CN113964352A - 一种燃料电池系统控制方法及控制装置 - Google Patents

一种燃料电池系统控制方法及控制装置 Download PDF

Info

Publication number
CN113964352A
CN113964352A CN202111272387.2A CN202111272387A CN113964352A CN 113964352 A CN113964352 A CN 113964352A CN 202111272387 A CN202111272387 A CN 202111272387A CN 113964352 A CN113964352 A CN 113964352A
Authority
CN
China
Prior art keywords
fuel cell
cell system
vehicle
adjusting
difference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111272387.2A
Other languages
English (en)
Other versions
CN113964352B (zh
Inventor
李文文
张潇丹
方川
李飞强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sinohytec Co Ltd
Original Assignee
Beijing Sinohytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sinohytec Co Ltd filed Critical Beijing Sinohytec Co Ltd
Priority to CN202111272387.2A priority Critical patent/CN113964352B/zh
Publication of CN113964352A publication Critical patent/CN113964352A/zh
Application granted granted Critical
Publication of CN113964352B publication Critical patent/CN113964352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供了一种燃料电池系统控制方法及控制装置,方法包括:燃料电池系统控制器接收整车控制器发送的燃料电池需求功率;根据需求功率判断车辆运行状态,当车辆处于第一运行状态时获取燃料电池系统整体功耗;获取燃料电池电堆平均单片电压;获取燃料电池系统输出功率;获取燃料电池系统的整体功耗与燃料电池系统输出功率之间的差值;根据平均单片电压与差值调整燃料电池系统附件结构运行参数,使燃料电池系统高效运行。本发明使车辆即使在怠速运行时,保证燃料电池发动机做到零功率点输出;并且使燃料电池系统在怠速运行时,电堆平均单片控制到标准电压以下,提高了燃料电池电堆的性能。

