WO2023045355A1 - 热管理系统、车辆及热管理方法 - Google Patents

热管理系统、车辆及热管理方法 Download PDF

Info

Publication number
WO2023045355A1
WO2023045355A1 PCT/CN2022/092868 CN2022092868W WO2023045355A1 WO 2023045355 A1 WO2023045355 A1 WO 2023045355A1 CN 2022092868 W CN2022092868 W CN 2022092868W WO 2023045355 A1 WO2023045355 A1 WO 2023045355A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve port
port
thermal management
cooling mechanism
Prior art date
Application number
PCT/CN2022/092868
Other languages
English (en)
French (fr)
Inventor
林炳荣
许俊波
李贵宾
薛强
戴海江
Original Assignee
浙江吉利控股集团有限公司
浙江联控技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111138847.2A external-priority patent/CN113829832A/zh
Priority claimed from CN202111137071.2A external-priority patent/CN113829831B/zh
Application filed by 浙江吉利控股集团有限公司, 浙江联控技术有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to JP2023580893A priority Critical patent/JP2024526620A/ja
Priority to EP22871416.8A priority patent/EP4344913A1/en
Priority to KR1020237045393A priority patent/KR20240015685A/ko
Publication of WO2023045355A1 publication Critical patent/WO2023045355A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3291Locations with heat exchange within the refrigerant circuit itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present application relates to the technical field of vehicles, in particular to a thermal management system, a vehicle and a thermal management method.
  • pure electric vehicles usually need to install many thermal management components according to the thermal management requirements of the whole vehicle, such as: water pumps, heat exchangers, water-cooled condensers, two-way solenoid valves, two-way proportional valves, cooling pipelines, etc.
  • thermal management components such as: water pumps, heat exchangers, water-cooled condensers, two-way solenoid valves, two-way proportional valves, cooling pipelines, etc.
  • thermal management components Due to the scattered arrangement of the various components, the space occupied by the components after being installed on the vehicle is relatively large, and a large number of cooling pipes are required to communicate between the dispersedly installed components to allow the cooling liquid to circulate between the components, so as to meet the Vehicle thermal management requirements.
  • the present application provides a thermal management system, a vehicle and a thermal management method to solve the problem of using a large number of cooling pipeline connections in the prior art, which increases the length of the cooling pipeline in the entire system and changes the flow resistance of the coolant in the cooling pipeline. Large, low-efficiency issues with the thermal management system.
  • a thermal management system for a vehicle includes: a kettle assembly, a valve unit, a radiator and a heat exchanger.
  • the kettle assembly includes a shell and a cover plate.
  • the shell covers the cover plate and forms an accommodation cavity together with the cover plate.
  • the valve unit is installed on the shell ;
  • the housing has multiple interfaces communicating with the housing chambers.
  • the first ends of the pipes communicate with the ports in one-to-one correspondence, and the second ends of the pipes and some pipes are located in the housing chamber. outside;
  • the valve unit has a plurality of valve ports, and the valve ports communicate with the interfaces one by one.
  • the valve unit includes a first multi-way valve and a second multi-way valve, and the plurality of valve ports includes a plurality of first valve ports and a plurality of second valve ports.
  • the first valve port is located on the first multi-way valve
  • the second valve port is located on the second multi-way valve; the radiator and the heat exchanger are respectively communicated with different pipelines.
  • a thermal management system for a vehicle includes: a kettle assembly, a pump assembly, and a valve unit.
  • the kettle assembly includes a housing and a cover plate.
  • the housing covers the cover plate and forms an accommodation cavity together with the cover plate.
  • the pump assembly and the valve unit are respectively installed in the housing superior;
  • the housing has multiple interfaces communicating with the housing chambers.
  • the first ends of the pipes communicate with the ports in one-to-one correspondence, and the second ends of the pipes and some pipes are located in the housing chamber. outside;
  • the valve unit has a plurality of valve ports, and the valve ports communicate with the ports in one-to-one correspondence.
  • the valve unit is used to control the disconnection or connection between the ports and the valve ports corresponding to the ports, so as to control the disconnection or connection between the pipelines.
  • the side of the housing facing away from the cover plate has a first installation area and a second installation area
  • the multiple interfaces include multiple first interfaces and multiple second interfaces , the first interface is located in the first installation area, and the second interface is located in the second installation area;
  • the valve unit includes a first multi-way valve and a second multi-way valve, and the plurality of valve ports includes a plurality of first valve ports and a plurality of second valve ports, the first valve port is located on the first multi-way valve, and the second valve port located on the second multi-way valve;
  • the first multi-way valve is connected in the first installation area, and the first port communicates with the first valve port one by one
  • the second multi-way valve is connected in the second installation area, and the second port is in communication with the second valve port One-to-one connection.
  • the plurality of pipes include a plurality of first pipes, each first pipe includes two first sub-pipes, and each first pipe includes a first The first end of the sub-pipe corresponds to the first installation area, the second end of a first sub-pipe in each first pipe is used to communicate with the water outlet pipe of the same component in the vehicle, and the other end of each first sub-pipe The first end of a first sub-pipe corresponds to the first installation area, and the second end of the other first sub-pipe in each first pipe is used to communicate with the water inlet pipe of the same component in the vehicle;
  • the components include at least one of a radiator, a battery cooler, or an electric motor cooler.
  • the multiple pipes include a second pipe and a third pipe, the first end of the second pipe corresponds to the first installation area, and the first end of the third pipe Corresponding to the second installation area;
  • the second pipeline includes two second sub-pipes, one second sub-pipe in the second pipeline is used to communicate with the water outlet pipe of the heater core in the vehicle, and the other second sub-pipe in the second pipeline is connected to the water outlet pipe in the vehicle.
  • the water inlet pipe of the heater is connected;
  • the third pipeline includes two third sub-pipes, one third sub-pipe in the third pipeline is used to communicate with the outlet pipe of the heater, and the other third sub-pipe in the third pipeline is connected to the water inlet pipe of the heater core connected.
  • the heat management system provided by the present application, there is a water storage area inside the accommodating cavity, and the water storage area is located above each pipeline;
  • the water storage area has a liquid replenishment port, and the liquid replenishment port communicates with the pipeline.
  • the thermal management system provided by the present application further includes a water-cooled condenser and a heat exchanger.
  • the water-cooled condenser is installed on the side of the shell away from the cover plate.
  • the water-cooled condenser has a first inlet and a Outlet, the heat exchanger is installed on the side of the cover plate away from the shell, and the heat exchanger has a second inlet and a second outlet;
  • the multiple pipelines include two fourth pipelines, the first end of one fourth pipeline corresponds to the second installation area, and one fourth pipeline communicates with the first inlet, and the first end of the other fourth pipeline is connected to the first installation area Correspondingly, and another fourth pipeline communicates with the first outlet;
  • the multiple pipes include two fifth pipes, the first ends of the fifth pipes correspond to the first installation area, one fifth pipe communicates with the second outlet, and the other fifth pipe communicates with the second inlet.
  • the thermal management system provided by the present application further includes a gas-liquid separator, the cover plate has an installation part, the installation part is located outside the accommodating cavity, and the gas-liquid separator is installed on the side of the installation part facing the housing. One side, and the gas-liquid separator is adjacent to the water-cooled condenser;
  • the refrigerant inlet of the gas-liquid separator communicates with the refrigerant outlet of the heat exchanger, and the gas-liquid separator is also used to communicate with the evaporator outlet of the air conditioner main engine of the vehicle.
  • the thermal management system provided by the present application further includes an integrated air conditioner valve, which is installed on the side of the installation part away from the housing, the integrated air conditioner valve is adjacent to the heat exchanger, and the integrated air conditioner valve is respectively It communicates with the refrigerant inlet of the water-cooled condenser and the refrigerant inlet of the heat exchanger;
  • the refrigerant outlet of the water-cooled condenser communicates with the integrated valve of the air conditioner through a coaxial tube;
  • the refrigerant outlet of the gas-liquid separator communicates with the suction port of the vehicle's compressor through a coaxial tube;
  • the coaxial pipe is also used to communicate with the outlet of the internal condenser of the vehicle's air-conditioning main unit;
  • the air conditioner integrated valve is used to communicate with the inlet of the condenser inside the air conditioner host, and the air conditioner integrated valve is also used to connect with the exhaust port of the compressor.
  • the pump assembly includes a heating water pump, a battery water pump, and a motor water pump.
  • the heating water pump, battery water pump, and motor water pump are respectively installed on the side of the housing
  • the water pump, the battery water pump and the motor water pump are respectively connected to different pipelines located outside the accommodating cavity.
  • a vehicle including a vehicle body and a thermal management system installed on the vehicle body.
  • a thermal management method using a thermal management system, the method comprising the following steps:
  • the liquid outlet of the radiator communicates with the third first valve port
  • the fourth first valve port communicates with the motor cooling
  • the liquid inlet of the mechanism is connected, and the coolant flowing into the radiator is cooled in the radiator, and then flows into the motor cooling mechanism through the third first valve port and the fourth first valve port successively.
  • the thermal management method provided by the present application further includes the following steps:
  • the eight first valve ports are connected, and the coolant flowing into the heat exchanger is cooled in the heat exchanger, and then flows into the battery cooling mechanism through the seventh first valve port and the eighth first valve port in sequence.
  • the thermal management method provided by the present application further includes the following steps:
  • the thermal management method provided by the present application further includes the following steps:
  • the thermal management method provided by the present application further includes the following steps:
  • the thermal management method provided by the present application further includes the following steps:
  • Part of the coolant flowing out of the battery cooling mechanism flows into the controller, and part of the coolant flowing out of the controller flows into the heat exchanger.
  • the thermal management method provided by the present application further includes the following steps:
  • the thermal management method provided by the present application further includes the following steps:
  • the coolant flowing out of the heater flows into the heater through the first first valve port, the second first valve port and the warm air core in sequence.
  • the present application provides a thermal management system, a vehicle, and a thermal management method.
  • the thermal management system includes: a kettle assembly and a valve unit.
  • the kettle assembly includes a housing and a cover.
  • the housing covers the cover and together with the cover forms an accommodating cavity.
  • the valve unit is installed on the housing; there are multiple pipes for liquid circulation in the housing chamber, and there are multiple interfaces communicating with the housing chamber on the housing, the first ends of the pipelines communicate with the interfaces one by one, and the pipes The second end and part of the pipes are located outside the accommodating cavity;
  • the valve unit has a plurality of valve ports, and the valve ports communicate with the ports in one-to-one correspondence.
  • the components of the thermal management system are integrated on the shell and cover of the water bottle assembly, and the pipes for cooling liquid circulation are integrated inside the housing chamber, realizing the integration of existing In the technology, the scattered installation components are integrated into a module assembly.
  • the highly integrated thermal management system not only effectively saves the installation space, but also saves a large number of pipelines, reduces the flow resistance in the pipeline, and improves the efficiency of thermal management. It solves the problem that a large number of cooling pipeline connections are used in the prior art, which increases the length of the cooling pipeline in the entire system, increases the flow resistance of the cooling liquid in the cooling pipeline, and lowers the working efficiency of the thermal management system.
  • FIG. 1 is a schematic structural diagram of the thermal management system provided by the present application.
  • Fig. 2 is another structural schematic diagram of the thermal management system provided by the present application.
  • Fig. 3 is a structural schematic diagram of the kettle assembly in the thermal management system provided by the present application.
  • Fig. 4 is another structural schematic diagram of the kettle assembly in the thermal management system provided by the present application.
  • Fig. 5 is the enlarged schematic diagram of place A in Fig. 3;
  • Fig. 6 is the enlarged schematic diagram of place B in Fig. 3;
  • Fig. 7 is a schematic structural diagram of the first multi-way valve in the thermal management system provided by the present application.
  • Fig. 8 is a schematic structural diagram of the second multi-way valve in the thermal management system provided by the present application.
  • Fig. 9 is the enlarged schematic diagram of place C in Fig. 4.
  • FIG. 10 is a schematic flow diagram of the thermal management system provided by the present application.
  • Fig. 11 is an enlarged schematic view at D in Fig. 10;
  • Fig. 12 is the enlarged schematic diagram of E place in Fig. 10;
  • Fig. 13 is a flow schematic diagram of the first working condition of the thermal management system provided by the present application.
  • Fig. 14 is a flow schematic diagram of the second working condition of the thermal management system provided by the present application.
  • Fig. 15 is a flow schematic diagram of the third working condition of the thermal management system provided by the present application.
  • Fig. 16 is a flow schematic diagram of the fourth working condition of the thermal management system provided by the present application.
  • Fig. 17 is a schematic flow diagram of the fifth working condition of the thermal management system provided by the present application.
  • Fig. 18 is a schematic flow diagram of the sixth working condition of the thermal management system provided by the present application.
  • FIG. 19 is a schematic flow diagram of the seventh working condition of the thermal management system provided by the present application.
  • 70-air conditioning integrated valve 71-first switch valve; 72-second switch valve; 73-first expansion valve; 74-second expansion valve;
  • 80-motor cooling mechanism 81-controller; 82-radiator; 83-battery cooling mechanism; 84-heater; 85-heater core;
  • connection should be understood in a broad sense, for example, it can be fixed connection, or through an intermediate
  • the media is indirectly connected, which can be the internal communication of two elements or the interaction relationship between two elements.
  • thermal management components such as: expansion water pump, motor water pump, battery water pump, warm air water pump, heat exchanger, water-cooled condenser, water temperature sensor, four-way solenoid valve, Three-way solenoid valve, two-way solenoid valve, two-way proportional valve, three-way proportional valve, cooling connecting pipeline, air-conditioning gas-liquid separator, air-conditioning EXV valve, air-conditioning SOV valve, air-conditioning connecting pipeline, etc.
  • thermal management components such as: expansion water pump, motor water pump, battery water pump, warm air water pump, heat exchanger, water-cooled condenser, water temperature sensor, four-way solenoid valve, Three-way solenoid valve, two-way solenoid valve, two-way proportional valve, three-way proportional valve, cooling connecting pipeline, air-conditioning gas-liquid separator, air-conditioning EXV valve, air-conditioning SOV valve, air-conditioning connecting pipeline, etc.
  • the layout of the components is relatively scattered, resulting in the thermal management system occupying a large installation space on the vehicle, and a large number of cooling pipelines and air-conditioning pipelines are required to communicate between the scattered components.
  • the present application provides a thermal management system, a vehicle and a thermal management method.
  • the thermal management system of the vehicle Through the integrated design of components in the thermal management system of the vehicle, the length of the pipeline in the thermal management system is saved, and the working efficiency of the thermal management system is improved. .
  • Fig. 1 is a schematic structural diagram of the thermal management system provided by the present application
  • Fig. 2 is another schematic structural diagram of the thermal management system provided by the present application
  • Fig. 3 is a schematic structural diagram of the kettle assembly in the thermal management system provided by the present application
  • Fig. 4 is Another structural schematic diagram of the kettle assembly in the thermal management system provided in this application.
  • the thermal management system includes: a kettle assembly 10 , a pump assembly 20 , and a valve unit 30 .
  • the kettle assembly 10 includes a housing 11 and a cover 12, the housing 11 is covered on the cover 12 and together with the cover 12 forms an accommodating cavity (not shown), the pump assembly 20 and
  • the valve units 30 are installed on the housing 11 respectively; there are a plurality of pipes 130 for liquid circulation in the housing cavity, and the housing 11 has a plurality of interfaces 110 communicating with the housing chambers, and the first ends of the pipelines 130 are connected to the interfaces 110 One-to-one communication, the second end of the pipeline 130 and part of the pipeline 130 are located outside the chamber; the valve unit 30 has a plurality of valve ports (not shown in the figure), and the valve ports communicate with the interface 110 in a one-to-one correspondence.
  • the valve unit 30 is used for The control interface 110 is disconnected or communicated with the valve port corresponding to the interface 110,
  • the kettle assembly 10 is the core component of the thermal management system, and it has multiple functions.
  • the kettle assembly 10 can not only provide cooling liquid for cooling and cooling the various components in the thermal management system, but also provide fixed support for various components, so as to integrate the dispersed components into an integrated thermal management module.
  • the layout of each component is made more compact, and the installation space of the thermal management system on the vehicle body is reduced.
  • the kettle assembly 10 includes a housing 11 and a cover 12, the housing 11 has a first surface 113 and a second surface (not shown) opposite to the first surface 113, the housing The second surface of the body 11 is covered with a cover plate 12, and the casing 11 is connected with the cover plate 12 by a hot plate welding process to jointly form an accommodating cavity.
  • the pump assembly 20 and the valve unit 30 are respectively fixedly installed on the first surface 113 of the casing 11 .
  • a plurality of pipes 130 for the circulation of the coolant, and the pipes 130 are used to communicate with various components in the thermal management system and deliver cooling to the corresponding components. liquid.
  • a plurality of interfaces 110 are disposed on the first surface 113 of the housing 11 , and each interface 110 communicates with the receiving cavity.
  • the first end of the pipe 130 is in one-to-one correspondence with the interface 110 and communicated with it.
  • the second end of the pipe 130 protrudes from the chamber and is located outside the chamber with part of the pipe 130.
  • the second end of the pipe 130 is used to connect with the housing 11
  • the parts on the top are connected to deliver coolant.
  • the overall layout of the thermal management system is more compact, and the distance between the components is also greatly reduced; and it will be used to communicate between the components
  • the pipe 130 is arranged inside the receiving cavity, which not only optimizes the overall spatial layout of the system, but also greatly shortens the total length of the pipe 130, effectively reduces the internal resistance of the pipe 130, and improves the working efficiency of the thermal management system.
  • the valve unit 30 is provided with a plurality of valve ports, and the valve ports are in one-to-one correspondence with the interface 110 and communicated with each other.
  • Each pipeline 130 communicates with the valve unit 30 , and the coolant flows into each component after passing through the valve unit 30 .
  • the valve unit 30 is used to control the disconnection or communication between the interface 110 and the valve port corresponding to the interface 110, thereby controlling the disconnection or communication between the pipelines 130 where each interface 110 is located, and then controlling the input on the components connected to each pipeline 130 The flow rate of the coolant.
  • the valve unit 30 installed in the thermal management system is connected in series with the pipeline 130 to form a closed cooling circuit, and the valve unit 30 is used to control the opening and closing of different cooling circuits, so as to meet the needs of each component for cooling liquid and improve the overall thermal management system. work efficiency.
  • the integrated water bottle assembly 10 is set up, and the various components in the thermal management system are integrated on the shell 11 and the cover plate 12 in the water bottle assembly 10, and the pipeline 130 for cooling liquid circulation is integrated in the accommodating cavity Internally, the scattered installation components in the prior art are integrated into a module assembly.
  • the highly integrated thermal management system not only effectively saves the installation space, but also unifies the external interface of the pipeline 130 to make the layout of the pipeline 130 more compact, and also saves A large number of pipes 130 reduce the flow resistance in the pipes 130 and improve the working efficiency of heat management. It solves the problem that a large number of cooling pipeline connections are used in the prior art, which increases the length of the cooling pipeline in the entire system, increases the flow resistance of the cooling liquid in the cooling pipeline, and lowers the working efficiency of the thermal management system.
  • the side of the housing 11 facing away from the cover plate 12 has a first installation area 111 and a second installation area 112, and the plurality of interfaces 110 includes a plurality of first interfaces (not shown in the figure) and a plurality of For the second interface (not shown in the figure), the first interface is located in the first installation area 111 , and the second interface is located in the second installation area 112 .
  • the side of the casing 11 facing away from the cover plate 12 is the first surface 113 of the casing 11, and a first installation area 111 and a second installation area 112 for installing the valve assembly are arranged on the first surface 113.
  • FIG. 5 is an enlarged schematic view of point A in FIG. 3
  • FIG. 6 is an enlarged schematic view of point B in FIG. 3 .
  • first interfaces are provided in the first installation area 111, which are: first interface a1111, first interface b1112, first interface c1113, first interface e1114, The first interface f1115, the first interface h1116, the first interface k1117, the first interface m1118, and the first interface n1119.
  • Five second interfaces are provided in the second installation area 112 , which are respectively: a second interface a1121 , a second interface b1122 , a second interface c1123 , a second interface e1124 , and a second interface f1125 .
  • Fig. 7 is a schematic structural diagram of the first multi-way valve in the thermal management system provided by the present application
