WO2023045344A1 - 一种充电控制方法、装置及多电源供电设备、变频器 - Google Patents

一种充电控制方法、装置及多电源供电设备、变频器 Download PDF

Info

Publication number
WO2023045344A1
WO2023045344A1 PCT/CN2022/091647 CN2022091647W WO2023045344A1 WO 2023045344 A1 WO2023045344 A1 WO 2023045344A1 CN 2022091647 W CN2022091647 W CN 2022091647W WO 2023045344 A1 WO2023045344 A1 WO 2023045344A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
charging
bus
preset
voltage value
Prior art date
Application number
PCT/CN2022/091647
Other languages
English (en)
French (fr)
Inventor
黄猛
徐志国
姜颖异
杨勇越
付鹏亮
李光一
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023045344A1 publication Critical patent/WO2023045344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present application relates to the technical field of electronic power, in particular, to a charging control method and device, multi-power supply equipment, and a frequency converter.
  • multi-power supply equipment such as AC-DC hybrid power supply frequency converter
  • the DC power supply charges the capacitor of the busbar, which has a large impact on the DC busbar, and is prone to generate a large inrush current, which affects the stability of the components in the equipment.
  • the embodiment of the present application provides a charging control method and device, multi-power supply equipment, and a storage medium to solve the problem of directly using a DC power supply to charge the bus capacitor before using a DC power supply in the prior art, which has a large impact on the DC bus. question.
  • the present application provides a charging control method, which is applied to multi-power supply equipment, and the multi-power supply equipment is connected to a DC power supply and an AC power supply.
  • the method includes:
  • the power supply mode includes a DC power supply mode and an AC power supply mode
  • control the on-state of the DC power supply and the AC power supply After determining that the multi-power supply equipment is about to enter the DC power supply mode, control the on-state of the DC power supply and the AC power supply, control the DC bus voltage of the multi-power supply equipment to gradually charge to the target voltage value, and enter the DC power supply mode.
  • controlling the on-state of the DC power supply and the AC power supply, controlling the DC bus voltage of the multi-power supply device to gradually charge to the target voltage value, and entering the DC power supply mode include:
  • the DC power supply is controlled to be turned on to charge the bus capacitor, and when the DC bus voltage rises to the target voltage value, the DC power supply mode is entered.
  • the method also includes:
  • the AC power supply is controlled to stop charging the bus capacitor, and at the same time, an AC charging failure is prompted.
  • the judging whether a charging failure occurs according to the AC charging speed includes:
  • the method further includes include:
  • the method further includes:
  • the AC power source is triggered to be switched on to perform AC charging for the bus capacitor.
  • the method further includes:
  • control the AC power supply After determining that the multi-power supply device is about to enter the AC power supply mode, control the AC power supply to charge the DC bus capacitor of the multi-power supply device, control the DC bus voltage to gradually increase to a preset threshold, and enter the AC power supply mode.
  • the first time node includes a first preset duration, and the voltage value corresponding to the first time node includes a first threshold;
  • judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the first time node specifically includes: when the AC charging lasts for the first preset time, judging whether the DC Whether the bus voltage is greater than or equal to the first threshold.
  • the time node further includes a second preset duration, and the voltage value corresponding to the time node includes a second threshold;
  • the method further includes:
  • the judging whether a charging fault occurs according to the DC charging speed includes:
  • the second time node includes a third preset duration, and the voltage value corresponding to the second time node includes a third threshold;
  • judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the second time node specifically includes: when the DC charging lasts for the third preset time, judging whether the DC Whether the bus voltage is greater than or equal to the third threshold.
  • the time node further includes a fourth preset duration, and the voltage value corresponding to the time node includes a fourth threshold;
  • the method further includes:
  • the present application also provides a charging control device, which includes a determination module and an execution module.
  • a determining module configured to determine a power supply mode that the multi-power supply device is about to enter; wherein, the power supply mode includes a DC power supply mode and an AC power supply mode;
  • An execution module configured to control the on-state of the DC power supply and the AC power supply after determining that the multi-power supply equipment is about to enter the DC power supply mode, control the DC bus voltage of the multi-power supply equipment to gradually charge to a target voltage value, and enter DC power supply mode.
  • the present application also provides a multi-power supply device connected to a DC power supply and an AC power supply, the multi-power supply device is used to implement the above-mentioned charging control method, and the multi-power supply device further includes the above-mentioned charging control device.
  • the multi-power supply equipment is an AC/DC hybrid power supply frequency converter.
  • the present application also provides a non-volatile computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the above charging control method is implemented.
  • FIG. 1 is a structural diagram of a multi-power supply system composed of multiple power supply equipment according to an embodiment of the present application
  • FIG. 2 is a flowchart of a charging control method according to an embodiment of the present application
  • FIG. 3 is a flowchart of a charging control method according to another embodiment of the present application.
  • FIG. 4 is a structural diagram of a charging control device according to an embodiment of the present application.
  • FIG. 5 is a structural diagram of a charging control device according to another embodiment of the present application.
  • Fig. 6 is a structural diagram of a power supply system composed of an AC-DC hybrid power supply frequency converter according to an embodiment of the present application.
  • first, second, and third may be used to describe preset durations in this embodiment of the application, these preset durations should not be limited to these terms. These terms are used only to distinguish the different preset durations.
  • the first preset duration may also be referred to as the second preset duration, and similarly, the second preset duration may also be referred to as the first preset duration.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” could be interpreted as “when determined” or “in response to the determination” or “when detected (the stated condition or event) )” or “in response to detection of (a stated condition or event)”.
  • FIG. 1 is a structural diagram of a multi-power supply system composed of multiple power supply equipment according to an embodiment of the present application.
  • the multi-power supply system includes an AC power supply 2, a DC power supply 3, and a rectifier A circuit 41, the rectification circuit 41 includes insulated gate bipolar transistors IGBT1-IGBT6, and an inverter circuit 42, the inverter circuit 42 includes insulated gate bipolar transistors IGBT7-IGBT12.
  • the rectifier circuit 41 and the inverter circuit 42 are connected through two DC buses, and a plurality of bus capacitors C are connected in parallel between the two DC buses, and a third resistor R3 and a fourth resistor R4 are connected in parallel in series, and the AC power supply 2 and
  • the rectifier circuit 41 is provided with a third switch SW3, which is used to control the on-off of the AC power supply 2.
  • the DC power supply 3 is connected to the above two DC buses through the fourth switch SW4, and the DC power supply is controlled by closing or opening the fourth switch SW4. On-off of power supply 3.
  • the above multi-power supply system also includes a charging and rectifying circuit 5, the output end of the charging and rectifying circuit circuit 5 is provided with a first charging resistor R1 and a second charging resistor R2, the charging and rectifying circuit 5, the first charging resistor R1 and the second charging resistor R2, It is set between the AC power source 2 and the DC bus.
  • the charging and rectifying circuit 5 is used to convert the alternating current provided by the alternating current power supply 2 into direct current, and charge the bus capacitance C between the two direct current buses through the first charging resistor R1 and the second charging resistor R2, so that the direct current bus voltage reaches a predetermined Set the threshold.
  • a first switch SW1 is provided between the charging and rectifying circuit 5 and the AC power source 2.
  • the DC power source 3 is directly connected to the DC bus through wires, and also connected to the DC bus through the first charging resistor R1 and the second charging resistor R2.
  • the DC power supply 3 is used to charge the DC bus before stabilizing the power supply, so that the voltage of the DC bus reaches a target voltage value, wherein the preset threshold is smaller than the target voltage value.
  • One end of the inverter circuit 42 is connected to the rectifier circuit 41 , and the other end is connected to the motor.
  • the bus capacitor C needs to be charged. If the DC power supply is directly used to charge the bus capacitor C, the impact on the DC bus will be large, and a large inrush current will easily be generated, which will affect the stability of the components in the equipment.
  • FIG. 2 is a flow chart of the charging control method according to the embodiment of the present application. As shown in Figure 2, the charging control method includes steps S101 and S102.
  • S101 Determine a power supply mode to be entered by the multi-power supply device; wherein, the power supply mode includes a DC power supply mode and an AC power supply mode.
  • the multi-power supply equipment such as an AC-DC hybrid power supply frequency converter
  • the multi-power supply equipment such as an AC-DC hybrid power supply frequency converter
  • the bus voltage is gradually charged to the target voltage value, and then enters the DC power supply mode, which can avoid directly using the DC power supply to charge the bus capacitor, thereby avoiding a large inrush current and improving the stability of the components in the equipment.
  • step S102 specifically includes: after determining that the multi-power supply device is about to enter the DC power supply mode, control the AC power supply Turn on to charge the bus capacitor; when the DC bus voltage rises to the preset threshold, control the AC power supply to disconnect, control the DC power supply to charge the bus capacitor; when the DC bus voltage rises to the target voltage value, enter DC power supply mode.
  • the above-mentioned charging control method controls the AC power supply after the AC power is turned on to charge the bus capacitor, and when the DC bus voltage rises to a preset threshold, the AC power is controlled.
  • judging whether a charging failure occurs according to the AC charging speed includes: when the time reaches the preset first time node, judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the first time node; The corresponding relationship between the time node and the voltage value; if yes, it is determined that no charging fault has occurred; if not, it is determined that a charging fault has occurred.
  • the first preset duration T1 for example, 10s
  • the first threshold corresponds to the time point of the first preset duration T1 when no charging fault occurs.
  • the voltage value such as 100V, can be measured through experiments); if no, it is determined that a fault has occurred; if yes, it is determined that no charging fault has occurred, and when the AC charging lasts for a second preset time T2 (for example, 20s), it is determined that the DC Whether the bus voltage is greater than or equal to the second threshold (the second threshold is the voltage value corresponding to the second preset duration T2 time point in the case of no charging failure, for example, 480V, which can be measured through experiments), and if so, it is determined that it is not A charging fault occurs, and if not, it is determined that a fault has occurred.
  • T2 for example, 20s
  • the above charging control method after controlling the DC power supply to charge the bus capacitor, is compared with the current DC bus voltage When rising to the target voltage value, before entering the DC power supply mode, it also includes: judging whether a charging fault occurs according to the DC charging speed; if not, controlling the DC power supply to continue charging the bus capacitor; The above-mentioned bus capacitor is charged, and at the same time, it prompts the DC charging fault.
  • judging whether a charging fault occurs according to the DC charging speed includes: when the time reaches the second node of the preset time, judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the second time node; wherein, different times are preset The corresponding relationship between nodes and voltage values; if yes, it is determined that no charging fault has occurred; if not, it is determined that a charging fault has occurred. For example, after the DC charging lasts for the third preset duration T3 (for example, 3s), it is judged whether the DC bus voltage is greater than or equal to the third threshold (the third threshold corresponds to the time point of the third preset duration T3 when no charging fault occurs).
  • T3 for example, 3s
  • the voltage value such as 600V, can be measured through experiments); if not, it is determined that a fault has occurred; if yes, it is determined that no charging fault has occurred, and when the DC charging lasts for a fourth preset time T4 (for example, 10s), it is determined that the DC Whether the bus voltage is greater than or equal to the fourth threshold (the fourth threshold is the voltage value corresponding to the fourth preset duration T4 time point in the case of no charging failure, such as 700V, which can be measured through experiments), and if so, it is determined that it is not A charging fault occurs, and if not, it is determined that a fault has occurred.
  • the fourth threshold is the voltage value corresponding to the fourth preset duration T4 time point in the case of no charging failure, such as 700V, which can be measured through experiments
  • the AC power supply may also fail.
  • the above charging control method also includes: judging whether the AC power supply is faulty; if so, directly controlling the DC power supply to connect to DC charging for the bus capacitors until the DC bus voltage rises to the target voltage value; if If not, the AC power is triggered to be connected to AC charge the bus capacitor.
  • the DC bus capacitor is charged by DC power supply, and the DC power supply is used to directly charge the bus capacitor to determine whether a DC bus voltage occurs.
  • the conditions for a charging failure are different.
  • the DC power supply is used to directly charge the bus capacitor, the corresponding relationship between different time nodes and voltage values is different.
  • the fifth threshold is the voltage value corresponding to the T5 time point when no charging failure occurs, such as 100V, which can be measured through experiments); if no, it is determined that a failure has occurred; if yes, it is determined that no charging failure has occurred , after the DC charging lasts for the sixth preset time T6 (for example, 40s), determine whether the DC bus voltage is greater than or equal to the sixth threshold (the sixth threshold is the voltage value corresponding to the time point T6 when no charging fault occurs, for example, 700V , can be measured through experiments), if yes, it is determined that no charging fault has occurred, and if not, it is determined that a fault has occurred.
  • the charging control method further includes: after determining the power supply mode that the multi-power supply device is about to enter the AC power supply mode, controlling the AC power supply to charge the DC bus capacitor of the multi-power supply device , so that the DC bus voltage gradually increases to the preset threshold, and then enters the AC power supply mode.
  • FIG. 3 is a flowchart of a charging control method according to another embodiment of the present application. As shown in FIG. 3, the method includes:
  • step S3. Determine whether the system is about to enter the DC power supply mode or the AC power supply mode. If the system is about to enter the DC power supply mode, perform step S4. If it is about to enter the AC power supply mode, perform step S17.
  • step S4 detecting whether the voltage fluctuation amplitude frequency of the AC power supply is normal, if not, execute step S5, and if yes, execute step S6.
  • the first switch SW1 is closed for charging.
  • step S5 after judging that the AC power supply is faulty, return to step S2.
  • step S6 control the AC power to be switched on, and perform AC charging for the DC bus, and further enter step S7.
  • S7 specifically includes, when the time reaches the preset time node, judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the time node; wherein, the corresponding relationship between different time nodes and voltage values is preset; if yes, then It is determined that a charging failure has not occurred; if not, it is determined that a charging failure has occurred. For example, after the AC charging lasts for a first preset time period T1 (for example, 10s), it is determined whether the DC bus voltage is greater than or equal to the first threshold (the first threshold is the voltage value corresponding to the time point T1 when no charging failure occurs, for example 100V, can be measured by experiment). If not, it is determined that a fault has occurred, and step S8 is executed.
  • T1 for example, 10s
  • step S9 the voltage value corresponding to the time point, such as 480V, can be measured through experiments, if yes, it is determined that no charging fault has occurred, and step S9 is performed; if not, it is determined that a fault has occurred, and step S8 is performed.
  • step S10 judging whether the DC bus voltage reaches a preset threshold, if yes, execute step S11, if not, return to step S9.
  • step S11 the AC charging is completed, the AC power is cut off, the DC power is controlled to be connected, and the DC charging stage is entered, and step S12 is further executed.
  • the DC bus voltage reaches the preset threshold (for example, 500V)
  • the first switch SW1 is turned off
  • the second switch SW2 is closed
  • the DC power supply is controlled
  • step S12 is further executed.
  • the DC power supply is mainly powered by a voltage of 750V. After entering the DC charging stage, the system starts to count again.
  • S12 specifically includes: when the time reaches the preset time node, judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the time node; wherein, there are preset correspondences between different time nodes and voltage values; if yes, then It is determined that a charging failure has not occurred; if not, it is determined that a charging failure has occurred.
  • the third threshold is the voltage value corresponding to the time point T3 when no charging failure occurs, for example 600V, which can be measured through experiments
  • step S14 is performed
  • the fourth threshold is the voltage value corresponding to the T4 time point when no charging failure occurs, such as 700V, which can be measured through experiments
  • step S14 control the DC power supply to continue charging the bus capacitor, and execute step S15.
  • step S15 judging whether the DC bus voltage reaches the target voltage value, if yes, execute step S16, if not, return to step S14.
  • the system closes the fourth switch SW4, connects the DC power supply, and turns off the second switch SW2.
  • step S17 detecting whether the voltage fluctuation amplitude frequency of the AC power supply is normal, if not, execute step S18, and if yes, execute step S19.
  • step S18 after judging that the AC power supply is faulty, return to step S2.
  • the first switch SW1 is closed for charging.
  • S20 specifically includes: when the time reaches the preset time node, judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the time node; wherein, there are preset correspondences between different time nodes and voltage values; if yes, then If it is determined that there is no charging failure, execute step S22; if not, determine that there is a charging failure, and execute step S21.
  • step S21 is further executed; if yes, it is determined that no charging fault has occurred, and when the AC charging lasts for a second preset time length T2 (for example, 20s), it is determined that the DC Whether the bus voltage is greater than or equal to the second threshold (the second threshold is the voltage value corresponding to the T2 time point when no charging fault occurs, such as 480V, which can be measured through experiments), if yes, then it is determined that no charging fault occurs and further Execute step S22, if not, then determine that a fault has occurred and further execute step S21.
  • T1 for example, 10s
  • step S23 judging whether the DC bus voltage reaches the preset threshold, if yes, execute step S24, if not, return to step S22.
  • the DC bus voltage reaches a preset threshold (for example, 500V), it indicates that the AC charging of the system is completed, the first switch SW1 is turned off, the third switch SW3 is closed, and the AC power supply is controlled to supply power to the load.
  • a preset threshold for example, 500V
  • the charging control method of this embodiment realizes the flexibility of the charging process when the DC power supply is supplied, improves the safety and reliability of the AC and DC power supply system, and on the other hand reduces the impact on the components, improves the service life of the components, and reduces the The human and material cost of frequent replacement of components is reduced.
  • FIG. 4 is a structural diagram of the charging control device according to the embodiment of the present application. As shown in FIG. 4 , the device includes a determination module 10 and an execution module 20 .
  • the determination module 10 is configured to determine the power supply mode that the multi-power supply device is about to enter, wherein the power supply mode includes a DC power supply mode and an AC power supply mode;
  • the execution module 20 is configured to control the on-state of the DC power supply and the AC power supply after determining that the multi-power supply equipment is about to enter the DC power supply mode, and control the DC bus voltage of the multi-power supply equipment to gradually charge to a target voltage value, Enter DC power supply mode.
  • the execution module 20 determines that the multi-power supply equipment is about to enter the DC power supply mode, it controls the on-state of the DC power supply and the AC power supply, so that the DC bus voltage of the multi-power supply equipment can be charged gradually. Raise to the target voltage value, and then enter the DC power supply mode, which can avoid directly using the DC power supply to charge the bus capacitor, thus avoiding the generation of large inrush current, and can improve the stability of the components in the equipment.
  • FIG. 5 is a structural diagram of a charging control device according to another embodiment of the present application.
  • the execution module 20 includes a first execution unit 201 and a second execution unit 202 .
  • the first execution unit 201 is configured to control the AC power to be turned on to charge the bus capacitor after determining that the multi-power supply device is about to enter the DC power supply mode; when the DC bus voltage rises to a preset threshold, control the AC power to be turned off.
  • the second execution unit 202 is configured to control the DC power to be turned on to charge the bus capacitor after the AC power is cut off, and enter the DC power supply mode when the DC bus voltage rises to the target voltage value.
  • the above-mentioned first execution unit 201 is also used to: after controlling the AC power supply to charge the bus capacitor, and when the DC bus voltage rises, When it reaches the preset threshold, before controlling the disconnection of the AC power supply, it is judged according to the AC charging speed whether a charging failure occurs; if not, the AC power supply is controlled to continue charging the bus capacitor; if yes, the AC power supply is controlled to Stop charging the bus capacitor, and at the same time prompt an AC charging fault.
  • judging whether a charging fault occurs according to the AC charging speed includes: when the time reaches a preset first time node, judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the first time node; wherein, the preset There is a corresponding relationship between different time nodes and voltage values; if yes, it is determined that no charging fault has occurred; if not, it is determined that a charging fault has occurred.
  • the first threshold is the voltage value corresponding to the time point T1 when no charging failure occurs, for example 100V, which can be measured through experiments
  • the second preset time T2 for example, 20s
  • the second threshold is the voltage value corresponding to the T2 time point when no charging failure occurs, such as 480V, which can be measured through experiments
  • the above-mentioned second execution unit 202 is also used to: control the DC power supply to charge the bus capacitor Afterwards, when the DC bus voltage rises to the target voltage value, before entering the DC power supply mode, judge whether a charging failure occurs according to the DC charging speed; if not, then control the DC power supply to continue charging the bus capacitor; if yes , the DC power supply is controlled to stop charging the bus capacitor, and at the same time, a DC charging failure is prompted.
  • judging whether a charging fault occurs according to the DC charging speed includes: when the time reaches a preset second time node, judging whether the DC bus voltage is greater than or equal to the voltage value corresponding to the second time node; wherein, the preset The corresponding relationship between different time nodes and voltage values; if yes, it is determined that no charging fault has occurred; if not, it is determined that a charging fault has occurred.
  • the third threshold is the voltage value corresponding to the time point T3 when no charging failure occurs, for example 600V, which can be measured through experiments
  • the DC charging lasts for a fourth preset time T4 for example, 10s
  • the fourth threshold is the voltage value corresponding to the T4 time point when no charging failure occurs, such as 700V, which can be measured through experiments
  • the fourth threshold is the voltage value corresponding to the T4 time point when no charging failure occurs, such as 700V, which can be measured through experiments
  • the AC power supply may also fail.
  • the above-mentioned first execution unit 201 is also used to: determine that the multi-power supply device is about to enter the DC power supply mode Afterwards, before controlling the AC power supply to be connected to charge the busbar capacitor, it is judged whether the AC power supply fails; , until the DC bus voltage rises to the target voltage value; if not, triggering the AC power supply to perform AC charging for the bus capacitor.
  • the second execution unit 202 The conditions for determining whether a DC charging fault occurs are different.
  • the DC power supply is used to directly charge the bus capacitor, the corresponding relationship between different time nodes and voltage values is different.
  • the fifth threshold is the voltage value corresponding to the T5 time point when no charging failure occurs, such as 100V, which can be measured through experiments); if no, it is determined that a failure has occurred; if yes, it is determined that no charging failure has occurred , after the DC charging lasts for the sixth preset time T6 (for example, 40s), determine whether the DC bus voltage is greater than or equal to the sixth threshold (the sixth threshold is the voltage value corresponding to the time point T6 when no charging fault occurs, for example, 700V , can be measured through experiments), if yes, it is determined that no charging fault has occurred, and if not, it is determined that a fault has occurred.
  • the above-mentioned embodiments are applicable to the situation that multi-power supply equipment, such as AC-DC hybrid power supply inverter, is about to enter the DC power supply mode.
  • multi-power supply equipment such as AC-DC hybrid power supply inverter
  • the above charging control device further includes: a control module 30, configured to control the AC power supply to charge the DC bus capacitor of the multi-power supply equipment after determining that the multi-power supply equipment is about to enter the AC power supply mode, so that the DC bus voltage gradually increases. High to a preset threshold, then enters AC power supply mode.
  • the multi-power supply equipment is a frequency converter, specifically an AC-DC hybrid power supply frequency converter.
  • 6 is a structural diagram of a power supply system composed of an AC-DC hybrid power supply inverter according to an embodiment of the present application.
  • the multi-power supply system includes: an AC power supply 2, a DC power supply 3, a frequency converter 4 and a motor, and the frequency converter 4 Including the rectification circuit 41 and the inverter circuit 42, the frequency converter 4 also includes the charging control device 1 in the above-mentioned embodiment.
  • the charging control device 1 establishes a communication connection with the AC power source 2 and the DC power source 3, which is used to realize the charging switching of the AC and DC power sources, avoiding large inrush currents, and improving the stability of components in the equipment. sex.
  • An embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the charging control method in the above-mentioned embodiments is implemented.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Abstract

本申请公开一种充电控制方法及充电控制装置(1)、多电源供电设备,和存储介质。所述充电控制方法应用于所述多电源供电设备,所述多电源供电设备连接直流电源(2)和交流电源(3),该充电控制方法包括:确定所述多电源供电设备即将进入的供电模式,所述供电模式包括直流供电模式和交流供电模式;在确定所述多电源供电设备即将进入直流供电模式后,控制直流电源(3)和交流电源(2)的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至目标电压值,进入直流供电模式。

Description

一种充电控制方法、装置及多电源供电设备、变频器
相关申请的交叉引用
本申请要求于2021年9月24日提交中国专利局,申请号为202111122846.9,申请名称为“一种充电控制方法、装置及多电源供电设备、变频器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电子电力技术领域,具体而言,涉及一种充电控制方法、装置及多电源供电设备、变频器。
背景技术
目前多电源供电设备(例如交直流混合供电变频器),在稳定供电之前,需要通过供电电源对直流母线电容进行充电,使直流母线电压达到目标电压值,在采用直流电源供电之前,如果直接采用直流电源对母线电容充电,对直流母线冲击较大,容易产生较大的冲击电流,影响设备中的元器件的稳定性。
针对现有技术中采用直流电源供电之前直接采用直流电源对母线电容充电,对直流母线冲击较大的问题,目前尚未提出有效的解决方案。
申请内容
本申请实施例中提供一种充电控制方法及装置、多电源供电设备、和存储介质,以解决现有技术中采用直流电源供电之前直接采用直流电源对母线电容充电,对直流母线冲击较大的问题。
为解决上述技术问题,本申请提供了一种充电控制方法,应用于多电源供电设备,所述多电源供电设备连接直流电源和交流电源,所述方法包括:
确定所述多电源供电设备即将进入的供电模式,其中,所述供电模式包括直流供电模式和交流供电模式;
在确定所述多电源供电设备即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至目标电压值,进入直流供电模式。
在一些实施例中,所述控制直流电源和交流电源的接通状态,控制所述多电源供电设备 的直流母线电压逐步充电至所述目标电压值,进入所述直流供电模式,包括:
控制所述交流电源接通,为所述母线电容充电,当所述直流母线电压升高至预设阈值时,控制所述交流电源断开;
控制所述直流电源接通,为所述母线电容充电,当所述直流母线电压升高至所述目标电压值时,进入所述直流供电模式。
在一些实施例中,在所述控制所述交流电源接通,为所述母线电容充电后,与所述当直流母线电压升高至所述预设阈值时,控制所述交流电源断开之前,所述方法还包括:
根据交流充电速度判断是否发生充电故障;
如果否,则控制所述交流电源继续为所述母线电容充电;
如果是,则控制所述交流电源停止为所述母线电容充电,同时提示交流充电故障。
在一些实施例中,所述根据交流充电速度判断是否发生充电故障,包括:
当时间达到预设的第一时间节点后,判断直流母线电压是否大于或等于所述第一时间节点对应的电压值,其中,预设有不同时间节点与电压值的对应关系;
如果否,则判定发生充电故障;
如果是,则判定未发生充电故障。
在一些实施例中,在所述控制所述直流电源接通,为所述母线电容充电后,与所述当直流母线电压升高至目标电压值时,进入直流供电模式之前,所述方法还包括:
根据直流充电速度判断是否发生充电故障;
如果否,则控制所述直流电源继续为所述母线电容充电;
如果是,则控制所述直流电源停止为所述母线电容充电,同时提示直流充电故障。
在一些实施例中,在所述在确定多电源供电设备即将进入直流供电模式后,与在控制所述交流电源接通,为所述母线电容充电之前,所述方法还包括:
判断所述交流电源是否发生故障;
如果是,则直接控制所述直流电源接通,为所述母线电容进行直流充电,直至所述直流母线电压升高至所述目标电压值;
如果否,则触发所述交流电源接通,为所述母线电容进行交流充电。
在一些实施例中,在确定所述多电源供电设备即将进入的供电模式后,所述方法还包括:
在确定所述多电源供电设备即将进入交流供电模式后,控制交流电源为所述多电源供电设备的直流母线电容充电,控制直流母线电压逐步升高至预设阈值,进入交流供电模式。
在一些实施例中,所述第一时间节点包括第一预设时长,所述第一时间节点对应的电压值包括第一阈值;
所述当时间达到预设的第一时间节点后,判断直流母线电压是否大于或等于所述第一时 间节点对应的电压值,具体包括:当交流充电持续所述第一预设时长,判断直流母线电压是否大于或等于所述第一阈值。
在一些实施例中,所述时间节点还包括第二预设时长所述时间节点对应的电压值包括第二阈值;和
在所述判定未发生充电故障之后,所述方法进一步包括:
当交流充电持续所述第二预设时长,判断直流母线电压是否大于或等于所述第二阈值;
如果否,则判定发生充电故障;
如果是,则判定未发生充电故障。
在一些实施例中,所述根据直流充电速度判断是否发生充电故障,包括:
当时间达到预设的第二时间节点后,判断直流母线电压是否大于或等于第二时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;
如果否,则判定发生充电故障;
如果是,则判定未发生充电故障。
在一些实施例中,所述第二时间节点包括第三预设时长,所述第二时间节点对应的电压值包括第三阈值;
所述当时间达到预设的第二时间节点后,判断直流母线电压是否大于或等于所述第二时间节点对应的电压值,具体包括:当直流充电持续所述第三预设时长,判断直流母线电压是否大于或等于所述第三阈值。
在一些实施例中,所述时间节点还包括第四预设时长,所述时间节点对应的电压值包括第四阈值;和
在所述判定未发生充电故障之后,所述方法进一步包括:
当直流充电持续所述第四预设时长,判断直流母线电压是否大于或等于所述第四阈值;
如果否,则判定发生充电故障;
如果是,则判定未发生充电故障。
本申请还提供一种充电控制装置,该装置包括确定模块和执行模块。
确定模块,确定所述多电源供电设备即将进入的供电模式;其中,所述供电模式包括直流供电模式和交流供电模式;
执行模块,用于在确定所述多电源供电设备即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至目标电压值,进入直流供电模式。
本申请还提供一种多电源供电设备,连接直流电源和交流电源,所述多电源供电设备用于实施上述充电控制方法,所述多电源供电设备还包括上述充电控制装置。
在一些实施例中,所述多电源供电设备为交直流混合供电变频器。
本申请还提供一种非易失计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述充电控制方法。
应用本申请的技术方案,在确定交直流混合供电变频器即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压通过充电逐步升高至目标电压值,之后进入直流供电模式,能够避免直接使用直流电源为母线电容充电,因而避免产生较大的冲击电流,能够提高设备中的元器件的稳定性。
附图说明
图1为根据本申请一实施例的多电源供电设备构成的多电源供电系统的结构图;
图2为根据本申请一实施例的充电控制方法的流程图;
图3为根据本申请另一实施例的充电控制方法的流程图;
图4为根据本申请一实施例的充电控制装置的结构图;
图5为根据本申请另一实施例的充电控制装置的结构图;
图6为根据本申请一实施例的交直流混合供电变频器构成的供电系统的结构图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述预设时长,但这些预设时长不应限于这些术语。这些术语仅用来将不同预设时长区分开。例如,在不脱离本申请实施例范围的情况下,第一预设时长也可以被称为第二预设时长,类似地,第二预设时长也可以被称为第一预设时长。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本申请的可选实施例。
本申请的一实施例提供一种充电控制方法,应用于多电源供电设备,交直流混合供电变频器是一种多电源供电设备,本实施例以交直流混合供电变频器为例详细说明本申请,图1为根据本申请实施例的一种多电源供电设备构成的多电源供电系统的结构图,如图1所示,所述多电源供电系统包括交流电源2、直流电源3,还包括整流电路41,所述整流电路41包括绝缘栅双极晶体管IGBT1-IGBT6,以及逆变电路42,所述逆变电路42包括绝缘栅双极晶体管IGBT7-IGBT12。整流电路41和逆变电路42通过两条直流母线连接,两条直流母线之间并接有多个母线电容C,以及并接有串联的第三电阻R3和第四电阻R4,交流电源2与整流电路41之间设置有第三开关SW3,用于控制交流电源2的通断,直流电源3通过第四开关SW4接入上述两条直流母线,通过第四开关SW4的闭合或断开控制直流电源3的通断。
上述多电源供电系统还包括充电整流电路5,充电整流电路回路5的输出端设置第一充电电阻R1和第二充电电阻R2,充电整流电路5、第一充电电阻R1和第二充电电阻R2,设置在交流电源2和直流母线之间。充电整流电路5用于将交流电源2提供的交流电转换为直流电,通过第一充电电阻R1和第二充电电阻R2对两条直流母线之间的母线电容C进行充电,以使直流母线电压达到预设阈值。充电整流电路5与交流电源2之间设置有第一开关SW1,直流电源3通过导线直接连接至直流母线,还通过第一充电电阻R1和第二充电电阻R2连接直流母线。直流电源3用于在稳定供电之前,对直流母线进行充电,以使直流母线电压达到目标电压值,其中,预设阈值小于目标电压值。逆变电路42一端连接整流电路41,另一端连接电机。
上述多电源供电系统中,在采用直流电源3供电之前,需要对母线电容C进行充电。如果直接采用直流电源对母线电容C充电,对直流母线冲击较大,容易产生较大的冲击电流,影响设备中的元器件的稳定性。
针对上述问题,本实施例提供一种充电控制方法,图2为根据本申请实施例的充电控制 方法的流程图,如图2所示,该充电控制方法包括步骤S101和S102。
S101,确定多电源供电设备即将进入的供电模式;其中,供电模式包括直流供电模式和交流供电模式。
S102,在确定多电源供电设备即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制多电源供电设备的直流母线电压逐步充电至目标电压值,进入直流供电模式。
本实施例的充电控制方法,在确定多电源供电设备,例如交直流混合供电变频器,即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至目标电压值,再进入直流供电模式,能够避免直接使用直流电源为母线电容充电,因而避免产生较大的冲击电流,提高设备中的元器件的稳定性。
本申请的另一实施例提供另一种充电控制方法,为了控制直流母线电压逐步充电至目标电压值,上述步骤S102,具体包括:在确定多电源供电设备即将进入直流供电模式后,控制交流电源接通,为母线电容充电;当直流母线电压升高至预设阈值时,控制交流电源断开,控制直流电源接通,为母线电容充电;当直流母线电压升高至目标电压值时,进入直流供电模式。
为了及时发现充电故障,保证充电过程的顺利进行,提高充电效率,上述充电控制方法,在控制交流电源接通,为母线电容充电后,与当直流母线电压升高至预设阈值时,控制交流电源断开之前,还包括:根据交流充电速度判断是否发生充电故障;如果否,则控制交流电源继续为母线电容充电;如果是,则控制交流电源停止为母线电容充电,同时提示交流充电故障。具体地,根据交流充电速度判断是否发生充电故障,包括:当时间达到预设的第一时间节点后,判断直流母线电压是否大于或等于第一时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;如果是,则判定未发生充电故障;如果否,则判定发生充电故障。例如,当交流充电持续第一预设时长T1(例如10s)后,判断直流母线电压是否大于或等于第一阈值(第一阈值为未发生充电故障的情况下第一预设时长T1时间点对应的电压值,例如100V,可以通过实验测得);如果否,则判定发生故障;如果是,则判定未发生充电故障,当交流充电持续第二预设时长T2(例如20s)后,判断直流母线电压是否大于或等于第二阈值(第二阈值为未发生充电故障的情况下第二预设时长T2时间点对应的电压值,例如480V,可以通过实验测得),如果是,则判定未发生充电故障,如果否,则判定发生故障。
类似的,在采用直流电源对母线电容进行充电时,也可以根据充电速度判断是否发生充电故障,因此,上述充电控制方法,在控制直流电源接通,为母线电容充电后,与当直流母线电压升高至目标电压值时,进入直流供电模式之前,还包括:根据直流充电速度判断是否发生充电故障;如果否,则控制直流电源继续为母线电容充电;如果是,则控制直流电源停止为所述母线电容充电,同时提示直流充电故障。具体地,根据直流充电速度判断是否发生 充电故障包括:当时间达到预设的时间第二节点后,判断直流母线电压是否大于或等于第二时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;如果是,则判定未发生充电故障;如果否,则判定发生充电故障。例如,当直流充电持续第三预设时长T3(例如3s)后,判断直流母线电压是否大于或等于第三阈值(第三阈值为未发生充电故障的情况下第三预设时长T3时间点对应的电压值,例如600V,可以通过实验测得);如果否,则判定发生故障;如果是,则判定未发生充电故障,当直流充电持续第四预设时长T4(例如10s)后,判断直流母线电压是否大于或等于第四阈值(第四阈值为未发生充电故障的情况下第四预设时长T4时间点对应的电压值,例如700V,可以通过实验测得),如果是,则判定未发生充电故障,如果否,则判定发生故障。需要说明的是,接通直流电源后,充电时间重新开始累积,上述第三预设时长T3和第四预设时长T4均为从直流电源接通时刻开始计时得到的。
在实际应用中,交流电源也可能发生故障,为了尽早发现故障,避免在交流电源发生故障的情况下进行充电,在确定多电源供电设备即将进入直流供电模式后,与在控制交流电源接通,为母线电容充电之前,上述充电控制方法还包括:判断交流电源是否发生故障;如果是,则直接控制直流电源接通,为母线电容进行直流充电,直至直流母线电压升高至目标电压值;如果否,则触发交流电源接通,为母线电容进行交流充电。
需要说明的是,在先通过交流电源充电,将直流母线电压充电至预设阈值后,再通过直流电源对母线电容进行直流充电,与直接采用直流电源对母线电容进行直流充电,判定是否发生直流充电故障的条件不同。在直接采用直流电源对母线电容进行直流充电时,不同时间节点与电压值的对应关系不同,例如,当直流充电持续第五预设时长T5(例如5s)后,判断直流母线电压是否大于或等于第五阈值(第五阈值为未发生充电故障的情况下T5时间点对应的电压值,例如100V,可以通过实验测得);如果否,则判定发生故障;如果是,则判定未发生充电故障,当直流充电持续第六预设时长T6(例如40s)后,判断直流母线电压是否大于或等于第六阈值(第六阈值为未发生充电故障的情况下T6时间点对应的电压值,例如700V,可以通过实验测得),如果是,则判定未发生充电故障,如果否,则判定发生故障。
上述实施例适用于确定多电源供电设备,例如交直流混合供电变频器,即将进入直流供电模式的情况,在实际应用中,还存在多电源供电设备,例如交直流混合供电变频器,即将进入交流供电模式的情况。因此,在确定多电源供电设备即将进入的供电模式后,上述充电控制方法还包括:在确定多电源供电设备即将进入交流供电模式后,控制交流电源为所述多电源供电设备的直流母线电容充电,使直流母线电压逐步升高至预设阈值,之后进入交流供电模式。
图3为根据本申请另一实施例的充电控制方法的流程图,如图3所示,该方法包括:
S1,检测供电系统是否发生故障,如果是,则执行步骤S2,如果否,则执行步骤S3。
S2,进入故障处理程序。
S3,判断系统即将进入直流供电模式还是交流供电模式,如果即将进直流供电模式,则执行步骤S4,如果即将进入交流供电模式,则执行步骤S17。
S4,检测交流电源的电压波动幅值频率是否正常,如果否,则执行步骤S5,如果是,则执行步骤S6。
在具体实施时,检测到交流电源的电压波动幅值频率正常后,闭合第一开关SW1充电。
S5,判定交流电源故障后,返回步骤S2。
S6,控制交流电源接通,为直流母线进行交流充电,进一步进入步骤S7。
S7,根据交流充电速度判断是否发生充电故障,如果是,则执行步骤S8,如果否,则执行步骤S9。
S7具体包括,当时间达到预设的时间节点后,判断直流母线电压是否大于或等于所述时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;如果是,则判定未发生充电故障;如果否,则判定发生充电故障。例如,当交流充电持续第一预设时长T1(例如10s)后,判断直流母线电压是否大于或等于第一阈值(第一阈值为未发生充电故障的情况下T1时间点对应的电压值,例如100V,可以通过实验测得)。如果否,则判定发生故障,执行步骤S8。如果是,则判定未发生充电故障,当交流充电持续第二预设时长T2(例如20s)后,判断直流母线电压是否大于或等于第二阈值(第二阈值为未发生充电故障的情况下T2时间点对应的电压值,例如480V,可以通过实验测得),如果是,则判定未发生充电故障,执行步骤S9,如果否,则判定发生故障,执行步骤S8。
S8,控制交流电源停止为母线电容充电,同时提示交流充电故障。
S9,控制交流电源继续为母线电容充电。
S10,判断直流母线电压是否达到预设阈值,如果是,则执行步骤S11,如果否,则返回步骤S9。
S11,交流充电完成,切断交流电源,控制直流电源接入,进入直流充电阶段,进一步执行步骤S12。
具体地,直流母线电压达到预设阈值(例如500V),表明系统交流充电完成,断开第一开关SW1,闭合第二开关SW2,控制直流电源接入,进一步执行步骤S12。在本实施例中,直流电源以750V电压供电为主,进入直流充电阶段后,系统开始重新计时。
S12,根据直流充电速度判断是否发生充电故障;如果是,则执行步骤S13,如果否,则执行步骤S14。
S12具体包括:当时间达到预设的时间节点后,判断直流母线电压是否大于或等于所述时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;如果是,则判定 未发生充电故障;如果否,则判定发生充电故障。例如,当直流充电持续第三预设时长T3(例如3s)后,判断直流母线电压是否大于或等于第三阈值(第三阈值为未发生充电故障的情况下T3时间点对应的电压值,例如600V,可以通过实验测得),如果否,则判定发生故障,执行步骤S14;如果是,则判定未发生充电故障,当直流充电持续第四预设时长T4(例如10s)后,判断直流母线电压是否大于或等于第四阈值(第四阈值为未发生充电故障的情况下T4时间点对应的电压值,例如700V,可以通过实验测得),如果是,则判定未发生充电故障,执行步骤S13,如果否,则判定发生故障,执行步骤S14。需要说明的是,接通直流电源后,充电时间重新开始累积,上述第三预设时长T3和第四预设时长T4均为从直流电源接通时刻开始计时得到的。
S13,控制直流电源停止为母线电容充电,同时提示直流充电故障。
S14,控制直流电源继续为母线电容充电,执行步骤S15。
S15,判断直流母线电压是否达到目标电压值,如果是,则执行步骤S16,如果否,则返回步骤S14。
S16,直流充电完成,控制直流电源为电机供电。
例如当直流母线电压达到直流电源供电电压的98%时,代表直流充电完成,系统闭合第四开关SW4,直流电源接入,断开第二开关SW2。
S17,检测交流电源的电压波动幅值频率是否正常,如果否,则执行步骤S18,如果是,则执行步骤S19。
S18,判定交流电源故障后,返回步骤S2。
S19,控制交流电源接通,为直流母线进行交流充电。
在具体实施时,检测到交流电源的电压波动幅值频率正常后,闭合第一开关SW1充电。
S20,根据交流充电速度判断是否发生充电故障;如果是,则执行步骤S21,如果否,则执行步骤S22。
S20具体包括:当时间达到预设的时间节点后,判断直流母线电压是否大于或等于所述时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;如果是,则判定未发生充电故障,执行步骤S22;如果否,则判定发生充电故障,执行步骤S21。例如,当交流充电持续第一预设时长T1(例如10s)后,判断直流母线电压是否大于或等于第一阈值(第一阈值为未发生充电故障的情况下T1时间点对应的电压值,例如100V,可以通过实验测得);如果否,则判定发生故障并进一步执行步骤S21;如果是,则判定未发生充电故障,当交流充电持续第二预设时长T2(例如20s)后,判断直流母线电压是否大于或等于第二阈值(第二阈值为未发生充电故障的情况下T2时间点对应的电压值,例如480V,可以通过实验测得),如果是,则判定未发生充电故障并进一步执行步骤S22,如果否,则判定发生故障并进一步 执行步骤S21。
S21,控制交流电源停止为母线电容充电,同时提示交流充电故障。
S22,控制所述交流电源继续为母线电容充电,执行步骤S23。
S23,判断直流母线电压是否达到预设阈值,如果是,则执行步骤S24,如果否,则返回步骤S22。
S24,交流充电完成,交流电源等待负载运行。
直流母线电压达到预设阈值(例如500V),表明系统交流充电完成,断开第一开关SW1,闭合第三开关SW3,控制交流电源为负载供电。
需要说明的是,在本申请的实施例中,以上步骤S2-S24并不是都必然执行,而是依据其他步骤的限定来执行。
本实施例的充电控制方法,一方面该实现直流电源供电时充电过程的柔性过度,提高交直流供电上电系统安全可靠程度,另一方面减少对元器件的影响,提高元器件使用寿命,降低了频繁更换元器件的人力物力成本。
本申请一实施例提供一种充电控制装置,图4为根据本申请实施例的充电控制装置的结构图,如图4所示,该装置包括确定模块10和执行模块20。
确定模块10,确定多电源供电设备即将进入的供电模式,其中,供电模式包括直流供电模式和交流供电模式;
执行模块20,用于在确定所述多电源供电设备即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至目标电压值,进入直流供电模式。
本实施例的充电控制装置,执行模块20在确定多电源供电设备即将进入直流供电模式后,控制直流电源和交流电源的接通状态,以使所述多电源供电设备的直流母线电压通过充电逐步升高至目标电压值,之后进入直流供电模式,能够避免直接使用直流电源为母线电容充电,因而避免产生较大的冲击电流,能够提高设备中的元器件的稳定性。
本实施例提供另一种充电控制装置,图5为根据本申请另一实施例的充电控制装置的结构图,如图5所示,执行模块20包括第一执行单元201和第二执行单元202。第一执行单元201,用于在确定多电源供电设备即将进入直流供电模式后,控制交流电源接通,为母线电容充电;当直流母线电压升高至预设阈值时,控制交流电源断开。第二执行单元202,用于在交流电源断开后,控制直流电源接通,为母线电容充电,当直流母线电压升高至所述目标电压值时,进入直流供电模式。
为了及时发现充电故障,保证充电过程的顺利进行,提高充电效率,上述第一执行单元201还用于:在控制所述交流电源接通,为所述母线电容充电后,与当直流母线电压升高至 预设阈值时,控制交流电源断开之前,根据交流充电速度判断是否发生充电故障;如果否,则控制所述交流电源继续为所述母线电容充电;如果是,则控制所述交流电源停止为所述母线电容充电,同时提示交流充电故障。具体地,根据交流充电速度判断是否发生充电故障,包括:当时间达到预设的第一时间节点后,判断直流母线电压是否大于或等于所述第一时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;如果是,则判定未发生充电故障;如果否,则判定发生充电故障。例如,当交流充电持续第一预设时长T1(例如10s)后,判断直流母线电压是否大于或等于第一阈值(第一阈值为未发生充电故障的情况下T1时间点对应的电压值,例如100V,可以通过实验测得);如果否,则判定发生故障;如果是,则判定未发生充电故障,当交流充电持续第二预设时长T2(例如20s)后,判断直流母线电压是否大于或等于第二阈值(第二阈值为未发生充电故障的情况下T2时间点对应的电压值,例如480V,可以通过实验测得),如果是,则判定未发生充电故障,如果否,则判定发生故障。
类似的,在采用直流电源对母线电容进行充电时,也可以根据充电速度判断是否发生充电故障,因此,上述第二执行单元202还用于:在控制直流电源接通,为所述母线电容充电后,与当直流母线电压升高至目标电压值时,进入直流供电模式之前,根据直流充电速度判断是否发生充电故障;如果否,则控制所述直流电源继续为所述母线电容充电;如果是,则控制所述直流电源停止为所述母线电容充电,同时提示直流充电故障。具体地,根据直流充电速度判断是否发生充电故障包括:当时间达到预设的第二时间节点后,判断直流母线电压是否大于或等于所述第二时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;如果是,则判定未发生充电故障;如果否,则判定发生充电故障。例如,当直流充电持续第三预设时长T3(例如3s)后,判断直流母线电压是否大于或等于第三阈值(第三阈值为未发生充电故障的情况下T3时间点对应的电压值,例如600V,可以通过实验测得),如果否,则判定发生故障;如果是,则判定未发生充电故障,当直流充电持续第四预设时长T4(例如10s)后,判断直流母线电压是否大于或等于第四阈值(第四阈值为未发生充电故障的情况下T4时间点对应的电压值,例如700V,可以通过实验测得),如果是,则判定未发生充电故障,如果否,则判定发生故障。需要说明的是,接通直流电源后,充电时间重新开始累积,上述第三预设时长T3和第四预设时长T4均为从直流电源接通时刻开始计时得到的。
在实际应用中,交流电源也可能发生故障,为了尽早发现故障,避免在交流电源发生故障的情况下进行充电,上述第一执行单元201还用于:在确定多电源供电设备即将进入直流供电模式后,与在控制所述交流电源接通,为所述母线电容充电之前,判断所述交流电源是否发生故障;如果是,则直接控制所述直流电源接通,为所述母线电容进行直流充电,直至所述直流母线电压升高至所述目标电压值;如果否,则触发所述交流电源接通,为所述母线 电容进行交流充电。
需要说明的是,在先通过交流电源充电,将直流母线电压充电至预设阈值后,再通过直流电源对母线电容进行直流充电,与直接采用直流电源对母线电容进行直流充电,第二执行单元202判定是否发生直流充电故障的条件不同。在直接采用直流电源对母线电容进行直流充电时,不同时间节点与电压值的对应关系不同,例如,当直流充电持续第五预设时长T5(例如5s)后,判断直流母线电压是否大于或等于第五阈值(第五阈值为未发生充电故障的情况下T5时间点对应的电压值,例如100V,可以通过实验测得);如果否,则判定发生故障;如果是,则判定未发生充电故障,当直流充电持续第六预设时长T6(例如40s)后,判断直流母线电压是否大于或等于第六阈值(第六阈值为未发生充电故障的情况下T6时间点对应的电压值,例如700V,可以通过实验测得),如果是,则判定未发生充电故障,如果否,则判定发生故障。
上述实施例适用于确定多电源供电设备,例如交直流混合供电变频器,即将进入直流供电模式的情况,在实际应用中,还存在多电源供电设备,例如交直流混合供电变频器,即将进入交流供电模式的情况下。因此,上述充电控制装置还包括:控制模块30,用于在确定所述多电源供电设备即将进入交流供电模式后,控制交流电源为多电源供电设备的直流母线电容充电,使直流母线电压逐步升高至预设阈值,之后进入交流供电模式。
本申请一实施例提供一种多电源供电设备,用于采用上述实施例中的充电控制方法。在本实施例中,该多电源供电设备为变频器,具体为交直流混合供电变频器。图6为根据本申请一实施例的交直流混合供电变频器构成的供电系统的结构图,该多电源供电系统包括:交流电源2、直流电源3、变频器4和电机,所述变频器4包括整流电路41和逆变电路42,变频器4还包括上述实施例中的充电控制装置1。
如图6所示,充电控制装置1与交流电源2、直流电源3均建立通讯连接,用于实现交直流电源的充电切换,避免产生较大的冲击电流,能够提高设备中的元器件的稳定性。
本申请的一实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述实施例中的充电控制方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软 件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种充电控制方法,应用于多电源供电设备,所述多电源供电设备连接直流电源和交流电源,其特征在于,所述方法包括:
    确定所述多电源供电设备即将进入的供电模式,其中,所述供电模式包括直流供电模式和交流供电模式;
    在确定所述多电源供电设备即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至目标电压值,进入直流供电模式。
  2. 根据权利要求1所述的方法,其特征在于,所述控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至所述目标电压值,进入所述直流供电模式,包括:
    控制所述交流电源接通,为所述母线电容充电,当所述直流母线电压升高至预设阈值时,控制所述交流电源断开;
    控制所述直流电源接通,为所述母线电容充电,当所述直流母线电压升高至所述目标电压值时,进入所述直流供电模式。
  3. 根据权利要求2所述的方法,其特征在于,在所述控制所述交流电源接通,为所述母线电容充电后,与所述当直流母线电压升高至所述预设阈值时,控制所述交流电源断开之前,所述方法还包括:
    根据交流充电速度判断是否发生充电故障;
    如果否,则控制所述交流电源继续为所述母线电容充电;
    如果是,则控制所述交流电源停止为所述母线电容充电,同时提示交流充电故障。
  4. 根据权利要求3所述的方法,其特征在于,所述根据交流充电速度判断是否发生充电故障,包括:
    当时间达到预设的第一时间节点后,判断直流母线电压是否大于或等于所述第一时间节点对应的电压值,其中,预设有不同时间节点与电压值的对应关系;
    如果否,则判定发生充电故障;
    如果是,则判定未发生充电故障。
  5. 根据权利要求2所述的方法,其特征在于,在所述控制所述直流电源接通,为所述母线电容充电后,与所述当直流母线电压升高至目标电压值时,进入直流供电模式之前,所述方法还包括:
    根据直流充电速度判断是否发生充电故障;
    如果否,则控制所述直流电源继续为所述母线电容充电;
    如果是,则控制所述直流电源停止为所述母线电容充电,同时提示直流充电故障。
  6. 根据权利要求2所述的方法,其特征在于,在所述在确定多电源供电设备即将进入直流供电模式后,与在控制所述交流电源接通,为所述母线电容充电之前,所述方法还包括:
    判断所述交流电源是否发生故障;
    如果是,则直接控制所述直流电源接通,为所述母线电容进行直流充电,直至所述直流母线电压升高至所述目标电压值;
    如果否,则触发所述交流电源接通,为所述母线电容进行交流充电。
  7. 根据权利要求1所述的方法,其特征在于,在确定所述多电源供电设备即将进入的供电模式后,所述方法还包括:
    在确定所述多电源供电设备即将进入交流供电模式后,控制交流电源为所述多电源供电设备的直流母线电容充电,控制直流母线电压逐步升高至预设阈值,进入交流供电模式。
  8. 根据权利要求4所述的方法,其特征在于,所述第一时间节点包括第一预设时长(T1),所述第一时间节点对应的电压值包括第一阈值;
    所述当时间达到预设的第一时间节点后,判断直流母线电压是否大于或等于所述第一时间节点对应的电压值,具体包括:当交流充电持续所述第一预设时长(T1),判断直流母线电压是否大于或等于所述第一阈值。
  9. 根据权利要求8所述的方法,其特征在于,所述时间节点还包括第二预设时长(T2)所述时间节点对应的电压值包括第二阈值;和
    在所述判定未发生充电故障之后,所述方法进一步包括:
    当交流充电持续所述第二预设时长(T2),判断直流母线电压是否大于或等于所述第二阈值;
    如果否,则判定发生充电故障;
    如果是,则判定未发生充电故障。
  10. 根据权利要求5所述的方法,其特征在于,所述根据直流充电速度判断是否发生充电故障,包括:
    当时间达到预设的第二时间节点后,判断直流母线电压是否大于或等于第二时间节点对应的电压值;其中,预设有不同时间节点与电压值的对应关系;
    如果否,则判定发生充电故障;
    如果是,则判定未发生充电故障。
  11. 根据权利要求10所述的方法,其特征在于,所述第二时间节点包括第三预设时长(T3),所述第二时间节点对应的电压值包括第三阈值;
    所述当时间达到预设的第二时间节点后,判断直流母线电压是否大于或等于所述第二时间节点对应的电压值,具体包括:当直流充电持续所述第三预设时长(T3),判断直流母线电 压是否大于或等于所述第三阈值。
  12. 根据权利要求11所述的方法,其特征在于,所述时间节点还包括第四预设时长(T4)所述时间节点对应的电压值包括第四阈值;和
    在所述判定未发生充电故障之后,所述方法进一步包括:
    当直流充电持续所述第四预设时长(T4),判断直流母线电压是否大于或等于所述第四阈值;
    如果否,则判定发生充电故障;
    如果是,则判定未发生充电故障。
  13. 一种充电控制装置,其特征在于,所述装置包括:
    确定模块,确定所述多电源供电设备即将进入的供电模式;其中,所述供电模式包括直流供电模式和交流供电模式;
    执行模块,用于在确定所述多电源供电设备即将进入直流供电模式后,控制直流电源和交流电源的接通状态,控制所述多电源供电设备的直流母线电压逐步充电至目标电压值,进入直流供电模式。
  14. 一种多电源供电设备,连接直流电源和交流电源,其特征在于,所述多电源供电设备用于实施权利要求1至12中任一项所述的充电控制方法,所述多电源供电设备还包括权利要求13所述的充电控制装置。
  15. 根据权利要求14所述的多电源供电设备,所述多电源供电设备为交直流混合供电变频器。
  16. 一种非易失计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1至12中任一项所述的方法。
PCT/CN2022/091647 2021-09-24 2022-05-09 一种充电控制方法、装置及多电源供电设备、变频器 WO2023045344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111122846.9 2021-09-24
CN202111122846.9A CN113783266B (zh) 2021-09-24 2021-09-24 一种充电控制方法、装置及多电源供电设备、变频器

Publications (1)

Publication Number Publication Date
WO2023045344A1 true WO2023045344A1 (zh) 2023-03-30

Family

ID=78853197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091647 WO2023045344A1 (zh) 2021-09-24 2022-05-09 一种充电控制方法、装置及多电源供电设备、变频器

Country Status (2)

Country Link
CN (1) CN113783266B (zh)
WO (1) WO2023045344A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783266B (zh) * 2021-09-24 2024-03-19 珠海格力电器股份有限公司 一种充电控制方法、装置及多电源供电设备、变频器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135020A (zh) * 2014-07-23 2014-11-05 深圳市汇川技术股份有限公司 储能变流器直流侧电池接入控制系统及方法
JP2019180131A (ja) * 2018-03-30 2019-10-17 東芝三菱電機産業システム株式会社 予備充電制御装置および無停電電源装置
CN112531780A (zh) * 2020-12-07 2021-03-19 珠海格力电器股份有限公司 一种充电控制电路、方法及光储变频系统
CN113783266A (zh) * 2021-09-24 2021-12-10 珠海格力电器股份有限公司 一种充电控制方法、装置及多电源供电设备、变频器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299648B2 (en) * 2010-03-04 2012-10-30 Toshiba International Corporation UPS at the recovery mode from the power failure
CN111301181A (zh) * 2020-03-09 2020-06-19 中车青岛四方车辆研究所有限公司 直流电源系统及其控制方法、列车及其进出无网区方法
CN111555638A (zh) * 2020-04-07 2020-08-18 华为技术有限公司 一种电源变换器、充电机、充电系统及方法
CN112271800A (zh) * 2020-10-16 2021-01-26 珠海格力电器股份有限公司 一种无充电回路的供电电路及电源管理系统
CN112467794A (zh) * 2020-11-25 2021-03-09 珠海格力电器股份有限公司 光伏空调供电系统及其供电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135020A (zh) * 2014-07-23 2014-11-05 深圳市汇川技术股份有限公司 储能变流器直流侧电池接入控制系统及方法
JP2019180131A (ja) * 2018-03-30 2019-10-17 東芝三菱電機産業システム株式会社 予備充電制御装置および無停電電源装置
CN112531780A (zh) * 2020-12-07 2021-03-19 珠海格力电器股份有限公司 一种充电控制电路、方法及光储变频系统
CN113783266A (zh) * 2021-09-24 2021-12-10 珠海格力电器股份有限公司 一种充电控制方法、装置及多电源供电设备、变频器

Also Published As

Publication number Publication date
CN113783266B (zh) 2024-03-19
CN113783266A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN108847769B (zh) 一种三电平boost装置及其控制方法
US9065277B1 (en) Battery backup system for uninterrupted power supply
JP6153491B2 (ja) 電力供給装置
US11201564B2 (en) Multi-level inverter including at least four switches and at least four resistors
WO2014011259A1 (en) Circuit and method for providing hold-up time in a dc-dc converter
JP5697401B2 (ja) 電源回路
WO2023045344A1 (zh) 一种充电控制方法、装置及多电源供电设备、变频器
US20230283189A1 (en) Soft Start Circuit and Power Supply Circuit
WO2015101006A1 (zh) 整流器及电力设备
US20190237994A1 (en) Uninterruptible power supply
WO2021218366A1 (zh) Dc-dc变换电路、储能柜及其控制方法
US10536088B2 (en) Switched mode power supply controller
CN112865577B (zh) 一种混合式多电平变流器(hcc)的预充电电路及其控制方法
WO2023056772A1 (zh) 电源切换方法、装置及多电源供电系统
KR101331924B1 (ko) 배터리 충전/재생 장치
JP2004112929A (ja) 交流−直流変換装置
CN110661426A (zh) 电力系统和用于检测过载的方法
CN210201543U (zh) 用于提升可靠性的充电电路及光伏空调设备
JP7375707B2 (ja) スイッチング素子の駆動回路
CN112383217B (zh) 一种直流母线充电电路及其控制方法
JP3664630B2 (ja) 電源装置
KR102029964B1 (ko) Gis 외함 유도 전류를 이용한 배터리 충전기
JP6462637B2 (ja) 沿面放電素子駆動装置および沿面放電素子駆動方法
US20230353040A1 (en) Power conversion control device, power conversion system, power conversion control method, and recording medium
JP2004343850A (ja) 充電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871405

Country of ref document: EP

Kind code of ref document: A1