the internal resistance is less than the threshold Resistance, or when the voltage is less than the threshold voltage, the activation is stopped.
  • a fifth acquisition module configured to acquire the humidity, internal resistance or voltage of the proton exchange membrane of the fuel cell system, when the humidity of the proton exchange membrane is greater than the threshold humidity, or the internal resistance is less than the threshold Resistance, or when the voltage is less than the threshold voltage, the activation is stopped.
  • the device further includes a sixth acquisition module, configured to acquire the change trend of ambient atmospheric humidity of the fuel cell system within the start-up time difference, and acquire the change time period corresponding to the change trend, according to the change trend at the first time
  • the fuel cell system is activated according to the internal change time period and change trend.
  • the activation module 406 is configured to activate the fuel cell system when the change trend is a downward trend in the change time period adjacent to the power-on time.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)

Abstract

本发明提供了一种燃料电池系统在线活化方法及活化装置,方法包括获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差;当开机时间差大于阈值开机时间时,获取燃料电池系统在开机时间差内的环境大气湿度;比较环境大气湿度与阈值湿度,得到第一比较结果;获取环境大气湿度大于阈值湿度的第一时间;比较第一时间与开机时间差,得到第二比较结果;根据第一比较结果与第二比较结果确定是否对燃料电池系统进行活化。本发明实施例提供的方法通过在车辆开机前即对燃料电池系统进行检查,判断其是否需要活化,将活化步骤前置,提高了燃料电池系统电堆的寿命,减缓了电堆的寿命衰减,并且提高了司机的驾驶体验感。

Description

一种燃料电池系统在线活化方法及活化装置 技术领域
本发明属于电池技术领域,尤其涉及一种燃料电池系统在线活化方法及活化装置。
背景技术
燃料电池汽车是具有广阔发展前景的新能源汽车,其具有加氢时间短、续驶里程长的诸多优点。燃料电池系统通常包含燃料电池电堆和外围氢气、空气、冷却等零部件系统,燃料电池电堆包括质子交换膜、催化剂层、气体扩散层、双极板等,其中质子交换膜需要在合适的湿度状态下维持较好的性能,如果过干,会导致质子传导阻抗增大,性能下降。在实际使用过程中,燃料电池汽车不可避免的会存在较长时间的静置过程,导致质子交换膜在静置过程中结合的水蒸气流失,趋于干燥状态,进一步导致在静置结束后的首次开机运行过程中燃料电池系统性能下降,甚至无法维持正常运行。
现有的方法通常需要在首次开机运行失败后采取活化方法,恢复燃料电池系统的性能。
但由于活化操作后置,因此会影响司机的驾驶体验并且也不利于燃料电池系统的寿命。
发明内容
本发明提供了一种燃料电池系统在线活化方法及活化装置,可以解决燃料电池活化操作后置,而影响司机的驾驶体验并且不利于燃料电池系统寿命的技术问题。
本发明提供的技术方案如下所示:
一方面,提供了一种燃料电池系统在线活化方法,所述方法包括:
获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差;
当所述开机时间差大于阈值开机时间时,获取燃料电池系统在所述开机时间差内的环境大气湿度;
比较所述环境大气湿度与阈值湿度,得到第一比较结果;
获取所述环境大气湿度大于所述阈值湿度的第一时间;
比较所述第一时间与开机时间差,得到第二比较结果;
根据所述第一比较结果与所述第二比较结果确定是否对所述燃料电池系统进行活化。
在一种可选的实施例中,所述根据所述第一比较结果与所述第二比较结果确定是否对所述燃料电池系统进行活化,包括:当所述环境大气湿度大于所述阈值湿度,且所述第一时间小于所述开机时间差时,对所述燃料电池系统进行活化。
在一种可选的实施例中,所述当所述环境大气湿度大于所述阈值湿度,且所述第一时间小于开机时间差时,对所述燃料电池系统进行活化,包括:根据如下公式判断对所述燃料电池系统进行活化:RH0>RH,且T1<n×T0;
其中RH0为所述环境大气湿度,RH为所述阈值湿度,T1为所述第一时间,T0为所述开机时间差,n为比例系数,n∈0~1。
在一种可选的实施例中,所述获取燃料电池系统在所述开机时间差内的环境大气湿度,包括:
获取所述燃料电池系统在所述开机时间差内的平均环境大气湿度,将所述平均环境大气湿度作为所述环境大气湿度。
在一种可选的实施例中,所述方法还包括获取所述燃料电池系统活化结果,当所述 活化结果小于阈值活化结果时,继续对其活化,直至所述活化结果大于等于所述阈值活化结果。
在一种可选的实施例中,所述方法还包括获取所述燃料电池系统质子交换膜湿度、内阻值或电压,当所述质子交换膜湿度大于所述阈值湿度,或所述内阻值小于阈值阻值,或所述电压小于阈值电压时停止活化。
在一种可选的实施例中,所述方法还包括获取所述燃料电池系统在所述开机时间差内的环境大气湿度变化趋势,获取所述变化趋势所对应的变化时间段,根据在所述第一时间内所述变化时间段与所述变化趋势对所述燃料电池系统进行活化。
在一种可选的实施例中,所述根据所述变化时间段与所述变化趋势对所述燃料电池系统进行活化,包括:当在与所述开机时间相邻的变化时间段内,所述变化趋势为下降趋势时,对所述燃料电池系统进行活化。
另一方面,提供了一种燃料电池系统在线活化装置,所述装置包括:
第一获取模块,用于获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差;
第二获取模块,用于获取燃料电池系统在所述开机时间差内的环境大气湿度;
第一比较模块,用于比较所述环境大气湿度与阈值湿度,得到第一比较结果;
第三获取模块,用于获取所述环境大气湿度大于所述阈值湿度的第一时间;
第二比较模块,用于比较所述第一时间与开机时间差,得到第二比较结果;
活化模块,用于根据所述第一比较结果与所述第二比较结果确定是否对所述燃料电池系统进行活化。
活化模块,用于当所述环境大气湿度大于所述阈值湿度,且所述第一时间小于所述开机时间差时,对所述燃料电池系统进行活化。
在一种可选的实施例中,所述活化模块,用于当所述环境大气湿度大于所述阈值湿度,且所述第一时间小于所述开机时间差时,对所述燃料电池系统进行活化。
本发明实施例提供的方法至少具有以下有益效果:
本发明实施例提供的方法通过在车辆开机前即对燃料电池系统进行检查,判断其是否需要活化,将活化步骤前置,提高了燃料电池系统电堆的寿命,减缓了电堆的寿命衰减,并且提高了司机的驾驶体验感。
附图说明
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的参考标号通常代表相同部件。