Description

一种燃料电池系统控制方法及控制装置
技术领域
本发明属于燃料电池技术领域,具体涉及一种燃料电池系统控制方法及控制装置。
背景技术
燃料电池主要通过氢气和氧气在内部的催化剂上发生化学反应,氢气变成氢质子,从阳极侧通过质子交换膜传递到阴极与氧气发生反应生成水,电子通过外部电路进行传输,从而形成闭合回路。燃料电池在发电的过程中需要考虑其燃料电堆每片单片电压应小于0.85V,从而避免高电位而导致燃料电池耐久性能的降低。此外,当燃料电池发动机在整车上应用时,其对外输出的功率应满足整车上电机的功率跟随需求,当整车正常运行时,有较多的工况出现,如加减速、爬坡、红绿灯停车等待、长时间停车等待等。正常的工况燃料电池的工况基本能够满足整车的运行工况,其中停车等待工况由于不要消耗电量,但又需要快速启动,因此需要燃料电池发动机不能关机,且对外输出的净功率应在-1~0kw之间,以及在输出时燃料电池电堆每片的单片电压应小于0.85v。
相关技术提供的控制方法燃料电池系统在怠速运行时,无法保证每台发动机均做到零功率点输出,燃料电池电堆电压过高,影响燃料电池电堆的性能。
发明内容
本发明提供了一种燃料电池系统控制方法,可以解决相关技术提供的控制方法燃料电池系统在怠速运行时,无法保证每台发动机均做到零功率点输出,燃料电池电堆电压过高,影响燃料电池电堆的性能的技术问题。
本发明实施例提供的技术方案如下所示:
一方面,提供了一种燃料电池系统控制方法,所述方法包括:
燃料电池系统控制器接收整车控制器发送的燃料电池需求功率;
根据所述需求功率判断车辆运行状态,当所述车辆处于第一运行状态时获取燃料电池系统整体功耗;
获取燃料电池电堆平均单片电压;
获取所述燃料电池系统输出功率;
获取所述燃料电池系统的整体功耗与所述燃料电池系统输出功率之间的差值;
根据所述平均单片电压与所述差值调整所述燃料电池系统附件结构运行参数,使所述燃料电池系统高效运行。
在一种可选的实施例中,所述方法还包括:
当所述车辆运行状态为第一运行状态时,所述燃料电池系统卸载至车辆假停机、怠速工况点。
在一种可选的实施例中,所述燃料电池系统卸载至车辆假停机、怠速工况点,包括:
所述燃料电池系统卸载拉载电流,所述燃料电池系统的其余附件结构运行参数保持当前工况。
在一种可选的实施例中,所述根据所述平均单片电压与所述差值调整所述燃料电池系统基础参数,使所述燃料电池系统高效运行,包括:
判断所述燃料电池电堆平均单片电压与第一参数值大小,得到第一判断结果;
判断所述差值与第二参数值大小,得到第二判断结果;
根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,使所述燃料电池系统高效运行。
在一种可选的实施例中,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压小于第一参数值,且所述差值小于所述第二参数值,使所述燃料电池系统保持当前工况运行。
在一种可选的实施例中,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压小于第一参数值,且所述差值大于所述第二参数值,提高所述燃料电池系统电流至下一档位。
在一种可选的实施例中,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压大于第一参数值,且所述差值大于所述第二参数值,提高所述燃料电池系统电流至下一档位及调节所述燃料电池系统三通阀开度降低所述燃料电池电堆空气流量。
在一种可选的实施例中,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压大于第一参数值,且所述差值小于所述第二参数值,则调节所述燃料电池系统三通阀开度降低所述燃料电池电堆空气流量。
另一方面,提供了一种燃料电池系统控制装置,所述装置包括:
接收单元,用于燃料电池系统控制器接收整车控制器发送的燃料电池需求功率;
状态判断单元,用于根据所述需求功率判断车辆运行状态;
第一获取单元,用于当所述车辆处于第一运行状态时获取燃料电池系统整体功耗;
第二获取单元,用于获取所述燃料电池电堆平均单片电压;
第三获取单元,用于获取所述燃料电池系统输出功率;
第四获取单元,用于获取所述燃料电池系统的整体功耗与所述燃料电池系统输出功率之间的差值;
调整单元,用于根据所述平均单片电压与所述差值调整所述燃料电池系统附件结构运行参数,使所述燃料电池系统高效运行。
在一种可选的实施例中,所述装置还包括:
第二调整单元,用于当所述车辆运行状态为第一运行状态时,所述燃料电池系统卸载至车辆假停机、怠速工况点。
本发明实施例提供的方法至少具有以下有益效果:
本发明实施例提供的方法通过燃料电池控制器接收整车控制器发送的燃料电池需求功率,并根据需求功率判断车辆运行状态;当车辆处于第一运行状态时获取燃料电池系统整体功耗,获取燃料电池电堆平均单片电压,获取燃料电池系统输出功率,获取燃料电池系统的整体功耗与燃料电池系统输出功率之间的差值,根据平均单片电压与差值调整燃料电池系统附件结构运行参数,使车辆即使在第一运行状态,例如怠速运行时,保证燃料电池发动机做到零功率点输出;并且使燃料电池系统在怠速运行时,电堆平均单片控制到标准电压以下,提高了燃料电池电堆的性能。
提供发明内容部分是为了以简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开的重要特征或必要特征,也无意限制本公开的范围。
附图说明
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的参考标号通常代表相同部件。
图1示出了本发明实施例提供的燃料电池系统控制方法流程示意图;
图2示出了本发明实施例提供的燃料电池系统控制方法流程示意图;
图3示出了本发明实施例提供的燃料电池系统控制装置结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
请参见图1,本发明实施例提供了一种燃料电池系统控制方法,方法包括:
S101、燃料电池系统控制器接收整车控制器发送的燃料电池需求功率。
S102、根据需求功率判断车辆运行状态,当车辆处于第一运行状态时获取燃料电池系统整体功耗。
S103、获取燃料电池电堆平均单片电压。
S104、获取燃料电池系统输出功率。
S105、获取燃料电池系统的整体功耗与燃料电池系统输出功率之间的差值。
S106、根据平均单片电压与差值调整燃料电池系统附件结构运行参数,使燃料电池系统高效运行。
本发明实施例提供的方法至少具有以下有益效果:
本发明实施例提供的方法通过燃料电池控制器接收整车控制器发送的燃料电池需求功率,并根据需求功率判断车辆运行状态;当车辆处于第一运行状态时获取燃料电池系统整体功耗,获取燃料电池电堆平均单片电压,获取燃料电池系统输出功率,获取燃料电池系统的整体功耗与燃料电池系统输出功率之间的差值,根据平均单片电压与差值调整燃料电池系统附件结构运行参数,使车辆即使在第一运行状态,例如怠速运行时,保证燃料电池发动机做到零功率点输出;并且使燃料电池系统在怠速运行时,电堆平均单片控制到标准电压以下,提高了燃料电池电堆的性能。
以下将通过可选的实施例进一步解释和描述本发明实施例提供的控制方法。
S101、燃料电池系统控制器接收整车控制器发送的燃料电池需求功率。
需要说明的是,燃料电池系统控制器(FCU)是燃料电池系统的控制“大脑”,主要实现对燃料电池系统的在线检测、实时控制及故障诊断,确保燃料电池系统稳定可靠工作,燃料电池系统控制器功能包括气路管理,水热管理,电气管理,通信功能和故障诊断等。反应气体的压力、湿度、电堆内部湿度及温度等操作条件,直接影响电堆的性能和寿命。其中,气路管理功能主要实现对燃料电池系统所需的氢气和空气的湿度,流量,压力和温度等进行合理精准控制。水热管理功能主要实现对冷却水路的循环,加温,散热以及空气和冷却水温度进行控制调节,提高燃料电池系统的功率以及运行的可靠稳定性。电气管理功能主要实现燃料电池电堆电压和电流的检测,调节输出功率,并将燃料电池系统的电压控制在合理区间,消耗关机残留电量,电压电流的保护控制等。数据通信功能主要实现与其他系统进行通讯,实现重要数据信息和控制的交互。故障诊断功能主要实现对气路,水热,电气,通信,系统各个方面进行故障诊断,警告,报警和保护等功能。
S102、根据需求功率判断车辆运行状态,当车辆处于第一运行状态时获取燃料电池系统整体功耗。
通过FCU获取整车控制器VCU发出的燃料电池系统需求功率,FCU根据燃料电池系统需求功率判断车辆的运行状态,作为一种示例,如燃料电池系统需求功率需求瞬间增加,表明车辆属于爬坡或加速状态;如燃料电池系统需求功率需求降低,表明车辆处于减速状态;如燃料电池系统需求功率需求为怠速,表明车辆处于红绿灯停车等待;如燃料电池系统需求功率需求为0功率,表明车辆处于长时间停车等待。
可以理解的是,车辆的运行状态有很多种,如加速、减速、爬坡、红绿灯停车等待、长时间停车等待等状态。
车辆在正常运行状态下燃料电池系统的工况基本能够满足车辆运行工况,其中停车等待工况由于不要消耗电量,但又需要快速启动,因此需要燃料电池系统发动机不能关机,且对外输出的净功率应在-1~0kw之间,以及在输出时燃料电池电堆单片电压应小于0.85V。本发明实施例提供的第一运行状态即为车辆怠速行使,燃料电池发动机零功率输出状态。在车辆处于怠速行使状态时,通过FCU获取燃料电池系统整体功耗P_bop。需要说明的是,燃料电池系统整体功耗P_bop是指燃料电池系统中的、空压机功耗、水泵功耗等功耗之和。
S103、获取燃料电池电堆平均单片电压。
需要说明的是,燃料电池电堆由多个单体电池以串联方式层叠组合而成,单体电池是由双极板与膜电极(MEA-催化剂、质子交换膜、碳纸/碳布)组成。若干单体之间嵌入密封件,经前、后端板压紧后用螺杆紧固拴牢,即构成燃料电池电堆。本发明实施例通过FCU获取燃料电池电堆平均单片电压。进一步的,可以通过设置在燃料电池电堆上的巡检采集控制器获取电堆平均单片电压,并将该电压数值传输给FCU。
S104、获取燃料电池系统输出功率。
通过FCU获取燃料电池系统输出功率,进一步的,可以通过整车的输出功率得到燃料电池系统输出功率。需要说明的是,整车控制器VCU会发送燃料电池功率需求值给FCU。
在一种可选的实施例中,本发明实施例提供的方法还包括:
当车辆运行状态为第一运行状态时,燃料电池系统卸载至燃料电池假停机、怠速工况点。
当车辆运行状态为第一运行状态,即怠速行使状态时,燃料电池系统通过FCU控制燃料电池系统附件结构运行参数,卸载燃料电池电流,使燃料电池系统在假停机、怠速工况点下运行。
在一种可选的实施例中,燃料电池系统卸载至燃料电池假停机、怠速工况点,包括:
燃料电池系统卸载拉载电流,燃料电池系统的其余附件结构运行参数保持当前工况。
燃料电池系统通过FCU卸载拉载电流,燃料电池系统的其余附件结构运行参数保持当前工况。
需要说明的是,拉载电流是数字电路输出高电平给负载提供的输出电流。
在一种可选的实施例中,S106包括S1061- S1063。
S1061、判断燃料电池电堆平均单片电压与第一参数值大小,得到第一判断结果。
作为一种示例,本发明实施例提供的第一参数值可以为0.85V。燃料电池系统在发电的过程中需要考虑燃料电池电堆每片单片电压应小于0.85V,从而避免高电位而导致燃料电池系统耐久性能的降低。
此外,当燃料电池系统在车辆上应用时,其对外输出的功率应满足车辆电机的功率跟随需求,当车辆正常运行时,有较多的工况出现,如加减速、爬坡、红绿灯停车等待、长时间停车等待,正常工况燃料电池系统基本能够满足整车的运行工况,其中停车等待工况由于不要消耗电量,但又需要快速启动,因此需要燃料电池系统不能关机,且对外输出的净功率应在-1~0kw之间,以及在输出时燃料电池电堆每片的单片电压应小于0.85V。
S1062、判断差值与第二参数值大小,得到第二判断结果。
燃料电池系统的整体功耗P_bop与燃料电池系统输出功率P_stack之间的差值∆P,判断差值与第二参数值大小。示例的,第二参数值为0,即比较差值∆P与功率为0的情况。
S1063、根据第一判断结果与第二判断结果调整燃料电池系统基础参数,使燃料电池系统高效运行。
在一种可选的实施例中,根据第一判断结果与第二判断结果调整燃料电池系统基础参数,包括:当燃料电池电堆平均单片电压小于第一参数值,且差值小于第二参数值,使燃料电池系统保持当前工况运行。
进一步的,当燃料电池电堆平均单片电压小于0.85V,且差值小于0,使燃料电池系统保持当前工况运行。
在一种可选的实施例中,根据第一判断结果与第二判断结果调整燃料电池系统基础参数,包括:
当燃料电池电堆平均单片电压小于第一参数值,且差值大于第二参数值,提高燃料电池系统电流至下一档位I1。
进一步的,当燃料电池电堆平均单片电压小于0.85V,且差值大于0,提高燃料电池系统电流至下一档位I1。
进一步的,当燃料电池电堆平均单片电压小于0.85V,且差值大于0,通过FCU提高燃料电池系统电流至下一档位I1,即燃料电池系统原始电流为I0,且I1>I0。
在一种可选的实施例中,根据第一判断结果与第二判断结果调整燃料电池系统基础参数,包括:当燃料电池电堆平均单片电压大于第一参数值,且差值大于第二参数值,提高燃料电池系统电流至下一档位I1及调节燃料电池系统三通阀开度降低空气入堆流量。
进一步的,当燃料电池电堆平均单片电压大于0.85V,且差值大于0,通过FCU提高燃料电池系统电流至下一档位I1及与调节燃料电池系统连接的三通阀开度降低燃料电池电堆空气流量。
在一种可选的实施例中,根据第一判断结果与第二判断结果调整燃料电池系统基础参数,包括:
当燃料电池电堆平均单片电压大于第一参数值,且差值小于第二参数值,则调节与燃料电池系统连接的三通阀开度降低燃料电池电堆空气流量。
进一步的,当燃料电池电堆平均单片电压大于0.85V,且差值小于0,则通过FCU调节燃料电池系统三通阀开度降低燃料电池电堆空气流量。
通过本发明实施例提供的上述方法可实现燃料电池电堆平均单片小于0.85V及燃料电池电堆净输出小于0,提高了燃料电池系统性能。
需要说明的是,本发明实施例通过调节与燃料电池系统电堆连接的三通阀,基于三通阀与燃料电池系统电堆连接,通过三通阀的开启和关闭可以调节燃料电池电堆空气进气量,调节水泵的转速等,通过解耦的方式实现燃料电池系统闭环控制,通过本发明实施例提供的方法可以实现车辆在怠速运行状态写,燃料电池系统不关机,且对外输出的净功率在-1kw~0kw之间,并且及在输出时燃料电池电堆每片的单片电压可以小于0.85v,提高了燃料电池系统的性能。
请参见图2,图2为本发明实施例提供方法的具体实现步骤示意图。整车控制器向FCU发送需求功率,FCU接收该需求功率的指令,并判断需求功率是否大于0,如果大于0,则燃料电池系统正常运行,燃料电池系统输出功率跟随车辆需求功率进行输出。
如果需求功率小于0,则燃料电池系统进入假停机、怠速运行状态,燃料电池系统向整车控制器发送假停机、怠速的指令,燃料电池系统附件结构空压机、水泵在怠速下恒定运行,即空压机出口的压力P和流量Q不变,水泵转速不变,燃料电池系统的电流拉载至下一档位I1;FCU检测空压机功率P1-comp及水泵反馈的功率P-pump,并计算燃料电池系统整体功率P-bop=P1-comp+P-pump;FCU检测燃料电池电堆实际电流和电压V-avge并计算出燃料电池电堆输出功率P-stack,并检测此时空压机功率P2-pump,FCU比较P-stack与P2-bop之间差值∆P。
当-1<∆P<0且V_avge>0.85V,提高燃料电池系统电流至下一档位I1;
当-1<∆P<0且V_avge<0.85V,控制燃料电池系统根据当前工况继续运行;
当∆P>0且V_avge>0.85V,提高燃料电池系统电流至下一档位I1及调节三通阀开度降低燃料电池电堆空气流量;
∆P>0且V_avge>0.85V,调节三通阀开度降低燃料电池电堆空气流量。
可以看出,通过本发明实施例提供的方法实现了闭环控制,并且经过上述方法调整后,可以实现车辆在怠速运行状态写,燃料电池系统不关机,且对外输出的净功率在-1kw~0kw之间,并且及在输出时燃料电池电堆每片的单片电压可以小于0.85v,提高了燃料电池系统的性能。
另一方面,请参见图3,提供了一种燃料电池系统控制装置,该装置包括:
接收单元201,用于燃料电池系统控制器接收整车控制器发送的燃料电池需求功率;
状态判断单元202,用于根据需求功率判断车辆运行状态,当车辆处于第一运行状态时获取燃料电池系统整体功耗;
第二获取单元203,用于获取燃料电池电堆平均单片电压;
第三获取单元204,用于获取燃料电池系统输出功率;
第四获取单元205,用于获取燃料电池系统的整体功耗与燃料电池系统输出功率之间的差值;
调整单元206,用于根据平均单片电压与差值调整燃料电池系统附件结构运行参数,使燃料电池系统高效运行。
在一种可选的实施例中,装置还包括:
第二调整单元,用于当车辆运行状态为第一运行状态时,燃料电池系统卸载至燃料电池假停机、怠速工况点。
在一种可选的实施例中,燃料电池系统卸载至燃料电池假停机、怠速工况点,包括:
燃料电池系统卸载拉载电流,燃料电池系统的其余附件结构运行参数保持当前工况。
在一种可选的实施例中,调整单元206,用于判断燃料电池电堆平均单片电压与第一参数值大小,得到第一判断结果;
判断差值与第二参数值大小,得到第二判断结果;
根据第一判断结果与第二判断结果调整燃料电池系统基础参数,使燃料电池系统高效运行。
在一种可选的实施例中,调整单元206,用于当燃料电池电堆平均单片电压小于第一参数值,且差值小于第二参数值,使燃料电池系统保持当前工况运行。
在一种可选的实施例中,调整单元206,用于当燃料电池电堆平均单片电压小于第一参数值,且差值大于第二参数值,提高燃料电池系统电流至下一档位。
在一种可选的实施例中,调整单元206,用于当燃料电池电堆平均单片电压大于第一参数值,且差值大于第二参数值,提高燃料电池系统电流至下一档位及调节燃料电池系统三通阀开度降低空气入堆流量。
在一种可选的实施例中,调整单元206,用于当燃料电池电堆平均单片电压大于第一参数值,且差值小于第二参数值,则调节燃料电池系统三通阀开度降低空气入堆流量。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

1.一种燃料电池系统控制方法,其特征在于,所述方法包括:
燃料电池系统控制器接收整车控制器发送的燃料电池需求功率;
根据所述需求功率判断车辆运行状态,当所述车辆处于第一运行状态时获取燃料电池系统整体功耗;
获取燃料电池电堆平均单片电压;
获取所述燃料电池系统输出功率;
获取所述燃料电池系统的整体功耗与所述燃料电池系统输出功率之间的差值;
根据所述平均单片电压与所述差值调整所述燃料电池系统附件结构运行参数,使所述燃料电池系统高效运行。
2.根据权利要求1所述的燃料电池系统控制方法,其特征在于,所述方法还包括:
当所述车辆运行状态为第一运行状态时,所述燃料电池系统卸载至车辆假停机、怠速工况点。
3.根据权利要求2所述的燃料电池系统控制方法,其特征在于,所述燃料电池系统卸载至车辆假停机、怠速工况点,包括:
所述燃料电池系统卸载拉载电流,所述燃料电池系统的附件结构运行参数保持当前工况。
4.根据权利要求1所述的燃料电池系统控制方法,其特征在于,所述根据所述平均单片电压与所述差值调整所述燃料电池系统基础参数,包括:
判断所述燃料电池电堆平均单片电压与第一参数值大小,得到第一判断结果;
判断所述差值与第二参数值大小,得到第二判断结果;
根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数。
5.根据权利要求4所述的燃料电池系统控制方法,其特征在于,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压小于第一参数值,且所述差值小于所述第二参数值,使所述燃料电池系统保持当前工况运行。
6.根据权利要求4所述的燃料电池系统控制方法,其特征在于,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压小于第一参数值,且所述差值大于所述第二参数值,提高所述燃料电池系统电流至下一档位。
7.根据权利要求4所述的燃料电池系统控制方法,其特征在于,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压大于第一参数值,且所述差值大于所述第二参数值,提高所述燃料电池系统电流至下一档位及调节所述燃料电池系统三通阀开度降低所述燃料电池电堆空气流量。
8.根据权利要求4所述的燃料电池系统控制方法,其特征在于,所述根据所述第一判断结果与所述第二判断结果调整所述燃料电池系统基础参数,包括:
当所述燃料电池电堆平均单片电压大于第一参数值,且所述差值小于所述第二参数值,则调节所述燃料电池系统三通阀开度降低所述燃料电池电堆空气流量。
9.一种燃料电池系统控制装置,其特征在于,所述装置包括:
接收单元,用于燃料电池系统控制器接收整车控制器发送的燃料电池需求功率;
状态判断单元,用于根据所述需求功率判断车辆运行状态;
第一获取单元,用于当所述车辆处于第一运行状态时获取燃料电池系统整体功耗;
第二获取单元,用于获取所述燃料电池电堆平均单片电压;
第三获取单元,用于获取所述燃料电池系统输出功率;
第四获取单元,用于获取所述燃料电池系统的整体功耗与所述燃料电池系统输出功率之间的差值;
调整单元,用于根据所述平均单片电压与所述差值调整所述燃料电池系统附件结构运行参数,使所述燃料电池系统高效运行。
10.根据权利要求1所述的燃料电池系统控制装置,其特征在于,所述装置还包括:
第二调整单元,用于当所述车辆运行状态为第一运行状态时,所述燃料电池系统卸载至车辆假停机、怠速工况点。
CN202111272387.2A 2021-10-29 2021-10-29 一种燃料电池系统控制方法及控制装置 Active CN113964352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111272387.2A CN113964352B (zh) 2021-10-29 2021-10-29 一种燃料电池系统控制方法及控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111272387.2A CN113964352B (zh) 2021-10-29 2021-10-29 一种燃料电池系统控制方法及控制装置

Publications (2)

Publication Number Publication Date
CN113964352A true CN113964352A (zh) 2022-01-21
CN113964352B CN113964352B (zh) 2023-02-21

Family

ID=79468335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111272387.2A Active CN113964352B (zh) 2021-10-29 2021-10-29 一种燃料电池系统控制方法及控制装置

Country Status (1)

Country Link
CN (1) CN113964352B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824379A (zh) * 2022-04-29 2022-07-29 三一电动车科技有限公司 燃料电池系统的尾排水控制方法及装置
CN115360392A (zh) * 2022-10-19 2022-11-18 苏州中车氢能动力技术有限公司 燃料电池系统的进气控制方法、系统及燃料电池系统

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013920A1 (en) * 2002-07-17 2004-01-22 Honda Giken Kogyo Kabushiki Kaisha Idle control system for fuel cell vehicle
US20060234094A1 (en) * 2003-03-27 2006-10-19 Nissan Motor Co., Ltd. Control device of vehicular fuel cell system and related method
US20070141416A1 (en) * 2005-12-20 2007-06-21 Peter Kilian Floating base load hybrid strategy for a hybrid fuel cell vehicle to increase the durability of the fuel cell system
JP2007258117A (ja) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd 燃料電池システム
US20120141895A1 (en) * 2010-12-01 2012-06-07 Hyundai Motor Company System and method for controlling operation of fuel cell hybrid system
CN102522581A (zh) * 2011-12-26 2012-06-27 新源动力股份有限公司 一种车用燃料电池发电系统的加载控制方法
US20120274137A1 (en) * 2010-01-18 2012-11-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method therefor
CN103650224A (zh) * 2011-02-25 2014-03-19 联合工艺公司 控制功率转换和空闲期间的pem燃料电池电压
US20140087285A1 (en) * 2011-05-18 2014-03-27 Nissan Motor Co., Ltd. Fuel cell system
CN107256976A (zh) * 2017-06-21 2017-10-17 西南交通大学 一种质子交换膜燃料电池性能提高策略
CN108206294A (zh) * 2016-12-16 2018-06-26 现代自动车株式会社 控制燃料电池系统的驱动的方法
CN110112440A (zh) * 2018-01-31 2019-08-09 郑州宇通客车股份有限公司 一种燃料电池系统、控制方法、车载供电系统及车辆
CN110277575A (zh) * 2019-06-29 2019-09-24 潍柴动力股份有限公司 氢燃料电池输出功率的控制方法及燃料电池控制器
CN110400948A (zh) * 2019-09-17 2019-11-01 潍柴动力股份有限公司 一种燃料电池电堆活化方法及装置
CN110729794A (zh) * 2019-11-06 2020-01-24 武汉雄韬氢雄燃料电池科技有限公司 一种用于限制车载燃料电池高电位的系统及方法
CN111430751A (zh) * 2020-04-04 2020-07-17 东风汽车集团有限公司 燃料电池系统的怠速供氧控制方法及系统
CN111942234A (zh) * 2020-08-20 2020-11-17 中车大同电力机车有限公司 机车动力装置的控制方法、机车动力装置和机车
CN112820900A (zh) * 2021-01-19 2021-05-18 西京学院 一种燃料电池増程器供气系统及控制方法
CN113097539A (zh) * 2021-04-13 2021-07-09 金华氢途科技有限公司 一种燃料电池恢复方法
CN113306455A (zh) * 2020-02-27 2021-08-27 广州汽车集团股份有限公司 燃料电池管理方法及装置和燃料电池汽车
CN113451622A (zh) * 2020-03-25 2021-09-28 北京亿华通科技股份有限公司 燃料电池系统的怠速控制方法、系统、装置及计算机设备

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013920A1 (en) * 2002-07-17 2004-01-22 Honda Giken Kogyo Kabushiki Kaisha Idle control system for fuel cell vehicle
US20060234094A1 (en) * 2003-03-27 2006-10-19 Nissan Motor Co., Ltd. Control device of vehicular fuel cell system and related method
US20070141416A1 (en) * 2005-12-20 2007-06-21 Peter Kilian Floating base load hybrid strategy for a hybrid fuel cell vehicle to increase the durability of the fuel cell system
JP2007258117A (ja) * 2006-03-24 2007-10-04 Nissan Motor Co Ltd 燃料電池システム
US20120274137A1 (en) * 2010-01-18 2012-11-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method therefor
US20120141895A1 (en) * 2010-12-01 2012-06-07 Hyundai Motor Company System and method for controlling operation of fuel cell hybrid system
CN103650224A (zh) * 2011-02-25 2014-03-19 联合工艺公司 控制功率转换和空闲期间的pem燃料电池电压
US20140087285A1 (en) * 2011-05-18 2014-03-27 Nissan Motor Co., Ltd. Fuel cell system
CN102522581A (zh) * 2011-12-26 2012-06-27 新源动力股份有限公司 一种车用燃料电池发电系统的加载控制方法
CN108206294A (zh) * 2016-12-16 2018-06-26 现代自动车株式会社 控制燃料电池系统的驱动的方法
CN107256976A (zh) * 2017-06-21 2017-10-17 西南交通大学 一种质子交换膜燃料电池性能提高策略
CN110112440A (zh) * 2018-01-31 2019-08-09 郑州宇通客车股份有限公司 一种燃料电池系统、控制方法、车载供电系统及车辆
CN110277575A (zh) * 2019-06-29 2019-09-24 潍柴动力股份有限公司 氢燃料电池输出功率的控制方法及燃料电池控制器
CN110400948A (zh) * 2019-09-17 2019-11-01 潍柴动力股份有限公司 一种燃料电池电堆活化方法及装置
CN110729794A (zh) * 2019-11-06 2020-01-24 武汉雄韬氢雄燃料电池科技有限公司 一种用于限制车载燃料电池高电位的系统及方法
CN113306455A (zh) * 2020-02-27 2021-08-27 广州汽车集团股份有限公司 燃料电池管理方法及装置和燃料电池汽车
CN113451622A (zh) * 2020-03-25 2021-09-28 北京亿华通科技股份有限公司 燃料电池系统的怠速控制方法、系统、装置及计算机设备
CN111430751A (zh) * 2020-04-04 2020-07-17 东风汽车集团有限公司 燃料电池系统的怠速供氧控制方法及系统
CN111942234A (zh) * 2020-08-20 2020-11-17 中车大同电力机车有限公司 机车动力装置的控制方法、机车动力装置和机车
CN112820900A (zh) * 2021-01-19 2021-05-18 西京学院 一种燃料电池増程器供气系统及控制方法
CN113097539A (zh) * 2021-04-13 2021-07-09 金华氢途科技有限公司 一种燃料电池恢复方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
汪飞杰等: "1.5kW质子交换膜燃料电池堆动态工况响应特性", 《化工学报》 *
赵勇等: "考虑燃料电池耐久性的FCHV复合能量管理策略", 《现代制造工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824379A (zh) * 2022-04-29 2022-07-29 三一电动车科技有限公司 燃料电池系统的尾排水控制方法及装置
CN114824379B (zh) * 2022-04-29 2023-11-24 三一电动车科技有限公司 燃料电池系统的尾排水控制方法及装置
CN115360392A (zh) * 2022-10-19 2022-11-18 苏州中车氢能动力技术有限公司 燃料电池系统的进气控制方法、系统及燃料电池系统

Also Published As

Publication number Publication date
CN113964352B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
CN113964352B (zh) 一种燃料电池系统控制方法及控制装置
US7939213B2 (en) Fuel cell system and electric vehicle including the fuel cell system
US8715876B2 (en) Fuel cell vehicle
US8795861B2 (en) Fuel cell system and vehicle equipped with the same
CN101517801B (zh) 燃料电池系统
US11705566B2 (en) Fuel cell system and method for operating a fuel cell system
US10038205B2 (en) Fuel cell system
CN113488681B (zh) 一种长寿命车用燃料电池发动机控制方法及系统
US6959249B2 (en) Load following algorithm for a fuel cell based system
US8623564B2 (en) Method for remedial action in the event of the failure of the primary air flow measurement device in a fuel cell system
US20070269695A1 (en) Fuel Cell System
CN110957506B (zh) 一种燃料电池系统及其待机控制方法
CA2930361C (en) Fuel cell system with starvation suppressing control when returning from idle stop
CA2898292A1 (en) Fuel cell system and fuel cell powered vehicle
CN113594508A (zh) 燃料电池系统的控制方法、控制装置和燃料电池系统
US20150380755A1 (en) Fuel cell system and fuel cell vehicle
WO2023165233A1 (zh) 燃料电池控制系统及其控制方法
CN112909305A (zh) 一种氢燃料电池系统故障关机的控制方法
JP2007258117A (ja) 燃料電池システム
CN113809367A (zh) 一种燃料电池系统控制方法及控制装置
US8642222B2 (en) Fuel cell power request control strategy
US20090181267A1 (en) Fuel cell system and method of operating the system outside of desired thermal operating conditions
US7855025B2 (en) Anode loop pressure control in PEM fuel cell system
US20110053015A1 (en) Control Method for a Fuel Cell System and Fuel Cell System
CN101609900B (zh) 在延长关闭时间后改善启动可靠性的改进的启动策略

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant