WO2023045613A1 - 一种散热装置及服务器 - Google Patents

一种散热装置及服务器 Download PDF

Info

Publication number
WO2023045613A1
WO2023045613A1 PCT/CN2022/112197 CN2022112197W WO2023045613A1 WO 2023045613 A1 WO2023045613 A1 WO 2023045613A1 CN 2022112197 W CN2022112197 W CN 2022112197W WO 2023045613 A1 WO2023045613 A1 WO 2023045613A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling
heat
heat dissipation
air
Prior art date
Application number
PCT/CN2022/112197
Other languages
English (en)
French (fr)
Inventor
刘伟明
池善久
卢晓啸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023045613A1 publication Critical patent/WO2023045613A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of servers, in particular to a cooling device and a server.
  • liquid cooling and air cooling can also be used for high power consumption devices such as processors.
  • high temperature of the radiator will affect the heat dissipation of these functional devices. Therefore, how to provide a more efficient heat dissipation device has become an urgent technical problem to be solved.
  • the present application provides a heat dissipation device and a server, which are used to improve the heat dissipation capability of the server.
  • the present application provides a heat sink that can be applied to a server.
  • the heat sink includes an air-cooled structure and a liquid-cooled structure, and heats the server through air-cooled and liquid-cooled methods. It is assumed that the first type of device and the second type of device are installed in the server. The heat generated by the first type of device is higher than that of the second type of device.
  • the first type of device can be a device with high heat dissipation such as a processor
  • the second type of device Class device can be the device such as PCIe (peripheral component interconnect express, fast peripheral component interconnection) card
  • the liquid cooling structure is applied to the targeted liquid cooling and heat dissipation of the first type of devices
  • the liquid cooling structure specifically includes: liquid cooling components and heat exchangers, the liquid cooling components can conduct the heat generated by the first type of devices to the liquid
  • the cooling liquid in the liquid supply pipeline of the cold component; the heat exchanger is used for heat exchange between the cooling liquid and the external air, and the heat exchanger here is arranged at the end of the server.
  • the heat dissipation device uses air cooling combined with liquid cooling to dissipate heat from the first type of devices and the second type of devices in the server.
  • Heat dissipation the heat exchanger is arranged at the end of the server, so that the heat dissipation of the heat exchange will not affect the heat dissipation of other components of the server, and the effective management of heat can be realized, thereby improving the heat dissipation capacity of the server.
  • the heat exchanger has a heat exchange inner chamber and a liquid replenishment chamber located on the top of the heat exchange inner chamber; the heat exchange inner chamber has a liquid inlet for the cooling liquid to flow in and a liquid outlet for the cooling liquid to flow out, and the liquid replenishment chamber is filled with cooling
  • the fluid supply chamber communicates with the heat exchange inner chamber through a fluid supply channel.
  • the liquid volume of the cooling liquid in the liquid replenishing chamber is not less than a liquid volume threshold, and the liquid volume threshold is the loss amount of the cooling liquid within the service life of the cooling device.
  • the above-mentioned air-cooling structure can form an air duct in the chassis of the server, and the heat exchanger of the liquid-cooling structure is arranged at the air outlet of the air duct, which will not adversely affect the heat dissipation of other devices.
  • the air cooling structure includes a baffle, and the baffle divides the cavity of the server into at least two air passages, and the at least two air passages include a first air passage and a second air passage: the heat exchanger is located The air outlet of the first air duct.
  • the first-type devices and the second-type devices can be arranged in the second air duct, thereby reducing temperature cascading and improving heat dissipation capacity.
  • the material of the partition can be selected from sheet metal or plastic.
  • the air-cooling structure may also include a cooling fan, which is specifically located on the air inlet side of the heat exchanger to provide stronger wind force to the heat exchanger and improve the air-cooling effect.
  • the liquid cooling structure may further include an auxiliary heat exchanger. Specifically, the auxiliary heat exchanger may be arranged in the first air duct and connected in series with the heat exchanger.
  • the spacer is parallel to the PCB in the server, and the distance between the spacer and the highest component in the PCB is less than a height threshold.
  • the height threshold can ensure that any device on the circuit board can achieve a good air cooling effect in the air duct.
  • multiple installation stations are arranged inside the server, and the partition is detachably installed at any installation station, so that the height of the partition can be adjusted according to different application scenarios.
  • the liquid cooling component may specifically include a liquid pipeline, a cooling liquid, and a circulation pump; the liquid pipeline communicates with the heat exchanger, and the cooling liquid is filled in the liquid pipeline and the heat exchanger; the circulation pump is connected to The liquid line drives the coolant to circulate between the heat exchanger and the liquid line.
  • the liquid cooling component can also include a cold plate, and part of the liquid pipeline is encapsulated in the cold plate; the cold plate is used to contact the above first type of devices, which is convenient for the first type of devices
  • the coolant in the pipeline realizes heat exchange.
  • the circulating pump is located at a higher position.
  • a hollowed out area can be set on the partition.
  • the hollowed out area can avoid the circulating pump and can function as an air duct The isolation effect will not affect the realization of liquid cooling and heat dissipation.
  • the present application provides a server, where the server includes a first-type device, a second-type device, and any one of the heat dissipation devices described above.
  • FIG. 1 shows a schematic structural diagram of a heat dissipation device provided in an embodiment of the present application applied to a server;
  • FIG. 2 shows a schematic structural diagram of another heat dissipation device provided in the embodiment of the present application applied to a server;
  • Fig. 3 shows a schematic structural view of the installation station for adjusting the installation position of the partition in a heat dissipation device provided in the embodiment of the present application in the server chassis;
  • FIG. 4 is a schematic structural diagram of a heat exchanger in a heat dissipation device provided in an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a heat exchanger in another heat dissipation device provided in an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a heat dissipation device provided in an embodiment of the present application applied to a server;
  • Fig. 7 is a schematic structural diagram of the packaging of a cold plate and a liquid pipeline in a heat dissipation device provided by an embodiment of the present application;
  • Fig. 8 is a schematic structural diagram of the packaging of the cold plate and the liquid pipeline in another heat dissipation device provided by the embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a heat dissipation device provided in an embodiment of the present application applied to a server;
  • FIG. 10 is a schematic structural diagram of a liquid cooling structure in a heat dissipation device provided in an embodiment of the present application for dissipating heat from a processor;
  • FIG. 11 is a schematic structural diagram of a liquid cooling structure in another heat dissipation device provided in an embodiment of the present application to dissipate heat from a processor;
  • FIG. 12 is a schematic structural diagram of a liquid cooling structure in another heat dissipation device provided in an embodiment of the present application to dissipate heat from a processor;
  • FIG. 13 is a schematic structural diagram of heat dissipation of a processor by a liquid cooling structure in another heat dissipation device provided in an embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a liquid cooling structure in another heat dissipation device provided in an embodiment of the present application to dissipate heat from a processor;
  • FIG. 15 is a schematic structural diagram of a heat dissipation device provided in an embodiment of the present application applied to a server;
  • FIG. 16 is a schematic structural diagram of a heat dissipation device provided in an embodiment of the present application arranged in a server;
  • FIG. 17 is a schematic structural diagram of another heat dissipation device provided in the embodiment of the present application arranged in a server;
  • Fig. 18 is a schematic structural diagram of another heat dissipation device provided in the embodiment of the present application arranged in a server;
  • FIG. 19 is a schematic structural diagram of a heat dissipation device arranged in a server according to an embodiment of the present application.
  • the cabinet 201 of server shown in Fig. 1 is provided with the first type device and the second type device; Wherein, the heat that the first type device produces is higher than the heat that the second type device produces;
  • the first type device can be such as processor 202 is a device with high power consumption and heat dissipation
  • the second type of device may be a device with low power consumption and less heat dissipation such as PCIe card 204 .
  • a PCB (print circuit board, printed circuit board) 203 is arranged in the chassis 201, the processor 202 is coupled to the PCB 203, and the PCIe card 204 is located in the chassis 201 and inserted on the PCB 203. Since the heat generated by the first type of device and the second type of device is different, different heat dissipation methods may be used for the first type of device and the second type of device.
  • a heat dissipation device provided in the present application includes an air-cooled structure and a liquid-cooled structure, and realizes a heat dissipation mode of air-cooled and liquid-cooled.
  • the air-cooling structure includes a system fan 11, the system fan 11 can be specifically arranged at a relatively front position of the chassis 201, the system fan 11 can form a heat dissipation air duct in the chassis 201, and the above-mentioned first type of device and the second type of device adopt Air-cooled way to dissipate heat.
  • the "end" and "front end" of the server chassis 201 are a concept of relative positions. Taking the server shown in FIG.
  • the end of the chassis 201 refers to the position close to the rear panel of the server. Combined with the top view of the whole machine structure shown in Figure 16, the area on the right side of the chassis 201 is the front panel 220, and the end of the chassis 201 refers to the end side opposite to the front panel 220, for example, the area 221 shown in the figure The range may be referred to as the end of the chassis 201 .
  • the liquid cooling structure performs liquid cooling and heat dissipation for the first type of devices, specifically including a liquid cooling assembly 21 and a heat exchanger 22.
  • the liquid cooling assembly 21 has a liquid pipeline 211 and a circulation pump 212 connected to the liquid pipeline 211.
  • the liquid pipeline 211 communicates with the heat exchanger 22, and the liquid pipeline 211 and the heat exchanger 22 are filled with cooling liquid, thereby forming a closed circulation system; the circulating pump 212 can drive the cooling liquid between the liquid cooling pipeline 211 and the heat exchanger.
  • the path of the liquid cooling pipeline 211 is set to pass through the first type of device (taking the processor 202 as an example), so that the heat dissipated by the processor 202 can be absorbed into the cooling liquid, and when the circulation pump 212 is driven Next, the coolant after absorbing heat moves to the heat exchanger 22, and the heat exchanger 22 is used for heat exchange between the coolant and the outside air, and the cooled coolant is driven back to the liquid cooling pipeline 211 by the circulation pump 212 to realize cooling Liquid to the liquid cooling cycle of the first type of device.
  • the heat exchanger 22 is arranged at the end of the server, and the heat dissipated by the heat exchanger 22 can directly contact the outside world without affecting the heat dissipation of other devices (including but not limited to the first type device and the second type device).
  • the heat exchanger 22 and the PCIe card 204 are positioned side by side.
  • the air cooling structure also includes a partition 12, the partition 12 can divide the cavity of the server chassis 201 into at least two air ducts: the first air duct A1 and the second air duct.
  • the partition plate 12 extends along the airflow direction of the system fan 11 .
  • the above-mentioned heat exchanger 22 can be specifically arranged at the air outlet of the first air passage A1, which means that the air cooling of the heat exchanger 22 is realized only through the first air passage A1.
  • the first type of device (taking the processor 202 as an example) and the second type of device (taking the PCIe card 204 as an example) are arranged in the second air duct A2, and the air cooling of the first type of device and the second type of device is only through The second air duct A2 is realized.
  • the air cooling of the heat exchanger 22 is separated from the air cooling of the first type device and the second type device, which can reduce the temperature cascade of the heat dissipation structure, thereby improving the heat dissipation capacity of the bottleneck device.
  • the material of the separator 12 is not limited, specifically, sheet metal or plastic can be selected.
  • the partition 12 can be parallel to the PCB203 in the server, and the distance between the partition 12 and the highest component in the PCB203 is less than or equal to the height threshold h; assuming that the highest component on the PCB203 is the processor 202, then the partition The distance between 12 and the surface of the processor 202 facing away from the PCB 203 should not be greater than the height threshold h, which can ensure that all devices in the second air duct A2 can realize air cooling and heat dissipation.
  • the heights of the devices located in the second air duct A2 may be different, so that the position of the partition plate 12 in the cabinet 201 can be adjusted.
  • multiple installation stations may be provided in the server chassis 201 , and the partition 12 may be detachably installed at any installation station as required.
  • the installation station here refers to a position where the partition 12 can be fixed to the cabinet 201.
  • the partition 12 has a corresponding position in the cabinet 201, which is the same as that of the partition.
  • each installation station can be a bayonet group M formed on the inner walls of both sides of the cabinet 201 parallel to the direction Z, the bayonet group M has a slot for receiving the edge of the partition 12, and the partition The edge of 12 is inserted into the slot formed by the bayonet set M, so that the partition 12 can be fixed in the chassis 201 .
  • the adjustment of the ventilation volume in the first air passage A1 and the second air passage A2 can also be adjusted by adjusting the position of the partition plate 12 in the cabinet 201 .
  • the outer surface of the circulation pipe 2213 is provided with cooling fins 2214, and the cooling fins 2214 are shown in a corrugated shape (of course, other shapes can also be used).
  • the liquid replenishment tank 222 is located on the top of the heat exchanger 22 , and the liquid replenishment tank 222 is connected to the liquid outlet tank 2212 through a liquid replenishment pipeline 223 . Wherein, the liquid replenishment tank 222 is welded on the top of the liquid outlet tank 2212 .
  • the heat exchanger 22 is equivalent to forming a heat exchange inner chamber, which specifically includes the liquid inlet chamber W1 formed by the liquid inlet tank 2211 and the liquid outlet tank 2212.
  • the liquid inlet chamber W1 passes through the liquid inlet P and the liquid pipeline 211, and the cooling liquid that absorbs the heat emitted by the first type of device enters the liquid inlet chamber W1 from the liquid inlet P; the liquid inlet chamber W1 and the liquid outlet chamber W2 are set There are multiple parallel circulation channels T, the cooling liquid can enter the liquid outlet cavity W2 from the liquid inlet chamber W1 through the circulation channel T, when the air-cooled air flow passes through the heat exchanger 22, the cooling liquid with a higher temperature in the circulation channel T can Realize heat exchange with the outside air, realize air cooling and heat dissipation, and the temperature of the cooling liquid that finally enters the liquid outlet chamber W2 is relatively low; the liquid outlet chamber W2 communicates with the liquid pipeline 211 through the liquid outlet Q, and the temperature in the liquid outlet chamber W2 is relatively The low cooling liquid can enter the liquid pipeline 211 from the liquid outlet Q, and flow along the liquid pipeline 211 to liquid-cool and dissipate the first type of devices.
  • the heat exchanger 22 also includes a liquid replenishment chamber V formed by a liquid replenishment tank 222, and the liquid replenishment chamber V is pre-filled with cooling liquid; the liquid replenishment chamber V is specifically located on the top of the heat exchange inner chamber, and the liquid replenishment chamber V It communicates with the heat exchange inner chamber through the replenishment channel F formed by the replenishment pipe 223 .
  • the coolant in the liquid pipeline 211 will be lost to a certain extent due to the material of the liquid pipeline 211.
  • the coolant in the liquid replenishment chamber V can enter the heat exchange inner cavity through the liquid replenishment channel F under the action of gravity to ensure sufficient coolant to achieve liquid cooling. Cooling cycle: Generally, the liquid replenishment chamber V communicates with the liquid outlet chamber W2 through the liquid replenishment channel F, and the cooling liquid can be directly replenished into the cooling liquid after air cooling and heat dissipation.
  • the cooling liquid reciprocates in the closed circulation system formed by the liquid cooling structure, and part of the liquid may adhere to the inner wall of the heat exchanger 22 and the inside of the liquid pipeline 211, and it may also be caused by liquid cooling. A small amount of evaporation and leakage occur due to the material of each part of the structure (of course, this loss is very small).
  • a liquid volume threshold can be set for the liquid volume of the coolant in the liquid replenishment chamber V, and the liquid volume threshold can be estimated based on the emission volume of the entire liquid cooling structure per unit time and the service life of the heat sink. Theoretically, , the liquid volume threshold is at least not less than the estimated amount of liquid cooling structure emission per unit time and the service life of the cooling device, so as to avoid the reduction of heat dissipation performance caused by liquid volume loss.
  • the liquid pipeline 211 in the liquid cooling assembly 21 is generally a hose, which is convenient for layout according to the location of the processor 202 . However, such a liquid pipeline 211 is inconvenient to contact and exchange heat with the first type of device (taking the processor 202 as an example). As shown in FIG.
  • the part of the liquid pipeline 211 can be densely arranged in the cold plate 213 (such as the serpentine distribution shown in Figure 7 or the convoluted distribution shown in Figure 8); the cold plate 213 is in contact with the first type
  • the device is fixed in a way close to the first type of device, and the cooling liquid in the liquid pipeline 211 in the cold plate 213 can have more sufficient heat exchange with the first type of device, so as to play a good role in liquid cooling for the first type of device. Cooling effect.
  • the number of the first type of devices in the server will be multiple (take at least two processors 202 as an example), then the cold plate 213 can be provided with a pair, so that the cold plate 213 can be in a one-to-one correspondence with Processor 202 performs heat exchange. It should be understood that, in order for the cold plate 213 to be closer to the processor 202, the cold plate 213 is located in the second air duct A2.
  • each processor 202 can correspond to a circulation pump 212, and the circulation pump 212 is specific Can be fixed on the surface of the cold plate 213 .
  • the distance between the separator 12 and the highest component on the PCB 203 is at most the height threshold h, so as to take into account the air cooling effect and compact structure.
  • Processor 202 already has higher height after adding cold plate 213, and cold plate 213 is very close to dividing plate 12;
  • a hollow structure capable of avoiding the circulating pump 212 is provided on the plate 12, and the hollow structure can avoid the circulating pump 212 so that the circulating pump 212 can partially enter the first air duct A1.
  • a circulation pump 212 is configured for each first-type device.
  • the number of first-type devices is at least two, the number of circulation pumps 212 is also two.
  • the liquid flow path of the cooling liquid in the liquid pipeline 211 may have multiple implementations as shown in FIGS. 10 to 14 .
  • the cooling liquid flowing out of the heat exchanger 22 enters the first circulation pump 212a through the liquid pipeline 211a, and then enters the second cold plate 213b through the liquid pipeline 211b from the first circulation pump 212a, and then The second cold plate 213b enters the first cold plate 213a through the liquid pipeline 211c, then enters the second circulating pump 212b through the liquid pipeline 211d from the first cold plate 213a, and passes through the liquid pipe from the second circulating pump 212b.
  • the road 211e returns to the heat exchanger 22 .
  • This structure does not limit the flow path of the cooling liquid, and in actual work, the liquid inlet and outlet sequences between the circulation pump 212 and the cold plate 213 can be adjusted according to requirements.
  • the cooling liquid flowing out of the heat exchanger 22 enters the first circulation pump 212a through the liquid pipeline 211a, and then enters the second circulation pump 212b from the first circulation pump 212a through the liquid pipeline 211b, and from The second circulating pump 212b enters the first cold plate 213a through the liquid pipeline 211c, then enters the second cold plate 213b through the liquid pipeline 211d from the first cold plate 213a, and passes through the liquid pipe from the second cold plate 213b.
  • the road 211e returns to the heat exchanger 22 .
  • This structural design is equivalent to cooling the processor 202 through two cold plates 213 after the cooling liquid first passes through two circulating pumps 212 ; wherein, the two cold plates 213 are connected in series.
  • the coolant flowing out of the heat exchanger 22 enters the first circulation pump 212a through the liquid pipeline 211a, and then enters the second circulation pump 212b from the first circulation pump 212a through the liquid pipeline 211b;
  • Two circulation pumps 212b have two outlets, one outlet enters the first cold plate 213a through the liquid pipeline 211c, and the other outlet enters the second cold plate 213b through the liquid pipeline 211d, and the cooling in the first cold plate 213a
  • the liquid enters the liquid pipeline 211e, the cooling liquid in the second cold plate 213b enters the liquid pipeline 211f, the liquid pipeline 211e merges with the liquid pipeline 211f and merges into the liquid pipeline 211g, and the liquid pipeline 211g guides the cooling liquid into the replacement Heater 22.
  • This structural design is equivalent to cooling the processor 202 through two cold plates 213 after the cooling liquid passes through two circulating pumps 212 ; wherein, the two cold plates 213 are connected in parallel.
  • the coolant flowing out of the heat exchanger 22 is divided into two paths after passing through the liquid pipeline 211a, one path enters the first circulation pump 212a through the liquid pipeline 211b, and then passes through the liquid pipeline from the first circulation pump 212a.
  • Road 211c enters the first cold plate 213a; another road enters the second circulation pump 212b through the liquid pipeline 211d, and then enters the second cold plate 213b through the liquid pipeline 211e from the second fantasy pump 212b;
  • the cooling liquid in the plate 213a enters the liquid pipeline 211f
  • the cooling liquid in the second cold plate 213b enters the liquid pipeline 211g
  • the liquid pipeline 211f merges with the liquid pipeline 211g and merges into the liquid pipeline 211h
  • the coolant is introduced into the heat exchanger 22 .
  • This structural design is equivalent to treating one circulating pump 212 corresponding to one cold plate 213 as a group of cooling units, and the cooling units are connected in parallel.
  • the cooling liquid flowing out from the heat exchanger 22 enters the first circulation pump 212a through the liquid pipeline 211a, and then enters the first circulation pump 212a through the liquid pipeline 211b from the first circulation pump 212a, from The first circulation pump 212a enters the second circulation pump 212b through the liquid pipeline 211c; the second circulation pump 212b sends the coolant to the second cold plate 213b through the liquid pipeline 211d, and the coolant flows from the second cold plate 213b returns to the heat exchanger 22 through the liquid line 211e.
  • This structure is simpler and can save space.
  • liquid cooling structures shown in FIGS. 10 to 14 are only illustrative, and since only two processors 202 are shown to be liquid cooled and dissipated, the liquid cooling structure is relatively simple; by extension, when the processors The number of 202 (or the first type of device) is more than two, and the specific implementation of the liquid cooling structure can be deformed, integrated and improved on the basis of the above-mentioned embodiments, so as to achieve more diverse implementations, which will not be repeated here repeat.
  • the air cooling structure can also include a heat dissipation fan 13, the heat dissipation fan 13 can be arranged on the air inlet side of the heat exchanger 22, and the heat dissipation fan 13 can exchange heat independently.
  • the heat exchanger 22 provides air cooling, further improving the heat exchange efficiency between the coolant in the heat exchanger 22 and the outside air.
  • the liquid cooling structure also includes an auxiliary heat exchanger 23, which can be connected to the heat exchanger 22 in series, so that the cooling liquid can flow through the liquid pipeline 211, the heat exchanger 22 and the auxiliary heat exchanger 23. circulation between them.
  • the auxiliary heat exchanger 23 is also used for heat exchange between the cooling liquid and the outside air.
  • one auxiliary heat exchanger 23 is shown as one. In practical application, there may be multiple auxiliary heat exchangers 23 , and multiple auxiliary heat exchangers 23 are connected in series with the heat exchanger 22 .
  • FIG. 16 shows a specific implementation manner in which the cooling device provided by the present application is arranged in a server.
  • the front end and the end of the server are schematically shown in Figure 16, and a circuit board 203 is arranged in the server chassis 201, and a processor 202 (equivalent to a first-type device) is coupled to the circuit board 203, and the rear end of the server is provided with A PCIe card 204 (equivalent to a second type of device) inserted into the circuit board 203; a system fan 11 is arranged between the circuit board 203 and the front end of the server, and the system fan 11 can drive air to form a direction along the front end of the server to the rear end The airflow formed by the system fan 11 can air-cool and dissipate the circuit board 201 , the processor 202 and the PCIe card 204 .
  • the heat exchanger 22 in the heat dissipation device is arranged at the tail end of the server, and the heat dissipated by the heat exchanger 22 will not affect the heat dissipation of other devices.
  • the liquid pipeline 211 in the liquid cooling structure communicates with the heat exchanger 22, and the circulation pump 212 is connected to the liquid pipeline 211 to drive the cooling liquid in the liquid pipeline 211 to circulate between the liquid pipeline 211 and the heat exchanger 22;
  • the pipeline 211 is provided with a cold plate 213 capable of heat exchange between the cooling liquid and the processor 202.
  • Each processor 202 is provided with a corresponding cold plate 213, and each cold plate 213 is correspondingly provided with a circulation pump 212.
  • the liquid pipeline 211 , the circulation pump 212 and the communication mode between the cold plate 213 can refer to the examples shown in FIG. 10 to FIG. 14 .
  • the heat exchanger 22 is also located in the air duct formed by the air driven by the system fan 11, which facilitates heat exchange between the cooling liquid with a higher temperature in the heat exchanger 22 and the outside air to complete the cooling of the cooling liquid.
  • a cooling fan 13 is arranged, which can increase the effect of air cooling and heat dissipation on the heat exchanger 22.
  • Heater 22 is equivalent to juxtaposing PCIe card 204 along height direction Z of the server (as shown in FIG. 1 ), and also juxtaposing PCIe card 204 along width direction X of the server.
  • the heat exchanger 22 occupies all the area at the tail end of the server.
  • the heat exchanger 22 covers the PCIe card 204 , the heat exchanger 22 is equivalent to only being juxtaposed with the PCIe card 204 along the height direction Z of the server (shown in FIG. 1 ).
  • FIGS. 16 to 18 in order to clearly show the liquid cooling structure, the separators for isolating the air ducts are not shown.
  • Figure 19 for the structure of installing partitions 12 in the air duct.
  • the partition 12 separates the air duct along the height direction of the server.
  • the circuit board 203, processor 202, and some liquid pipeline 211, the cold plate 213, and the PCIe card 204 are all blocked by the partition 12 and are not shown.
  • the circulation pump 212 is displayed because the position is higher than the partition 12.
  • the partition 12 has an avoidance port for avoiding the circulation pump 212. .
  • the air duct with the partition plate 12 can independently perform air-cooling and heat dissipation on the heat exchanger 22, reducing the adverse effects caused by temperature cascade.
  • the present application also discloses a server with the above-mentioned heat dissipation device.
  • the structure of the server can be shown in FIG. 16 to FIG. 19 , and will not be repeated here. It should be understood that since the server is equipped with the above-mentioned cooling device, its cooling capacity can be greatly improved. According to the simulation data, the cooling capacity of the server equipped with the above-mentioned cooling device can be increased by more than 20% compared with the existing common air cooling system. The overall energy consumption can also be reduced.

Abstract

一种包括风冷结构和液冷结构的散热装置及服务器,风冷结构用于同时对第一类器件和第二类器件进行风冷散热,而液冷结构则应用于对第一类器件进行液冷散热;其中,第一类器件所产生的热量高于第二类器件;液冷结构具体包括:液冷组件(21)和换热器(22),液冷组件(21)可以将第一类器件产生的热量传导至液冷组件(21)的液体管路(211)的冷却液中;换热器(22)则用于冷却液与外部空气进行热交换,此处的换热器(22)设置于服务器的末端;将换热器(22)设置于服务器的末端,使得换热的散热出风不会影响服务器其他器件的散热,可以对热量实现有效管理,提高服务器的散热能力。

Description

一种散热装置及服务器
相关申请的交叉引用
本申请要求在2021年09月27日提交中国专利局、申请号为202111135533.7、申请名称为“一种散热装置及服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器技术领域,尤其涉及到一种散热装置及服务器。
背景技术
随着科技的发展,诸如服务器之类的电子设备中处理器的性能不断提高,其功耗也越来越高,对电子设备的散热也提出的更高的要求,传统的风冷散热器无法很好地解决处理器的散热问题。
为了提高散热效果,对处理器等高功耗的器件也可以采用液冷辅助风冷的散热方式,但是,由于结构布局所限,散热器的高温出风会影响这些功能器件的散热。因此,如何提供一种更高效的散热装置成为亟待解决的技术问题。
发明内容
本申请提供一种散热装置及服务器,用于提高服务器的散热能力。
第一方面,本申请提供一种可以应用到服务器的散热装置,该散热装置包括风冷结构和液冷结构,通过风冷结合液冷的方式对服务器进行散热。设定服务器内设置有第一类器件和第二类器件,第一类器件所产生的热量高于第二类器件,第一类器件可以是诸如处理器这样散热量较高的器件,第二类器件可以是诸如PCIe(peripheral component interconnect express,快速外围组件互联)卡这样的器件;本申请提供的散热装置中的风冷结构用于同时对第一类器件和第二类器件进行风冷散热,而液冷结构则应用于对第一类器件进行针对性的液冷散热;液冷结构具体包括:液冷组件和换热器,液冷组件可以将第一类器件产生的热量传导至液冷组件的供液管路的冷却液中;换热器则用于冷却液与外部空气进行热交换,此处的换热器设置于服务器的末端。
本申请提供的散热装置,采用风冷结合液冷的方式对服务器中的第一类器件和第二类器件进行散热,其中,液冷结构可以对散热量较高的第一类器件进行针对性散热;将换热器设置于服务器的末端,使得换热的散热出风不会影响服务器其他器件的散热,实现对热量的有效管理,从而可以提高服务器的散热能力。
其中,换热器具有换热内腔以及位于换热内腔顶部的补液腔;换热内腔具有供冷却液流入的进液口以及供冷却液流出的出液口,补液腔内填充有冷却液且补液腔与换热内腔之间通过补液通道连通。具体地,补液腔内的冷却液液量不小于液量阈值,所述液量阈值为冷却液在所述散热装置在使用寿命年限内的损耗量。
在具体实施中,上述风冷结构可以在服务器的机箱内形成风道,液冷结构的换热器设置于风道的出风口,不会对其他器件的散热产生不利影响。
一种可能的实现方式中,风冷结构包括隔板,隔板将服务器的腔体分隔成至少两个风道,至少两个风道包括第一风道和第二风道:换热器位于所述第一风道的出风口处。而第一类器件和第二类器件可以设置于第二风道内,从而可以减少温度级联,提高散热能力。其中,隔板的材质可以选择钣金或塑料。
风冷结构还可以包括散热风扇,散热风扇具体位于换热器的入风侧,向换热器提供更为强劲的风力,提高风冷效果。为了提高散热能力,液冷结构还可以包括辅助换热器,具体可以将辅助换热器设置于第一风道内且与换热器串联。
具体地,上述隔板平行于服务器中的PCB,且隔板与PCB中最高的器件之间的距离小于高度阈值。该高度阈值可以保证电路板上的任何器件都可以在风道内取得良好的风冷散热效果。可能地,沿垂直于隔板的方向,服务器内设置有多个安装工位,隔板可拆卸地安装于任意一个安装工位,方便隔板根据不同的应用场景进行高度调节。
一种可能的实现方式中,液冷组件具体可以包括液体管路、冷却液和循环泵;液体管路与换热器连通,冷却液填充于液体管路和换热器内;循环泵接入液体管路以驱动冷却液在换热器与液体管路之间循环流动。
为了提高对第一类器件的液冷散热效果,液冷组件还可以包括冷板,部分液体管路封装于冷板内;冷板用于接触上述第一类器件,方便第一类器件与液体管路内的冷却液实现热量交换。
一种可能的实现方式中,循环泵所处位置较高,当服务器的腔体内固定有隔板时,在隔板上可以设置镂空区域,该镂空区域可以避让循环泵,既能起到风道隔离效果,还不会影响液冷散热的实现。
第二方面,本申请提供一种服务器,该服务器包括第一类器件、第二类器件以及上述任一种散热装置。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
图1示出了本申请实施例提供的一种散热装置应用到服务器中的结构示意图;
图2示出了本申请实施例提供的另一种散热装置应用到服务器中的结构示意图;
图3示出了服务器机箱内供本申请实施例提供的一种散热装置中的隔板调整安装位置的安装工位的结构示意图;
图4为本申请实施例提供的一种散热装置中换热器的结构示意图;
图5为本申请实施例提供的另一种散热装置中换热器的结构示意图;
图6为本申请实施例提供的一种散热装置应用到服务器中的结构示意图;
图7为本申请实施例提供的一种散热装置中冷板与液体管路封装的结构示意图;
图8为本申请实施例提供的另一种散热装置中冷板与液体管路封装的结构示意图;
图9为本申请实施例提供的一种散热装置应用到服务器中的结构示意图;
图10为本申请实施例提供的一种散热装置中的液冷结构对处理器进行散热的结构示意图;
图11为本申请实施例提供的另一种散热装置中的液冷结构对处理器进行散热的结构示意图;
图12为本申请实施例提供的另一种散热装置中的液冷结构对处理器进行散热的结构示意图;
图13为本申请实施例提供的另一种散热装置中的液冷结构对处理器进行散热的结构示意图;
图14为本申请实施例提供的另一种散热装置中的液冷结构对处理器进行散热的结构示意图;
图15为本申请实施例提供的一种散热装置应用到服务器中的结构示意图;
图16为本申请实施例提供的一种散热装置布局到服务器中的结构示意图;
图17为本申请实施例提供的另一种散热装置布局到服务器中的结构示意图;
图18为本申请实施例提供的另一种散热装置布局到服务器中的结构示意图;
图19为本申请实施例提供的一种散热装置布局到服务器中的结构示意图。
具体实施方式
现有的服务器常采用液冷辅助风冷的方式进行散热,但是由于结构空间布局所限,液冷和风冷相互影响,导致散热效果不好。
下面将结合附图对本申请作进一步地详细描述。
图1所示的服务器的机箱201内设置有第一类器件以及第二类器件;其中,第一类器件产生的热量高于第二类器件产生的热量;第一类器件可以是诸如处理器202这样散高功耗且散热较高的器件,第二类器件可以是诸如PCIe卡204等低功耗且散热较少的器件。一般地,PCB(print circuit board,印刷电路板)203设置于机箱201内,处理器202耦合于PCB203上,PCIe卡204位于机箱201中,并插接在PCB203上。由于第一类器件和第二类器件产生的热量有差异,对第一类器件和第二类器件可以采用不同的散热方式。
请继续参照图1,本申请所提供的一种散热装置包括风冷结构和液冷结构,实现风冷加液冷的散热方式。其中,风冷结构包括有系统风扇11,系统风扇11可以具体设置于机箱201较为前端的位置,系统风扇11可以在机箱201内形成散热风道,对上述第一类器件和第二类器件采用风冷的方式进行散热。此处,服务器机箱201的“末端”、“前端”是一个相对位置概念,以图1所示服务器为参考,系统风扇11在机箱201内形成散热风道,沿散热通道内气流的运动方向,机箱201的末端是指靠近服务器的后面板的位置。结合图16所示的整机结构的俯视图,机箱201中靠右侧区域为前面板220,而机箱201的末端则是指与前面板220相对的端侧,例如,图中区域221所示的范围可以被称为机箱201的末端。
液冷结构则针对第一类器件进行液冷散热,具体包括液冷组件21和换热器22,液冷组件21具有液体管路211以及接入液体管路211的循环泵212,液体管路211与换热器22连通,且在液体管路211与换热器22内填充有冷却液,从而形成一密闭的循环系统;循环泵212可以驱动冷却液在液冷管路211与换热器22之间循环流动;液冷管路211的路径设置为经过第一类器件(以处理器202为例),从而可以将处理器202散发的热量吸收到冷却液中,在循环泵212的驱动下,吸收热量后的冷却液移动到换热器22,换热器22用于冷却液与外界空气热交换,降温后的冷却液又被循环泵212驱动回到液冷管路211,实现冷却液对第一类器件的液冷循环。其中,换热器22设置于服务器的末端,换热器22散热的热量能够直接接触外界,不会对其他的器件(包括且不仅限于第一类器件和第二类器件)的散热造成影响。在图1中,沿服务器机箱201的高度方向Z,换热器22与PCIe卡204 位置并列。
为了方便热量管理,请参照图2所示,风冷结构还包括有隔板12,隔板12可以将服务器机箱201的腔体分隔成至少两个风道:第一风道A1和第二风道A2,隔板12沿系统风扇11的出风气流方向延伸。上述换热器22具体可以设置于第一风道A1的出风口处,相当于换热器22的风冷仅通过第一风道A1实现。而第一类器件(以处理器202为例)和第二类器件(以PCIe卡204为例)则设置于第二风道A2内,第一类器件和第二类器件的风冷仅通过第二风道A2实现。通过隔板12的设置,将换热器22的风冷与第一类器件、第二类器件的风冷分离,能够减少散热结构的温度级联,进而可以提升瓶颈器件的散热能力。隔板12的材质不做限定,具体可以选择钣金或者塑料。
其中,隔板12可以平行于服务器中的PCB203,且所述隔板12与PCB203中最高的器件之间的距离小于或等于高度阈值h;假设PCB203上最高的器件为处理器202,则隔板12与处理器202背离PCB203的表面之间的距离应当不大于高度阈值h,该高度阈值h能够保证第二风道A2内所有的器件可以实现风冷散热。
当服务器内可以布置不同的器件时,可能位于第二风道A2内的器件的高度不同,从而可以对隔板12在机箱201内的位置进行调整。如图3所示,沿隔板12的厚度方向Z,服务器的机箱201内可以设置有多个安装工位,隔板12可以按照需要可拆卸地安装于任意一个安装工位。此处的安装工位指的是隔板12可以固定到机箱201的一个位置,当隔板12安装到一个安装工位,隔板12在机箱201内具有一个对应的位置,该位置与隔板12在机箱201内沿机箱201高度方向Z的水平高度相关,也就是说,一个安装工位相当于对应一个隔板12在机箱201内一个相对的水平高度。示例性地,每个安装工位可以为形成于机箱201平行于方向Z的两侧内壁上的卡口组M,卡口组M具有的用于容纳隔板12边缘的卡槽,将隔板12的边缘插入卡口组M形成的卡槽,即可将隔板12固定到机箱201内。这样的结构设计,还可以通过调整隔板12在机箱201内的位置调整第一风道A1和第二风道A2内的通风量的调整。
至于换热器22的结构可以参照图4所示的换热器22的结构,其具有进液箱2211、出液箱2212、流通管道2213以及补液箱222,进液箱2211具有用于接收液体管路211输送来的冷却液的进液口P,出液箱2212具有向液体管路211输送冷却液的出液口Q,进液箱2211和出液箱2212之间通过至少一个流通管道2213连通,此处流通管道2213并列设置有多个。流通管道2213外表面设置有散热翅片2214,散热翅片2214以波纹状示出(当然还可以是其他形状)。补液箱222位于换热器22的顶部,补液箱222通过补液管道223连通出液箱2212。其中,补液箱222焊接在出液箱2212的顶部。
参照图5所示的换热器22的内部结构,换热器22相当于形成有具有换热内腔,换热内腔具体包括进液箱2211形成的进液腔W1、出液箱2212形成的出液腔W2、流通管道2213形成的流通通道T。进液腔W1通过进液口P与液体管路211,吸收了第一类器件散发的热量的冷却液自进液口P进入进液腔W1;进液腔W1与出液腔W2之间设置有多个并列的流通通道T,冷却液可以自进液腔W1经流通通道T进入出液腔W2,当风冷的气流经过换热器22,流通通道T内的温度较高的冷却液可以与外界空气实现热量交换,实现风冷散热,最终进入出液腔W2内的冷却液的温度较低;出液腔W2通过出液口Q与液体管路211连通,出液腔W2内温度较低的冷却液可以自出液口Q进入液体管路211,沿液体管路211流动对第一类器件进行液冷散热。其中,流通通道T的外表面设置的散热翅片 2214,可以增加散热面积,提高散热效果。
作为一种可能的实现方式,换热器22还包括由补液箱222形成的补液腔V,补液腔V内预填充有冷却液;补液腔V具体位于换热内腔的顶部,且补液腔V与换热内腔之间通过由补液管道223形成的补液通道F连通。液体管路211中的冷却液会由于液体管路211的材质发生一定的损耗,补液腔V内的冷却液可以在重力作用下通过补液通道F进入换热内腔,保证足够的冷却液实现液冷循环;一般地,补液腔V通过补液通道F与出液腔W2连通,可以将冷却液直接补入经过风冷散热后的冷却液中。
在散热装置的工作运行中,冷却液在液冷结构形成的密闭的循环系统中往复循环,部分液体可能粘附在换热器22内壁以及液体管路211的内部上,还有可能由于液冷结构各部分结构的材质原因发生少量的蒸发、渗漏(当然这种损失是非常微小的)。基于该方面考虑,可以为补液腔V内冷却液的液量设定一液量阈值,该液量阈值可以根据整个液冷结构单位时间内散发量与散热装置的应用年限进行预估,理论上,液量阈值至少不小于液冷结构单位时间内散发量与散热装置的应用年限预估的量,避免液量损失引起的散热性能降低。
液冷组件21中的液体管路211一般为软管,方便根据处理器202的位置进行布局。但是这样的液体管路211不方便与第一类器件(以处理器202为例)接触换热,如图6所示,可以将用于与第一类器件散热的部分液体管路211封装在冷板213中,该部分液体管路211可以在冷板213内密集排布(例如图7所示的蛇形分布或图8所示的回旋型分布);将冷板213以接触第一类器件或靠近第一类器件的方式固定,位于冷板213内的液体管路211中的冷却液可以与第一类器件发生更为充分的热交换,从而对第一类器件起到良好的液冷散热作用。一般地,服务器中的第一类器件的数量会有多个(以至少两个处理器202为例),则冷板213可以设置有对个,使得冷板213可以以一一对应的方式与处理器202进行热量交换。应当理解,为了冷板213与处理器202能够较为接近,冷板213处于第二风道A2内。
为了保证冷却液在液体管路211与换热器22之间的顺畅流动,设置有多个循环泵212,如图9所示,每个处理器202可以对应一个循环泵212,循环泵212具体可以固定于冷板213表面。结合上述实施例,隔板12与PCB203上的高度最高的器件之间的距离最大为高度阈值h,以兼顾风冷效果以及结构紧凑。处理器202加冷板213后已经具有较高的高度,冷板213与隔板12非常接近;再在冷板213上设置循环泵212,若循环泵212凸出于隔板12,可以在隔板12上开设能够避让循环泵212的镂空结构,镂空结构能够避让循环泵212使得循环泵212可以部分进入第一风道A1。
在上述实施例中,对于每一个第一类器件配置有一个循环泵212,当第一类器件的数量至少为两个时,循环泵212的数量也为两个,液冷结构对多个第一类器件进行液冷散热时,以第一类器件为处理器202为例,冷却液在液体管路211中的液流路径可能有如图10至图14所示例多种实现方式,其中,设定处理器202、冷板213以及循环泵212的数量均为两个且一一对应,液体管路211按照不同的部分进行结构划分。
请参照图10所示,换热器22流出的冷却液经液体管路211a进入第一个循环泵212a,然后从第一个循环泵212a经液体管路211b进入第二个冷板213b,从第二个冷板213b经液体管路211c进入第一个冷板213a,再从第一个冷板213a经液体管路211d进入第二个循环泵212b,从第二个循环泵212b经液体管路211e回到换热器22。这种结构对了冷却液的流通路径不做限定,在实际工作中,可以根据需求调整循环泵212与冷板213之间的进 液、出液顺序。
请参照图11所示,换热器22流出的冷却液经液体管路211a进入第一个循环泵212a,然后从第一个循环泵212a经液体管路211b进入第二个循环泵212b,从第二个循环泵212b经液体管路211c进入第一个冷板213a,再从第一个冷板213a经液体管路211d进入第二个冷板213b,从第二个冷板213b经液体管路211e回到换热器22。这种结构设计,相当于冷却液先经过两个循环泵212后,在经过两个冷板213对处理器202进行液冷散热;其中,两个冷板213之间串联。
请参照图12所示,换热器22流出的冷却液经液体管路211a进入第一个循环泵212a,然后从第一个循环泵212a经液体管路211b进入第二个循环泵212b;第二个循环泵212b具有两个出口,一个出口经液体管路211c进入第一个冷板213a,另一个出口经液体管路211d进入第二个冷板213b,第一个冷板213a内的冷却液进入液体管路211e,第二个冷板213b内的冷却液进入液体管路211f,液体管路211e与液体管路211f汇合后并入液体管路211g,液体管路211g将冷却液导入换热器22。这种结构设计,相当于冷却液先经过两个循环泵212后,在经过两个冷板213对处理器202进行液冷散热;其中,两个冷板213之间并联。
请参照图13所示,换热器22流出的冷却液经液体管路211a后分两路,一路经液体管路211b进入第一个循环泵212a,然后从第一个循环泵212a经液体管路211c进入第一个冷板213a;另一路经液体管路211d进入第二个循环泵212b,然后从第二个玄幻泵212b经液体管路211e进入第二个冷板213b;第一个冷板213a内的冷却液进入液体管路211f,第二个冷板213b内的冷却液进入液体管路211g,液体管路211f与液体管路211g汇合后并入液体管路211h,液体管路211h将冷却液导入换热器22。这种结构设计,相当于将一个循环泵212对应一个冷板213视为一组冷却单元,各冷却单元之间并联。
请参照图14所示,换热器22流出的冷却液经液体管路211a进入第一个循环泵212a,然后从第一个循环泵212a经液体管路211b进入第一个循环泵212a,从第一个循环泵212a经液体管路211c进入第二个循环泵212b;第二个循环泵212b将冷却液经液体管路211d送入第二个冷板213b,冷却液从第二个冷板213b经液体管路211e回到换热器22。这种结构更为简洁,能够节省空间。
应当理解,图10至图14所示的液冷结构只是示例性说明,且由于仅示出了对两个处理器202进行液冷散热,液冷结构较为简单;推而广之,当处理器202(或者说第一类器件)的数量多于两个,液冷结构的具体实现方式可以在上述实施例的基础上变形、整合与改进,从而实现更多样的实施方式,此处不再赘述。
为了提高换热器22的散热效果,如图15所示,风冷结构还可以包括散热风扇13,散热风扇13具体可以设置于换热器22的入风侧,散热风扇13可以单独对换热器22提供风冷,进一步提高换热器22内的冷却液与外界空气进行热交换的效率。
此外,液冷结构还包括辅助换热器23,该辅助换热器23可以以串联的形式接入换热器22,实现冷却液在液体管路211、换热器22以及辅助换热器23之间的循环流动。辅助换热器23也用于冷却液与外界空气的热量交换。此处辅助换热器23示意为一个,在实际应用中,辅助换热器23的数量可以为多个,多个辅助换热器23与换热器22串联。
结合上述实施例,图16示出了本申请提供的散热装置布局到服务器中的一种具体实施方式。其中,服务器的前端与末端如图16中所示意,在服务器机箱201内设置有电路 板203,电路板203上耦合设置有处理器202(相当于第一类器件),服务器的后端设置有插接于电路板203的PCIe卡204(相当于第二类器件);在电路板203与服务器的前端之间设置有系统风扇11,系统风扇11可以驱动空气形成沿服务器的前端指向后端的方向的气流,从而在机箱201内形成风道,系统风扇11驱动空气形成的气流可以对电路板201、处理器202以及PCIe卡204进行风冷散热。散热装置中的换热器22设置于服务器的尾端,换热器22散发的热量不会对其他器件的散热产生影响。液冷结构中的液体管路211与换热器22连通,循环泵212接入液体管路211以驱动液体管路211内的冷却液在液体管路211与换热器22之间循环;液体管路211上设置有能够实现冷却液与处理器202热交换的冷板213,每个处理器202对应设置一个冷板213,每个冷板213则对应设置一个循环泵212,液体管路211、循环泵212以及冷板213之间的连通方式可以参照图10至图14所示例。其中的换热器22也处于系统风扇11驱动空气形成的风道内,方便换热器22内温度较高的冷却液与外界空气发生热量交换,完成冷却液的降温。在换热器22的入风端,设置有散热风扇13,可以增加对换热器22的风冷散热效果。
结合图1,请参照图17所示散热装置布局到服务器中的俯视图,沿服务器的宽度方向X,将服务器的尾端分为B1区和B2区,换热器22可以仅占据B2区域,换热器22相当于既与PCIe卡204沿服务器的高度方向Z并列(图1中所示),还与PCIe卡204沿服务器的宽度方向X并列。当然,还可以如图18所示,沿服务器的宽度方向X,换热器22占据了服务器的尾端所有的区域,此时,沿服务器的高度方向Z,换热器22将PCIe卡204遮挡,换热器22相当于仅与PCIe卡204沿服务器的高度方向Z并列(图1中所示)。
在图16至图18所示的结构中,为了清楚显示液冷结构,未示出用于将风道隔离的隔板。在风道内设置隔板12的结构请参照图19所示,隔板12将风道沿服务器的高度方向分隔,在图19所示的俯视图中,电路板203、处理器202、部分液体管路211、冷板213、PCIe卡204都被隔板12遮挡未示出,循环泵212由于位置较高部分探出隔板12予以显示,此处的隔板12上具有避让循环泵212的避让口。具有隔板12的风道,可以单独对换热器22进行风冷散热,减小温度级联带来的不利影响。
基于上述实施例,本申请还公开一种具有上述散热装置的服务器,该服务器的结构可以参照图16至图19所示,此处不再赘述。应当理解,由于该服务器设置有上述散热装置,其散热能力能够的带提高,根据模拟数据,设置有上述散热装置的服务器的散热能力相较于现有的普通风冷能够提升20%以上,系统的综合能耗也能得到降低。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种散热装置,其特征在于,应用于服务器,所述散热装置包括:
    风冷结构,用于对第一类器件和第二类器件采用风冷方式进行散热,所述第一类器件和所述第二类器件设置于所述服务器中,且所述第一类器件产生的热量高于所述第二类器件产生的热量;
    液冷结构,用于对所述第一类器件采用液冷方式进行散热;所述液冷结构包括:
    液冷组件,用于将所述第一类器件产生的热量传导至所述液冷组件的供液管路的冷却液中;
    换热器,用于所述冷却液与外部空气进行热交换,所述换热器位于所述服务器的末端。
  2. 根据权利要求1所述的散热装置,其特征在于,所述风冷结构包括隔板,所述隔板将所述服务器的腔体分隔成至少两个风道,所述至少两个风道包括第一风道和第二风道:
    所述换热器位于所述第一风道的出风口处。
  3. 根据权利要求2所述的散热装置,其特征在于,所述第一类器件和所述第二类器件位于所述第二风道内。
  4. 根据权利要求3所述的散热装置,其特征在于,所述隔板平行于所述服务器中的印刷电路板PCB,且所述隔板与所述PCB中最高的器件之间的距离小于高度阈值。
  5. 根据权利要求2-4中任一项所述的散热装置,其特征在于,所述隔板的材质为钣金或塑料。
  6. 根据权利要求2-5中任一项所述的散热装置,其特征在于,所述隔板具有镂空区域;
    在所述服务器的腔体内固定所述隔板时,所述镂空区域用于避让所述液冷组件的循环泵。
  7. 根据权利要求2-6中任一项所述的散热装置,其特征在于,沿垂直于所述隔板的方向,所述服务器内设置有多个安装工位,所述隔板可拆卸地安装于任意一个安装工位。
  8. 根据权利要求2-7中任一项所述的散热装置,其特征在于,所述风冷结构还包括散热风扇,所述散热风扇位于所述换热器的入风侧。
  9. 根据权利要求2-8中任一项所述的散热装置,其特征在于,所述液冷结构还包括辅助换热器,所述辅助换热器设置于所述第一风道内且与所述换热器串联。
  10. 根据权利要求1-9中任一项所述的散热装置,其特征在于,所述液冷组件包括液体管路、冷却液和循环泵;
    所述液体管路与所述换热器连通,所述冷却液填充于所述液体管路和所述换热器内;
    所述循环泵接入所述液体管路以驱动所述冷却液在所述换热器与所述液体管路之间循环流动。
  11. 根据权利要求10所述的散热装置,其特征在于,所述液冷组件还包括冷板,部分所述液体管路封装于所述冷板内;所述冷板用于接触所述第一类器件。
  12. 根据权利要求1-11中任一项所述的散热装置,其特征在于,所述风冷结构形成有风道,所述换热器设置于所述风道的出风口。
  13. 根据权利要求1-12中任一项所述的散热装置,其特征在于,所述换热器具有换热内腔以及位于所述换热内腔顶部的补液腔;
    所述换热内腔具有供所述冷却液流入的进液口以及供所述冷却液流出的出液口,所述 补液腔内填充有冷却液且所述补液腔与所述换热内腔之间通过补液通道连通。
  14. 根据权利要求13所述的散热装置,其特征在于,所述补液腔内的冷却液液量不小于液量阈值,所述液量阈值为冷却液在所述散热装置在使用寿命年限内的损耗量。
  15. 一种服务器,其特征在于,包括第一类器件、第二类器件以及如权利要求1-14中任一项所述的散热装置。
PCT/CN2022/112197 2021-09-27 2022-08-12 一种散热装置及服务器 WO2023045613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111135533.7 2021-09-27
CN202111135533.7A CN115877927A (zh) 2021-09-27 2021-09-27 一种散热装置及服务器

Publications (1)

Publication Number Publication Date
WO2023045613A1 true WO2023045613A1 (zh) 2023-03-30

Family

ID=85720022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112197 WO2023045613A1 (zh) 2021-09-27 2022-08-12 一种散热装置及服务器

Country Status (2)

Country Link
CN (1) CN115877927A (zh)
WO (1) WO2023045613A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116761386A (zh) * 2023-05-19 2023-09-15 华为数字能源技术有限公司 一种带风液复合散热机组的功率变换器及储能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822862B2 (en) * 2002-11-15 2004-11-23 Saint Song Corp. Apparatus and method for heat sink
CN101893921A (zh) * 2010-04-08 2010-11-24 山东高效能服务器和存储研究院 无噪音节能服务器
CN105929917A (zh) * 2016-04-28 2016-09-07 浪潮集团有限公司 一种应用于服务器的静音散热系统及静音散热方法
CN108012513A (zh) * 2017-12-29 2018-05-08 华南理工大学 一种无需行间空调的数据中心及其散热系统
CN110062560A (zh) * 2019-03-14 2019-07-26 华为技术有限公司 散热方法、散热装置、和机柜
CN112672611A (zh) * 2020-12-25 2021-04-16 佛山市液冷时代科技有限公司 一种结合管壳式换热器的服务器机柜液冷系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822862B2 (en) * 2002-11-15 2004-11-23 Saint Song Corp. Apparatus and method for heat sink
CN101893921A (zh) * 2010-04-08 2010-11-24 山东高效能服务器和存储研究院 无噪音节能服务器
CN105929917A (zh) * 2016-04-28 2016-09-07 浪潮集团有限公司 一种应用于服务器的静音散热系统及静音散热方法
CN108012513A (zh) * 2017-12-29 2018-05-08 华南理工大学 一种无需行间空调的数据中心及其散热系统
CN110062560A (zh) * 2019-03-14 2019-07-26 华为技术有限公司 散热方法、散热装置、和机柜
CN112672611A (zh) * 2020-12-25 2021-04-16 佛山市液冷时代科技有限公司 一种结合管壳式换热器的服务器机柜液冷系统及控制方法

Also Published As

Publication number Publication date
CN115877927A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN110996635B (zh) 机箱散热结构
EP1519645B1 (en) Liquid cooling module
WO2023045613A1 (zh) 一种散热装置及服务器
TWM246988U (en) Water-cooling apparatus for electronic devices
CN112737195B (zh) 一种电机的冷却装置
CN112882983A (zh) 散热装置及具有其的服务器
CN211375548U (zh) 基于vpx架构的水冷散热服务器
CN104752374B (zh) 一种散热器及散热器组
CN102609063B (zh) 双面封闭循环式高效冷却装置
CN111799238A (zh) 一种双面水冷igbt散热器及其散热安装结构
CN207166932U (zh) 液冷装置及其应用的电子设备
CN213715872U (zh) 一种应用于工控移动终端的防水散热结构
CN210959272U (zh) 射流冷却散热装置及电子器件
CN211090386U (zh) 电机控制器
CN209643229U (zh) 一种通信设备的散热结构
CN214409983U (zh) 散热装置及具有其的服务器
CN210570165U (zh) 散热器和车辆
CN219179891U (zh) 分体式水冷散热装置
WO2023125691A1 (zh) 一种散热模组、计算设备
WO2023056955A1 (zh) 散热机柜及散热机柜系统
CN213718571U (zh) 一种风冷效率高的航空电源封装结构
CN210137402U (zh) 一种交换机散热装置和交换机
CN219536639U (zh) 电力电子设备的散热结构、散热风道、电力电子设备
CN220455786U (zh) 一种电脑水冷散热器
CN214098362U (zh) 一种计算机芯片水冷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871671

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871671

Country of ref document: EP

Effective date: 20240315