图1示出了一种燃料电池系统在线活化方法流程示意图;
图2示出了一种燃料电池系统应用示意图;
图3示出了一种燃料电池系统在线活化方法流程示意图;
图4示出了一种燃料电池系统在线活化装置结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实 施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
一方面,本发明实施例提供了一种燃料电池系统在线活化方法,请参见图1和图2,该方法包括:
S101、获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差。
S102、当开机时间差大于阈值开机时间时,获取燃料电池系统在开机时间差内的环境大气湿度。
S103、比较环境大气湿度与阈值湿度,得到第一比较结果。
S104、获取环境大气湿度大于阈值湿度的第一时间。
S105、比较第一时间与开机时间差,得到第二比较结果。
S106、根据第一比较结果与第二比较结果确定是否对燃料电池系统进行活化。
本发明实施例提供的方法至少具有以下有益效果:
本发明实施例提供的方法通过获取燃料电池系统上次关机时间与本次开机时间的开机时间差,可以得知车辆闲置或停机时间长短;当开机时间差大于阈值开机时间时,说明燃料电池车辆静置时间过久,可能会导致燃料电池系统质子交换膜干燥,通过获取燃料电池系统在开机时间差内的环境大气湿度,可以得知燃料电池系统在车辆停机状态下所处的环境大气湿度,并且与阈值湿度进行比较,可以得知环境大气湿度对燃料电池系统中质子交换膜的影响情况;通过获取环境大气湿度大于阈值湿度的第一时间,可以得知燃料电池系统在该环境湿度下静置的时间,通过比较第一时间与开机时间差,可以判断在开机时间差内且在环境湿度大于阈值湿度的条件下燃料电池系统静置的时间,进而得知燃料电池系统中质子交换膜的湿度情况,进而判断出是否对燃料电池系统进行活化。本发明实施例提供的方法通过在车辆开机前即对燃料电池系统进行检查,判断其是否需要活化,将活化步骤前置,提高了燃料电池系统电堆的寿命,减缓了电堆的寿命衰减,并且提高了司机的驾驶体验感。
以下将通过可选的实施例进一步解释和描述本发明实施例提供的方法。
S101、获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差。
本发明实施例提供的方法通过云端服务器获取燃料电池系统运行数据,如图2所示,燃料电池车辆搭载了燃料电池系统,数据采集器(T-box),燃料电池系统借助CAN网络与T-box,通过T-box将燃料电池车辆实时运行数据发送至云端服务器,云端服务器可以联网获取燃料电池系统各种信息,如燃料电池系统开机时间和关机时间、天气信息、时间信息、地理位置信息等。
可以理解的是,燃料电池车辆在长期静置过程中会导致质子交换膜中结合的水蒸气流失,趋于干燥状态,进一步导致在静置结束后的首次开机运行过程中燃料电池系统性能下降,甚至无法维持正常运行。因此,可以根据燃料电池系统上次关机时间与本次开机时间,即燃料电池车辆静置时间判断燃料电池系统静置时间。
S102、当开机时间差大于阈值开机时间时,获取燃料电池系统在开机时间差内的环境大气湿度。
所谓环境大气湿度是指空气中的潮湿程度,它表示当时大气中水汽含量距离大气饱和的程度,一般用相对湿度百分比来表示环境大气湿度的程度。在一定气温下,大气中相对湿度越小,水汽蒸发也就越快;反之,大气中相对湿度越大,水汽蒸发也就越慢。因此环境大气湿度会影响质子交换膜的湿度,本发明实施例通过获取环境大气湿度进而判断侄子交换膜的湿度。
当开机时间差大于阈值开机时间时,说明燃料电池车辆静置时间过久,可能造成燃料电池系统质子交换膜干燥,存在对其进行活化的可能,但是由于燃料电池系统位于车 辆上时一般会处于外部环境中,外部环境湿度对燃料电池系统的性能也会产生很大影响,为了保证判断结果的准确性,本发明实施例通过进一步获取燃料电池系统在开机时间差内的环境大气湿度,进而判断是否对燃料电池系统进行活化。
需要说明的是,本发明实施例对阈值开机时间不作限定,具体可根据燃料电池车辆所载燃料电池系统性能的不同进行确定。
S103、比较环境大气湿度与阈值湿度,得到第一比较结果。
可以理解的是,通过比较环境大气湿度与阈值湿度,可以判断燃料电池系统所处的环境湿度,当燃料电池车辆所处的大气湿度环境较大时,质子交换膜则不易干燥,当燃料电池车辆所处的大气湿度环境较小时,质子交换膜则容易干燥。因此将环境大气湿度与阈值湿度进行比较,得到第一比较结果。
可以理解的是,第一比较结果包括环境大气湿度大于阈值湿度,或环境大气湿度小于阈值湿度。
S104、获取环境大气湿度大于阈值湿度的第一时间。
可以理解的是,环境大气湿度会随着时间变化而变化,一天当中中午的环境大气湿度会小于晚上的环境大气湿度,夏天的环境大气湿度大于冬天的环境大气湿度,并且燃料电池车辆在环境大气湿度较大的环境中停留的时间长短会影响质子交换膜的湿度,因此本发明实施例通过获取环境大气湿度大于阈值湿度的第一时间,可以判断燃料电池系统在大于阈值湿度的环境中静置的时间,进而可判断质子交换膜是否干燥。