  • Fig. 8 is a schematic structural diagram of the second multi-port valve in the thermal management system provided by the present application
  • Fig. 9 is an enlarged view of point C in Fig. 4 schematic diagram.
  • the valve unit 30 includes a first multi-way valve 31 and a second multi-way valve 32, and the plurality of valve ports includes a plurality of first valve ports (not shown in the figure) and a plurality of The second valve port (not shown in the figure), the first valve port is located on the first multi-way valve 31 , and the second valve port is located on the second multi-way valve 32 .
  • the first multi-way valve 31 includes a valve seat (not shown in the figure) and a valve core (not shown in the figure) rotatably arranged in the valve seat.
  • a first valve port the valve core is provided with conduction structure groups respectively corresponding to each first valve port, and each conduction structure group includes a plurality of conduction structures arranged along the circumferential direction; the conduction unit group is configured as, the valve When the core rotates to different rotation positions, different conduction structures in the conduction unit group cooperate with corresponding first valve ports, so that the first valve ports form different conduction states.
  • the valve core is rotatably arranged on the valve seat, and a plurality of first valve ports are arranged on the valve seat, and a conduction structure group corresponding to the first valve ports is provided on the valve core, and the conduction structure group also includes multiple valve ports arranged along the circumferential direction. a conduction structure.
  • the first multi-way valve 31 can be a nine-way solenoid valve, and the nine-way solenoid valve is used to control the disconnection or communication of each pipeline 130 connected to it.
  • Nine first valve ports are arranged on the nine-way solenoid valve, which are respectively: First valve port a311, first valve port b312, first valve port c313, first valve port e314, first valve port f315, first valve port h316, first valve port k317, first valve port m318, first valve port mouth n319.
  • the second multi-way valve 32 includes a valve seat, a first valve core (not shown in the figure), a second valve core (not shown in the figure) and a driving device (not shown in the figure).
  • the driving device is connected to the first valve core in transmission; the first valve core is provided with a first matching structure, and the second valve core is provided with a second matching structure matched with the first matching structure, and the first matching structure cooperates with the second
  • the structure has a first mating state and a second mating state. In the first mating state, the first spool rotates independently, while the second spool remains stationary. In the second mating state, the first spool drives the second spool to rotate synchronously. .
  • a plurality of second valve ports corresponding to the first valve core are arranged on the valve seat, and a first conduction structure is provided on the first valve core, and the first conduction structure is used for turning the first valve core to the first predetermined position
  • Connect at least two second valve ports a plurality of second valve ports corresponding to the second valve core are provided on the valve seat, and a second conduction structure is provided on the second valve core, and the second conduction structure is used for the first When the two valve cores turn to the second predetermined position, at least two second valve ports are connected.
  • the driving device is in transmission connection with the first valve core.
  • the first matching structure on the first valve core can drive the second valve core to rotate through the second matching structure.
  • the first valve core can rotate independently, and the flow rate of the first valve core can be adjusted by changing the corresponding angle between the first valve port and the first conducting structure.
  • the first spool rotates, it drives the second spool to rotate.
  • the flow rate of the second spool is adjusted, and the first spool rotates to the original position again, without Change the flow of the first spool. Only one driving device is needed to drive and control the first spool and the second spool.
  • the driving device includes a motor (not shown in the figure) and a gear set (not shown in the figure) connected to the motor, and the gear set is connected to the first spool in a drive manner.
  • a worm (not shown in the figure) is arranged on the motor shaft, and the gear set includes a first worm gear cooperating with the worm, a second worm gear meshed with the first worm gear, a third worm gear meshed with the second worm gear, and the bottom of the third worm gear is connected to the first worm gear.
  • a gear, a second gear meshing with the first gear is connected to the first worm gear.
  • the central axes of the first worm gear, the second worm gear, the third worm gear, the first gear and the second gear in the gear set are parallel to each other and are all along the vertical direction, and the central axis of the first worm and the central axis of the first worm gear are perpendicular to each other .
  • the worm on the motor shaft rotates, and through the transmission of the gear set, it drives the first valve core to rotate, which ensures the stability of transmission.
  • the type of the motor is not limited, and for the sake of simple control and high precision, preferably, the motor is a stepping motor or a servo motor.
  • the second multi-way valve 32 is a five-way solenoid valve, and the five-way solenoid valve is used to control the opening of each pipeline 130 connected thereto, thereby controlling the flow rate of the coolant flowing through the pipeline 130 .
  • Five second valve ports are arranged on the five-way solenoid valve, which are respectively: the second valve port a321, the second valve port b322, the second valve port c323, the second valve port e324, and the second valve port f325.
  • the first multi-way valve 31 is connected in the first installation area 111, and the first valve port communicates with the first interface one by one, and the second multi-way valve 32 is connected in the second In the installation area 112, the second valve port communicates with the second interface one by one.
  • each first valve port corresponds to each first interface and communicates with each other, wherein the first valve port a311 It communicates with the first port a1111 correspondingly, the first valve port b312 communicates with the first port b1112 correspondingly, the first valve port c313 communicates with the first port c1113 correspondingly, the first valve port e314 communicates with the first port e1114 correspondingly, and the first valve port
  • the port f315 communicates with the first port f1115, the first valve port h316 communicates with the first port h1116, the first valve port k317 communicates with the first port k1117, the first valve port m318 communicates with the first port m1118, and the first valve port m318 communicates with the first port m1118.
  • a valve port n319 communicates with the first port h1119 correspondingly.
  • each second valve port corresponds to each second interface and communicates with each other, wherein the second valve port a321 It communicates with the second port a1121 correspondingly, the second valve port b322 communicates with the second port b1122 correspondingly, the second valve port c323 communicates with the second port c1123 correspondingly, the second valve port e324 communicates with the second port e1124 correspondingly, and the second valve port The port f325 communicates with the second interface f1125 correspondingly.
  • FIG. 10 is a flow diagram of the thermal management system provided by the present application.
  • a plurality of pipelines 130 includes a plurality of first pipelines (not marked in the figure), and each first pipeline includes two first sub-pipes (not marked in the figure), each The first end of a first sub-pipe in the first pipe corresponds to the first installation area 111, and the second end of a first sub-pipe in each first pipe is used to communicate with the water outlet pipe of the same component in the vehicle , the first end of the other first sub-pipe in each first pipe corresponds to the first installation area 111, the second end of the other first sub-pipe in each first pipe is used for the same
  • the water inlet pipe of the component is connected; the component includes a radiator 82, a battery cooling mechanism (referring to: battery pack cooling device, hereinafter referred to as: battery cooling mechanism) 83 or a motor cooling mechanism (referring to: motor cooling device, hereinafter referred to as: motor cooling mechanism) 80 at least one of the .
  • the pipeline 130 provided in the housing chamber includes a plurality of first pipelines, each first pipeline includes two first sub-pipes, and the two first sub-pipes are connected by a first multi-way valve 31 to form a first pipeline for cooling liquid flow. a pipe.
  • first end of a first sub-pipe in each first pipe corresponds to and communicates with the first interface in the first installation area 111, and its second end is used to communicate with the water outlet pipe of the same component in the vehicle.
  • the coolant flowing out from the component flows into the first multi-way valve 31 after passing through the first sub-pipeline.
  • the first end of the other first sub-pipe in each first pipe corresponds to and communicates with the first interface in the first installation area 111, and its second end is used to communicate with the water inlet pipe of the same component in the vehicle, from The coolant flowing out of the first multi-way valve 31 flows into the component after passing through the first sub-pipeline.
  • the first ends of the two first sub-pipes are connected through the first multi-way valve 31 to form the first pipe, and then the first pipe is connected with the water inlet pipe and the water outlet pipe of the same component in the vehicle to form a closed cooling circuit , the opening and closing state of the cooling circuit is controlled by the first multi-way valve 31, so as to provide cooling liquid for the components in the vehicle.
  • the components in the vehicle through which the coolant circulates mainly include the radiator 82 , the battery cooling mechanism 83 , the motor cooling mechanism 80 and other components.
  • the battery cooling mechanism 83 is a cooling mechanism arranged on the battery pack of the vehicle. The cooling mechanism is mainly attached to the battery pack to exchange heat with the battery pack. The heat is absorbed and carried away, so that the battery pack is in a better temperature range during operation.
  • the motor cooling mechanism 80 is a cooling mechanism arranged on the motor of the vehicle.
  • the cooling mechanism is attached to the outer shell of the motor for heat exchange.
  • the motor of the vehicle starts to work, it will generate a large amount of heat. If the heat cannot be released in time, it will It will affect the performance of the vehicle motor. Therefore, after the coolant flows through the cooling device on the motor of the vehicle, it can absorb and take away the heat generated on the motor, so that the motor of the vehicle is in a better temperature range during operation.
  • the radiator 82 is a device installed in the vehicle for exchanging heat with the air.
  • the coolant brings the absorbed heat to the radiator 82. After the radiator 82 exchanges heat with the air, the heat can be transferred to the air. Thereby ensuring the normal operation of the vehicle.
  • the second ends of the plurality of first sub-pipes protrude from the housing 11 to form a plurality of interfaces communicating with related components in the vehicle.
  • a radiator water inlet pipe 131 on the first surface 113 of the housing 11, there are a radiator water inlet pipe 131, a radiator water outlet pipe 132, a motor cooling mechanism water inlet pipe 133, and a battery cooling mechanism water inlet pipe 135;
  • a water outlet pipe 134 of the motor cooling mechanism and a water outlet pipe 136 of the battery cooling mechanism There is a water outlet pipe 134 of the motor cooling mechanism and a water outlet pipe 136 of the battery cooling mechanism.
  • the liquid inlet and the liquid outlet of the radiator 82 on the vehicle are communicated with the radiator water inlet pipe 131 and the radiator water outlet pipe 132 respectively, and the liquid inlet and the liquid outlet of the battery cooling mechanism 83 are connected with the battery cooling mechanism water inlet pipe 135 and the battery cooling mechanism water inlet pipe 135 respectively.
  • the water outlet pipe 136 of the battery cooling mechanism is connected, and the liquid inlet and outlet of the motor cooling mechanism 80 are respectively connected with the water inlet pipe 133 of the motor cooling mechanism and the water outlet pipe 134 of the motor cooling mechanism.
  • a plurality of pipelines 130 include a second pipeline (not marked in the figure) and a third pipeline (not marked in the figure), the first end of the second pipeline is connected to the first installation Corresponding to zone 111, the first end of the third pipeline corresponds to the second installation zone 112; the second pipeline includes two second sub-pipes (not marked in the figure), and a second sub-pipe in the second pipeline is used to connect with the vehicle
  • the water outlet pipe of the warm air core 85 in the second pipe communicates with the water inlet pipe of the heater 84 in the vehicle.
  • the 3rd pipeline comprises two 3rd sub-pipelines (not marked among the figure), and a 3rd sub-pipeline in the 3rd pipeline is used for being communicated with the outlet pipe of heater 84, and another 3rd sub-pipeline in the 3rd pipeline is connected with The water inlet pipe of the warm air core body 85 is connected.
  • the second pipeline includes two second sub-pipes, the first end of a second sub-pipe in the second pipeline is set corresponding to the first installation area 111, and the second end of a second sub-pipe in the second pipeline The end is used to communicate with the outlet pipe of the heater core 85 in the vehicle.
  • the first end of the other second sub-pipe in the second pipeline is set correspondingly to the first installation area 111, and the second end of the other second sub-pipe in the second pipeline is used for connecting with the heater 84 in the vehicle.
  • the water pipe is connected.
  • the third pipeline includes two third sub-pipes, the first end of a third sub-pipe in the third pipeline is set corresponding to the second installation area 112, and the second end of a third sub-pipe in the third pipeline is used for It is communicated with the outlet pipe of the heater 84.
  • the first end of the other third sub-pipe in the third pipe is set corresponding to the second installation area 112, and the second end of the other third sub-pipe in the third sub-pipe is used for connecting with the heater core 85.
  • the water pipe is connected.
  • Both the heater 84 and the warm air core 85 are arranged on the body of the vehicle to provide warm air for the cockpit.
  • the cockpit refers to the space provided on the vehicle body for the driver and passengers of the vehicle.
  • the heater 84 and the warm air core 85 are connected in series, and the cooling liquid flows through the heater 84 and the warm air core 85 sequentially after flowing out from the accommodating cavity.
  • the coolant flowing through the heater 84 can be heated up by starting the heater 84 to work, and then the coolant after absorbing heat flows into the warm air core 85 through the pipeline 130, The warm air core 85 transfers heat to the cockpit through heat exchange, thereby increasing the temperature inside the cockpit.
  • a fan (not shown in the figure) can be arranged at the position where the warm air core body 85 is located, and the fan blows the air to the warm air core body 85 The heat exchange efficiency of the warm air core body 85 is improved.
  • a heater water inlet pipe 137 a heater water outlet pipe 138 , a heater core water inlet pipe 139 and a heater core water inlet pipe 139 are provided on the first side 114 of the housing 11 .
  • the liquid inlet and the liquid outlet of the heater 84 communicate with the heater water inlet pipe 137 and the heater outlet pipe 138 respectively, and the liquid inlet and the liquid outlet of the warm air core 85 are connected with the warm air core water inlet pipe 139 respectively. It communicates with the water outlet pipe 140 of the warm air core.
  • FIG. 3 and FIG. 4 there is a water storage area 150 inside the housing cavity, and the water storage area 150 is located above the pipeline 130; , to replenish water to the pipeline 130.
  • a water storage area 150 is also provided in the accommodating cavity, and the water storage area 150 is arranged above the pipeline 130, and the The housing 11 is also provided with a liquid injection port 151 located above the water storage area 150 , and the liquid injection port 151 communicates with the water storage area 150 , and coolant is injected into the water storage area 150 through the liquid injection port 151 .
  • a liquid replenishment port is provided below the water storage area 150, and the liquid replenishment port communicates with the pipes 130, and the cooling liquid in the water storage area 150 is input into each pipe 130 through the liquid replenishment port for use by various components. It should be noted that the opening and closing states of the liquid injection port 151 and the liquid replenishment port can be controlled by the thermal management system according to the loss degree of the cooling liquid.
  • Fig. 1 and shown in Fig. 2 also comprise water-cooled condenser 40 and heat exchanger 50
  • water-cooled condenser 40 is installed on the side of housing 11 away from cover plate 12
  • water-cooled condenser 40 has a first inlet (in the figure not marked) and a first outlet (not marked in the figure)
  • the heat exchanger 50 is installed on the side of the cover plate 12 away from the housing 11, and the heat exchanger 50 has a second inlet (not marked in the figure) and a second outlet (in the figure not marked).
  • a plurality of pipelines 130 includes two fourth pipelines (not shown in the figure), the first end of a fourth pipeline corresponds to the second installation area 112, and a fourth pipeline communicates with the first inlet, and the other fourth pipeline The first end corresponds to the first installation area 111, and another fourth pipe communicates with the first outlet.
  • Multiple pipelines 130 include two fifth pipelines (not shown in the figure), the first ends of the fifth pipelines correspond to the first installation area 111, one fifth pipeline communicates with the second outlet, and the other fifth pipeline communicates with the second outlet. The two entrances are connected.
  • the thermal management system further includes a water-cooled condenser 40 installed on the first surface 113 of the casing 11 .
  • the water-cooled condenser 40 is a device for exchanging heat between the refrigerant in the air-conditioning system and the coolant in the thermal management system.
  • the coolant and the refrigerant are fed into the water-cooled condenser 40 at the same time.
  • the refrigerant can transfer the heat in the air-conditioning system to the water-cooled condenser.
  • the water-cooled condenser 40 is provided with a refrigerant inlet (not shown in the figure) and a refrigerant outlet (not shown in the figure) for the circulation of the refrigerant, as well as a first inlet (not shown in the figure) and a first Exit (not marked in the picture).
  • the refrigerant inlet and refrigerant outlet of the water-cooled condenser 40 are respectively communicated with pipelines in the air conditioning system.
  • the thermal management system further includes a heat exchanger 50 installed on the side of the cover plate 12 away from the housing 11 .
  • the heat exchanger 50 is a device for exchanging heat between the refrigerant in the air conditioning system and the cooling liquid in the thermal management system.
  • the cooling liquid and the refrigerant are fed into the heat exchanger 50 at the same time, and the cooling liquid transfers the heat in the thermal management system to the heat exchanger.
  • the heat is then absorbed by the refrigerant and transferred to the air-conditioning system, so that the temperature of the coolant can drop rapidly, so as to achieve the purpose of cooling the heat management system.
  • the heat exchanger 50 is provided with a refrigerant inlet (not shown in the figure) and a refrigerant outlet (not shown in the figure) for the circulation of the refrigerant, as well as a second inlet (not shown in the figure) and a second Exit (not marked in the picture).
  • the refrigerant inlet and refrigerant outlet of the heat exchanger 50 are respectively communicated with pipelines in the air conditioning system.
  • the plurality of pipes 130 in the accommodating chamber include two fourth pipes (not shown in the figure), and the first end of one of the fourth pipes It corresponds to the second installation area 112 and communicates with the second interface f1125 in the second installation area 112 , and its other end corresponds to and communicates with the first inlet of the water-cooled condenser 40 .
  • the first end of another fourth pipe corresponds to the first installation area 111 and communicates with the first interface m1118 in the first installation area 111.
  • the cooling liquid flows out from the second interface f1125 and flows into the first water-cooled cooler through the fourth pipe.
  • An inlet then flows out from the first outlet of the water-cooled condenser 40 through the fourth pipe and flows into the first interface m1118 to form a cooling circuit of the water-cooled condenser 40 .
  • the plurality of pipes 130 in the chamber further include two fifth pipes (not shown in the figure), and the first of one fifth pipe
  • One end corresponds to the first installation area 111 and communicates with the first interface h1116 in the first installation area 111
  • its second end corresponds to and communicates with the second inlet of the heat exchanger 50
  • the first end of the other fifth pipe corresponds to the first installation area 111 and communicates with the first interface b1112 in the first installation area 111
  • its second end corresponds to and communicates with the second outlet of the heat exchanger 50 .
  • the cooling liquid flows out from the first port h1116 and flows into the second inlet of the heat exchanger 50 through the fifth pipe, and then flows out from the first outlet of the heat exchanger 50 and flows into the first port b1112 through the fifth pipe to form a heat exchanger 50 cooling circuit.
  • Fig. 1, Fig. 3, Fig. 4 and Fig. 10 it also includes a gas-liquid separator 60, the cover plate 12 has a mounting part 120, the mounting part 120 is located outside the housing cavity, and the gas-liquid separator 60 is installed on the Part 120 faces the side of the housing 11, and the gas-liquid separator 60 is adjacent to the water-cooled condenser 40; the refrigerant inlet of the gas-liquid separator 60 communicates with the refrigerant outlet of the heat exchanger 50, and the gas-liquid separator 60 is also used to communicate with the refrigerant outlet of the heat exchanger 50.
  • the evaporator outlet of the vehicle's air conditioner host is connected.
  • the thermal management system in order to separate the gaseous refrigerant from the liquid refrigerant, the thermal management system further includes a gas-liquid separator 60 installed on the cover plate 12 .
  • a mounting portion 120 is disposed on the cover plate 12 , and the mounting portion 120 is located outside the accommodating chamber.
  • the gas-liquid separator 60 is installed on the side of the mounting portion 120 facing the first surface 113 of the casing 11 , and the gas-liquid separator 60 is disposed adjacent to the water-cooled condenser 40 .
  • the gas-liquid separator 60 is provided with a refrigerant inlet and a refrigerant outlet, and the refrigerant inlet of the gas-liquid separator 60 communicates with the refrigerant outlet of the heat exchanger 50 and the refrigerant outlet of the air conditioner evaporator 90 respectively; the refrigerant outlet of the gas-liquid separator 60 It communicates with the refrigerant outlet of the compressor 91 .
  • the refrigerant output from the heat exchanger 50 and the air conditioner evaporator 90 is input into the gas-liquid separator 60 for gas-liquid separation, wherein the gaseous refrigerant is input from the gas-liquid separator 60 into the compressor 91 for recycling.
  • FIG. 2 and FIG. 10 it also includes an air-conditioning integrated valve 70, which is installed on the side of the installation part 120 away from the housing 11, the air-conditioning integrated valve 70 is adjacent to the heat exchanger 50, and the air-conditioning integrated valve 70
  • the refrigerant inlet of the water-cooled condenser 40 and the refrigerant inlet of the heat exchanger 50 are respectively communicated;
  • the refrigerant outlet of the water-cooled condenser 40 is communicated with the air-conditioning integrated valve 70 through the coaxial pipe 93;
  • the refrigerant outlet of the gas-liquid separator 60 is communicated through the coaxial pipe 93 communicates with the compressor 91 suction port of the vehicle;
  • the coaxial pipe 93 is also used to communicate with the outlet of the air conditioner main unit condenser 92 of the vehicle; Used to connect with the exhaust port of compressor 91.
  • the thermal management system further includes an air-conditioning integrated valve 70, and the air-conditioning integrated valve 70 is installed on the side of the installation part 120 facing away from the housing 11, and
  • the air conditioner integration valve 70 is provided adjacent to the heat exchanger 50 .
  • Two on-off valves and two expansion valves are arranged at intervals on the integrated air-conditioning valve 70 , which are respectively a first on-off valve 71 , a second on-off valve 72 , a first expansion valve 73 and a second expansion valve 74 .
  • the first on-off valve 71 and the second on-off valve 72 are arranged in parallel, and their inlets communicate with the exhaust port of the compressor 91 through pipelines.
  • the outlet of the first on-off valve 71 communicates with the refrigerant inlet of the air conditioner main unit condenser 92 through a pipeline
  • the outlet of the second on-off valve 72 communicates with the refrigerant inlet of the water-cooled condenser 40 through a pipeline. It should be noted that when the vehicle is in operation, only one of the two on-off valves can be opened, and the two on-off valves cannot be opened at the same time.
  • the switch valve 72 is input into the water-cooled condenser 40 .
  • the first expansion valve 73 and the second expansion valve 74 are arranged in parallel, and their inlets communicate with the coaxial pipe 93 through pipelines, and the outlet of the first expansion valve 73 communicates with the refrigerant inlet of the heat exchanger 50 through pipelines.
  • the outlet of the second expansion valve 74 communicates with the main air conditioner evaporator 90 through a pipeline. It should be noted that when the vehicle is in operation, the two expansion valves can be turned on at the same time, that is, the refrigerant output from the coaxial pipe 93 can enter the two expansion valves at the same time to be input to different components.
  • the refrigerant outlet of the water-cooled condenser 40 is communicated with the expansion valve through the coaxial pipe 93, the refrigerant outlet of the gas-liquid separator 60 is communicated with the suction port of the compressor 91 through the coaxial pipe 93, and the refrigerant outlet of the air conditioner condenser 92 is communicated through the same
  • the shaft tube 93 communicates with the expansion valve.
  • the flow route of the refrigerant in the vehicle air-conditioning system is as follows: after the refrigerant is input from the exhaust port of the compressor 91 to the integrated air conditioner valve 70, there are two routes to choose from.
  • the condenser 92 is then input into the coaxial pipe 93, and then the coaxial pipe 93 is input to the expansion valve; the second path is input to the water-cooled condenser 40 after passing through the second on-off valve 72, and then input to the coaxial pipe 93 Then it is input to the expansion valve by the coaxial pipe 93.
  • the refrigerant output from the expansion valve is divided into two paths.
  • the first path is output from the first expansion valve 73 to the heat exchanger 50, and then input to the gas-liquid separator 60, and then input to the compressor 91 through the coaxial pipe 93. , to form a complete refrigerant circulation circuit.
  • the second path is output from the second expansion valve 74 to the evaporator 90 of the air conditioner, then input to the gas-liquid separator 60, and then input to the compressor 91 through the coaxial pipe 93 to form a complete refrigerant circulation circuit.
  • the pump assembly 20 includes a heating water pump 21 , a battery water pump 22 and a motor water pump 23 . , and the heating water pump 21, the battery water pump 22 and the motor water pump 23 are respectively connected to different pipelines located outside the accommodating cavity.
  • the pump assembly 20 installed on the first surface 113 of the casing 11 includes a heating water pump 21 , a battery water pump 22 and a motor water pump 23 .
  • the heating water pump 21 is connected in series with the heater 84 , and the water outlet of the heating water pump 21 communicates with the water inlet of the heater 84 through the pipe 130 .
  • the battery water pump 22 is connected in series with the battery cooling mechanism 83
  • the water outlet of the battery water pump 22 communicates with the water inlet of the battery cooling mechanism 83 through the pipeline 130
  • the battery water pump 22 can speed up the rate at which the cooling liquid enters the battery cooling mechanism 83 .
  • the motor water pump 23 is connected in series with the motor cooling mechanism 80
  • the water outlet of the motor water pump 23 communicates with the water inlet of the motor cooling mechanism 80 .
  • the present application also provides a vehicle, which includes a vehicle body and a thermal management system and an air-conditioning system installed on the vehicle body.
  • the thermal management system and the air conditioning system have been explained in detail in the above content, and will not be repeated here.
  • FIG. 11 is an enlarged schematic view of point D in FIG. 10
  • FIG. 12 is an enlarged schematic view of point E in FIG. 10 .
  • the combination of solid lines and arrows represents the flow direction of coolant
  • the combination of dotted lines and arrows represents the flow direction of refrigerant
  • the combination of double-dot dash lines and arrows represents the flow direction of coolant replenishment.
  • the heat conduction route of the thermal management system includes a coolant circuit connected by a solid line in the figure and a refrigerant circuit connected by a dotted line.
  • the coolant circuit the heat is mainly transferred by the coolant
  • the refrigerant circuit the heat is mainly transferred by the refrigerant.
  • the coolant circuit uses the pipeline 130 to communicate with the components
  • the refrigerant circuit uses the air conditioner pipeline (not shown in the figure) to communicate with the components.
  • the coolant circuit mainly includes the motor cooling mechanism circuit, the battery cooling mechanism circuit and the warm air circuit.
  • the liquid outlet of the motor cooling mechanism (referring to: motor cooling device, hereinafter referred to as: motor cooling mechanism) 80 is connected with the first valve port m318, the liquid inlet port of the motor water pump 23 is connected with the first valve port c313, and the motor water pump 23 is connected with the first valve port c313.
  • the liquid outlet communicates with the second valve port e324 and the liquid inlet of the motor cooling mechanism 80 respectively.
  • the liquid outlet of the battery cooling mechanism (referring to: battery pack cooling device, hereinafter referred to as: battery cooling mechanism) 83 is respectively connected with the liquid inlet of the controller 81 and the first valve port f315, and the liquid inlet of the battery water pump 22 is connected with the first valve port f315.
  • the valve port a311 is connected, the liquid outlet of the battery water pump 22 is connected with the liquid inlet of the battery cooling mechanism 83, the liquid outlet of the controller 81 and the first valve port h316 are respectively connected with the liquid inlet of the heating water pump 21 and the heat exchanger 50 is connected to the liquid inlet, the liquid outlet of the heat exchanger 50 is connected to the first valve port b312, the liquid outlet of the heating water pump 21 is connected to the liquid inlet of the heater 84, and the liquid outlet of the heater 84 is connected to the second valve port b312.
  • valve port a321 is connected, the liquid inlet port of the warm air core 85 is connected with the second valve port c323, the liquid outlet port of the warm air core body 85 is connected with the liquid inlet port of the heating water pump 21, and the second valve port b322 is connected with the first valve port c323.
  • the port b312 is connected, the second valve port f325 is connected with the liquid inlet of the water-cooled condenser 40, the liquid outlet of the water-cooled condenser 40 is connected with the first valve port m318, and the liquid inlet of the radiator 82 is connected with the first valve port k317 , the liquid outlet of the radiator 82 communicates with the first valve port e314, and the first valve port n319 communicates with the first valve port e314.
  • the refrigerant inlet of the air conditioner main unit condenser 92 communicates with the first on-off valve 71
  • the refrigerant outlet of the air conditioner main unit condenser 92 communicates with the first expansion valve 73 and the second expansion valve 74 through the coaxial pipe 93
  • the first expansion valve 73 communicates with the refrigerant inlet of the heat exchanger 50
  • the refrigerant outlet of the heat exchanger 50 communicates with the refrigerant inlet of the gas-liquid separator 60
  • the refrigerant outlet of the gas-liquid separator 60 communicates with the refrigerant inlet of the compressor 91 through the coaxial pipe 93
  • the second expansion valve 74 communicates with the refrigerant inlet of the air conditioner evaporator 90
  • the refrigerant outlet of the air conditioner evaporator 90 communicates with the refrigerant inlet of the gas-liquid separator 60
  • the refrigerant outlet of the compressor communicates with the first on-off valve
  • the two switching valves 72 communicate with each other.
  • the second switching valve 72 communicates with the refrigerant inlet of the water-cooled condenser 40 .
  • the refrigerant outlet of the water-cooled condenser 40 communicates with the first expansion valve 73 and the second expansion valve 74 through the coaxial pipe 93 .
  • the water storage area 150 is used to hold the cooling liquid, and the cooling liquid in the water storage area 150 flows into the pipes 130 through the replenishment port to replenish the cooling liquid in real time, preventing the heat conduction efficiency of the system from being low due to excessive loss of the cooling liquid.
  • Fig. 13 is a flow schematic diagram of the first working condition of the thermal management system provided by the present application.
  • the first working condition provided by the present application is the cooling mode.
  • the motor and the battery of the vehicle need to be cooled while the vehicle is running.
  • the specific control method of the thermal management system is:
  • valve port c313 is connected with the liquid inlet port of the motor cooling mechanism 80, and the coolant flowing into the radiator 82 is cooled in the radiator 82, and then flows in through the third first valve port e314 and the fourth first valve port c313 in sequence.
  • Motor cooling mechanism 80 .
  • the flow direction of the coolant in the circuit of the motor cooling mechanism is as follows: the coolant flows out from the motor cooling mechanism 80, then flows into the first valve port m318, and then flows into the first valve port k317, and is passed by the first valve port k317.
  • a valve port k317 flows into the liquid inlet of the radiator 82, after heat exchange by the radiator 82, it flows into the first valve port e314 from the liquid outlet of the radiator 82, and then flows into the first valve port e314 port c313, then flows out from the first valve port c313 and flows into the motor water pump 23, and flows into the motor cooling mechanism 80 after being pressurized by the motor water pump 23 to form a closed loop.
  • the cooling liquid absorbs and transfers the heat generated on the motor cooling mechanism 80 to the radiator 82, and after heat exchange with the air through the radiator 82, the heat absorbed by the cooling liquid is transferred to the air, thereby realizing the cooling of the motor cooling mechanism 80. cool down.
  • the flow direction of the coolant in the circuit of the battery cooling mechanism is as follows: the coolant flows out from the battery cooling mechanism 83 and is divided into two paths, one of which flows into the first valve port f315, and then flows into the first valve port f315. The valve port h316 and flows out from the first valve port h316.
  • the other path flows through the controller 81 and then converges with the coolant flowing out of the first valve port h316 to flow into the heat exchanger 50, then flows into the first valve port b312 from the heat exchanger 50, and then flows into the first valve port a311 and It flows into the battery water pump 22 from the first valve port a311 , and flows into the battery cooling mechanism 83 after being pressurized by the battery water pump 22 to form a closed loop.
  • the coolant absorbs the heat generated by the battery cooling mechanism 83 and the controller 81 and transfers it to the heat exchanger 50. In the heat exchanger 50, it exchanges heat with the refrigerant, thereby transferring the absorbed heat to the refrigerant, thereby realizing the maintenance of the battery.
  • the cooling mechanism 83 and the controller 81 lower the temperature.
  • the coolant flowing out of the heater 84 flows into the heater 84 through the first and second valve ports a321 , the second and second valve ports c323 and the warm air core 85 in sequence.
  • the warm air circuit is used to heat the cockpit of the vehicle. After being heated by the heater 84, the coolant flows into the second valve port a321 from the liquid outlet of the heater 84, and then flows from the second valve port a321 to the second valve port c323. Then it flows into the warm air core 85, and the coolant flows into the heating water pump 21 after coming out of the warm air core 85, and flows into the liquid inlet of the heater 84 after being pressurized by the heating water pump 21, thereby forming a closed loop circuit.
  • the heater 84 is mainly used to heat the coolant.
  • the warm air core 85 is arranged in the cockpit for heat exchange. The absorbed heat is transferred to the cockpit, thereby heating the cockpit. It should be noted that this circuit is only suitable for the driver to preheat the cockpit in the low temperature environment. When the ambient temperature is high, the circuit is in a state of stopping operation.
  • Fig. 14 is a flow schematic diagram of the second working condition of the thermal management system provided by the present application.
  • the second working condition provided by this application is the shared radiator heat dissipation mode.
  • the circuit of the motor cooling mechanism and the circuit of the battery cooling mechanism are connected to share the same radiator for heat dissipation.
  • the specific control method of the thermal management system includes the following steps:
  • a valve port b312 and a fourth first valve port c313 flow into the motor cooling mechanism 80 .
  • the flow direction of the series circuit composed of the motor cooling mechanism 80 and the battery cooling mechanism 83 is: the cooling liquid flows out from the liquid outlet of the motor cooling mechanism 80, flows into the first valve port m318, and then flows into The first valve port k317 flows into the liquid inlet of the radiator 82 from the first valve port k317, and then flows into the first valve port e314 from the liquid outlet of the radiator 82 after the heat exchange of the radiator 82, and then It flows into the first valve port a311, and flows into the battery water pump 22 from the first valve port a311, and flows into the battery cooling mechanism 83 after being pressurized by the battery water pump 22.
  • the flow from the battery cooling mechanism 83 is divided into two paths, one of which flows into the first valve port f315, then flows into the first valve port h316 and flows out from the first valve port h316.
  • the other path flows through the controller 81 and then flows into the heat exchanger 50 together with the coolant flowing out of the first valve port h316, and then flows into the first valve port b312 from the heat exchanger 50, and then flows into the first valve port c313.
  • the motor cooling mechanism 80 , the battery cooling mechanism 83 and the controller 81 are connected in series in the same circuit, and the heat generated by the three is absorbed by the cooling liquid and transferred to the radiator 82 , and the radiator 82 conducts heat dissipation and cooling in a unified manner.
  • Fig. 15 is a flow schematic diagram of the third working condition of the thermal management system provided by the present application.
  • the third working condition provided by the present application is the rapid temperature rise mode of the motor cooling mechanism.
  • the motor cooling mechanism 80 is rapidly preheated, so that the temperature of the motor cooling mechanism 80 rises as soon as possible. to the optimum operating temperature range.
  • preheating treatment will also be performed on the battery cooling mechanism 83 and the controller 81, so that the temperature of the two can rise to a better working temperature range as soon as possible.
  • the specific control method of the thermal management system includes the following steps:
  • a valve port a311 flows into the battery cooling mechanism 83 .
  • the flow direction of the motor cooling mechanism circuit is as follows: the coolant flows from the motor cooling mechanism 80 to the first valve port m318, and then flows through the first valve port n319, the first valve port e314, the first valve port valve port c313, and flows into the motor water pump 23 from the first valve port c313, and flows into the motor cooling mechanism 80 after being pressurized by the motor water pump 23 to form a closed loop.
  • the coolant does not pass through the radiator 82, the heat absorbed by the coolant from the motor cooling mechanism 80 can also be transferred to the motor cooling mechanism 80 again, reducing the heat loss of the motor cooling mechanism 80 and making the motor cooling mechanism The temperature of 80 can quickly rise to the best working temperature range.
  • the flow direction of the circuit of the battery cooling mechanism is as follows: the coolant flows out from the battery cooling mechanism 83 and is divided into two paths, one of which flows into the first valve port f315, and then flows into the first valve port h316 and flows out from the second valve port. A valve port h316 flows out. The other path flows through the controller 81 and then converges with the coolant flowing out of the first valve port h316 to flow into the heat exchanger 50, and then flows into the first valve port b312 from the heat exchanger 50, and then flows into the first valve port a311.
  • the heat exchanger 50 does not start to work, that is, the heat exchanger 50 does not dissipate heat to the inflowing coolant, so the heat absorbed by the coolant from the battery cooling mechanism 83 and the controller 81 can be transferred to the In the battery cooling mechanism 83 and the controller 81 , the heat loss of the battery cooling mechanism 83 and the controller 81 is reduced, so that the temperature of the battery cooling mechanism 83 and the controller 81 can quickly rise to within a preferable working temperature range.
  • the temperature of the cockpit is also low.
  • the heating circuit is activated to heat the cockpit.
  • the circuit is closed. Work.
  • Fig. 16 is a flow schematic diagram of the fourth working condition of the thermal management system provided by the present application.
  • the fourth working condition provided by the present application is waste heat recovery mode.
  • the battery cooling mechanism 83 and the controller 81 are heated by collecting the heat generated by the motor cooling mechanism 80 .
  • the motor cooling mechanism 80 is started for a period of time, its temperature can quickly rise to within the preferred operating temperature range, while the temperature on the battery cooling mechanism 83 and the controller 81 is still in a low state, so it can be achieved by
  • the heat generated by the motor cooling mechanism 80 is transferred to the battery cooling mechanism 83 and the controller 81, so that the temperature of the two can rise to a better working temperature range as soon as possible.
  • the circuit of the motor cooling mechanism and the circuit of the battery cooling mechanism are connected to form a series circuit.
  • the specific control method of the thermal management system includes the following steps:
  • the flow direction of the series circuit between the motor cooling mechanism 80 and the battery cooling mechanism 83 is: the coolant flows from the motor cooling mechanism 80 to the first valve port m318, and then flows through the first valve port n319, the second valve port
  • the first valve port e314 and the first valve port a311 flow into the battery water pump 22 through the first valve port a311 , and then flow into the battery cooling mechanism 83 after being pressurized by the battery water pump 22 .
  • the flow out from the battery cooling mechanism 83 is divided into two paths, one of which flows into the first valve port f315, then flows into the first valve port h316 and flows out from the first valve port h316.
  • the other path flows through the controller 81 and then converges with the coolant flowing out of the first valve port h316 to flow into the heat exchanger 50, then flows into the first valve port b312 from the heat exchanger 50, and then flows into the first valve port c313 and It flows into the motor water pump 23 from the first valve port c313, and flows into the motor cooling mechanism 80 after being pressurized by the motor water pump 23 to form a closed loop.
  • both the radiator 82 and the heat exchanger 50 are in a stopped state, and the heat generated by the motor cooling mechanism 80 is transferred from the coolant to the battery cooling mechanism 83 and the controller 81 to heat them.
  • the working state of the warm air circuit depends on the level of the environmental problem to decide whether to open it.
  • FIG. 17 is a schematic flow diagram of the fifth working condition of the thermal management system provided by the present application.
  • the fifth working condition provided by the present application is that the motor cooling mechanism 80 heats up rapidly, the battery cooling mechanism 83 has no flow request and the controller 81 has a flow request.
  • the circuit of the motor cooling mechanism is the same as that in the third working condition, so details will not be repeated one by one, and only the circuit of the battery cooling mechanism will be described below.
  • the specific flow direction of the battery cooling mechanism circuit is as follows: the coolant flows out of the battery cooling mechanism 83 and then flows into the controller 81, and then flows into the heat exchanger 50 after coming out of the controller 81.
  • the heat exchanger 50 then flows into the first valve port b312, then flows into the first valve port a311 and from the first valve port a311 into the battery water pump 22, and then flows into the battery cooling mechanism 83 after being pressurized by the battery water pump 22. to form a closed loop.
  • the controller 81 requires a relatively large flow of cooling fluid during operation, so all the cooling fluid flowing out of the battery cooling mechanism 83 is input into the controller 81 to meet its working requirements. However, the flow rate of the cooling liquid flowing through the battery cooling mechanism 83 will not change.
  • FIG. 18 is a schematic flow diagram of the sixth working condition of the thermal management system provided by the present application.
  • the sixth working condition provided by the present application is that the motor cooling mechanism 80 needs to cool down, the battery cooling mechanism 83 has no flow request and the controller 81 has a flow request and the degassing mode.
  • the circulation direction of the motor cooling mechanism circuit is consistent with the circulation mode of the motor cooling mechanism circuit under the first working condition.
  • the circuit of the battery cooling mechanism is consistent with the circuit of the battery cooling mechanism under the fifth working condition, so no more details will be given here!
  • the degassing mode refers to exhausting the air entered in the controller 81, and the coolant is completely flowed into the controller 81 so that The air inside it is discharged from the replenishment port of the water storage area 150, so as to avoid affecting the work of the vehicle.
  • the heating circuit is also in a stopped state.
  • FIG. 19 is a schematic flow diagram of the seventh working condition of the thermal management system provided by the present application.
  • the seventh working condition provided by this application is the large series auxiliary degassing mode. This working condition is to exhaust the entire thermal management system. At this time, the circuit of the motor cooling mechanism is connected with the circuit of the battery cooling mechanism. Form a large series circuit.
  • the flow direction of the coolant in the large series circuit is: the coolant flows from the motor cooling mechanism 80 to the first valve port m318, then flows into the first valve port k317, and flows into the radiator 82 from the first valve port k317, and exits the radiator After 82, it flows into the first valve port e314, then flows into the first valve port a311, flows out from the first valve port a311, and then flows into the battery water pump 22.
  • the battery cooling mechanism 83 After being pressurized by the battery water pump 22, it flows into the battery cooling mechanism 83, from After the battery cooling mechanism 83 flows out, it all flows into the controller 81, and then flows into the heat exchanger 50 after coming out of the controller 81, and then flows into the first valve port b312 after coming out of the heat exchanger 50, and then flows into the first valve port c313 And it flows into the motor water pump 23 from the first valve port c313, and flows into the motor cooling mechanism 80 after being circulated and pressurized by the water pump 23 of the motor cooling mechanism 80 to form a closed loop. In this working condition, the vehicle is at a standstill, and both the radiator 82 and the heat exchanger 50 are in a stop working state.
  • the radiator 82 is equivalent to a large-capacity gas-liquid separation device, and the coolant will flow into the heat management system.
  • the air is exhausted into the radiator 82, and the air is exhausted by the radiator 82. Then the whole system can work in a normal cycle.
  • the heater circuit is also in a stopped state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

本申请提供一种热管理系统、车辆及热管理方法,热管理系统包括:水壶组件和阀单元,水壶组件包括壳体和盖板,壳体覆盖在盖板上且与盖板共同形成容纳腔,阀单元安装在壳体上;容纳腔内具有多个用于供液体流通的管道,壳体上具有多个与容纳腔连通的接口,管道的第一端与接口对应连通,管道的第二端和部分管道位于容纳腔外;阀单元具有多个阀口,阀口与接口对应连通。本申请提供的热管理系统可以缩短管道的总长度,降低管道内的流阻,提高系统的工作效率。

Description

热管理系统、车辆及热管理方法
本申请要求于2021年09月27日提交中国专利局、申请号为202111137071.2、申请名称为“热管理系统、车辆及热管理方法”的中国专利申请以及于2021年09月27日提交中国专利局、申请号为202111138847.2、申请名称为“热管理系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,尤其涉及一种热管理系统、车辆及热管理方法。
背景技术
随着新能源车辆的普及,车辆热管理系统的重要性也是日益凸显。而与传统的燃油车相比,新能源汽车热管理系统变得更加复杂,要求也变得更高。
目前,纯电动汽车根据整车热管理需求,通常需要安装许多的热管理部件,比如:水泵、热交换器、水冷冷凝器、两通电磁阀、两通比例阀及冷却管路等等。而为了提高电动汽车的续航里程,对整车热管理的工况设计要求越来越多,热管理系统中需要部件的数量也对应增多。由于各个部件的布置较为分散,导致部件安装在车辆上后占用的空间较大,而分散安装的各部件之间需要采用大量的冷却管路连通以使冷却液在各部件之间流通,从而满足整车的热管理需求。
但是,采用大量的冷却管路连接,使得整个系统中冷却管路长度增加,冷却液在冷却管路内的流阻变大,热管理系统的工作效率较低。
发明内容
本申请提供一种热管理系统、车辆及热管理方法,以解决现有技术中采用大量的冷却管路连接,使得整个系统中冷却管路长度增加,冷却液在冷却管路内的流阻变大,热管理系统的工作效率较低的问题。
根据本申请的第一方面,提供一种热管理系统,用于车辆。热管理系统包括:水壶组件、阀单元、散热器和热交换器,水壶组件包括壳体和盖板,壳体覆盖在盖板上且与盖板共同形成容纳腔,阀单元安装在壳体上;
容纳腔内具有多个用于供液体流通的管道,壳体上具有多个与容纳腔连通的接口,管道的第一端与接口一一对应连通,管道的第二端和部分管道位于容纳腔外;
阀单元具有多个阀口,阀口与接口一一对应连通,阀单元包括第一多通阀和第二多通阀,多个阀口包括多个第一阀口和多个第二阀口,第一阀口位于第一多通阀上,第二阀口位于第二多通阀上;散热器和热交换器分别与不同的管道连通。
根据本申请的第二方面,提供一种热管理系统,用于车辆。热管理系统包括:水壶组件、泵组件、及阀单元,水壶组件包括壳体和盖板,壳体覆盖在盖板上且与盖板共同形成容纳腔,泵组件和阀单元分别安装在壳体上;
容纳腔内具有多个用于供液体流通的管道,壳体上具有多个与容纳腔连通的接口,管道的第一端与接口一一对应连通,管道的第二端和部分管道位于容纳腔外;
阀单元具有多个阀口,阀口与接口一一对应连通,阀单元用于控制接口和与接口对应的阀口的断开或者连通,从而控制管道之间的断开或者连通。
在一种可能的实现方式中,本申请提供的热管理系统,壳体背离盖板的一面具有第一安装区和第二安装区,多个接口包括多个第一接口和多个第二接口,第一接口位于第一安装区内,第二接口位于第二安装区内;
阀单元包括第一多通阀和第二多通阀,多个阀口包括多个第一阀口和多个第二阀口,第一阀口位于第一多通阀上,第二阀口位于第二多通阀上;
第一多通阀连接在第一安装区内,且第一接口与第一阀口一一对应连通,第二多通阀连接在第二安装区内,且第二接口与第二阀口一一对应连通。
在一种可能的实现方式中,本申请提供的热管理系统,多个管道包括多个第一管道,每个第一管道包括两个第一子管道,每个第一管道中的一第一子管道的第一端与第一安装区对应,每个第一管道中的一第一子管道的第 二端用于与车辆中的同一部件的出水管连通,每个第一管道中的另一第一子管道的第一端与第一安装区对应,每个第一管道中的另一第一子管道的第二端用于与车辆中的同一部件的进水管连通;
部件包括散热器、电池冷却器或电机冷却器中的至少一者。
在一种可能的实现方式中,本申请提供的热管理系统,多个管道包括第二管道和第三管道,第二管道的第一端与第一安装区对应,第三管道的第一端与第二安装区对应;
第二管道包括两个第二子管道,第二管道中的一第二子管道用于与车辆中的暖风芯体的出水管连通,第二管道中的另一第二子管道与车辆中的加热器的进水管连通;
第三管道包括两个第三子管道,第三管道中的一第三子管道用于与加热器的出水管连通,第三管道中的另一第三子管道与暖风芯体的进水管连通。
在一种可能的实现方式中,本申请提供的热管理系统,容纳腔内部具有储水区,储水区位于各管道的上方;
储水区具有补液口,补液口与管道连通。
在一种可能的实现方式中,本申请提供的热管理系统,还包括水冷冷凝器和热交换器,水冷冷凝器安装在壳体背离盖板的一面,水冷冷凝器具有第一入口和第一出口,热交换器安装在盖板背离壳体的一面,热交换器具有第二入口和第二出口;
多个管道包括两个第四管道,一第四管道的第一端与第二安装区对应,且一第四管道与第一入口连通,另一第四管道的第一端与第一安装区对应,且另一第四管道与第一出口连通;
多个管道包括两个第五管道,第五管道的第一端均与第一安装区对应,一第五管道与第二出口连通,另一第五管道与第二入口连通。
在一种可能的实现方式中,本申请提供的热管理系统,还包括气液分离器,盖板上具有安装部,安装部位于容纳腔外,气液分离器安装在安装部朝向壳体的一面,且气液分离器与水冷冷凝器相邻;
气液分离器的冷媒入口与热交换器的冷媒出口连通,气液分离器还用于与车辆的空调主机蒸发器出口连通。
在一种可能的实现方式中,本申请提供的热管理系统,还包括空调集成阀,空调集成阀安装在安装部背离壳体的一面,空调集成阀与热交换器相邻,空调集成阀分别与水冷冷凝器的冷媒入口和热交换器的冷媒入口连通;
水冷冷凝器的冷媒出口通过同轴管与空调集成阀连通;
气液分离器的冷媒出口通过同轴管与车辆的压缩机吸气口连通;
同轴管还用于与车辆的空调主机内部冷凝器出口连通;
空调集成阀用于与空调主机内部冷凝器进口连通,空调集成阀还用于与压缩机排气口连接。
在一种可能的实现方式中,本申请提供的热管理系统,泵组件包括采暖水泵、电池水泵和电机水泵,采暖水泵、电池水泵和电机水泵分别安装在壳体背离盖板的一面,且采暖水泵、电池水泵和电机水泵分别与不同的位于容纳腔外的管道连接。
根据本申请的第三方面,提供一种车辆,包括车体和安装在车体上的热管理系统。
根据本申请的第四方面,提供一种热管理方法,采用热管理系统,该方法包括以下步骤:
控制第一多通阀中第一个第一阀口和第二个第一阀口连通,其中,第一个第一阀口与电机冷却机构的出液口的连通,第二个第一阀口与散热器的进液口连通,电机冷却机构中的冷却液依次经第一个第一阀口和第二个第一阀口流入散热器;
控制第一多通阀中第三个第一阀口与第四个第一阀口连通,散热器的出液口与第三个第一阀口连通,第四个第一阀口与电机冷却机构的进液口的连通,流入散热器的冷却液在散热器中冷却后,依次经第三个第一阀口和第四个第一阀口流入电机冷却机构。
在一种可能的实现方式中,本申请提供的热管理方法,该方法还包括以下步骤:
控制第一多通阀中第五个第一阀口和第六个第一阀口连通,其中第五个第一阀口与电池冷却机构的出液口连通,第六个第一阀口与热交换器的进液口连通,电池冷却机构中的冷却液依次经第五个第一阀口、第六个第一阀口流入热交换器;
控制第一多通阀中第七个第一阀口与第八个第一阀口连通,热交换器的出液口与第七个第一阀口连通,电池冷却机构的进液口与第八个第一阀口连通,流入热交换器的冷却液在热交换器中冷却后,依次经过第七个第一阀口和第八个第一阀口流入电池冷却机构。
在一种可能的实现方式中,本申请提供的热管理方法,该方法还包括以下步骤:
控制第一多通阀中第三个第一阀口与第八个第一阀口连通,流入散热器的冷却液在散热器中冷却后,依次经第三个第一阀口和第八个第一阀口流入电池冷却机构;
控制第一多通阀中第七个第一阀口与第四个第一阀口连通,流入热交换器的冷却液在热交换器中冷却后,依次经第七个第一阀口和第四个第一阀口流入电机冷却机构。
在一种可能的实现方式中,本申请提供的热管理方法,该方法还包括以下步骤:
控制第一多通阀中第一个第一阀口与第九个第一阀口连通,第九个第一阀口与第三个第一阀口连通,第三个第一阀口与第四个第一阀口连通,电机冷却机构中的冷却液依次经第一个第一阀口、第九个第一阀口、第三个第一阀口和第四个第一阀口流入电机冷却机构;
控制第一多通阀中第七个第一阀口与第八个第一阀口连通,流出热交换器的冷却液依次经第七个第一阀口和第八个第一阀口流入电池冷却机构。
在一种可能的实现方式中,本申请提供的热管理方法,该方法还包括以下步骤:
控制第一多通阀中第三个第一阀口与第八个第一阀口连通,电机冷却机构中的冷却液依次经第一个第一阀口、第九个第一阀口、第三个第一阀口和第八个第一阀口流入电池冷却机构;
控制第一多通阀中第七个第一阀口与第四个第一阀口连通,流出热交换器的冷却液依次经第七个第一阀口和第四个第一阀口流入电机冷却机构。
在一种可能的实现方式中,本申请提供的热管理方法,该方法还包括以下步骤:
流出电池冷却机构的部分冷却液流入控制器,流出控制器的冷却液流入 热交换器。
在一种可能的实现方式中,本申请提供的热管理方法,该方法还包括以下步骤:
控制第一多通阀中第七个第一阀口与第八个第一阀口连通,电池冷却机构中的冷却液经控制器流入至热交换器,流出热交换器的冷却液经第七个第一阀口和第八个第一阀口流入电池冷却机构。
在一种可能的实现方式中,本申请提供的热管理方法,该方法还包括以下步骤:
控制第二多通阀中第一个第二阀口与第二个第二阀口连通,其中,第一个第二阀口与加热器的出液口连通,第二个第二阀口与暖风芯体的进液口连通,暖风芯体的出液口与加热器的进液口连通;
流出加热器的冷却液依次经过第一个第一阀口、第二个第一阀口和暖风芯体流入加热器。
本申请提供一种热管理系统、车辆及热管理方法,热管理系统包括:水壶组件和阀单元,水壶组件包括壳体和盖板,壳体覆盖在盖板上且与盖板共同形成容纳腔,阀单元安装在壳体上;容纳腔内具有多个用于供液体流通的管道,壳体上具有多个与容纳腔连通的接口,管道的第一端与接口一一对应连通,管道的第二端和部分管道位于容纳腔外;阀单元具有多个阀口,阀口与接口一一对应连通。通过集成式的水壶组件设置,将热管理系统中的各部件集成安装在水壶组件中的壳体和盖板上,并将用于冷却液流通的管道集成在容纳腔内部,实现了将现有技术中分散安装部件集成为一个模块总成,高度集成化的热管理系统不但有效节约安装空间,而且也节省了大量的管道,降低了管道内的流阻,提高了热管理的工作效率。解决了现有技术中采用大量的冷却管路连接,使得整个系统中冷却管路长度增加,冷却液在冷却管路内的流阻变大,热管理系统的工作效率较低的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的热管理系统的结构示意图;
图2为本申请提供的热管理系统的另一结构示意图;
图3为本申请提供的热管理系统中水壶组件的结构示意图;
图4为本申请提供的热管理系统中水壶组件的另一结构示意图;
图5为图3中A处的放大示意图;
图6为图3中B处的放大示意图;
图7为本申请提供的热管理系统中第一多通阀的结构示意图;
图8为本申请提供的热管理系统中第二多通阀的结构示意图;
图9为图4中C处的放大示意图;
图10为本申请提供的热管理系统的流通示意图;
图11为图10中D处的放大示意图;
图12为图10中E处的放大示意图;
图13为本申请提供的热管理系统的第一种工况的流通示意图;
图14为本申请提供的热管理系统的第二种工况的流通示意图;
图15为本申请提供的热管理系统的第三种工况的流通示意图;
图16为本申请提供的热管理系统的第四种工况的流通示意图;
图17为本申请提供的热管理系统的第五种工况的流通示意图;
图18为本申请提供的热管理系统的第六种工况的流通示意图;
图19为本申请提供的热管理系统的第七种工况的流通示意图。
附图标记说明:
在各流通示意图中,实线和箭头的组合代表冷却液的流动方向,虚线和箭头的组合代表冷媒的流动方向,双点划线和箭头的组合代表冷却液补充时的流动方向;
10-水壶组件;11-壳体;12-盖板;
110-接口;111-第一安装区;112-第二安装区;113-第一表面;114-第一侧面;120-安装部;130-管道;131-散热器进水管;132-散热器出水管;133-电机冷却机构进水管;134-电机冷却机构出水管;135-电池冷却机构进水管;136-电池冷却机构出水管;137-加热器进水管;138-加热器出水管;139-暖风芯体进水管;140-暖风芯体出水管;150-储水区;151- 注液口;
1111-第一接口a;1112-第一接口b、1113-第一接口c;1114-第一接口e;1115-第一接口f;1116-第一接口h;1117-第一接口k;1118-第一接口m;1119-第一接口n;1121-第二接口a;1122-第二接口b;1123-第二接口c;1124-第二接口e;1125-第二接口f;
20-泵组件;21-采暖水泵;22-电池水泵;23-电机水泵;
30-阀单元;31-第一多通阀;32-第二多通阀;
311-第一阀口a;312-第一阀口b;313-第一阀口c;314-第一阀口e;315-第一阀口f;316-第一阀口h、317-第一阀口k、318-第一阀口m、319-第一阀口n;321-第二阀口a;322-第二阀口b、323-第二阀口c、324-第二阀口e、325-第二阀口f;
40-水冷冷凝器;
50-热交换器;
60-气液分离器;
70-空调集成阀;71-第一开关阀;72-第二开关阀;73-第一膨胀阀;74-第二膨胀阀;
80-电机冷却机构;81-控制器;82-散热器;83-电池冷却机构;84-加热器;85-暖风芯体;
90-空调主机蒸发器;91-压缩机;92-空调主机冷凝器;93-同轴管。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以使固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况 理解上述术语在本申请中的具体含义。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或维护工具不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或维护工具固有的其它步骤或单元。
随着新能源车辆的普及,车辆热管理系统的重要性也是日益凸显。而与传统的燃油车相比,新能源汽车热管理系统变得更加复杂,要求也变得更高。
纯电动汽车依据整车热管理需求,通常需要安装许多的热管理部件,比如:膨胀水泵、电机水泵、电池水泵、暖风水泵、热交换器、水冷冷凝器、水温传感器、四通电磁阀、三通电磁阀、两通电磁阀、两通比例阀、三通比例阀、冷却连接管路、空调气液分离器、空调EXV阀、空调SOV阀、空调连接管路等等。目前,为了进一步提高电动汽车的续航里程,对整车热管理的工况设计要求越来越多,需要热管理的零部件的数量也相应增多。由于热管理系统中,各零部件的布置较为分散,导致热管理系统会占据车辆上较大的安装空间,而分散的各零部件之间需要采用大量的冷却管路及空调管路进行连通,以满足车辆对各零部件进行热管理的需求。
但是,采用大量的冷却管路连接,使得整个系统中冷却管路长度增加,冷却液在冷却管路内的流阻变大,热管理系统的工作效率较低。
基于此,本申请提供一种热管理系统、车辆及热管理方法,通过对车辆热管理系统中零部件集成设计,从而节约了热管理系统中的管路长度,提高了热管理系统的工作效率。
实施例
图1为本申请提供的热管理系统的结构示意图,图2为本申请提供的热管理系统的另一结构示意图;图3为本申请提供的热管理系统中水壶组件的结构示意图;图4为本申请提供的热管理系统中水壶组件的另一结构示意图。
如图1和图2所示,本申请的实施例提供的热管理系统包括:水壶组件10、泵组件20、及阀单元30。如图3和图4所示,水壶组件10包括壳体11和盖板12,壳体11覆盖在盖板12上且与盖板12共同形成容纳腔(图中未标示),泵组件20和阀单元30分别安装在壳体11上;容纳腔内具有多个用于供液体流通的管道130,壳体11上具有多个与容纳腔连通的接口110,管道130的第一端与接口110一一对应连通,管道130的第二端和部分管道130位于容纳腔外;阀单元30具有多个阀口(图中未标示),阀口与接口110一一对应连通,阀单元30用于控制接口110和与接口110对应的阀口的断开或者连通,从而控制管道之间的断开或者连通。
水壶组件10为热管理系统的核心部件,其具有多种功能。水壶组件10不但可以为热管理系统中的各部件提供用于进行冷却降温的冷却液,同时还可以为各零部件提供固定支撑,以将分散的各部件集成为一体式的热管理集成模块,使的各部件的布置更加紧凑,减小了热管理系统在车辆车体上的安装的空间。
请继续参见图3和图4所示,水壶组件10包括壳体11和盖板12,壳体11具有第一表面113和与第一表面113相对的第二表面(图中未标示),壳体11的第二表面上覆盖有盖板12,且壳体11利用热板焊接工艺与盖板12连接后共同形成容纳腔。
请继续参见图1和图3所示,泵组件20和阀单元30分别固定安装在壳体11的第一表面113上。
请继续参见图3和图4所示,在水壶组件10的容纳腔内部设置有多个供冷却液流通的管道130,管道130用于连通热管理系统中的各部件并 为对应的部件输送冷却液。在壳体11的第一表面113上设置有多个接口110,各接口110均与容纳腔连通。管道130的第一端与接口110一一对应并连通,管道130的第二端从容纳腔伸出后与部分管道130位于容纳腔外部,管道130的第二端用于与安装在壳体11上的零部件连通以输送冷却液。
本申请中,热管理系统中各零部件集成安装在壳体11上后,使得热管理系统整体的布局更加紧凑,各部件之间的距离也大幅减小;而且将用于连通各部件之间的管道130设置在容纳腔内部,不仅可以优化系统整体的空间布局,而且也使管道130的总长度大幅缩短,有效的降低了管道130的内阻,提升了热管理系统的工作效率。
阀单元30上设置有多个阀口,阀口与接口110一一对应并连通,各管道130通过阀单元30连通,冷却液在经过阀单元30后流入到各零部件中。阀单元30用于控制接口110和与接口110对应连通的阀口的断开或者连通,从而控制各接口110所在管道130之间的断开或者连通,进而控制各管道130连接的零部件上输入的冷却液的流量大小。
在热管理系统中安装的阀单元30与管道130串联后形成闭合的冷却回路,通过阀单元30来控制不同冷却回路的开合,从而满足各部件对于冷却液的需求,提高了整个热管理系统的工作效率。
本申请通过集成式的水壶组件10设置,将热管理系统中的各部件集成安装在水壶组件10中的壳体11和盖板12上,并将用于冷却液流通的管道130集成在容纳腔内部,实现了将现有技术中分散安装部件集成为一个模块总成,高度集成化的热管理系统不但有效节约安装空间,统一了管道130外部接口使管道130的布置更加紧凑,而且也节省了大量的管道130,降低了管道130内的流阻,提高了热管理的工作效率。解决了现有技术中采用大量的冷却管路连接,使得整个系统中冷却管路长度增加,冷却液在冷却管路内的流阻变大,热管理系统的工作效率较低的问题。
请继续参见如图3所示,壳体11背离盖板12的一面具有第一安装区111和第二安装区112,多个接口110包括多个第一接口(图中未标示)和多个第二接口(图中未标示),第一接口位于第一安装区111内,第二接口位于第二安装区112内。壳体11背离盖板12的一面即为壳体11的第一表面 113,在第一表面113上设置有用于安装阀组件的第一安装区111和第二安装区112。
图5为图3中A处的放大示意图,图6为图3中B处的放大示意图。
如图3、图5和图6所示,在第一安装区111内设置有九个第一接口,分别为:第一接口a1111、第一接口b1112、第一接口c1113、第一接口e1114、第一接口f1115、第一接口h1116、第一接口k1117、第一接口m1118、第一接口n1119。在第二安装区112内设置有五个第二接口,分别为:第二接口a1121、第二接口b1122、第二接口c1123、第二接口e1124、第二接口f1125。
图7为本申请提供的热管理系统中第一多通阀的结构示意图,图8为本申请提供的热管理系统中第二多通阀的结构示意图,图9为图4中C处的放大示意图。
如图1、图7和图8所示,阀单元30包括第一多通阀31和第二多通阀32,多个阀口包括多个第一阀口(图中未标示)和多个第二阀口(图中未标示),第一阀口位于第一多通阀31上,第二阀口位于第二多通阀32上。
具体地,第一多通阀31包括阀座(图中未标示)和可转动地设置于阀座内的阀芯(图中未标示),阀芯具有多个转动位置,阀座上设置多个第一阀口,阀芯上设置有分别与各第一阀口对应的导通结构组,各导通结构组包括沿周向设置的多个导通结构;导通单元组构造为,阀芯转动至不同的转动位置时,导通单元组中不同的导通结构与相应的第一阀口配合,以使得第一阀口形成不同的导通状态。
阀芯可转动地设置在阀座上,阀座上设置多个第一阀口,阀芯上设置与第一阀口对应的导通结构组,导通结构组还包括沿周向设置的多个导通结构。阀芯转动至不同的转动位置时,实现不同第一阀口形成不同的导通状态。只需要一个阀芯。
第一多通阀31可以为九通电磁阀,九通电磁阀用于控制与其连接的各管道130断开或连通,在九通电磁阀上设置有九个第一阀口,分别为:第一阀口a311、第一阀口b312、第一阀口c313、第一阀口e314、第一阀口f315、第一阀口h316、第一阀口k317、第一阀口m318、第一阀口n319。
第二多通阀32包括阀座、第一阀芯(图中未标示)、第二阀芯(图中未 标示)和驱动装置(图中未标示)。驱动装置与第一阀芯传动连接;第一阀芯上设置有第一配合结构,第二阀芯上设置有与第一配合结构相配合的第二配合结构,第一配合结构与第二配合结构具有第一配合状态和第二配合状态,在第一配合状态,第一阀芯独立转动,第二阀芯保持不动,在第二配合状态,第一阀芯带动第二阀芯同步转动。
阀座上设置与第一阀芯相对应的多个第二阀口,第一阀芯上设置第一导通结构,第一导通结构用于在第一阀芯转至第一预定位置时将至少两个第二阀口连通;阀座上设置与第二阀芯相对应的多个第二阀口,第二阀芯上设置第二导通结构,第二导通结构用于在第二阀芯转至第二预定位置时将至少两个第二阀口连通。
驱动装置与第一阀芯传动连接,第一阀芯转动时,第一阀芯上的第一配合结构能够通过第二配合结构带动第二阀芯转动。这样,第一阀芯既可以独立转动,通过改变第一阀口与第一导通结构的相对应的角度,调节第一阀芯的流量。第一阀芯转动时带动第二阀芯转动,通过改变第二阀口与第二导通结构的相对应的角度,调节第二阀芯的流量,第一阀芯再转动到原位,不改变第一阀芯的流量。只需要一个驱动装置就可以驱动控制第一阀芯和第二阀芯。
驱动装置包括电机(图中未标示)以及与电机传动连接的齿轮组(图中未标示),齿轮组与第一阀芯传动连接。电机轴上设置蜗杆(图中未标示),齿轮组包括与蜗杆配合的第一涡轮、与第一涡轮啮合的第二涡轮、与第二涡轮啮合的第三涡轮、第三涡轮的底部连接第一齿轮、与第一齿轮啮合的第二齿轮。齿轮组中第一涡轮、第二涡轮、第三涡轮、第一齿轮和第二齿轮的中心轴相互平行且都是沿竖直方向,第一蜗杆的中心轴与第一涡轮的中心轴相互垂直。电机轴上蜗杆转动,通过齿轮组的传动,带动第一阀芯转动,保证了传动的平稳性。
电机的类型不限,为了控制简单和保证精度,优选地,电机为步进电机或伺服电机。
第二多通阀32为五通电磁阀,五通电磁阀用于控制与其连接的各管道130的开度大小,从而控制流过管道130内的冷却液流量大小。在五通电磁阀上设置有五个第二阀口,分别为:第二阀口a321、第二阀口b322、第二阀 口c323、第二阀口e324、第二阀口f325。
请继续参见图1和图3所示,第一多通阀31连接在第一安装区111内,且第一阀口与第一接口一一对应连通,第二多通阀32连接在第二安装区112内,且第二阀口与第二接口一一对应连通。将第一多通阀31安装在壳体11第一表面113上的第一安装区111内部后,各第一阀口与各第一接口一一对应并且互相连通,其中,第一阀口a311与第一接口a1111对应连通,第一阀口b312与第一接口b1112对应连通,第一阀口c313与第一接口c1113对应连通,第一阀口e314与第一接口e1114对应连通,第一阀口f315与第一接口f1115对应连通,第一阀口h316与第一接口h1116对应连通,第一阀口k317与第一接口k1117对应连通,第一阀口m318与第一接口m1118对应连通,第一阀口n319与第一接口h1119对应连通。将第二多通阀32安装在壳体11第一表面113上的第二安装区112内后,各第二阀口与各第二接口一一对应并且互相连通,其中,第二阀口a321与第二接口a1121对应连通,第二阀口b322与第二接口b1122对应连通,第二阀口c323与第二接口c1123对应连通,第二阀口e324与第二接口e1124对应连通,第二阀口f325与第二接口f1125对应连通。
图10为本申请提供的热管理系统的流通示意图。
如图2、图4和图10所示,多个管道130包括多个第一管道(图中未标示),每个第一管道包括两个第一子管道(图中未标示),每个第一管道中的一第一子管道的第一端与第一安装区111对应,每个第一管道中的一第一子管道的第二端用于与车辆中的同一部件的出水管连通,每个第一管道中的另一第一子管道的第一端与第一安装区111对应,每个第一管道中的另一第一子管道的第二端用于与车辆中的同一部件的进水管连通;部件包括散热器82、电池冷却机构(指:电池包散热装置,以下简称:电池冷却机构)83或电机冷却机构(指:电机散热装置,以下简称:电机冷却机构)80中的至少一者。
在一种可能的实现方式中,为了使车辆上各部件的冷却液回路相互独立,避免产生干涉现象。容纳腔内设置的管道130包括多个第一管道,每个第一管道包括两个第一子管道,两个第一子管道通过第一多通阀31连接以组成用于冷却液流动的第一管道。
具体地,每个第一管道中的一个第一子管道的第一端与第一安装区111内的第一接口对应并连通,其第二端用于与车辆中的同一部件的出水管连通,从该部件上流出的冷却液经过第一子管道后流入到第一多通阀31内部。每个第一管道中的另一个第一子管道的第一端与第一安装区111内的第一接口对应并连通,其第二端用于与车辆中的同一部件的进水管连通,从第一多通阀31流出的冷却液经该第一子管道后流入到该部件中。两个第一子管道的第一端通过第一多通阀31连接后以组成第一管道,再将第一管道与车辆中的同一部件的进水管与出水管连通后以形成闭合的冷却回路,通过第一多通阀31控制该冷却回路的开合状态,以便为车辆中的部件提供冷却液。
通常在车辆中有冷却液流通的部件主要包括散热器82、电池冷却机构83以及电机冷却机构80等部件。其中,电池冷却机构83为设置在车辆电池包上的冷却机构,该冷却机构主要是贴合在电池包上与电池包进行热交换,冷却液流过冷却机构后便可以将电池包上产生的热量吸收并带走,使电池包在工作时处于一个较佳的温度范围内。
电机冷却机构80为设置在车辆电机上的冷却机构,该冷却机构贴合在电机的外壳体上进行热交换,当车辆电机在启动工作后会产生大量的热量,如果不能及时将热量释放出去就会影响到车辆电机的工作性能。因此冷却液在流过车辆电机上的冷却装置后便可以将电机上产生的热量吸收并带走,使车辆电机在工作时处于一个较佳的温度范围内。
散热器82是设置在车辆中用于与空气进行热交换的装置,冷却液将吸收的热量带到散热器82后,经过散热器82与空气进行热交换之后便可以将热量传递至空气当中,进而确保车辆的正常运行。
如图3、图4和图9所示,多个第一子管道的第二端从容纳腔内伸出壳体11后形成多个与车辆中的相关部件连通的接口。具体地,在壳体11的第一表面113上具有散热器进水管131、散热器出水管132、电机冷却机构进水管133、电池冷却机构进水管135;在壳体11的第一侧面114上具有电机冷却机构出水管134和电池冷却机构出水管136。
车辆上的散热器82的进液口和出液口分别与散热器进水管131和散热器出水管132连通,电池冷却机构83的进液口和出液口分别与电池冷 却机构进水管135和电池冷却机构出水管136连通,电机冷却机构80的进液口和出液口分别与电机冷却机构进水管133和电机冷却机构出水管134连通。
请继续参见图10所示,在一些实施例中,多个管道130包括第二管道(图中未标示)和第三管道(图中未标示),第二管道的第一端与第一安装区111对应,第三管道的第一端与第二安装区112对应;第二管道包括两个第二子管道(图中未标示),第二管道中的一第二子管道用于与车辆中的暖风芯体85的出水管连通,第二管道中的另一第二子管道与车辆中的加热器84的进水管连通。
第三管道包括两个第三子管道(图中未标示),第三管道中的一第三子管道用于与加热器84的出水管连通,第三管道中的另一第三子管道与暖风芯体85的进水管连通。
具体地,第二管道包括两个第二子管道,第二管道中的一第二子管道的第一端与第一安装区111对应设置,第二管道中的一第二子管道的第二端用于与车辆中的暖风芯体85的出水管连通。第二管道中的另一第二子管道的第一端与第一安装区111对应设置,第二管道中的另一第二子管道的第二端用于与车辆中的加热器84的进水管连通。
第三管道包括两个第三子管道,第三管道中的一个第三子管道的第一端与第二安装区112对应设置,第三管道中的一个第三子管道的第二端用于与加热器84的出水管连通。第三管道中的另一个第三子管道的第一端与第二安装区112对应设置,第三子管道中的另一个第三子管道的第二端用于与暖风芯体85的进水管连通。
加热器84和暖风芯体85均设置在车辆的车体上,用于为驾驶舱提供暖风,驾驶舱指设置在车辆车体上用于车辆驾驶员和乘客乘坐的空间。加热器84和暖风芯体85为串联关系,冷却液从容纳腔流出后依次流过加热器84和暖风芯体85。当车辆行驶在温度较低的环境下,可以通过启动加热器84工作将流经加热器84上的冷却液加热升温,接着吸收热量后的冷却液通过管道130流入到暖风芯体85上,暖风芯体85通过热交换的方式将热量传递至驾驶舱内,从而提高驾驶舱内部的温度。需要说明的是,为了提高暖风芯体85与空气的热交换效率,可以通过在暖风芯体85所在的 位置设置风扇(图中未标示),采用风扇对暖风芯体85吹风的方式提高暖风芯体85的热交换效率。
请继续参见图4、图9和图10所示,多个第二子管道和第三子管道的第二端从容纳腔内伸出壳体11后形成多个与车辆中的相关部件连通的接口。具体地,在壳体11的第一侧面114上还具有加热器进水管137、加热器出水管138、暖风芯体进水管139和暖风芯体进水管139。其中,加热器84的进液口和出液口分别与加热器进水管137和加热器出水管138连通,暖风芯体85的进液口和出液口分别与暖风芯体进水管139和暖风芯体出水管140连通。
请继续参见图3和图4所示,容纳腔内部具有储水区150,储水区150位于管道130的上方;储水区150具有补液口(图中未标示),补液口与管道130连通,以对管道130进行补水。
在本实施例中,为了在热管理系统中加注冷却液并将冷却液输入至各部件中,在容纳腔内还设置有一储水区150,储水区150设置在管道130的上方,在壳体11上还设置有注液口151,注液口151位于储水区150的上方,且注液口151与储水区150连通,冷却液由注液口151加入储水区150内部。在储水区150的下方设置有补液口,补液口与管道130连通,储水区150内的冷却液通过补液口输入到各管道130中,以供各部件使用。需要说明的是,注液口151和补液口的开合状态可以由热管理系统根据冷却液的损耗程度自行控制。
请继续参见图1和图2所示,还包括水冷冷凝器40和热交换器50,水冷冷凝器40安装在壳体11背离盖板12的一面,水冷冷凝器40具有第一入口(图中未标示)和第一出口(图中未标示),热交换器50安装在盖板12背离壳体11的一面,热交换器50具有第二入口(图中未标示)和第二出口(图中未标示)。
多个管道130包括两个第四管道(图中未标示),一第四管道的第一端与第二安装区112对应,且一第四管道与第一入口连通,另一第四管道的第一端与第一安装区111对应,且另一第四管道与第一出口连通。
多个管道130包括两个第五管道(图中未标示),第五管道的第一端均与第一安装区111对应,一第五管道与第二出口连通,另一第五管道与 第二入口连通。
在本实施例中,为了便于热管理系统对车辆中的空调系统进行散热,热管理系统中还包括水冷冷凝器40,水冷冷凝器40安装在壳体11的第一表面113上。水冷冷凝器40为空调系统中的冷媒与热管理系统中的冷却液进行热交换的装置,在水冷冷凝器40中同时通入冷却液和冷媒,冷媒可以将空调系统中的热量传递至水冷冷凝器40,接着由冷却液吸收并将该部分热量传递至热管理系统中,从而使冷媒的温度能够迅速下降,以实现为空调系统降温的目的。相应的,在水冷冷凝器40上设置有供冷媒流通的冷媒入口(图中未标示)与冷媒出口(图中未标示)以及供冷却液流通的第一入口(图中未标示)和第一出口(图中未标示)。水冷冷凝器40的冷媒入口与冷媒出口分别与空调系统中的管路连通。
为了提高热管理系统的降温效率,热管理系统还包括热交换器50,热交换器50安装在盖板12上背离壳体11的一面。热交换器50为空调系统中的冷媒与热管理系统中的冷却液进行热交换的装置,在热交换器50中同时通入冷却液和冷媒,冷却液将热管理系统中的热量传递至热交换器50中,接着由冷媒吸收并将该部分热量传递至空调系统中,从而使冷却液的温度能够迅速下降,以实现为热管理系统降温的目的。相应的,在热交换器50上设置有供冷媒流通的冷媒入口(图中未标示)与冷媒出口(图中未标示)以及供冷却液流通的第二入口(图中未标示)和第二出口(图中未标示)。热交换器50的冷媒入口与冷媒出口分别与空调系统中的管路连通。
为了将水冷冷凝器40的第一入口和第一出口与热管理系统连通,容纳腔内的多个管道130包括两个第四管道(图中未标示),其中一个第四管道的第一端与第二安装区112对应并与第二安装区112内的第二接口f1125连通,其另外一端与水冷冷凝器40的第一入口对应并连通。另外一个第四管道的第一端与第一安装区111对应并与第一安装区111内的第一接口m1118连通,冷却液由第二接口f1125流出经第四管道流入到水冷冷器的第一入口,接着由水冷冷凝器40的第一出口流出经第四管道流入到第一接口m1118,以形成水冷冷凝器40的冷却回路。
为了将热交换器50的第二入口和第二出口与热管理系统连通,容纳 腔内的多个管道130还包括两个第五管道(图中未标示),其中一个第五管道的第一端与第一安装区111对应并与第一安装区111内的第一接口h1116连通,其第二端与热交换器50的第二入口对应并连通。另一个第五管道的第一端与第一安装区111对应并与第一安装区111内的第一接口b1112连通,其第二端与热交换器50的第二出口对应并连通。冷却液由第一接口h1116流出经第五管道流入到热交换器50的第二入口,接着由热交换器50的第一出口流出经第五管道流入到第一接口b1112,以形成热交换器50的冷却回路。
请继续参见图1、图3、图4和图10所示,还包括气液分离器60,盖板12上具有安装部120,安装部120位于容纳腔外,气液分离器60安装在安装部120朝向壳体11的一面,且气液分离器60与水冷冷凝器40相邻;气液分离器60的冷媒入口与热交换器50的冷媒出口连通,气液分离器60还用于与车辆的空调主机蒸发器出口连通。
在本实施例中,为了将气态的冷媒与液态的冷媒分离开,热管理系统中还包括气液分离器60,气液分离器60安装在盖板12上。在盖板12上设置有安装部120,安装部120位于容纳腔的外部。气液分离器60安装在安装部120上朝向壳体11的第一表面113的一侧,且气液分离器60与水冷冷凝器40相邻设置。气液分离器60上设置有冷媒入口与冷媒出口,气液分离器60的冷媒入口分别与热交换器50的冷媒出口和空调主机蒸发器90的冷媒出口连通;气液分离器60的冷媒出口与压缩机91的冷媒出口连通。热交换器50和空调主机蒸发器90中输出的冷媒输入到气液分离器60后进行气液分离,其中气态冷媒由气液分离器60输入到压缩机91内以进行循环使用。
请继续参见图2和图10所示,还包括空调集成阀70,空调集成阀70安装在安装部120背离壳体11的一面,空调集成阀70与热交换器50相邻,空调集成阀70分别与水冷冷凝器40的冷媒入口和热交换器50的冷媒入口连通;水冷冷凝器40的冷媒出口通过同轴管93与空调集成阀70连通;气液分离器60的冷媒出口通过同轴管93与车辆的压缩机91吸气口连通;同轴管93还用于与车辆的空调主机冷凝器92出口连通;空调集成阀70用于与空调主机冷凝器92进口连通,空调集成阀70还用于与压 缩机91排气口连接。
在一种可能的实现方式中,为了控制车辆中空调系统内部的冷媒的流动,热管理系统中还包括空调集成阀70,空调集成阀70安装在安装部120上背离壳体11的一面,且空调集成阀70与热交换器50相邻设置。空调集成阀70上间隔设置有两个开关阀和两个膨胀阀,分别为第一开关阀71、第二开关阀72、第一膨胀阀73及第二膨胀阀74。
第一开关阀71与第二开关阀72为并联设置,且它们的进口均通过管路与压缩机91的排气口连通。第一开关阀71的出口通过管路与空调主机冷凝器92的冷媒入口连通,第二开关阀72的出口通过管路与水冷冷凝器40的冷媒入口连通。需要说明的是,车辆在工作时,两个开关阀只能是择一打开,不能够同时将两个开关阀打开。即,当第一开关阀71开启第二开关阀72关闭时,压缩机91排气口输出的冷媒经过第一开关阀71之后输入到空调主机冷凝器92内;反之,冷媒则会经过第二开关阀72输入到水冷冷凝器40内。
第一膨胀阀73和第二膨胀阀74为并联设置,且它们的进口均通过管路与同轴管93连通,第一膨胀阀73的出口通过管路与热交换器50的冷媒入口连通。第二膨胀阀74的出口通过管路与空调主机蒸发器90连通。需要说明的是,车辆在工作时,两个膨胀阀可以同时开启工作,即从同轴管93输出的冷媒可以同时进入两个膨胀阀内以输入到不同的部件中去。
而水冷冷凝器40的冷媒出口通过同轴管93与膨胀阀连通,气液分离器60的冷媒出口通过同轴管93与压缩机91吸气口连通,空调主机冷凝器92的冷媒出口通过同轴管93与膨胀阀连通。
具体地,车辆空调系统中冷媒的流通路线为:冷媒由压缩机91排气口输入至空调集成阀70后有两条路线可供选择,第一路经过第一开关阀71后输入至空调主机冷凝器92,接着再输入至同轴管93内,接着由同轴管93输入至膨胀阀;第二路经过第二开关阀72后输入至水冷冷凝器40,接着再输入至同轴管93内,接着由同轴管93输入至膨胀阀。而从膨胀阀输出的冷媒则分成两路,第一路为从第一膨胀阀73输出至热交换器50,接着再输入至气液分离器60,接着通过同轴管93输入至压缩机91,以形成完整的冷媒流通回路。第二路为从第二膨胀阀74输出至空调主机蒸发 器90,接着再输入至气液分离器60,接着通过同轴管93输入至压缩机91,以形成完整的冷媒流通回路。
请继续参见图1和图10所示,泵组件20包括采暖水泵21、电池水泵22和电机水泵23,采暖水泵21、电池水泵22和电机水泵23分别安装在壳体11背离盖板12的一面,且采暖水泵21、电池水泵22和电机水泵23分别与不同的位于容纳腔外的管道连接。
在本实施例中,为了加快管道内部冷却液的流动速率,安装在壳体11第一表面113上的泵组件20包括采暖水泵21、电池水泵22、电机水泵23。采暖水泵21与加热器84串联,且采暖水泵21的出水口通过管道130与加热器84的进水口连通,采暖水泵21可以加快冷却液输入加热器84的速率。电池水泵22与电池冷却机构83串联后,电池水泵22的出水口通过管道130与电池冷却机构83的进水口连通,电池水泵22可以加快冷却液输入电池冷却机构83的速率。电机水泵23与电机冷却机构80串联后,电机水泵23的出水口与电机冷却机构80的进水口连通,电机水泵23可以加快冷却液输入至电机冷却机构80的速率。
本申请中还提供一种车辆,该车辆包括车体和安装在车体上的热管理系统和空调系统。热管理系统和空调系统在上述内容中已经作了详细的解释说明,在此不再一一赘述了。
图11为图10中D处的放大示意图,图12为图10中E处的放大示意图。在各流通示意图中,实线和箭头的组合代表冷却液的流动方向,虚线和箭头的组合代表冷媒的流动方向,双点划线和箭头的组合代表冷却液补充时的流动方向。
如图1、图3以及图10至图12所示,本申请提供的热管理系统的热传导路线包括图中实线连通的冷却液回路和虚线连通的冷媒回路。简而言之,在冷却液回路中主要由冷却液进行传热,在冷媒回路中主要由冷媒进行传热。需要说明的是,冷却液回路中采用管道130连通各部件,冷媒回路中采用空调管路(图中未标示)连通各部件。
冷却液回路中主要包括电机冷却机构回路、电池冷却机构回路以及暖风回路。其中电机冷却机构(指:电机散热装置,以下简称:电机冷却机构)80的出液口与第一阀口m318连通,电机水泵23的进液口与第一阀口 c313连通,电机水泵23的出液口分别与第二阀口e324和电机冷却机构80的进液口连通。
电池冷却机构(指:电池包散热装置,以下简称:电池冷却机构)83的出液口分别与控制器81的进液口和第一阀口f315连通,电池水泵22的进液口与第一阀口a311连通,电池水泵22的出液口与电池冷却机构83的进液口连通,控制器81的出液口和第一阀口h316均分别与采暖水泵21的进液口和热交换器50的进液口连通,热交换器50的出液口与第一阀口b312连通,采暖水泵21的出液口与加热器84的进液口连通,加热器84的出液口与第二阀口a321连通,暖风芯体85的进液口与第二阀口c323连通,暖风芯体85的出液口与采暖水泵21的进液口连通,第二阀口b322与第一阀口b312连通,第二阀口f325与水冷冷凝器40的进液口连通,水冷冷凝器40的出液口与第一阀口m318连通,散热器82的进液口与第一阀口k317连通,散热器82的出液口与第一阀口e314连通,第一阀口n319与第一阀口e314连通。
冷媒回路中空调主机冷凝器92的冷媒入口与第一开关阀71连通,空调主机冷凝器92的冷媒出口通过同轴管93与第一膨胀阀73和第二膨胀阀74连通,第一膨胀阀73与热交换器50的冷媒入口连通,热交换器50的冷媒出口与气液分离器60的冷媒入口连通,气液分离器60的冷媒出口通过同轴管93与压缩机91的冷媒入口连通,第二膨胀阀74与空调主机蒸发器90的冷媒入口连通,空调主机蒸发器90的冷媒出口与气液分离器60的冷媒入口连通,压缩机的冷媒出口分别与第一开关阀71和第二开关阀72连通,第二开关阀72与水冷冷凝器40的冷媒入口连通,水冷冷凝器40的冷媒出口通过同轴管93与第一膨胀阀73和第二膨胀阀74连通。
储水区150用于盛放冷却液,储水区150内的冷却液通过补液口流入至各管道130中以对冷却液进行实时补充,防止冷却液因损耗过快导致系统的导热效率低。
图13为本申请提供的热管理系统的第一种工况的流通示意图。
如图13所示,本申请提供的第一种工况为降温模式,此工况为车辆在行驶时需要对车辆的电机和电池进行冷却降温。热管理系统的具体控制方法为:
控制第一多通阀31中第一个第一阀口m318和第二个第一阀口k317连通,其中,第一个第一阀口m318与电机冷却机构80的出液口的连通,第二个第一阀口k317与散热器82的进液口连通,电机冷却机构80中的冷却液依次经第一个第一阀口m318和第二个第一阀口k317流入散热器82;
控制第一多通阀31中第三个第一阀口e314与第四个第一阀口c313连通,散热器82的出液口与第三个第一阀口e314连通,第四个第一阀口c313与电机冷却机构80的进液口的连通,流入散热器82的冷却液在散热器82中冷却后,依次经第三个第一阀口e314和第四个第一阀口c313流入电机冷却机构80。
通过控制第一多通阀31使电机冷却机构回路中冷却液的流通方向为:冷却液由电机冷却机构80流出后从第一阀口m318流入,然后再流入第一阀口k317,并由第一阀口k317流入至散热器82的进液口,经散热器82热交换后再从散热器82的出液口流入到第一阀口e314,再由第一阀口e314流入至第一阀口c313,再从第一阀口c313流出并流入至电机水泵23中,经过电机水泵23的循环增压后流入至电机冷却机构80,以形成一个闭环回路。冷却液将电机冷却机构80上产生的热量吸收并传递至散热器82,通过散热器82与空气进行热交换后,以将冷却液吸收的热量传递至空气中,从而实现对电机冷却机构80进行降温。
控制第一多通阀31中第五个第一阀口f315和第六个第一阀口h316连通,其中第五个第一阀口f315与电池冷却机构83的出液口连通,第六个第一阀口h316与热交换器50的进液口连通,电池冷却机构83中的冷却液依次经第五个第一阀口f315、第六个第一阀口h316流入热交换器50;
控制第一多通阀31中第七个第一阀口b312与第八个第一阀口a311连通,热交换器50的出液口与第七个第一阀口b312连通,电池冷却机构83的进液口与第八个第一阀口a311连通,流入热交换器50的冷却液在热交换器50中冷却后,依次经过第七个第一阀口b312和第八个第一阀口a311流入电池冷却机构83。
通过控制第一多通阀31使在电池冷却机构回路中冷却液的流动方向为:冷却液由电池冷却机构83流出来后分成两路,其中一路流入第一阀 口f315,然后再流入第一阀口h316并从第一阀口h316流出。另外一路流过控制器81后与第一阀口h316流出的冷却液汇聚后共同流入至热交换器50,再从热交换器50流入第一阀口b312,然后再流入第一阀口a311并从第一阀口a311流入至电池水泵22,经过电池水泵22的循环增压后流入到电池冷却机构83,以形成一个闭环回路。冷却液将电池冷却机构83和控制器81产生的热量吸收并传递至热交换器50,在热交换器50中通过与冷媒进行热交换,从而将吸收的热量传递至冷媒中,从而实现对电池冷却机构83和控制器81进行降温。
控制第二多通阀32中第一个第二阀口a321与第二个第二阀口c323连通,其中,第一个第二阀口a321与加热器84的出液口连通,第二个第二阀口c323与暖风芯体85的进液口连通,暖风芯体85的出液口与加热器84的进液口连通;
流出加热器84的冷却液依次经过第一个第二阀口a321、第二个第二阀口c323和暖风芯体85流入加热器84。
暖风回路为对车辆驾驶舱进行加热,冷却液由加热器84加热后从加热器84的出液口流入至第二阀口a321,然后从第二阀口a321流入到第二阀口c323,接着再流入到暖风芯体85,冷却液从暖风芯体85出来后再流入到采暖水泵21,经过采暖水泵21的循环增压后流入至加热器84的进液口,从而形成一个闭环回路。加热器84主要是用于将冷却液加热,暖风芯体85设置在驾驶舱内用于热交换,当加热后的冷却液经过暖风芯体85后,由暖风芯体85将冷却液吸收的热量传递至驾驶舱内,从而实现对驾驶舱进行加热。需要说明的是,该回路仅适用于低温环境状态下,驾驶员对驾驶舱进行预热。在环境温度较高时,该回路处于停止运行的状态。
图14为本申请提供的热管理系统的第二种工况的流通示意图;
如图14所示,本申请提供的第二种工况为共用散热器散热模式,此工况为电机冷却机构回路与电池冷却机构回路连通共用同一个散热器进行散热。热管理系统的具体控制方法包括以下步骤:
控制第一多通阀31中第三个第一阀口e314与第八个第一阀口a311连通,流入散热器82的冷却液在散热器82中冷却后,依次经第三个第一阀口e314和第八个第一阀口a311流入电池冷却机构83;
控制第一多通阀31中第七个第一阀口b312与第四个第一阀口c313连通,流入热交换器50的冷却液在热交换器50中冷却后,依次经第七个第一阀口b312和第四个第一阀口c313流入电机冷却机构80。
通过控制第一多通阀31使电机冷却机构80和电池冷却机构83组成的串联回路的流向为:冷却液由电机冷却机构80的出液口流出后流入至第一阀口m318,然后再流入第一阀口k317,并由第一阀口k317流入至散热器82的进液口,经散热器82的热交换后再从散热器82的出液口流入到第一阀口e314,接着再流入第一阀口a311,并从第一阀口a311流入到电池水泵22,经过电池水泵22增压后流入至电池冷却机构83。从电池冷却机构83流出来后分成两路,其中一路流入第一阀口f315,然后再流入第一阀口h316并从第一阀口h316流出。另外一路流过控制器81后与第一阀口h316流出的冷却液汇聚后共同流入至热交换器50,再从热交换器50流入第一阀口b312,接着再流入至第一阀口c313,接着从第一阀口c313流入至电机水泵23,经过电机水泵23的循环增压后流入至电机冷却机构80的进液口,以形成一个闭环回路。此时,电机冷却机构80、电池冷却机构83以及控制器81串联在同一个回路当中,三者产生的热量由冷却液吸收并传递至散热器82中,由散热器82统一进行散热降温处理。
图15为本申请提供的热管理系统的第三种工况的流通示意图。
如图15所示,本申请提供的第三种工况为电机冷却机构快速升温模式,此工况为车辆启动时,对电机冷却机构80进行快速预热,使电机冷却机构80的温度尽快上升至较佳的工作温度范围内。相应的,也会对电池冷却机构83和控制器81进行预热处理,使两者的温度尽快上升至较佳的工作温度范围内。热管理系统的具体控制方法包括以下步骤:
控制第一多通阀31中第一个第一阀口m318与第九个第一阀口n319连通,第九个第一阀口n319与第三个第一阀口e314连通,第三个第一阀口e314与第四个第一阀口c313连通,电机冷却机构80中的冷却液依次经第一个第一阀口m318、第九个第一阀口n319、第三个第一阀口e314和第四个第一阀口c313流入电机冷却机构80;
控制第一多通阀31中第七个第一阀口b312与第八个第一阀口a311连通,流出热交换器50的冷却液依次经第七个第一阀口b312和第八个第 一阀口a311流入电池冷却机构83。
通过控制第一多通阀31使电机冷却机构回路的流向为:冷却液由电机冷却机构80流入至第一阀口m318,接着依次流过第一阀口n319、第一阀口e314、第一阀口c313,并由第一阀口c313流入至电机水泵23,经过电机水泵23的循环增压后流入至电机冷却机构80,以形成一个闭环回路。此回路中,由于冷却液没有经过散热器82,因此冷却液从电机冷却机构80吸收的热量还可以重新传递至电机冷却机构80中,减小了电机冷却机构80的热量损耗,使电机冷却机构80的温度能够快速上升至较佳的工作温度范围之内。
通过控制第一多通阀31使电池冷却机构回路的流向为:冷却液由电池冷却机构83流出后分成两路,其中一路流入第一阀口f315,然后再流入第一阀口h316并从第一阀口h316流出。另外一路流过控制器81后与第一阀口h316流出的冷却液汇聚后共同流入至热交换器50,再从热交换器50流入第一阀口b312,接着再流入至第一阀口a311并从第一阀口a311流入至电池水泵22,经过电池水泵22的循环增压后流入至电池冷却机构83,以形成一个闭环回路。在此工况下,热交换器50没有启动工作,即热交换器50不会对流入的冷却液做散热处理,因此冷却液从电池冷却机构83和控制器81吸收的热量还可以重新传递至电池冷却机构83和控制器81中,减小了电池冷却机构83和控制器81的热量损耗,以使电池冷却机构83和控制器81的温度能够快速上升至较佳的工作温度范围之内。
另外,在此工况下,驾驶舱的温度也同样较低,通过启动暖风回路工作,以对驾驶舱进行加热处理,当驾驶舱的内的温度升高至一定数值后再关闭该回路的工作。
图16为本申请提供的热管理系统的第四种工况的流通示意图。
如图16所示,本申请提供的第四种工况为余热回收模式,此工况为通过收集电机冷却机构80产生的热量来对电池冷却机构83和控制器81进行加热。当电机冷却机构80在启动一段时间后,其温度便可以迅速上升至较佳的工作温度范围之内,而此时电池冷却机构83和控制器81上的温度还处于较低状态,因此可以通过将电机冷却机构80产生的热量传递至电池冷却机构83和控制器81上,使两者的温度能够尽快上升至较佳的 工作温度范围之内。此工况下,电机冷却机构回路和电池冷却机构回路连接组成一个串联回路。热管理系统的具体控制方法包括以下步骤:
控制第一多通阀31中第三个第一阀口e314与第八个第一阀口a311连通,电机冷却机构80中的冷却液依次经第一个第一阀口m318、第九个第一阀口n319、第三个第一阀口e314和第八个第一阀口a311流入电池冷却机构83;
控制第一多通阀31中第七个第一阀口b312与第四个第一阀口c313连通,流出热交换器50的冷却液依次经第七个第一阀口b312和第四个第一阀口c313流入电机冷却机构80。
通过控制第一多通阀31使电机冷却机构80和电池冷却机构83串联回路的流向为:冷却液由电机冷却机构80流入至第一阀口m318,接着依次流过第一阀口n319、第一阀口e314、第一阀口a311,并由第一阀口a311流入至电池水泵22中,经过电池水泵22的循环增压后流入至电池冷却机构83。从电池冷却机构83流出后分成两路,其中一路流入第一阀口f315,然后再流入第一阀口h316并从第一阀口h316流出。另外一路流过控制器81后与第一阀口h316流出的冷却液汇聚后共同流入至热交换器50,再从热交换器50流入第一阀口b312,然后再流入第一阀口c313并从第一阀口c313流入至电机水泵23,经过电机水泵23的循环增压后流入至电机冷却机构80,以形成一个闭环回路。在此工况下,散热器82和热交换器50均处于停止工作的状态,电机冷却机构80产生的热量由冷却液传递至电池冷却机构83和控制器81上对两者进行加热。
此时暖风回路的工作状态视环境问题的高低来决定是否要开启。
图17为本申请提供的热管理系统的第五种工况的流通示意图。
如图17所示,本申请提供的第五种工况为电机冷却机构80快速升温、电池冷却机构83无流量请求而控制器81有流量请求。此工况下,电机冷却机构回路与第三种工况中的电机冷却机构回路一样,因此不再一一赘述,以下仅对电池冷却机构回路做一说明。
通过控制第一多通阀31使电池冷却机构回路的具体流向为:冷却液由电池冷却机构83流出后全部流入至控制器81中,从控制器81出来后再流入至热交换器50,从热交换器50再流入至第一阀口b312,然后再流入第一阀口a311并从第一阀口a311流入至电池水泵22,经过电池水泵 22的循环增压后流入至电池冷却机构83,以形成一个闭环回路。在此工况下,控制器81工作时需要的冷却液流量较大,从而将电池冷却机构83流出的冷却液全部输入至控制器81中以满足其工作需求。而流过电池冷却机构83的冷却液流量不会产生变化。
图18为本申请提供的热管理系统的第六种工况的流通示意图。
如图18所示,本申请提供的第六种工况为电机冷却机构80需要降温、电池冷却机构83无流量请求而控制器81有流量请求以及除气模式。此工况下,电机冷却机构回路的流通方向与第一种工况下的电机冷却机构回路的流通方式一致。电池冷却机构回路与第五种工况下的电池冷却机构回路一致,因此,不再一一赘述!但是需要说明的是,当车辆在维修时,通常会在控制器81中进入空气,因此除气模式指排出控制器81中进入的空气,通过让冷却液全部流入到控制器81中的方式使其内部的空气从储水区150的补液口中排出,避免影响车辆的工作。
另外,在第六种工况下,暖风回路也处于停止状态。
图19为本申请提供的热管理系统的第七种工况的流通示意图。
如图19所示,本申请提供的第七种工况为大串联辅助除气模式,此工况为给整个热管理系统进行排气处理,此时电机冷却机构回路与电池冷却机构回路连通以组成大串联的回路。
大串联回路中冷却液的流向为:冷却液由电机冷却机构80流入至第一阀口m318,接着流入至第一阀口k317,并由第一阀口k317流入至散热器82,出散热器82后流入至第一阀口e314,接着再流入至第一阀口a311,从第一阀口a311流出后再流入到电池水泵22,经过电池水泵22增压后流入至电池冷却机构83,从电池冷却机构83流出后全部流入至控制器81,从控制器81出来后再流入至热交换器50,从热交换器50出来后再流入至第一阀口b312,接着流入第一阀口c313并由第一阀口c313流入电机水泵23,经过电机冷却机构80水泵23的循环增压后流入电机冷却机构80,以形成一个闭环回路。在此工况下,车辆处于停止状态,散热器82和热交换器50均处于停止工作状态,而此时散热器82相当于一个容量较大的气液分离设备,冷却液将热管理系统中的空气排到散热器82中,并由散热器82将空气排出。进而使整个系统可以正常循环工作。
相应的,由于车辆处于停止的状态,因此暖风回路也同样处于停止工作的状态。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种热管理系统,其特征在于,包括:水壶组件、阀单元、散热器和热交换器,所述水壶组件包括壳体和盖板,所述壳体覆盖在所述盖板上且与所述盖板共同形成容纳腔,所述阀单元安装在所述壳体上;
    所述容纳腔内具有多个用于供液体流通的管道,所述壳体上具有多个与所述容纳腔连通的接口,所述管道的第一端与所述接口一一对应连通,所述管道的第二端和部分所述管道位于所述容纳腔外;
    所述阀单元具有多个阀口,所述阀口与所述接口一一对应连通,所述阀单元包括第一多通阀和第二多通阀,多个所述阀口包括多个第一阀口和多个第二阀口,所述第一阀口位于所述第一多通阀上,所述第二阀口位于所述第二多通阀上;
    所述散热器和所述热交换器分别与不同的所述管道连通。
  2. 一种热管理系统,其特征在于,包括:水壶组件、泵组件、及阀单元,所述水壶组件包括壳体和盖板,所述壳体覆盖在所述盖板上且与所述盖板共同形成容纳腔,所述泵组件和所述阀单元分别安装在所述壳体上;
    所述容纳腔内具有多个用于供液体流通的管道,所述壳体上具有多个与所述容纳腔连通的接口,所述管道的第一端与所述接口一一对应连通,所述管道的第二端和部分所述管道位于所述容纳腔外;
    所述阀单元具有多个阀口,所述阀口与所述接口一一对应连通,所述阀单元用于控制所述接口和与所述接口对应的所述阀口的断开或者连通,从而控制所述管道之间的断开或者连通。
  3. 根据权利要求2所述的热管理系统,其特征在于,所述壳体背离所述盖板的一面具有第一安装区和第二安装区,多个所述接口包括多个第一接口和多个第二接口,所述第一接口位于所述第一安装区内,所述第二接口位于所述第二安装区内;
    所述阀单元包括第一多通阀和第二多通阀,多个所述阀口包括多个第一阀口和多个第二阀口,所述第一阀口位于所述第一多通阀上,所述第二阀口位于所述第二多通阀上;
    所述第一多通阀连接在所述第一安装区内,且所述第一接口与所述第一阀口一一对应连通,所述第二多通阀连接在所述第二安装区内,且所述第二 接口与所述第二阀口一一对应连通。
  4. 根据权利要求3所述的热管理系统,其特征在于,多个所述管道包括多个第一管道,每个所述第一管道包括两个第一子管道,每个所述第一管道中的一所述第一子管道的第一端与所述第一安装区对应,每个所述第一管道中的一所述第一子管道的第二端用于与所述车辆中的同一部件的出水管连通,每个所述第一管道中的另一所述第一子管道的第一端与所述第一安装区对应,每个所述第一管道中的另一所述第一子管道的第二端用于与所述车辆中的同一部件的进水管连通;
    所述部件包括散热器、电池冷却器或电机冷却器中的至少一者。
  5. 根据权利要求3所述的热管理系统,其特征在于,多个所述管道包括第二管道和第三管道,所述第二管道的第一端与所述第一安装区对应,所述第三管道的第一端与所述第二安装区对应;
    所述第二管道包括两个第二子管道,所述第二管道中的一所述第二子管道用于与所述车辆中的暖风芯体的出水管连通,所述第二管道中的另一所述第二子管道与所述车辆中的加热器的进水管连通;
    所述第三管道包括两个第三子管道,所述第三管道中的一所述第三子管道用于与所述加热器的出水管连通,所述第三管道中的另一所述第三子管道与所述暖风芯体的进水管连通。
  6. 根据权利要求2-5中任一项所述的热管理系统,其特征在于,所述容纳腔内部具有储水区,所述储水区位于所述管道的上方;
    所述储水区具有补液口,所述补液口与所述管道连通。
  7. 根据权利要求4所述的热管理系统,其特征在于,还包括水冷冷凝器和热交换器,所述水冷冷凝器安装在所述壳体背离所述盖板的一面,所述水冷冷凝器具有第一入口和第一出口,所述热交换器安装在所述盖板背离所述壳体的一面,所述热交换器具有第二入口和第二出口;
    多个所述管道包括两个第四管道,一所述第四管道的第一端与所述第二安装区对应,且一所述第四管道与所述第一入口连通,另一所述第四管道的第一端与所述第一安装区对应,且另一所述第四管道与所述第一出口连通;
    多个所述管道包括两个第五管道,所述第五管道的第一端均与所述第一安装区对应,一所述第五管道与所述第二出口连通,另一所述第五管道与所 述第二入口连通。
  8. 根据权利要求7所述的热管理系统,其特征在于,还包括气液分离器,所述盖板上具有安装部,所述安装部位于所述容纳腔外,所述气液分离器安装在所述安装部朝向所述壳体的一面,且所述气液分离器与所述水冷冷凝器相邻;
    所述气液分离器的冷媒入口与所述热交换器的冷媒出口连通,所述气液分离器还用于与所述车辆的空调主机蒸发器出口连通。
  9. 根据权利要求8所述的热管理系统,其特征在于,还包括空调集成阀,所述空调集成阀安装在所述安装部背离所述壳体的一面,所述空调集成阀与所述热交换器相邻,所述空调集成阀分别与所述水冷冷凝器的冷媒入口和所述热交换器的冷媒入口连通;
    所述水冷冷凝器的冷媒出口通过同轴管与所述空调集成阀连通;
    所述气液分离器的冷媒出口通过所述同轴管与所述车辆的压缩机吸气口连通;
    所述同轴管还用于与所述车辆的空调主机内部冷凝器出口连通;
    所述空调集成阀用于与所述空调主机内部冷凝器进口连通,所述空调集成阀还用于与所述压缩机排气口连接。
  10. 根据权利要求2所述的热管理系统,其特征在于,所述泵组件包括采暖水泵、电池水泵和电机水泵,所述采暖水泵、所述电池水泵和所述电机水泵分别安装在所述壳体背离所述盖板的一面,且所述采暖水泵、所述电池水泵和所述电机水泵分别与不同的位于所述容纳腔外的所述管道连接。
  11. 一种车辆,其特征在于,包括;车体和安装在所述车体上的权利要求1-10中任一项所述的热管理系统。。
  12. 一种热管理方法,其特征在于,采用权利要求1所述的热管理系统;
    所述方法包括以下步骤:
    控制第一多通阀中第一个第一阀口和第二个第一阀口连通,其中,第一个所述第一阀口与电机冷却机构的出液口的连通,第二个所述第一阀口与散热器的进液口连通,所述电机冷却机构中的冷却液依次经第一个所述第一阀口和第二个所述第一阀口流入所述散热器;
    控制第一多通阀中第三个第一阀口与第四个第一阀口连通,所述散热器的出液口与第三个所述第一阀口连通,第四个所述第一阀口与所述电机冷却机构的进液口的连通,流入所述散热器的所述冷却液在所述散热器中冷却后,依次经第三个所述第一阀口和第四个所述第一阀口流入所述电机冷却机构。
  13. 根据权利要求12所述的热管理方法,其特征在于,
    所述方法还包括以下步骤:
    控制所述第一多通阀中第五个第一阀口和第六个第一阀口连通,其中第五个所述第一阀口与电池冷却机构的出液口连通,第六个所述第一阀口与热交换器的进液口连通,所述电池冷却机构中的所述冷却液依次经第五个所述第一阀口、第六个所述第一阀口流入所述热交换器;
    控制所述第一多通阀中第七个第一阀口与第八个第一阀口连通,所述热交换器的出液口与第七个所述第一阀口连通,所述电池冷却机构的进液口与第八个所述第一阀口连通,流入所述热交换器的所述冷却液在所述热交换器中冷却后,依次经过第七个所述第一阀口和第八个所述第一阀口流入所述电池冷却机构。
  14. 根据权利要求13所述的热管理方法,其特征在于,
    所述方法还包括以下步骤:
    控制所述第一多通阀中第三个所述第一阀口与第八个所述第一阀口连通,流入所述散热器的所述冷却液在所述散热器中冷却后,依次经第三个所述第一阀口和第八个所述第一阀口流入所述电池冷却机构;
    控制所述第一多通阀中第七个所述第一阀口与第四个所述第一阀口连通,流入所述热交换器的所述冷却液在所述热交换器中冷却后,依次经第七个所述第一阀口和第四个所述第一阀口流入所述电机冷却机构。
  15. 根据权利要求13所述的热管理方法,其特征在于,
    所述方法还包括以下步骤:
    控制所述第一多通阀中第一个所述第一阀口与第九个第一阀口连通,第九个所述第一阀口与第三个所述第一阀口连通,第三个所述第一阀口与第四个所述第一阀口连通,所述电机冷却机构中的所述冷却液依次经第一个所述第一阀口、第九个所述第一阀口、第三个所述第一阀口和第四个所述第一阀 口流入所述电机冷却机构;
    控制所述第一多通阀中第七个所述第一阀口与第八个所述第一阀口连通,流出所述热交换器的所述冷却液依次经第七个所述第一阀口和第八个所述第一阀口流入所述电池冷却机构。
  16. 根据权利要求13所述的热管理方法,其特征在于,
    所述方法还包括以下步骤:
    控制所述第一多通阀中第三个所述第一阀口与第八个所述第一阀口连通,所述电机冷却机构中的所述冷却液依次经第一个所述第一阀口、第九个所述第一阀口、第三个所述第一阀口和第八个所述第一阀口流入所述电池冷却机构;
    控制所述第一多通阀中第七个所述第一阀口与第四个所述第一阀口连通,流出所述热交换器的所述冷却液依次经第七个所述第一阀口和第四个所述第一阀口流入所述电机冷却机构。
  17. 根据权利要求13-16任一项所述的热管理方法,其特征在于,
    所述方法还包括以下步骤:
    流出所述电池冷却机构的部分所述冷却液流入控制器,流出所述控制器的所述冷却液流入所述热交换器。
  18. 根据权利要求17所述的热管理方法,其特征在于,
    所述方法还包括以下步骤:
    控制所述第一多通阀中第七个所述第一阀口与第八个所述第一阀口连通,所述电池冷却机构中的所述冷却液经所述控制器流入至所述热交换器,流出所述热交换器的所述冷却液经第七个所述第一阀口和第八个所述第一阀口流入所述电池冷却机构。
  19. 根据权利要求13所述的热管理方法,其特征在于,
    所述方法还包括以下步骤:
    控制第二多通阀中第一个所述第二阀口与第二个所述第二阀口连通,其中,第一个所述第二阀口与加热器的出液口连通,第二个所述第二阀口与暖风芯体的进液口连通,所述暖风芯体的出液口与所述加热器的进液口连通;
    流出所述加热器的所述冷却液依次经过第一个所述第二阀口、第二个所述第二阀口和所述暖风芯体流入所述加热器。
PCT/CN2022/092868 2021-09-27 2022-05-13 热管理系统、车辆及热管理方法 WO2023045355A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023580893A JP2024526620A (ja) 2021-09-27 2022-05-13 熱管理システム、車両及び熱管理方法
EP22871416.8A EP4344913A1 (en) 2021-09-27 2022-05-13 Thermal management system, vehicle, and thermal management method
KR1020237045393A KR20240015685A (ko) 2021-09-27 2022-05-13 열관리 시스템, 차량 및 열관리 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111138847.2 2021-09-27
CN202111138847.2A CN113829832A (zh) 2021-09-27 2021-09-27 热管理系统及车辆
CN202111137071.2 2021-09-27
CN202111137071.2A CN113829831B (zh) 2021-09-27 2021-09-27 热管理系统、车辆及热管理方法

Publications (1)

Publication Number Publication Date
WO2023045355A1 true WO2023045355A1 (zh) 2023-03-30

Family

ID=85719269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092868 WO2023045355A1 (zh) 2021-09-27 2022-05-13 热管理系统、车辆及热管理方法

Country Status (5)

Country Link
US (1) US20240149639A1 (zh)
EP (1) EP4344913A1 (zh)
JP (1) JP2024526620A (zh)
KR (1) KR20240015685A (zh)
WO (1) WO2023045355A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116968543A (zh) * 2023-09-22 2023-10-31 豫新汽车热管理科技有限公司 一种集成式的热管理集成模块
CN117293449A (zh) * 2023-11-27 2023-12-26 豫新汽车热管理科技有限公司 一种储能机柜用冷媒直冷直热式热管理系统及其分流结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118705775A (zh) * 2024-08-30 2024-09-27 豫新汽车热管理科技有限公司 一种车用r290制冷剂的封装热系统总成

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210053415A1 (en) * 2019-08-19 2021-02-25 Hyundai Motor Company Integrated thermal management module for vehicle
WO2021048095A1 (de) * 2019-09-09 2021-03-18 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Kompaktmodul zur temperierung eines kraftfahrzeugs
CN113276630A (zh) * 2021-06-24 2021-08-20 浙江吉利控股集团有限公司 一种热管理集成模块和电动车辆
CN113276628A (zh) * 2021-06-16 2021-08-20 广州小鹏新能源汽车有限公司 热管理集成单元、热管理系统和车辆
CN113829832A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 热管理系统及车辆
CN113829857A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 电动车辆及其热管理器
CN113829831A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 热管理系统、车辆及热管理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210053415A1 (en) * 2019-08-19 2021-02-25 Hyundai Motor Company Integrated thermal management module for vehicle
WO2021048095A1 (de) * 2019-09-09 2021-03-18 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Kompaktmodul zur temperierung eines kraftfahrzeugs
CN113276628A (zh) * 2021-06-16 2021-08-20 广州小鹏新能源汽车有限公司 热管理集成单元、热管理系统和车辆
CN113276630A (zh) * 2021-06-24 2021-08-20 浙江吉利控股集团有限公司 一种热管理集成模块和电动车辆
CN113829832A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 热管理系统及车辆
CN113829857A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 电动车辆及其热管理器
CN113829831A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 热管理系统、车辆及热管理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116968543A (zh) * 2023-09-22 2023-10-31 豫新汽车热管理科技有限公司 一种集成式的热管理集成模块
CN116968543B (zh) * 2023-09-22 2024-02-02 豫新汽车热管理科技有限公司 一种集成式的热管理集成模块
CN117293449A (zh) * 2023-11-27 2023-12-26 豫新汽车热管理科技有限公司 一种储能机柜用冷媒直冷直热式热管理系统及其分流结构

Also Published As

Publication number Publication date
US20240149639A1 (en) 2024-05-09
JP2024526620A (ja) 2024-07-19
KR20240015685A (ko) 2024-02-05
EP4344913A1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2023045355A1 (zh) 热管理系统、车辆及热管理方法
JP7427771B2 (ja) 自動車用熱管理システムおよび自動車用熱管理システムに基づく熱管理方法
CN113829832A (zh) 热管理系统及车辆
CN106314066B (zh) 一种车用能源管理系统及其控制方法
WO2020108532A1 (zh) 车辆热管理系统及其控制方法、车辆
CN102575567B (zh) 用于混合动力车辆的冷却装置
CN107097664A (zh) 一种智能化多回路电动汽车热管理系统
JP6097016B2 (ja) 可変コア型熱交換器ユニット
CN113829831B (zh) 热管理系统、车辆及热管理方法
WO2008015954A1 (fr) Échangeur thermique complexe et système d'échangeur thermique complexe
JP2006082805A (ja) 自動車用熱交換装置
WO2022105352A1 (zh) 多负载热泵系统的冷却液冷热源切换装置
CN213228245U (zh) 车辆热管理系统和车辆
CN215621268U (zh) 一种热泵系统及车辆
CN208170778U (zh) 电动汽车热管理系统
WO2023045358A1 (zh) 电动车辆及其热管理器
CN115107457A (zh) 基于多通阀的热管理系统及电动装置
CN114851802B (zh) 一种集成式热管理装置及系统
EP2495118A2 (en) Vehicle air conditioner
CN114290874A (zh) 一种集成式膨胀水壶、热管理系统及电动汽车
WO2024037101A1 (zh) 混合动力发动机热管理系统、控制方法、车辆
CN112158054A (zh) 车辆热管理系统和车辆
CN112060865A (zh) 电动汽车的热管理系统
CN115742670A (zh) 一种用于车辆的热管理系统及车辆
CN219236755U (zh) 车辆的热管理系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580893

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20237045393

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022871416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871416

Country of ref document: EP

Effective date: 20231229

NENP Non-entry into the national phase

Ref country code: DE