WO2023045524A1 - 发动机扭矩的预测方法、装置及计算机存储介质 - Google Patents
发动机扭矩的预测方法、装置及计算机存储介质 Download PDFInfo
- Publication number
- WO2023045524A1 WO2023045524A1 PCT/CN2022/107321 CN2022107321W WO2023045524A1 WO 2023045524 A1 WO2023045524 A1 WO 2023045524A1 CN 2022107321 W CN2022107321 W CN 2022107321W WO 2023045524 A1 WO2023045524 A1 WO 2023045524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- amplitude
- component
- discrete fourier
- fourier transform
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000012545 processing Methods 0.000 claims abstract description 29
- 238000004458 analytical method Methods 0.000 claims abstract description 25
- 238000002485 combustion reaction Methods 0.000 claims description 118
- 238000001914 filtration Methods 0.000 claims description 49
- 230000008569 process Effects 0.000 claims description 7
- 238000013277 forecasting method Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/08—Safety, indicating, or supervising devices
- F02B77/083—Safety, indicating, or supervising devices relating to maintenance, e.g. diagnostic device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0097—Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
- F02D41/28—Interface circuits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/04—Sensors
- F01L2820/042—Crankshafts position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
- F02D41/28—Interface circuits
- F02D2041/286—Interface circuits comprising means for signal processing
- F02D2041/288—Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1002—Output torque
- F02D2200/1004—Estimation of the output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Definitions
- the present application relates to the technical field of engine torque, and in particular to a prediction method, device and computer storage medium of engine torque.
- Functional safety is like the immune system of the human body, becoming the protector of the automatic driving system. When an abnormality occurs in the system, functional safety needs to play a role and guide the result to the safety side. Functional safety plays a role in guiding, regulating, and controlling the entire life cycle of the automatic driving system. For example, the air intake of the engine is controlled by the electronic throttle. If there is a signal error, software error or hardware error, the electronic throttle may get out of control, causing the car to accelerate rapidly and bring danger. Therefore, a safety monitoring function must be introduced.
- the engine control system is a safety-related system, requiring the system to be able to self-check for safety-related faults.
- To make the engine control system a safe and reliable system it is common practice to design another layer of algorithms to monitor the torque of the conventional engine control system.
- the actual output torque of the engine is usually calculated by intake air volume, fuel injection volume, speed, ignition angle efficiency, multiple injection efficiency, and cylinder cut-off efficiency.
- the sensors and actuators involved include intake manifold pressure, water temperature, crankshaft position, fuel injectors, rail pressure sensors, ignition coils, and spark plugs. Since there are many sensors and actuators involved, the risk of unreliable torque caused by the failure of one or several sensors will increase, reducing vehicle safety.
- the main purpose of this application is to provide a method, device and computer storage medium for predicting engine torque, which aims to avoid using data from multiple sensors to predict torque at the same time, and improve the reliability of predicted torque.
- the present application provides a method for predicting engine torque, the method for predicting engine torque includes the following steps:
- the tooth time corresponding to multiple teeth of the engine crankshaft is collected based on the crankshaft position sensor
- the predicted torque of the engine is obtained according to the modulus value and the phase angle.
- the step of obtaining the predicted torque of the engine according to the modulus and the phase angle includes:
- the product of the engine combustion torque and the engine combustion efficiency is used as the predicted torque.
- the step of using discrete Fourier transform to perform amplitude-frequency analysis processing on a plurality of the engine speed values, and obtaining the modulus and phase angle of the complex number after discrete Fourier transform includes:
- the modulus and phase angle of the complex number after the discrete Fourier transform are obtained.
- the step of obtaining the modulus and phase angle of the complex number after the discrete Fourier transform according to the magnitude of the sine component and the magnitude of the cosine component includes:
- the modulus and phase angle of the complex number after the discrete Fourier transform are obtained.
- the step of performing signal filtering processing on the magnitude of the sine component and the magnitude of the cosine component to obtain the magnitude of the sine component and the magnitude of the cosine component after signal filtering includes:
- the sinusoidal component amplitude after signal filtering is obtained;
- the cosine component amplitude after signal filtering is obtained.
- the step of obtaining the amplitude of the sinusoidal component after filtering the signal according to the amplitude of the total sinusoidal component corresponding to the current combustion cycle and the amplitude of the total sinusoidal component corresponding to the previous combustion cycle includes:
- the step of obtaining the cosine component amplitude after signal filtering according to the total cosine component amplitude corresponding to the current combustion cycle and the total cosine component amplitude corresponding to the previous combustion cycle includes:
- Weighted average processing is performed on the total cosine component amplitude corresponding to the current combustion cycle and the total cosine component amplitude corresponding to the previous combustion cycle to obtain the cosine component amplitude after signal filtering.
- the following formula is used to calculate the modulus of the complex number after the discrete Fourier transform:
- Z_DFTAbs 2 Z_DFTReRev 2 + Z_DFTImRev 2
- Z_DFTAbs is the modulus value of the complex number after the discrete Fourier transform
- an_DFT is the phase angle of the complex number after the discrete Fourier transform
- Z_DFTReRev is the magnitude of the cosine component
- Z_DFTImRev is the magnitude of the sine component
- Z_DFTImRev is the magnitude of the sine component after signal filtering.
- the step of collecting tooth times corresponding to a plurality of teeth of the engine crankshaft based on the crankshaft position sensor includes:
- the tooth time of a tooth corresponding to at least one engine cylinder is collected based on a crankshaft position sensor
- the step of using discrete Fourier transform to perform amplitude-frequency analysis on multiple engine speed values includes:
- the present application also provides an engine torque prediction device, which includes: a memory, a processor, and an engine torque stored in the memory and operable on the processor.
- a torque prediction program when the engine torque prediction program is executed by the processor, the steps of the engine torque prediction method described in any one of the above are implemented.
- the present application also provides a computer storage medium, on which an engine torque prediction program is stored, and when the engine torque prediction program is executed by a processor, any one of the above-mentioned The steps of the prediction method of engine torque described in item.
- the engine torque prediction method, device and computer storage medium proposed in the embodiments of the present application collect the tooth time corresponding to a plurality of teeth of the engine crankshaft based on the crankshaft position sensor; obtain the engine speed value corresponding to each tooth time; use discrete Fourier The transformation performs amplitude-frequency analysis on multiple engine speed values, and obtains the modulus and phase angle of the complex number after the discrete Fourier transform; obtains the predicted torque of the engine according to the modulus and phase angle.
- This application only collects the tooth time of the engine crankshaft through the crankshaft position sensor, and converts it into the engine speed value, and uses the discrete Fourier transform to perform amplitude-frequency analysis on multiple discrete speed values to obtain the modulus representing the engine speed energy and the piston
- the phase angle of the effective degree of torque can predict the engine torque more accurately, avoiding the simultaneous use of multiple sensors, and improving the reliability of the predicted torque and vehicle safety.
- Fig. 1 is a schematic diagram of the terminal structure of the hardware operating environment involved in the solution of the embodiment of the present application;
- Fig. 2 is a schematic flow chart of an embodiment of the method for predicting engine torque of the present application
- Fig. 3 is a schematic flow chart of another embodiment of the engine torque prediction method of the present application.
- FIG. 4 is a schematic flow chart of an exemplary description of the engine torque prediction method of the present application.
- Fig. 5 is a kind of schematic diagram of the change curve of engine speed of the present application.
- Fig. 6 is a schematic diagram of the corresponding positions of the teeth of the crankshaft of the engine and the cylinders of the engine of the present application.
- the embodiment of the present application provides a solution. Only the tooth time of the engine crankshaft is collected by the crankshaft position sensor, and converted into an engine speed value, and the discrete Fourier transform is used to perform amplitude-frequency analysis on multiple discrete speed values to obtain a characteristic engine.
- the modulus value of the speed energy and the phase angle representing the effectiveness of the piston torque can predict the engine torque more accurately, avoiding the simultaneous use of multiple sensors, and improving the reliability of the predicted torque and vehicle safety.
- FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in the solution of the embodiment of the present application.
- the embodiment terminal of the present application is an engine torque prediction device.
- the terminal may include: a processor 1001 , such as a CPU, DSP, or MCU, a network interface 1004 , a memory 1003 , and a communication bus 1002 .
- the communication bus 1002 is set to realize connection and communication between these components.
- the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
- the memory 1003 can be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
- the memory 1003 may also be a storage device independent of the foregoing processor 1001 .
- terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than those shown in the figure, or combine some components, or arrange different components.
- the memory 1003 as a computer storage medium may include a network communication module and an engine torque prediction program.
- the network interface 1004 is mainly set to connect to the controller area network (Controller Area Network, CAN) of the vehicle, and carry out data communication with the controller area network; and the processor 1001 can be set to call the A predictor of stored engine torque, and does the following:
- controller area network Controller Area Network, CAN
- the processor 1001 can be set to call the A predictor of stored engine torque, and does the following:
- the tooth time corresponding to multiple teeth of the engine crankshaft is collected based on the crankshaft position sensor
- the predicted torque of the engine is obtained according to the modulus value and the phase angle.
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- the product of the engine combustion torque and the engine combustion efficiency is used as the predicted torque.
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- the modulus and phase angle of the complex number after the discrete Fourier transform are obtained.
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- the modulus and phase angle of the complex number after the discrete Fourier transform are obtained.
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- the sinusoidal component amplitude after signal filtering is obtained;
- the cosine component amplitude after signal filtering is obtained.
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- Weighted average processing is performed on the total cosine component amplitude corresponding to the current combustion cycle and the total cosine component amplitude corresponding to the previous combustion cycle to obtain the cosine component amplitude after signal filtering.
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- Z_DFTAbs 2 Z_DFTReRev 2 + Z_DFTImRev 2
- Z_DFTAbs is the modulus value of the complex number after the discrete Fourier transform
- an_DFT is the phase angle of the complex number after the discrete Fourier transform
- Z_DFTReRev is the magnitude of the cosine component
- Z_DFTImRev is the magnitude of the sine component
- Z_DFTImRev is the magnitude of the sine component after signal filtering.
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- the tooth time of a tooth corresponding to at least one engine cylinder is collected based on a crankshaft position sensor
- processor 1001 can call the engine torque prediction program stored in the memory 1003, and also perform the following operations:
- the prediction method of engine torque comprises the following steps:
- Step S10 based on the crankshaft position sensor, collecting tooth times corresponding to a plurality of teeth of the engine crankshaft;
- a crankshaft position sensor is provided near the crankshaft of the engine, and the crankshaft position sensor is configured to detect the tooth time when each tooth on the crankshaft passes near the crankshaft position sensor. Tooth time is the time it takes for the engine crankshaft to turn the distance of one tooth. When the engine is running, the crankshaft of the engine rotates, and the tooth time corresponding to each tooth on the crankshaft of the engine is generally different, and each tooth corresponds to a tooth time.
- the tooth time of the tooth corresponding to at least one engine cylinder is collected based on the crankshaft position sensor.
- the crankshaft of a three-cylinder engine is provided with 60 teeth, including two missing teeth. After the three cylinders of the engine work, the crankshaft needs to rotate twice, and two rotations of the crankshaft constitute a combustion cycle. The crankshaft needs to rotate 120 teeth in one combustion cycle. In this way, the teeth corresponding to one cylinder are 40 teeth. Therefore, the crankshaft position sensor can continuously collect the corresponding teeth of the first cylinder starting from the second falling edge after the first cylinder lacks teeth.
- the tooth time of 40 teeth, the tooth time of 40 teeth corresponding to the first cylinder can be expressed as TT[0-39].
- Step S20 acquiring the engine speed value corresponding to each tooth time
- the collected time of each tooth is converted into an engine speed value, for example, as shown in FIG. 5 , which is a change curve of the engine speed when the crankshaft of the engine rotates.
- the unit of the tooth time corresponding to a single tooth is microseconds, and the unit of the engine speed value is generally radians/minute (rad/min), which can be converted by the following formula:
- n_EngInsTT[0-39] 10 ⁇ 9 /TT[0-39]
- n_EngInsTT[0-39] is the engine speed value corresponding to 40 teeth respectively.
- Step S30 using discrete Fourier transform to perform amplitude-frequency analysis processing on a plurality of engine speed values, to obtain the modulus and phase angle of the complex number after discrete Fourier transform;
- the discrete Fourier transform (Discrete Fourier Transform, DFT) is that the Fourier transform presents a discrete form in both the time domain and the frequency domain, and transforms the sampling of the time domain signal into a discrete time Fourier transform.
- Leaf transform sampling in the frequency domain.
- the engine speed value corresponding to each tooth time can be used as a discrete signal to perform discrete Fourier transform, so as to perform amplitude-frequency analysis and processing on multiple discrete signals, and calculate the modulus of the complex number after discrete Fourier transform and phase angle.
- discrete Fourier transform can be used to perform amplitude-frequency analysis on the engine speed values n_EngInsTT[0-39] corresponding to 40 teeth respectively, to obtain the modulus and phase angle of the complex number after discrete Fourier transform.
- Step S40 obtaining the predicted torque of the engine according to the model value and the phase angle.
- the magnitude of the engine torque depends on the cylinder pressure and phase angle of engine combustion.
- the cylinder pressure acts on the surface of the piston to generate force, and the force acts on the piston to generate angular acceleration, while the first derivative of the engine speed represents the angular acceleration of the engine, so the combustion torque of the engine can be calculated by representing the modulus of the energy of the engine speed.
- the phase angle of the cylinder pressure represents the effective degree of output to the piston torque, so the combustion efficiency of the engine can be calculated through the phase angle.
- the engine torque can be predicted to obtain the predicted torque.
- the only sensor used is the crankshaft position sensor, thus avoiding the simultaneous use of multiple sensors and improving the reliability of the predicted torque.
- the average engine speed value corresponding to the current combustion cycle of the engine crankshaft may be obtained.
- the combustion torque of the engine is obtained by looking up the model value Z_DFTAbs representing the rotational speed energy and the average rotational speed value n_Eng2RevAvg representing a combustion cycle.
- the combustion efficiency of the engine is obtained by looking up the phase angle an_DFT representing the time of rotating speed and the average speed of the engine n_Eng2RevAvg representing a combustion cycle.
- the combustion torque of the engine is multiplied by the combustion efficiency of the engine, and the product is the predicted torque of the engine.
- the average engine speed value corresponding to the current combustion cycle of the engine crankshaft can be obtained by averaging the engine speed values corresponding to the tooth times of multiple teeth of the engine crankshaft in the current combustion cycle, for example, the current engine crankshaft
- the formula of the average engine speed value n_Eng2RevAvg corresponding to the combustion cycle is as follows:
- n_Eng2RevAvg n_Eng3Seg ⁇ 120
- n_Eng3Seg is the sum of the engine speed values corresponding to all the teeth in the current combustion cycle.
- the end point of the current combustion cycle is the tooth currently detected by the crankshaft position sensor
- the starting point of the current combustion cycle is the tooth currently detected by the crankshaft position sensor pushed back to the tooth where it is after one combustion cycle, for example, in a combustion cycle
- the current combustion cycle is the phase of rotation between 120 teeth preceding the current tooth.
- step S30 includes:
- Step S31 using discrete Fourier transform to perform amplitude-frequency analysis processing on a plurality of the engine speed values, and obtain the amplitude of the sine component and the amplitude of the cosine component corresponding to the complex number after the discrete Fourier transform;
- the discrete Fourier transform can be performed on the engine speed values n_EngInsTT[0-39] respectively corresponding to 40 teeth, and the formula of the discrete Fourier transform is:
- the magnitude of the cosine (cos) component corresponding to the complex number after the discrete Fourier transform is:
- N 40 sampling points.
- Step S32 according to the magnitude of the sine component and the magnitude of the cosine component, the modulus and phase angle of the complex number after the discrete Fourier transform are obtained.
- Z_DFTAbs 2 Z_DFTReRev 2 + Z_DFTImRev 2
- phase angle of the discrete Fourier transformed complex number is calculated using the following formula:
- Z_DFTAbs is the modulus value of the complex number after the discrete Fourier transform
- an_DFT is the phase angle of the complex number after the discrete Fourier transform
- Z_DFTReRev is the magnitude of the above-mentioned cosine component
- Z_DFTImRev is the magnitude of the above-mentioned sine component.
- signal filtering in order to make the predicted torque more accurate, can be performed on the amplitude of the sine component and the amplitude of the cosine component obtained by the amplitude-frequency analysis processing, and the amplitude of the sine component and the amplitude of the cosine component after the signal filtering process can be obtained , and then according to the magnitude of the sine component and the magnitude of the cosine component after signal filtering, the modulus and phase angle of the complex number after the discrete Fourier transform are obtained.
- Z_DFTReRev in the above formula is the magnitude of the cosine component after signal filtering
- Z_DFTImRev is the magnitude of the sine component after signal filtering.
- the total cosine component amplitude corresponding to the current combustion cycle of the engine crankshaft can be obtained according to the cosine component amplitude, for example, the cosine component amplitude corresponds to the current cylinder, the cosine component amplitude corresponding to the current cylinder is summed with the cosine component amplitudes corresponding to the first two cylinders of the current cylinder to obtain the total cosine component amplitude corresponding to the current combustion cycle of the engine crankshaft.
- the total cosine component amplitude corresponding to the current combustion cycle and the total cosine component amplitude corresponding to the previous combustion cycle obtain the cosine component amplitude after signal filtering, for example, the total cosine component amplitude corresponding to the current combustion cycle and The total cosine component amplitude corresponding to the previous combustion cycle is averaged, weighted average, weighted summation, etc. to obtain the cosine component amplitude after signal filtering.
- weighted average used, the formula is as follows:
- Z_DFTReRev (Z_DFTRe3Seg ⁇ Z_DFTnEngAvgCmpRe+Z_DFTRe3SegPrv ⁇ Z_DFTnEngAvgCmpRe)/2
- Z_DFTReRev is the cosine component amplitude after signal filtering
- Z_DFTRe3Seg is the total cosine component amplitude corresponding to the current combustion cycle
- Z_DFTnEngAvgCmpRe is the weight factor of the total cosine component amplitude corresponding to the current combustion cycle
- Z_DFTRe3SegPrv is the corresponding to the previous combustion cycle
- Z_DFTnEngAvgCmpRe is the weighting factor of the total cosine component amplitude corresponding to the previous combustion cycle.
- the weight factor can be manually set according to actual needs.
- the total amplitude of the sinusoidal component corresponding to the current combustion cycle of the engine crankshaft can be obtained according to the amplitude of the sinusoidal component, for example, when the amplitude of the sinusoidal component corresponds to the current cylinder, the sine component amplitude corresponding to the current cylinder is summed with the sine component amplitudes corresponding to the first two cylinders of the current cylinder to obtain the total sine component amplitude corresponding to the current combustion cycle of the engine crankshaft.
- the formula is as follows:
- Z_DFTImRev (Z_DFTIm3Seg ⁇ Z_DFTnEngAvgCmpIm+Z_DFTIm3SegPrv ⁇ Z_DFTnEngAvgCmpIm)/2
- Z_DFTImRev is the sinusoidal component amplitude after signal filtering
- Z_DFTIm3Seg is the total sinusoidal component amplitude corresponding to the current combustion cycle
- Z_DFTnEngAvgCmpIm is the weight factor of the total sinusoidal component amplitude corresponding to the current combustion cycle
- Z_DFTIm3SegPrv is the corresponding to the previous combustion cycle
- Z_DFTnEngAvgCmpIm is the weighting factor of the total sinusoidal component amplitude corresponding to the previous combustion cycle.
- the weight factor can be manually set according to actual needs.
- the discrete Fourier transform is used to perform amplitude-frequency analysis processing on multiple engine speed values, and the amplitudes of the sine components and cosine components corresponding to the complex numbers after the discrete Fourier transform are obtained, and According to the magnitude of the sine component and the magnitude of the cosine component, the modulus representing the energy of the engine speed and the phase angle representing the effectiveness of the torque output to the piston are obtained, and the torque prediction based on the physical model is realized with less calibration data.
- the engine torque prediction method is as follows:
- Step S1 As shown in Figure 6, start from the second falling edge after the missing tooth of the first cylinder, and continuously collect the tooth time of the crankshaft position sensor of the 40 teeth of the single cylinder.
- the crankshaft has 60 teeth, including 2 missing teeth.
- the crankshaft rotates 2 times, that is, 60 times 2 equals 120 teeth, of which 1 cylinder has 40 teeth.
- Step S3 Perform discrete Fourier transform (DFT) on the 40-tooth speed signal n_EngInsTT[0-39].
- DFT discrete Fourier transform
- n_EngInsTT is x(n), which is the time-threshold signal to be analyzed.
- x(n) the time-threshold signal to be analyzed.
- the first-order energy is analyzed, and the cos component is:
- N 40 sampling points
- the sin components are:
- N 40 sampling points.
- Step S4 Signal filtering.
- Z_DFTRe3Seg is the value of the previous combustion cycle
- Z_DFTRe3SegPrv is the value of the previous combustion cycle
- Z_DFTIm3Seg is the value of the previous combustion cycle
- Z_DFTIm3SegPrv is the value of the previous combustion cycle
- the sum of the values corresponding to the two cylinders that is, the sum of the values corresponding to the three closest cylinders in the time dimension, and the value of the previous combustion cycle "3SegPrv" refers to the value corresponding to the first third of the current cylinder
- the sum of the value corresponding to the first fourth of the current cylinder and the value corresponding to the first fifth of the current cylinder that is, the value corresponding to the fourth cylinder, the value corresponding to the fifth cylinder and the sixth corresponding to the nearest cylinder in the time dimension
- the average amplitude of the cos component Z_DFTReRev (the amplitude of the cos component of the current combustion cycle Z_DFTRe3Seg ⁇ weight factor Z_DFTnEngAvgCmpRe+the amplitude of the cos component of the previous combustion cycle Z_DFTRe3SegPrv ⁇ weight factor Z_DFTnEngAvgCmpRe)/2
- Step S5 Calculating the modulus value representing the energy, the phase angle and the rotational speed of one combustion cycle.
- the angle an_DFT and the average speed n_Eng2RevAvg of a combustion cycle are respectively:
- Z_DFTAbs 2 Z_DFTReRev 2 + Z_DFTImRev 2
- n_Eng2RevAvg means the engine
- 2Rev means that the crankshaft of the engine rotates twice, that is, one combustion cycle
- Avg means the average speed
- Step S6 Calculate the torque of the engine.
- the predicted engine torque Tq_IndNet is obtained by multiplying the engine combustion torque and combustion efficiency.
- the engine combustion torque is obtained by looking up the modulus Z_DFTAbs representing the speed energy and the average speed n_Eng2RevAvg representing a combustion cycle, and the combustion efficiency is obtained by looking up the phase an_DFT representing the work time of the speed and the average speed n_Eng2RevAvg representing a combustion cycle.
- the engine torque prediction method involved in this example is to use the engine speed signal to calculate the actual engine torque, which has strong adaptability and reliability, and only uses a physical model with less calibration data. Since it is only based on the engine speed signal correlation of the crankshaft position sensor, Reduce the frequency of inaccurate torque calculation caused by signal failure when multiple sensors are used.
- an embodiment of the present application also proposes a device for predicting engine torque, the device for predicting engine torque includes: a memory, a processor, and an engine torque predictor stored in the memory and operable on the processor A program, when the engine torque prediction program is executed by the processor, the steps of the engine torque prediction method described in the above embodiments are realized.
- the embodiment of the present application also proposes a computer storage medium, the engine torque prediction program is stored on the computer storage medium, and when the engine torque prediction program is executed by the processor, the engine torque as described in the above embodiments can be realized.
- the steps of the forecasting method are described in the above embodiments.
- the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
- the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium as described above (such as ROM/RAM , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, computer, server, air conditioner, or network device, etc.) execute the methods described in various embodiments of the present application.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
一种发动机扭矩的预测方法、装置及计算机存储介质,方法包括:基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间(S10);获取与各个齿时间对应的发动机转速值(S20);采用离散傅里叶变换对多个发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度(S30);根据模值以及相位角度获取发动机的预测扭矩(S40)。
Description
相关申请
本申请要求于2021年9月23号申请的、申请号为202111118355.7的中国专利申请的优先权,其全部内容通过引用结合于此。
本申请涉及发动机扭矩技术领域,尤其涉及发动机扭矩的预测方法、装置及计算机存储介质。
功能安全就像人体的免疫系统,成为自动驾驶系统的保护神。当系统出现异常时,功能安全需要发挥作用,将结果导向安全侧。功能安全在自动驾驶系统的全生命周期中起着指引、规范、控制的作用。例如,发动机的进气量由电子节气门控制,如果出现信号错误,软件错误或者硬件错误,电子节气门可能失控,导致汽车急加速,带来危险,因此要引入安全监控功能。
发动机控制系统是与安全性相关的系统,要求系统能够对与安全性相关的故障进行自我检查。为使发动机控制系统成为安全可靠的系统,常用的做法是设计另外一层算法监控常规发动机控制系统的扭矩。
发动机实际输出的扭矩通常通过进气量、喷油量、转速、点火角效率、多次喷射效率、断缸效率来计算。涉及的传感器执行器包括进气歧管压力、水温、曲轴位置、喷油器、轨压传感器、点火线圈和火花塞等。由于涉及的传感器执行器较多,会增加其中一种或几种传感器失效带来的扭矩不可信的风险,降低了车辆安全性。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
申请内容
本申请的主要目的在于提供一种发动机扭矩的预测方法、装置及计算机存储介质,旨在避免同时采用多种传感器的数据来预测扭矩,提高预测扭矩的可信度。
为实现上述目的,本申请提供一种发动机扭矩的预测方法,所述发动机扭矩的预测方法包括以下步骤:
基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间;
获取与各个所述齿时间对应的发动机转速值;
采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度;
根据所述模值以及所述相位角度获取所述发动机的预测扭矩。
在一实施方式中,所述根据所述模值以及所述相位角度获取所述发动机的预测扭矩的步骤包括:
获取所述发动机曲轴的当前燃烧循环对应的发动机平均转速值;
根据所述发动机平均转速值以及所述模值获取发动机燃烧扭矩;
根据所述发动机平均转速值以及所述相位角度获取发动机燃烧效率;
将所述发动机燃烧扭矩与所述发动机燃烧效率的乘积作为所述预测扭矩。
在一实施方式中,所述采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度的步骤包括:
采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数对应的正弦分量幅值以及余弦分量幅值;
根据所述正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度。
在一实施方式中,所述根据所述正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度的步骤包括:
对所述正弦分量幅值以及余弦分量幅值进行信号滤波处理,得到信号滤波处理后的正弦分量幅值以及余弦分量幅值;
根据信号滤波处理后的正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度。
在一实施方式中,所述对所述正弦分量幅值以及余弦分量幅值进行信号滤波处理,得到信号滤波处理后的正弦分量幅值以及余弦分量幅值的步骤包括:
根据所述正弦分量幅值获取所述发动机曲轴的当前燃烧循环对应的总正弦分量幅值,以及根据所述余弦分量幅值获取所述发动机曲轴的当前燃烧循环对应的总余弦分量幅值;
根据当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值,获取信号滤波处理后的正弦分量幅值;
根据当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值, 获取信号滤波处理后的余弦分量幅值。
在一实施方式中,所述根据当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值,获取所述信号滤波处理后的正弦分量幅值的步骤包括:
对当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值进行加权平均处理,得到信号滤波处理后的正弦分量幅值;
在一实施方式中,所述根据当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值,获取信号滤波处理后的余弦分量幅值的步骤包括:
对当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值进行加权平均处理,得到信号滤波处理后的余弦分量幅值。
在一实施方式中,采用以下公式计算离散傅里叶变换后的复数的模值:
Z_DFTAbs
2=Z_DFTReRev
2+Z_DFTImRev
2
采用以下公式计算离散傅里叶变换后的复数的相位角度:
an_DFT=acrtan(-Z_DFTReRev/Z_DFTImRev)
其中,Z_DFTAbs为离散傅里叶变换后的复数的模值,an_DFT为离散傅里叶变换后的复数的相位角度,在Z_DFTReRev为所述余弦分量幅值时,Z_DFTImRev为所述正弦分量幅值,或者在Z_DFTReRev为信号滤波处理后的余弦分量幅值时,Z_DFTImRev为信号滤波处理后的正弦分量幅值。
在一实施方式中,所述基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间的步骤包括:
在所述发动机曲轴的多个齿中,基于曲轴位置传感器采集至少一个发动机气缸对应的齿的所述齿时间;
在一实施方式中,所述采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理的步骤包括:
采用离散傅里叶变换对至少一个发动机气缸对应的多个所述发动机转速值进行幅频分析处理。
此外,为实现上述目的,本申请还提供一种发动机扭矩的预测装置,所述发动机扭矩的预测装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的发动机扭矩的预测程序,所述发动机扭矩的预测程序被所述处理器执行时实现如上所述中任一项所述的发动机扭矩的预测方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机存储介质,所述计算机存储介质上存储有发动机扭矩的预测程序,所述发动机扭矩的预测程序被处理器执行时实现如上所述中任一项所述的发动机扭矩的预测方法的步骤。
本申请实施例提出的发动机扭矩的预测方法、装置及计算机存储介质,基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间;获取与各个齿时间对应的发动机转速值;采用离散傅里叶变换对多个发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度;根据模值以及相位角度获取发动机的预测扭矩。本申请仅通过曲轴位置传感器采集发动机曲轴的齿时间,并转换为发动机转速值,采用离散傅里叶变换对离散的多个转速值进行幅频分析,得到表征发动机转速能量的模值以及表征活塞扭矩有效程度的相位角度,可以更为准确地对发动机扭矩进行预测,避免了同时采用多种传感器,提高了预测扭矩的可信度以及车辆安全性。
图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图;
图2为本申请发动机扭矩的预测方法的一实施例的流程示意图;
图3为本申请发动机扭矩的预测方法另一实施例的流程示意图;
图4为本申请发动机扭矩的预测方法的一示例性说明的流程示意图;
图5为本申请发动机转速的变化曲线的一种示意图;
图6为本申请发动机曲轴的齿与发动机气缸的对应位置的一种示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供一种解决方案,仅通过曲轴位置传感器采集发动机曲轴的齿时间,并转换为发动机转速值,采用离散傅里叶变换对离散的多个转速值进行幅频分析,得到表征发动机转速能量的模值以及表征活塞扭矩有效程度的相位角度,可以更为准确地对发动机扭矩进行预测,避免了同时采用多种传感器,提高了预测扭矩的可信度以及车辆安全性。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端为发动机扭矩的预测装置。
如图1所示,该终端可以包括:处理器1001,例如CPU、DSP、MCU,网络接口1004,存储器1003,通信总线1002。其中,通信总线1002设置为实现这些组件之间的连接通信。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1003可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1003可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1003中可以包括网络通信模块以及发动机扭矩的预测程序。
在图1所示的终端中,网络接口1004主要设置为连接车辆的控制器局域网络(Controller Area Network,CAN),与控制器局域网络进行数据通信;而处理器1001可以设置为调用存储器1003中存储的发动机扭矩的预测程序,并执行以下操作:
基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间;
获取与各个所述齿时间对应的发动机转速值;
采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度;
根据所述模值以及所述相位角度获取所述发动机的预测扭矩。
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
获取所述发动机曲轴的当前燃烧循环对应的发动机平均转速值;
根据所述发动机平均转速值以及所述模值获取发动机燃烧扭矩;
根据所述发动机平均转速值以及所述相位角度获取发动机燃烧效率;
将所述发动机燃烧扭矩与所述发动机燃烧效率的乘积作为所述预测扭矩。
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数对应的正弦分量幅值以及余弦分量幅值;
根据所述正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及 相位角度。
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
对所述正弦分量幅值以及余弦分量幅值进行信号滤波处理,得到信号滤波处理后的正弦分量幅值以及余弦分量幅值;
根据信号滤波处理后的正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度。
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
根据所述正弦分量幅值获取所述发动机曲轴的当前燃烧循环对应的总正弦分量幅值,以及根据所述余弦分量幅值获取所述发动机曲轴的当前燃烧循环对应的总余弦分量幅值;
根据当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值,获取信号滤波处理后的正弦分量幅值;
根据当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值,获取信号滤波处理后的余弦分量幅值。
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
对当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值进行加权平均处理,得到信号滤波处理后的正弦分量幅值;
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
对当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值进行加权平均处理,得到信号滤波处理后的余弦分量幅值。
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
采用以下公式计算离散傅里叶变换后的复数的模值:
Z_DFTAbs
2=Z_DFTReRev
2+Z_DFTImRev
2
采用以下公式计算离散傅里叶变换后的复数的相位角度:
an_DFT=acrtan(-Z_DFTReRev/Z_DFTImRev)
其中,Z_DFTAbs为离散傅里叶变换后的复数的模值,an_DFT为离散傅里叶变换后的 复数的相位角度,在Z_DFTReRev为所述余弦分量幅值时,Z_DFTImRev为所述正弦分量幅值,或者在Z_DFTReRev为信号滤波处理后的余弦分量幅值时,Z_DFTImRev为信号滤波处理后的正弦分量幅值。
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
在所述发动机曲轴的多个齿中,基于曲轴位置传感器采集至少一个发动机气缸对应的齿的所述齿时间;
进一步地,处理器1001可以调用存储器1003中存储的发动机扭矩的预测程序,还执行以下操作:
采用离散傅里叶变换对至少一个发动机气缸对应的多个所述发动机转速值进行幅频分析处理。
参照图2,在一实施例中,发动机扭矩的预测方法包括以下步骤:
步骤S10,基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间;
在本实施例中,发动机的曲轴附近设置有曲轴位置传感器,曲轴位置传感器设置为检测曲轴上各个齿经过曲轴位置传感器附近时的齿时间。齿时间为发动机曲轴转动一个齿的距离所花费的时间。发动机在运行时,发动机曲轴作旋转运动,发动机曲轴上的各个齿对应的齿时间一般是不同的,每一个齿对应一个齿时间。
在一实施方式中,在发动机曲轴的多个齿中,基于曲轴位置传感器采集至少一个发动机气缸对应的齿的齿时间。例如,如图6所示,三缸发动机的曲轴设置有60齿,其中包括两个缺齿,发动机的三个气缸工作完毕需要曲轴旋转两圈,曲轴旋转两圈为一个燃烧循环。一个燃烧循环曲轴需要转动120个齿,这样,一个气缸对应的齿则为40齿,因此可在第一缸缺齿后的第2个下降沿开始,通过曲轴位置传感器连续采集第一缸对应的40个齿的齿时间,第一缸对应的40个齿的齿时间可表示为TT[0-39]。
步骤S20,获取与各个所述齿时间对应的发动机转速值;
在本实施例中,将采集到的各个齿时间换算为发动机转速值,例如,如图5所示,图5为发动机曲轴旋转时发动机转速的变化曲线。具体地,单个齿对应的齿时间的单位为微秒,发动机转速值的单位一般为弧度/分钟(rad/min),可通过以下公式进行换算:
n_EngInsTT[0-39]=10^
9/TT[0-39]
其中,n_EngInsTT[0-39]为40个齿分别对应的发动机转速值。
步骤S30,采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度;
在本实施例中,离散傅里叶变换(Discrete Fourier Transform,DFT),是傅里叶变换在时域和频域上都呈现离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。具体地,可将各个齿时间对应的发动机转速值作为一个离散信号,进行离散傅里叶变换,以对多个离散信号进行幅频分析处理,计算出离散傅里叶变换后的复数的模值以及相位角度。例如,可采用离散傅里叶变换对40个齿分别对应的发动机转速值n_EngInsTT[0-39]进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度。离散傅里叶变换后的复数为X(k),可设为X(k)=a(k)+ib(k),其模值为Z_DFTAbs,相位角度为an_DFT。
步骤S40,根据所述模值以及所述相位角度获取所述发动机的预测扭矩。
在本实施例中,发动机扭矩的大小取决于发动机燃烧的缸压和相位角度。缸压压力作用于活塞表面产生力,力作用于活塞产生角加速度,而发动机转速的一阶导数表征发动机的角加速度,因此可通过表征发动机转速能量的模值来计算发动机的燃烧扭矩。而缸压的相位角度表征输出到活塞扭矩的有效程度,因此可通过相位角度来计算发动机的燃烧效率。基于发动机的燃烧扭矩以及发动机的燃烧效率,即可实现对于发动机扭矩的预测,得到预测扭矩。在此过程中,使用的传感器仅有曲轴位置传感器,因此避免了同时采用多种传感器,提高了预测扭矩的可信度。
在一实施方式中,在根据模值以及相位角度获取发动机的预测扭矩时,可获取发动机曲轴的当前燃烧循环对应的发动机平均转速值。通过表征转速能量的模值Z_DFTAbs与表征一个燃烧循环内的发动机平均转速值n_Eng2RevAvg进行查表,得到发动机的燃烧扭矩。通过表征转速做功时间的相位角度an_DFT与表征一个燃烧循环内的发动机平均转速值n_Eng2RevAvg进行查表,得到发动机的燃烧效率。将发动机的燃烧扭矩与发动机的燃烧效率相乘,乘积即为发动机的预测扭矩。
在一实施方式中,发动机曲轴的当前燃烧循环对应的发动机平均转速值,可通过对当前燃烧循环发动机曲轴的多个齿的齿时间对应的发动机转速值取平均值得到,例如,发动机曲轴的当前燃烧循环对应的发动机平均转速值n_Eng2RevAvg的公式如下:
n_Eng2RevAvg=n_Eng3Seg÷120
其中,n_Eng3Seg为当前燃烧循环所有齿对应的发动机转速值之和。需要说明的是,当前燃烧循环的终点为曲轴位置传感器当前检测到的齿,当前燃烧循环的起点为曲轴位置 传感器当前检测到的齿往回推一个燃烧循环后所在的齿,例如,在一个燃烧循环曲轴需要转动120个齿时,当前燃烧循环为当前齿之前的120个齿之间的旋转阶段。
在本实施例公开的技术方案中,仅通过曲轴位置传感器采集发动机曲轴的齿时间,并转换为发动机转速值,采用离散傅里叶变换对离散的多个转速值进行幅频分析,得到表征发动机转速能量的模值以及表征活塞扭矩有效程度的相位角度,可以更为准确地对发动机扭矩进行预测,避免了同时采用多种传感器,提高了预测扭矩的可信度以及车辆安全性。
在另一实施例中,如图3所示,在上述图2所示的实施例基础上,步骤S30包括:
步骤S31,采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数对应的正弦分量幅值以及余弦分量幅值;
在本实施例中,可对40个齿分别对应的发动机转速值n_EngInsTT[0-39]进行离散傅里叶变换,离散傅里叶变换的公式为:
其中,X(k)为离散傅里叶变换后的复数,可设为X(k)=a(k)+ib(k)n,_EngInsTT[0-39]为x(n),是需要进行幅频分析的时阈信号,基于这40个信号分析1阶的能量。离散傅里叶变换后的复数对应的余弦(cos)分量幅值为:
离散傅里叶变换后的复数对应的正弦(sin)分量幅值为:
其中,k=1为1阶,N=40个采样点。
步骤S32,根据所述正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度。
在本实施例中,可采用以下公式计算离散傅里叶变换后的复数的模值:
Z_DFTAbs
2=Z_DFTReRev
2+Z_DFTImRev
2
以及采用以下公式计算离散傅里叶变换后的复数的相位角度:
an_DFT=acrtan(-Z_DFTReRev/Z_DFTImRev)
其中,Z_DFTAbs为离散傅里叶变换后的复数的模值,an_DFT为离散傅里叶变换后 的复数的相位角度,Z_DFTReRev为上述余弦分量幅值,Z_DFTImRev为上述正弦分量幅值。
在一实施方式中,为了使预测扭矩更加准确,可先对幅频分析处理得到的正弦分量幅值以及余弦分量幅值进行信号滤波,得到信号滤波处理后的正弦分量幅值以及余弦分量幅值,再根据信号滤波处理后的正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度。此时,上述公式中的Z_DFTReRev为信号滤波处理后的余弦分量幅值,Z_DFTImRev为信号滤波处理后的正弦分量幅值。
在一实施方式中,在对余弦分量幅值进行信号滤波处理时,可根据余弦分量幅值获取发动机曲轴的当前燃烧循环对应的总余弦分量幅值,例如,在余弦分量幅值对应的是当前气缸时,则将当前气缸对应的余弦分量幅值,与当前气缸的前两个气缸对应的余弦分量幅值进行求和,得到发动机曲轴的当前燃烧循环对应的总余弦分量幅值。根据当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值,获取信号滤波处理后的余弦分量幅值,例如,可对当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值进行平均、加权平均、加权求和等处理,得到信号滤波处理后的余弦分量幅值,在采用加权平均时,公式如下:
Z_DFTReRev=(Z_DFTRe3Seg×Z_DFTnEngAvgCmpRe+Z_DFTRe3SegPrv×Z_DFTnEngAvgCmpRe)/2
其中,Z_DFTReRev为信号滤波处理后的余弦分量幅值,Z_DFTRe3Seg为当前燃烧循环对应的总余弦分量幅值,Z_DFTnEngAvgCmpRe为当前燃烧循环对应的总余弦分量幅值的权重因子,Z_DFTRe3SegPrv为上一燃烧循环对应的总余弦分量幅值,Z_DFTnEngAvgCmpRe为上一燃烧循环对应的总余弦分量幅值的权重因子。在一实施方式中,权重因子可根据实际需求手动设置。
在一实施方式中,在对正弦分量幅值进行信号滤波处理时,可根据正弦分量幅值获取发动机曲轴的当前燃烧循环对应的总正弦分量幅值,例如,在正弦分量幅值对应的是当前气缸时,则将当前气缸对应的正弦分量幅值,与当前气缸的前两个气缸对应的正弦分量幅值进行求和,得到发动机曲轴的当前燃烧循环对应的总正弦分量幅值。根据当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值,获取信号滤波处理后的正弦分量幅值,例如,可对当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值进行平均、加权平均、加权求和等处理,得到信号滤波处理后的正弦分量幅值,在采用加权平均时,公式如下:
Z_DFTImRev=(Z_DFTIm3Seg×Z_DFTnEngAvgCmpIm+Z_DFTIm3SegPrv×Z_DFTnEngAvgCmpIm)/2
其中,Z_DFTImRev为信号滤波处理后的正弦分量幅值,Z_DFTIm3Seg为当前燃烧循环对应的总正弦分量幅值,Z_DFTnEngAvgCmpIm为当前燃烧循环对应的总正弦分量幅值的权重因子,Z_DFTIm3SegPrv为上一燃烧循环对应的总正弦分量幅值,Z_DFTnEngAvgCmpIm为上一燃烧循环对应的总正弦分量幅值的权重因子。在一实施方式中,权重因子可根据实际需求手动设置。
在本实施例公开的技术方案中,采用离散傅里叶变换对多个发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数对应的正弦分量幅值以及余弦分量幅值,并根据正弦分量幅值以及余弦分量幅值,获取表征发动机转速能量的模值以及表征输出到活塞扭矩的有效程度的相位角度,实现了基于物理模型的扭矩预测,标定数据更少。
在一示例性说明中,如图4所示,在图2至图3所示实施例的基础上,发动机扭矩的预测方法示例如下:
步骤S1:如图6所示,从1缸缺齿后第2个下降沿开始,连续采集单缸40个齿的发动机曲轴位置传感器齿时间。以三缸机为例,曲轴为60齿,其中含2个缺齿,发动机3个缸工作完毕曲轴旋转2圈,即60乘2等于120个齿,其中1缸为40个齿。
步骤S2:转速计算。从齿时间TT[0-39](单位us)转换为转速n_EngInsTT[0-39](rad/min),n_EngInsTT[0-39]=1000000000/TT[0-39]。
步骤S3:对40齿转速信号n_EngInsTT[0-39]做离散傅里叶变换DFT。离散傅里叶变换DFT的公式为
其中,n_EngInsTT为x(n),是需要分析的时阈信号,对这一基于缸中断的40个信号分析1阶的能量,cos分量为:
其中k=1为1阶,N=40个采样点;
sin分量为:
其中k=1为1阶,N=40个采样点。
步骤S4:信号滤波。取一个燃烧循环的cos分量:Z_DFTRe3Seg为前一个燃烧循环的值,Z_DFTRe3SegPrv为再往前一个燃烧循环的值;取一个燃烧循环的sin分量:Z_DFTIm3Seg为前一个燃烧循环的值,Z_DFTIm3SegPrv为再往前一个燃烧循环的值。需要说明的是,由于发动机的三个气缸工作完毕需要曲轴旋转两圈,曲轴旋转两圈为一个燃烧循环,因此前一个燃烧循环“3Seg”的值是指当前气缸对应的值与当前气缸的前两个气缸对应的值的总和,即在时间维度上最近的三个气缸对应的值的总和,而再往前一个燃烧循环“3SegPrv”的值是指当前气缸的前第三个对应的值、当前气缸的前第四个对应的值以及当前气缸的前第五个对应的值的总和,即在时间维度上最近的第四个气缸对应的值、第五个气缸对应的值以及第六个气缸对应的值的总和。
cos分量的平均幅值Z_DFTReRev=(当前燃烧循环cos分量的幅值Z_DFTRe3Seg×权重因子Z_DFTnEngAvgCmpRe+上一燃烧循环cos分量的幅值Z_DFTRe3SegPrv×权重因子Z_DFTnEngAvgCmpRe)/2
sin分量的平均幅值Z_DFTImRev=(当前燃烧循环sin分量的幅值Z_DFTIm3Seg×权重因子Z_DFTnEngAvgCmpIm+上一燃烧循环sin分量的幅值Z_DFTIm3SegPrv=×权重因子Z_DFTnEngAvgCmpIm)/2
步骤S5:计算表征能量的模值、相位角度和一个燃烧循环的转速。对于x(n)的离散傅里叶变换X(k)来说,X(k)一般为复数,可设为X(k)=a(k)+ib(k),其模值Z_DFTAbs、相角an_DFT、一个燃烧循环的平均转速n_Eng2RevAvg分别为:
模值:Z_DFTAbs
2=Z_DFTReRev
2+Z_DFTImRev
2
相角:an_DFT=acrtan(-Z_DFTReRev/Z_DFTImRev)
平均转速:n_Eng2RevAvg=n_Eng3Seg÷120
其中,n_Eng2RevAvg中“Eng”表示发动机,“2Rev”指的是发动机曲轴旋转两圈,即一个燃烧循环,“Avg”指平均转速。
步骤S6:计算发动机的扭矩。发动机预测扭矩Tq_IndNet由发动机燃烧扭矩和燃烧效率相乘得到。发动机燃烧扭矩通过表征转速能量的模值Z_DFTAbs和表征一个燃烧循环的平均转速n_Eng2RevAvg查表所得,燃烧效率通过表征转速做功时间的相位an_DFT和表征一个燃烧循环的平均转速n_Eng2RevAvg查表所得。
本示例涉及的发动机扭矩的预测方法是使用发动机转速信号计算发动机实际扭矩,适 应性强,可靠性强,并且仅采用物理模型,标定数据更少,由于仅基于曲轴位置传感器的发动机转速信号相关,减少了采用多种传感器时信号失效带来的扭矩计算不准确的现象的发生频次。
此外,本申请实施例还提出一种发动机扭矩的预测装置,所述发动机扭矩的预测装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的发动机扭矩的预测程序,所述发动机扭矩的预测程序被所述处理器执行时实现如上各个实施例所述的发动机扭矩的预测方法的步骤。
此外,本申请实施例还提出一种计算机存储介质,所述计算机存储介质上存储有发动机扭矩的预测程序,所述发动机扭矩的预测程序被处理器执行时实现如上各个实施例所述的发动机扭矩的预测方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (10)
- 一种发动机扭矩的预测方法,其中,所述发动机扭矩的预测方法包括以下步骤:基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间;获取与各个所述齿时间对应的发动机转速值;采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度;根据所述模值以及所述相位角度获取所述发动机的预测扭矩。
- 如权利要求1所述的发动机扭矩的预测方法,其中,所述根据所述模值以及所述相位角度获取所述发动机的预测扭矩的步骤包括:获取所述发动机曲轴的当前燃烧循环对应的发动机平均转速值;根据所述发动机平均转速值以及所述模值获取发动机燃烧扭矩;根据所述发动机平均转速值以及所述相位角度获取发动机燃烧效率;将所述发动机燃烧扭矩与所述发动机燃烧效率的乘积作为所述预测扭矩。
- 如权利要求1所述的发动机扭矩的预测方法,其中,所述采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数的模值以及相位角度的步骤包括:采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理,得到离散傅里叶变换后的复数对应的正弦分量幅值以及余弦分量幅值;根据所述正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度。
- 如权利要求3所述的发动机扭矩的预测方法,其中,所述根据所述正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度的步骤包括:对所述正弦分量幅值以及余弦分量幅值进行信号滤波处理,得到信号滤波处理后的正弦分量幅值以及余弦分量幅值;根据信号滤波处理后的正弦分量幅值以及余弦分量幅值,获取离散傅里叶变换后的复数的模值以及相位角度。
- 如权利要求4所述的发动机扭矩的预测方法,其中,所述对所述正弦分量幅值以及余弦分量幅值进行信号滤波处理,得到信号滤波处理后的正弦分量幅值以及余弦分量幅值的步骤包括:根据所述正弦分量幅值获取所述发动机曲轴的当前燃烧循环对应的总正弦分量幅值,以及根据所述余弦分量幅值获取所述发动机曲轴的当前燃烧循环对应的总余弦分量幅值;根据当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值,获取信号滤波处理后的正弦分量幅值;根据当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值,获取信号滤波处理后的余弦分量幅值。
- 如权利要求4所述的发动机扭矩的预测方法,其中,所述根据当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值,获取所述信号滤波处理后的正弦分量幅值的步骤包括:对当前燃烧循环对应的总正弦分量幅值以及上一燃烧循环对应的总正弦分量幅值进行加权平均处理,得到信号滤波处理后的正弦分量幅值;所述根据当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值,获取信号滤波处理后的余弦分量幅值的步骤包括:对当前燃烧循环对应的总余弦分量幅值以及上一燃烧循环对应的总余弦分量幅值进行加权平均处理,得到信号滤波处理后的余弦分量幅值。
- 如权利要求3或4所述的发动机扭矩的预测方法,采用以下公式计算离散傅里叶变换后的复数的模值:Z_DFTAbs 2=Z_DFTReRev 2+Z_DFTImRev 2采用以下公式计算离散傅里叶变换后的复数的相位角度:an_DFT=acrtan(-Z_DFTReRev/Z_DFTImRev)其中,Z_DFTAbs为离散傅里叶变换后的复数的模值,an_DFT为离散傅里叶变换后的复数的相位角度,在Z_DFTReRev为所述余弦分量幅值时,Z_DFTImRev为所述正弦分量幅值,或者在Z_DFTReRev为信号滤波处理后的余弦分量幅值时,Z_DFTImRev为 信号滤波处理后的正弦分量幅值。
- 如权利要求1所述的发动机扭矩的预测方法,其中,所述基于曲轴位置传感器采集发动机曲轴的多个齿对应的齿时间的步骤包括:在所述发动机曲轴的多个齿中,基于曲轴位置传感器采集至少一个发动机气缸对应的齿的所述齿时间;所述采用离散傅里叶变换对多个所述发动机转速值进行幅频分析处理的步骤包括:采用离散傅里叶变换对至少一个发动机气缸对应的多个所述发动机转速值进行幅频分析处理。
- 一种发动机扭矩的预测装置,其中,所述发动机扭矩的预测装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的发动机扭矩的预测程序,所述发动机扭矩的预测程序被所述处理器执行时实现如权利要求1至8中任一项所述的发动机扭矩的预测方法的步骤。
- 一种计算机存储介质,其中,所述计算机存储介质上存储有发动机扭矩的预测程序,所述发动机扭矩的预测程序被处理器执行时实现如权利要求1至8中任一项所述的发动机扭矩的预测方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22871583.5A EP4407157A1 (en) | 2021-09-23 | 2022-07-22 | Method and apparatus for predicting torque of engine, and computer storage medium |
KR1020247013427A KR20240105374A (ko) | 2021-09-23 | 2022-07-22 | 엔진 토크의 예측 방법, 장치 및 컴퓨터 저장 매체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111118355.7 | 2021-09-23 | ||
CN202111118355.7A CN113818963B (zh) | 2021-09-23 | 2021-09-23 | 发动机扭矩的预测方法、装置及计算机存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023045524A1 true WO2023045524A1 (zh) | 2023-03-30 |
Family
ID=78921176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/107321 WO2023045524A1 (zh) | 2021-09-23 | 2022-07-22 | 发动机扭矩的预测方法、装置及计算机存储介质 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4407157A1 (zh) |
KR (1) | KR20240105374A (zh) |
CN (1) | CN113818963B (zh) |
WO (1) | WO2023045524A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113818963B (zh) * | 2021-09-23 | 2022-10-14 | 宁波吉利罗佑发动机零部件有限公司 | 发动机扭矩的预测方法、装置及计算机存储介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5771483A (en) * | 1995-06-08 | 1998-06-23 | Renault | Internal combustion engine torque measurement device and method |
EP1052488A1 (fr) * | 1999-05-10 | 2000-11-15 | Renault | Procédé et dispositif de mesure du couple d'un moteur à combustion interne |
CN101069077A (zh) * | 2004-11-17 | 2007-11-07 | 沃尔沃拉斯特瓦格纳公司 | 确定平均发动机转矩的方法 |
CN102261995A (zh) * | 2010-04-29 | 2011-11-30 | 通用汽车环球科技运作有限责任公司 | 使用离散傅立叶变换逼近的发动机失火检测系统和方法 |
CN102518521A (zh) * | 2011-12-27 | 2012-06-27 | 大连理工大学 | 一种车用发动机转矩估计方法 |
JP4994403B2 (ja) * | 2009-02-20 | 2012-08-08 | 日立オートモティブシステムズ株式会社 | 内燃機関の燃焼トルク推定装置 |
CN104747288A (zh) * | 2013-12-26 | 2015-07-01 | 联创汽车电子有限公司 | 发动机指示扭矩估算方法及发动机指示扭矩计算电路 |
CN110542562A (zh) * | 2019-09-26 | 2019-12-06 | 潍柴动力股份有限公司 | 发动机扭矩的测量方法、测量装置、控制设备及存储介质 |
CN113818963A (zh) * | 2021-09-23 | 2021-12-21 | 宁波吉利罗佑发动机零部件有限公司 | 发动机扭矩的预测方法、装置及计算机存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10214833A1 (de) * | 2002-04-04 | 2003-10-16 | Volkswagen Ag | Verfahren zum Bestimmen eines indizierten Ist-Motormomentes einer Brennkraftmaschine |
FR2891012B1 (fr) * | 2005-09-20 | 2011-02-11 | Inst Francais Du Petrole | Methode d'estimation du regime instantane produit par chacun des cylindres d'un moteur a combustion interne |
DE502007001846D1 (de) * | 2007-03-30 | 2009-12-10 | Ford Global Tech Llc | Verfahren zur Detektion periodischer Störungen in der Lenkeinrichtung eines Kraftfahrzeuges sowie Ve |
JP6212068B2 (ja) * | 2015-04-24 | 2017-10-11 | ファナック株式会社 | 機械の周波数特性をオンラインで取得する機能を有するサーボ制御装置 |
CN106679862A (zh) * | 2016-12-30 | 2017-05-17 | 潍柴动力股份有限公司 | 一种发动机实际输出扭矩测量方法及系统 |
-
2021
- 2021-09-23 CN CN202111118355.7A patent/CN113818963B/zh active Active
-
2022
- 2022-07-22 WO PCT/CN2022/107321 patent/WO2023045524A1/zh active Application Filing
- 2022-07-22 KR KR1020247013427A patent/KR20240105374A/ko unknown
- 2022-07-22 EP EP22871583.5A patent/EP4407157A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5771483A (en) * | 1995-06-08 | 1998-06-23 | Renault | Internal combustion engine torque measurement device and method |
EP1052488A1 (fr) * | 1999-05-10 | 2000-11-15 | Renault | Procédé et dispositif de mesure du couple d'un moteur à combustion interne |
CN101069077A (zh) * | 2004-11-17 | 2007-11-07 | 沃尔沃拉斯特瓦格纳公司 | 确定平均发动机转矩的方法 |
JP4994403B2 (ja) * | 2009-02-20 | 2012-08-08 | 日立オートモティブシステムズ株式会社 | 内燃機関の燃焼トルク推定装置 |
CN102261995A (zh) * | 2010-04-29 | 2011-11-30 | 通用汽车环球科技运作有限责任公司 | 使用离散傅立叶变换逼近的发动机失火检测系统和方法 |
CN102518521A (zh) * | 2011-12-27 | 2012-06-27 | 大连理工大学 | 一种车用发动机转矩估计方法 |
CN104747288A (zh) * | 2013-12-26 | 2015-07-01 | 联创汽车电子有限公司 | 发动机指示扭矩估算方法及发动机指示扭矩计算电路 |
CN110542562A (zh) * | 2019-09-26 | 2019-12-06 | 潍柴动力股份有限公司 | 发动机扭矩的测量方法、测量装置、控制设备及存储介质 |
CN113818963A (zh) * | 2021-09-23 | 2021-12-21 | 宁波吉利罗佑发动机零部件有限公司 | 发动机扭矩的预测方法、装置及计算机存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113818963A (zh) | 2021-12-21 |
CN113818963B (zh) | 2022-10-14 |
KR20240105374A (ko) | 2024-07-05 |
EP4407157A1 (en) | 2024-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6169214B1 (ja) | 内燃機関の制御装置及びその制御方法 | |
US6668812B2 (en) | Individual cylinder controller for three-cylinder engine | |
US8091410B2 (en) | Phase-based misfire detection in engine rotation frequency domain | |
JP4380604B2 (ja) | 内燃機関の制御装置 | |
CN106988919B (zh) | 内燃机的控制装置及其控制方法 | |
EP1837511A1 (en) | Intake air quantity variation detecting device | |
JP4130800B2 (ja) | エンジンの制御装置 | |
CN102261995B (zh) | 使用离散傅立叶变换逼近的发动机失火检测系统和方法 | |
US6999882B2 (en) | Method for determining a mass airflow | |
WO2023045524A1 (zh) | 发动机扭矩的预测方法、装置及计算机存储介质 | |
PL188267B1 (pl) | Sposób wykrywania braku zapłonu w silniku spalinowym oraz układ do wykrywania braku zapłonu w silniku spalinowym | |
US6357287B1 (en) | System and method for detecting engine misfire using frequency analysis | |
JP5168336B2 (ja) | 内燃機関の制御装置 | |
JP4788640B2 (ja) | 内燃機関の筒内圧推定方法および筒内圧推定装置 | |
CN103306841B (zh) | 内燃机的爆震控制装置 | |
KR102119872B1 (ko) | 단기통 4행정 엔진의 실화 진단 방법 및 시스템 | |
JP6054925B2 (ja) | 内燃機関の制御装置 | |
EP3150835A1 (en) | Control device for engine | |
JP2004184228A (ja) | ノッキング検出装置 | |
WO2021195948A1 (zh) | 发动机的失火检测方法、装置、设备、存储介质和程序 | |
JP4691142B2 (ja) | 内燃機関の失火検出装置 | |
US8600645B2 (en) | Induction backfire compensation for motorcycles | |
JP6662650B2 (ja) | 内燃機関の制御装置 | |
Javaherian et al. | Individual cylinder air-fuel ratio control part I: L3 and V6 engine applications | |
CN108869075B (zh) | 一种电控发动机喷油提前角的修正方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22871583 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022871583 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022871583 Country of ref document: EP Effective date: 20240423 |