S105、比较第一时间与开机时间差,得到第二比较结果。
作为一种示例,燃料电池系统所处的环境大气湿度为50%,大于阈值湿度45%,并且燃料电池系统在该环境中停留的时间为3天,燃料电池系统上次关机时间与本次开机时间之间的开机时间差为5天,也就是说,燃料电池系统静置的时间5天,其中有3天的时间是处于湿度较低的环境中。
S106、根据第一比较结果与第二比较结果确定是否对燃料电池系统进行活化。
在一种可选的实施例中,根据第一比较结果与第二比较结果确定是否对燃料电池系统进行活化,包括:当环境大气湿度大于阈值湿度,且第一时间小于开机时间差时,对燃料电池系统进行活化。
可以理解的是,当环境大气湿度大于阈值湿度,说明燃料电池车辆一直处于湿度较高的环境中,质子交换膜不会失水过多,但是当第一时间小于开机时间差时,说明虽然燃料电池车辆处于湿度较高的环境中,但是在这个环境中的时间比较小,很容易造成质子交换膜的失水,此时就需要对燃料电池系统进行活化。
在一种可选的实施例中,当环境大气湿度大于阈值湿度,且第一时间小于开机时间差时,对燃料电池系统进行活化,包括:根据如下公式判断对燃料电池系统进行活化:RH0>RH,且T1<n×T0;
其中RH0为环境大气湿度,RH为阈值湿度,T1为第一时间,T0为开机时间差,n为比例系数,n∈0~1。
进一步的,其中RH0可以是50%;其中T1湿度RH0>RH的时间和,n是比例系数,范围为0~1,例如可以为0.5,T0为本次开机与上次关机的开机时间差。
作为一种示例,本次开机与上次关机间隔30天,其中大气环境湿度大于50%的天数为20天,则由于20>0.5×30,表明燃料电池系统长时间没有开机,但所处环境大气湿度较高,也不用担心质子交换膜变干的问题。
作为另一种示例,本次开机与上次关机间隔30天,其中大气环境湿度大于50%的天数为10天,则由于10<0.5×30,表明燃料电池系统长时间没有开机,但所处环境大气湿度较低,容易造成质子交换膜失水变干的问题。
需要说明的是,本发明实施例对阈值湿度不作限定,具体可根据燃料电池车辆所载燃料电池系统性能的不同进行确定。
在一种可选的实施例中,获取燃料电池系统在开机时间差内的环境大气湿度,包括:
获取燃料电池系统在开机时间差内的平均环境大气湿度,将平均环境大气湿度作为环境大气湿度。
可以理解的是,当燃料电池车辆静置时间过久时,环境大气湿度会发生变化,因此通过获取燃料电池系统在开机时间差内的平均环境大气湿度可以保证对燃料电池系统状态判断的准确性。
进一步的,本发明实施例可以通过设置在燃料电池系统中的湿度传感器获取燃料电池系统在时间差内的湿度值总和,通过湿度值总合与开机时间差得到平均环境大气湿度。
在一种可选的实施例中,方法还包括获取燃料电池系统活化结果,当活化结果小于阈值活化结果时,继续对其活化,直至活化结果大于等于阈值活化结果。
可以理解的是,当活化一定时间后需要判断活化是否达到标准值,或者使燃料电池系统质子交换膜恢复正常值。如果活化结果小于阈值活化结果时,则需要对其继续进行活化,直至活化结果大于等于阈值活化结果。
在一种可选的实施例中,方法还包括获取燃料电池系统质子交换膜湿度、内阻值或电压,当质子交换膜湿度大于阈值湿度,或内阻值小于阈值阻值,或电压小于阈值电压时停止活化。
进一步的,通过云端服务器获取活化后侄子交换膜湿度,当经过活化后侄子交换膜湿度大于阈值湿度,则说明燃料电池系统恢复正常,可以停止活化,或者通过云端服务器获取活化后侄子交换膜内阻值,如果内阻值小于阈值阻值,则说明质子交换膜可正常工作,则可以停止活化,或者通过云端服务器获取活化后侄子交换膜电压,当电压小于阈值电压时说明质子交换膜恢复正常,此时停止活化。
在一种可选的实施例中,由于燃料电池系统静置时间超过阈值开机时间时,并且大多数天数的大气环境湿度较低,说明此时的燃料电池系统的质子交换膜处于干燥状态,此时可以通过改变正常运行时的工况点操作条件,如降低燃料电池系统的工作温度,和/或降低燃料电池系统工作的空气流量,和/或使燃料电池系统工作在额定或超过额定功率,以达到润湿燃料电池系统质子交换膜的目的。
进一步的,可以通过云端服务器向燃料电池系统控制器发送上述降低燃料电池系统的工作温度,和/或降低燃料电池系统工作的空气流量,和/或使燃料电池系统工作在额定或超过额定功率的指令,通过燃料电池系统控制器控制燃料电池系统改变质子交换膜的状态。
进一步的,本发明实施例可以通过燃料电池系统控制器获取燃料电池系统质子交换膜湿度、内阻值或电压,并将上述数值传输给云端服务器。
在一种可选的实施例中,方法还包括获取燃料电池系统在开机时间差内的环境大气湿度变化趋势,获取变化趋势所对应的变化时间段,根据变化时间段与变化趋势对燃料电池系统进行活化。
可以理解的是,燃料电池系统所处的环境大气湿度会随着时间发生变化,例如会在白天湿度升高,夜间湿度降低,或者随着环境大气温度的变化出现变化。环境大气湿度变化趋势包括上升趋势和下降趋势,在开机时间差内上升趋势和下降趋势都会对应一定的时间段,本发明实施例通过获取变化趋势所对应的变化时间段,根据变化时间段与变化趋势对燃料电池系统进行活化。
在一种可选的实施例中,根据在第一时间内变化时间段与变化趋势对燃料电池系统进行活化,包括:当在与开机时间相邻的变化时间段内,变化趋势为下降趋势时,对燃 料电池系统进行活化。
进一步的,在开机时间差内,环境大气湿度先上升一段时间,后又下降一段时间,并且在开机前的这段时间内环境大气湿度一直是下降的,说明虽然在之前的时间内环境大气湿度是上升的,但是在临近开机的这段时间环境大气湿度是下降的,并且当环境湿度下降速率较大时,说明质子交换膜会很快失去水分,此时为了保证燃料电池车辆的正常运行,可以对其进行活化。
在一种可选的实施例中,可以通过获取在开机时间差内环境大气湿度上升和下降的速率,并根据速率大小判断燃料电池系统质子交换膜发生干燥的时间,如果环境大气湿度持续以该速率下降,质子交换膜发生干燥即会在较短的时间内失水、干燥,此时可以对燃料电池系统进行活化,提高燃料电池系统的使用效率,避免燃料电池车辆在使用过程中出现故障等问题。
在一种可选的实施例中,本发明实施例提供的方法还包括燃料电池系统上电,实时传输数据至云端服务器,需要说明的是,此处的上电是指24V或12V等低压电源的连接,提供T-box和燃料电池系统控制器工作的电源,也可以包含各种高压电源;这里的数据包括但不限于燃料电池发动机的开机命令和命令。
在一种可选的实施例中,燃料电池系统开机,进入自检,自检通常指检查各种传感器、执行器的状态及故障等。
请进一步参见图3,本发明实施例通过图3对本发明实施例提供的方法做进一步解释和说明。
如图3所示,本发明实施例提供的方法开始后燃料电池系统上电,实时传输数据至云端服务器,燃料电池系统开机,进入自检,云端服务器获取燃料电池系统上次关机时间和本次开机时间后云端服务器计算本次开机时间与上次关机时间的开机时间差T0,云端服务器查询在开机时间差T0内燃料电池系统所处环境的大气湿度RH0,如果开机时间差T0>T(阈值时间),如果开机时间差T0<T(阈值时间),则燃料电池系统进入正常运行状态,不需要活化,如果开机时间差T0>T(阈值时间)则判断环境大气湿度RH0与阈值湿度RH之间的关系,当RH0>RH的时间T1小于nT0,即T1<n×T0时云端服务器向燃料电池系统控制器发送活化指令,进入活化流程,判断活化结果是否满足标准值,如果满足则活化结束,燃料电池系统进入正常运行状态。此处正常运行状态指的是在正常的工况点操作条件下输出功率,驱动燃料电池车辆运行。
另一方满,本发明实施例还提供了一种燃料电池系统在线活化装置,请参见图4,该装置包括:
第一获取模块401,用于获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差;
第二获取模块402,用于获取燃料电池系统在开机时间差内的环境大气湿度;
第一比较模块403,用于比较环境大气湿度与阈值湿度,得到第一比较结果;
第三获取模块404,用于获取环境大气湿度大于阈值湿度的第一时间;
第二比较模块405,用于比较第一时间与开机时间差,得到第二比较结果;
活化模块406,用于根据第一比较结果与第二比较结果确定是否对燃料电池系统进行活化。
在一种可选的实施例中,活化模块406,用于当环境大气湿度大于阈值湿度,且第一时间小于开机时间差时,对燃料电池系统进行活化。
在一种可选的实施例中,活化模块406,用于根据如下公式判断对燃料电池系统进行活化:RH0>RH,且T1<n×T0;
其中RH0为环境大气湿度,RH为阈值湿度,T1为第一时间,T0为开机时间差, n为比例系数,n∈0~1。
在一种可选的实施例中,第二获取模块402,用于获取燃料电池系统在开机时间差内的平均环境大气湿度,将平均环境大气湿度作为环境大气湿度。
在一种可选的实施例中,装置还包括第四获取模块,用于获取燃料电池系统活化结果,当活化结果小于阈值活化结果时,继续对其活化,直至活化结果大于等于阈值活化结果。
在一种可选的实施例中,装置还包括第五获取模块,用于获取燃料电池系统质子交换膜湿度、内阻值或电压,当质子交换膜湿度大于阈值湿度,或内阻值小于阈值阻值,或电压小于阈值电压时停止活化。
在一种可选的实施例中,装置还包括第六获取模块,用于获取燃料电池系统在开机时间差内的环境大气湿度变化趋势,获取变化趋势所对应的变化时间段,根据在第一时间内变化时间段与变化趋势对燃料电池系统进行活化。
在一种可选的实施例中,活化模块406,用于当在与开机时间相邻的变化时间段内,变化趋势为下降趋势时,对燃料电池系统进行活化。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (8)

  1. 一种燃料电池系统在线活化方法,其特征在于,所述方法包括:
    获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差;
    当所述开机时间差大于阈值开机时间时,获取所述燃料电池系统在所述开机时间差内的环境大气湿度;
    比较所述环境大气湿度与阈值湿度,得到第一比较结果;
    获取所述环境大气湿度大于所述阈值湿度的第一时间;
    比较所述第一时间与开机时间差,得到第二比较结果;
    根据所述第一比较结果与所述第二比较结果确定是否对所述燃料电池系统进行活化,当所述环境大气湿度大于所述阈值湿度,且所述第一时间小于所述开机时间差时,对所述燃料电池系统进行活化。
  2. 根据权利要求1所述的方法,其特征在于,所述当所述环境大气湿度大于所述阈值湿度,且所述第一时间小于开机时间差时,对所述燃料电池系统进行活化,包括:根据如下公式判断对所述燃料电池系统进行活化:RH0>RH,且T1<n×T0;
    其中RH0为所述环境大气湿度,RH为所述阈值湿度,T1为所述第一时间,T0为所述开机时间差,n为比例系数,n∈0~1。
  3. 根据权利要求1所述的方法,其特征在于,所述获取燃料电池系统在所述开机时间差内的环境大气湿度,包括:
    获取所述燃料电池系统在所述开机时间差内的平均环境大气湿度,将所述平均环境大气湿度作为所述环境大气湿度。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括获取所述燃料电池系统活化结果,当所述活化结果小于阈值活化结果时,继续对其活化,直至所述活化结果大于等于所述阈值活化结果。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括获取所述燃料电池系统质子交换膜湿度、内阻值或电压,当所述质子交换膜湿度大于所述阈值湿度,或所述内阻值小于阈值阻值,或所述电压小于阈值电压时停止活化。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括获取所述燃料电池系统在所述开机时间差内的环境大气湿度变化趋势,获取所述变化趋势所对应的变化时间段,根据在所述第一时间内所述变化时间段与所述变化趋势对所述燃料电池系统进行活化。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述变化时间段与所述变化趋势对所述燃料电池系统进行活化,包括:当在与所述开机时间相邻的变化时间段内,所述变化趋势为下降趋势时,对所述燃料电池系统进行活化。
  8. 一种燃料电池系统在线活化装置,其特征在于,所述装置包括:
    第一获取模块,用于获取燃料电池系统上次关机时间与本次开机时间之间的开机时间差;
    第二获取模块,用于获取燃料电池系统在所述开机时间差内的环境大气湿度;
    第一比较模块,用于比较所述环境大气湿度与阈值湿度,得到第一比较结果;
    第三获取模块,用于获取所述环境大气湿度大于所述阈值湿度的第一时间;
    第二比较模块,用于比较所述第一时间与开机时间差,得到第二比较结果;活化模块,用于根据所述第一比较结果与所述第二比较结果确定是否对所述燃料电池系统进行活化,当所述环境大气湿度大于所述阈值湿度,且所述第一时间小于所述开机时间差时,对所述燃料电池系统进行活化。
PCT/CN2022/112346 2021-09-26 2022-08-14 一种燃料电池系统在线活化方法及活化装置 WO2023045616A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022350248A AU2022350248A1 (en) 2021-09-26 2022-08-14 Online activation method and activation device for fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111126230.9 2021-09-26
CN202111126230.9A CN113571740B (zh) 2021-09-26 2021-09-26 一种燃料电池系统在线活化方法及活化装置

Publications (1)

Publication Number Publication Date
WO2023045616A1 true WO2023045616A1 (zh) 2023-03-30

Family

ID=78174600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112346 WO2023045616A1 (zh) 2021-09-26 2022-08-14 一种燃料电池系统在线活化方法及活化装置

Country Status (3)

Country Link
CN (1) CN113571740B (zh)
AU (1) AU2022350248A1 (zh)
WO (1) WO2023045616A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571740B (zh) * 2021-09-26 2021-12-03 北京亿华通科技股份有限公司 一种燃料电池系统在线活化方法及活化装置
CN114824371B (zh) * 2022-05-05 2024-06-14 中国第一汽车股份有限公司 燃料电池发动机的活化控制方法、活化控制装置
CN115027390A (zh) * 2022-06-06 2022-09-09 阿尔特(北京)汽车数字科技有限公司 车辆下电时间计算方法、装置及电子设备、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026276A1 (en) * 2005-07-26 2007-02-01 Honda Motor Co., Ltd. Fuel cell system and control method of fuel cell system
CN1926709A (zh) * 2004-02-27 2007-03-07 株式会社东芝 燃料电池单元、燃料电池单元的控制方法和信息处理设备
WO2008118962A1 (en) * 2007-03-27 2008-10-02 Bdf Ip Holdings Ltd. Method of starting up fuel cell stacks from freezing temperatures
CN101609900A (zh) * 2008-06-06 2009-12-23 通用汽车环球科技运作公司 在延长关闭时间后改善启动可靠性的改进的启动策略
CN112786924A (zh) * 2021-01-21 2021-05-11 金龙联合汽车工业(苏州)有限公司 一种燃料电池系统的开关机吹扫控制方法及系统
CN113571740A (zh) * 2021-09-26 2021-10-29 北京亿华通科技股份有限公司 一种燃料电池系统在线活化方法及活化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041646A (ja) * 2006-07-11 2008-02-21 Canon Inc 燃料電池システム、燃料電池の活性化処理方法
JP5692396B2 (ja) * 2011-09-15 2015-04-01 トヨタ自動車株式会社 燃料電池システム
CN103595096B (zh) * 2013-11-11 2016-07-13 江苏超洁绿色能源科技有限公司 一种用于质子交换膜燃料电池备用电源系统的dc/dc变换及控制系统
JP7117279B2 (ja) * 2019-09-09 2022-08-12 本田技研工業株式会社 燃料電池車両及び該車両の停止時掃気時間の設定方法
CN110400948A (zh) * 2019-09-17 2019-11-01 潍柴动力股份有限公司 一种燃料电池电堆活化方法及装置
CN111193052B (zh) * 2019-12-31 2021-05-18 潍柴动力股份有限公司 控制燃料电池发动机活化的方法及装置
CN111952638B (zh) * 2020-07-31 2023-09-26 同济大学 一种车用燃料电池的性能恢复系统及方法
CN113224353B (zh) * 2021-05-08 2022-07-22 张家口市氢能科技有限公司 一种氢燃料电池快速活化方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926709A (zh) * 2004-02-27 2007-03-07 株式会社东芝 燃料电池单元、燃料电池单元的控制方法和信息处理设备
US20070026276A1 (en) * 2005-07-26 2007-02-01 Honda Motor Co., Ltd. Fuel cell system and control method of fuel cell system
WO2008118962A1 (en) * 2007-03-27 2008-10-02 Bdf Ip Holdings Ltd. Method of starting up fuel cell stacks from freezing temperatures
CN101609900A (zh) * 2008-06-06 2009-12-23 通用汽车环球科技运作公司 在延长关闭时间后改善启动可靠性的改进的启动策略
CN112786924A (zh) * 2021-01-21 2021-05-11 金龙联合汽车工业(苏州)有限公司 一种燃料电池系统的开关机吹扫控制方法及系统
CN113571740A (zh) * 2021-09-26 2021-10-29 北京亿华通科技股份有限公司 一种燃料电池系统在线活化方法及活化装置

Also Published As

Publication number Publication date
CN113571740A (zh) 2021-10-29
AU2022350248A1 (en) 2024-03-28
CN113571740B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023045616A1 (zh) 一种燃料电池系统在线活化方法及活化装置
CN112186223B (zh) 一种汽车燃料电池系统及其空气湿度控制方法
US10511041B2 (en) Method of controlling operation of fuel cell system
CN110429303B (zh) 氢燃料电池发动机冷启动方法
CN103715440B (zh) 燃料电池系统的自动冷藏保护
US11329302B2 (en) Control method and system of fuel cell system
KR101417345B1 (ko) 연료전지 시스템의 제어 방법
CN110621534B (zh) 用于运行燃料电池系统的方法和系统
JP6350556B2 (ja) 燃料電池システムおよび燃料電池の掃気方法
US8623564B2 (en) Method for remedial action in the event of the failure of the primary air flow measurement device in a fuel cell system
EP2712015B1 (en) Fuel cell system
CN110085890B (zh) 燃料电池系统以及燃料电池车辆
CN112290056A (zh) 一种氢燃料电池的阴极空气供给系统控制方法
US20080176117A1 (en) Fuel Cell System and Fuel Cell System Control Method
JP4992261B2 (ja) 燃料電池システム
CN113964352A (zh) 一种燃料电池系统控制方法及控制装置
CN112046338A (zh) 燃料电池车辆的高压下电方法及电池系统
KR101567645B1 (ko) 연료 전지 시스템 및 그 운전 제어 방법
WO2019219007A1 (zh) 一种驻车空调控制方法和驻车空调
WO2019233024A1 (zh) 车载空调的供电方法、装置和车载式光伏空调系统
CN116190719A (zh) 车辆燃料电池吹扫控制方法和系统
CN114388940B (zh) 一种车辆、车载燃料电池保温方法、装置和设备
CN113036181B (zh) 氢气排放控制方法及系统、燃料电池发动机系统及其控制方法
CN114388851A (zh) 一种车载燃料电池发动机的加热控制方法及系统
JP2017130253A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022350248

Country of ref document: AU

Ref document number: AU2022350248

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022350248

Country of ref document: AU

Date of ref document: 20220814

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE