WO2021218366A1 - Dc-dc变换电路、储能柜及其控制方法 - Google Patents

Dc-dc变换电路、储能柜及其控制方法 Download PDF

Info

Publication number
WO2021218366A1
WO2021218366A1 PCT/CN2021/078796 CN2021078796W WO2021218366A1 WO 2021218366 A1 WO2021218366 A1 WO 2021218366A1 CN 2021078796 W CN2021078796 W CN 2021078796W WO 2021218366 A1 WO2021218366 A1 WO 2021218366A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
tube
switching tube
bus
battery
Prior art date
Application number
PCT/CN2021/078796
Other languages
English (en)
French (fr)
Inventor
党培育
姜颖异
郭泳颖
黄颂儒
陈宁宁
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021218366A1 publication Critical patent/WO2021218366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present disclosure relates to a DC-DC conversion circuit, an energy storage cabinet and a control method thereof.
  • the selected energy storage cabinet has its own energy storage DC/DC circuit.
  • the hot-swappable function is required when the energy storage cabinet is directly connected to the high-voltage DC bus.
  • the extreme voltage and current cause damage to the components in the DC/DC circuit, the normal operation of the system cannot be maintained, which affects the user experience and the overall operating efficiency of the system.
  • the embodiment of the present disclosure provides a DC-DC conversion circuit, which is arranged and arranged between a battery and a DC bus, and a second switch, a second switch and a second switch are arranged in sequence between the positive terminal of the DC bus and the positive terminal of the battery.
  • a switch tube, an inductor and a resistor, the first end of the resistor is connected to the inductor; a first switch arranged between the second end of the resistor and the positive terminal of the DC bus; and the first A second switching tube connected in series with a switching tube; a capacitor provided at both ends of the first switching tube and the second switching tube in parallel; and a third switching tube, the third switching tube being connected in parallel with the first switching tube, It is used to turn on when the first switch tube fails.
  • the drain of the third switching tube is connected between the drain of the first switching tube and the positive terminal of the DC bus, and the source of the third switching tube is connected to the first switching tube.
  • the source of a switch tube is connected to the drain of the third switching tube.
  • the circuit further includes: a fourth switch tube, configured to be turned on when the second switch tube fails, instead of the second switch tube, the drain of the fourth switch tube is connected Between the source of the third switching tube and the source of the first switching tube, the source of the fourth switching tube is connected to the source of the second switching tube and the negative electrode of the DC bus Between terminals.
  • a fourth switch tube configured to be turned on when the second switch tube fails, instead of the second switch tube, the drain of the fourth switch tube is connected Between the source of the third switching tube and the source of the first switching tube, the source of the fourth switching tube is connected to the source of the second switching tube and the negative electrode of the DC bus Between terminals.
  • the circuit further includes: a fifth switch tube for turning off when the first switch tube and the second switch tube are not faulty, the source of the fifth switch tube It is connected between the source of the first switch and the drain of the second switch, and the drain is connected between the drain of the fourth switch and the source of the third switch.
  • the circuit further includes: a third switch connected between the second end of the inductor and the positive terminal of the battery, the first end of the resistor and the second end of the inductor Connected; a fourth switch, connected between the second end of the resistor and the positive terminal of the battery; and a fifth switch, connected between the source of the second switch tube and the negative terminal of the battery , The negative terminal of the battery is connected to the negative terminal of the DC bus.
  • the embodiment of the present disclosure also provides a DC-DC conversion circuit, which is arranged between the battery and the DC bus, and includes: a second switch and a second switch sequentially arranged between the positive terminal of the DC bus and the positive terminal of the battery.
  • An embodiment of the present disclosure further provides an energy storage cabinet, including a battery, a controller, and an auxiliary power supply, and the energy storage cabinet further includes the DC-DC conversion circuit of any one of the foregoing embodiments.
  • the controller is configured to collect the voltage of the DC bus and the voltage across the capacitor; control the first switch according to the voltage of the DC bus and the voltage across the capacitor And the on-off of the second switch.
  • the DC-DC conversion circuit further includes: a third switch connected between the second end of the inductor and the positive terminal of the battery, and the first end of the resistor is connected to the inductor.
  • the fourth switch is connected between the second end of the resistor and the positive terminal of the battery; and the fifth switch is connected to the source of the second switch tube and the battery Between the negative terminals, the negative terminal of the battery is connected to the negative terminal of the DC bus; the controller is also used to control the on and off of the third switch, the fourth switch, and the fifth switch.
  • the auxiliary power supply is used to supply power to the controller after taking power from the DC bus.
  • the embodiment of the present disclosure also provides an energy storage cabinet control method, which is applied to the energy storage cabinet of any one of the above embodiments.
  • the method includes: judging whether the first switching tube is faulty; if so, controlling the third switching tube to conduct Pass, instead of the first switch tube.
  • the method before determining whether the first switch tube is faulty, the method further includes: after the positive terminal of the DC bus and the negative terminal of the DC bus of the energy storage cabinet are connected to the DC bus, controlling the The first switch is closed to turn on the first switch tube; the voltage of the DC bus and the voltage across the capacitor are collected, and the first switch is controlled according to the voltage of the DC bus and the voltage across the capacitor. The on-off of the switch and the second switch.
  • controlling the on-off of the first switch and the second switch according to the DC bus voltage and the voltage across the capacitor includes: determining that the voltage across the capacitor is different from the DC voltage. Whether the ratio of the voltage of the bus bar exceeds the preset value; if it is, the first switch is controlled to be turned off, and the second switch is controlled to be turned on.
  • the method further includes: judging whether the battery needs to be charged or discharged; if the battery needs to be discharged, controlling the fifth switch and the third switch to close; if the battery needs to be charged, The fifth switch and the fourth switch are controlled to be closed; wherein, the third switch is connected between the second end of the inductor and the positive terminal of the battery, and the first end of the resistor is connected to the first end of the inductor. Two-terminal connection; the fourth switch is connected between the second end of the resistor and the positive terminal of the battery; the fifth switch is connected between the source of the second switch tube and the negative electrode of the battery Between terminals.
  • the method further includes: judging whether the second switching tube is faulty; if so, controlling the fourth switching tube to be turned on instead of the second switching tube, The drain of the fourth switching tube is connected between the source of the third switching tube and the source of the first switching tube, and the source of the fourth switching tube is connected to the second switching tube. Between the source and the negative terminal of the DC bus.
  • the method further includes: if the first switch tube and the second switch tube are not faulty, controlling the fifth switch tube to turn off; if If the first switching tube or the second switching tube fails, the fifth switching tube is controlled to be turned on; wherein, the source of the fifth switching tube is connected to the source of the first switching tube and the Between the drains of the second switching tube, the drain is connected to the drain of the fourth switching tube and the drain is connected to the source of the third switching tube.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method of any one of the above embodiments is implemented.
  • Fig. 2 is a structural diagram of a DC-DC conversion circuit according to other embodiments of the present disclosure.
  • Fig. 3 is a structural diagram of a DC-DC conversion circuit according to further embodiments of the present disclosure.
  • FIG. 4 is a structural diagram of an energy storage cabinet according to some embodiments of the present disclosure.
  • Fig. 5 is a flowchart of a control method of an energy storage cabinet according to some embodiments of the present disclosure
  • Fig. 6 is a flowchart of a control method of an energy storage cabinet according to other embodiments of the present disclosure.
  • first, second, third, etc. may be used to describe the switching tubes in the embodiments of the present disclosure, these switching tubes should not be limited to these terms. These terms are only used to distinguish different switches.
  • the first switching tube may also be referred to as the second switching tube, and similarly, the second switching tube may also be referred to as the first switching tube.
  • the words “if” and “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the phrase “if determined” or “if detected (statement or event)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event) )” or “in response to detection (statement or event)”.
  • FIG. 1 is a structural diagram of a DC-DC conversion circuit according to some embodiments of the present disclosure. As shown in FIG. The second switch tube Q2, the inductor L, the capacitor C, the first switch K1, the second switch K2 and the resistor R.
  • the second switch K2, the first switch tube Q1, the inductor L, and the resistor R are sequentially arranged between the positive terminal Ubus+ of the DC bus and the positive terminal of the battery, and the first end of the resistor R is connected to the inductor L.
  • the first switch K1 is connected between the second end of the resistor R and the DC bus positive terminal Ubus+, and the second switch tube Q2 is connected in series with the first switch tube Q1.
  • the capacitor C is arranged in parallel at both ends of the first switching tube Q1 and the second switching tube Q2. In some embodiments, one of the two ends of the capacitor C is connected between the first switch tube Q1 and the second switch K2, and the other end of the two ends of the capacitor C is connected between the second switch tube Q1 and the negative electrode of the DC bus. Between terminals Ubus-.
  • the source of the first switching tube Q1 is connected to the drain of the second switching tube Q2, and the first end of the inductor L is connected between the first switching tube Q1 and the second switching tube Q2.
  • the second end of the inductor L is connected to the positive terminal Ubus+ of the DC bus through the first and second ends of the resistor R;
  • the first switch K1 is connected to the second end of the resistor R and the DC bus
  • the second switch K2 is connected between the drain of the first switching tube Q1 and the positive terminal Ubus+ of the DC bus; the negative terminal of the battery, the source of the second switching tube Q2 ,
  • the negative terminal Ubus- of the DC bus is connected;
  • the capacitor C is connected between the drain of the first switching tube Q1 and the source of the second switching tube Q2.
  • the contact of the first switch K1 is controlled to be closed.
  • the voltage output by the positive terminal Ubus+ of the DC bus passes through the first switch K1, the resistance R, the inductance L, the first switch Q1, and the capacitor C in turn.
  • the negative terminal Ubus- of the DC bus forms a path, so that the voltage at both ends of the capacitor C rises slowly, and the capacitor C is charged.
  • the preset condition that is, the ratio of the voltage across the capacitor C to the DC bus voltage exceeds the preset threshold, such as 96%
  • the second switch K2 is controlled to close, and the first switch is controlled at the same time.
  • Switch K1 is open.
  • the conduction state of the first switching tube Q1 and the second switching tube Q2 is controlled according to the charging and discharging status of the battery. For example, if the battery needs to be discharged, the freewheeling diode in the first switching tube Q1 is controlled to conduct, and the second switching tube Q2 is controlled to conduct intermittently according to the preset duty cycle to achieve boost discharge; if the battery needs to be charged, control The freewheeling diode in the second switching tube Q2 is turned on, and the first switching tube is controlled to be turned on intermittently according to the preset duty ratio to realize the step-down charging.
  • the first switching tube Q1 may be damaged. Once the first switching tube Q1 is damaged, the system will malfunction and cannot operate, which will affect the user experience and the overall operating efficiency of the system. .
  • the circuit also includes: a third switching tube Q3, and the third switching tube Q3 is connected in parallel with the first switching tube Q1.
  • the drain of the third switch Q3 is connected between the drain of the first switch Q1 and the positive terminal Ubus+ of the DC bus, and the source of the third switch Q3 The source electrode of the first switch tube Q1 is connected.
  • the DC-DC conversion circuit of some embodiments of the present disclosure is provided with a standby third switching tube Q3, which is connected in parallel with the first switching tube Q1 in the circuit.
  • the standby third switching tube Q3 is activated, which can ensure the normal operation of the entire system when the first switching tube Q1 of the DC-DC conversion circuit is damaged.
  • FIG. 2 is a structural diagram of a DC-DC conversion circuit according to other embodiments of the present disclosure.
  • the second switching tube Q2 In actual use, when extreme voltages and currents pass through the entire circuit, the second switching tube Q2 is also at risk of damage.
  • a spare switching tube is provided, and when the second switching tube Q2 is damaged and cannot be normally turned on and off, it is substituted for the second switching tube Q2 to be connected to the circuit.
  • the DC-DC conversion circuit further includes: a fourth switching tube Q4, which is used to turn on when the second switching tube Q2 fails, instead of the second switching tube. Q2.
  • the drain of the fourth switching tube Q4 is connected between the source of the third switching tube Q3 and the source of the first switching tube Q1, and the source of the fourth switching tube Q4 is connected to the Between the source of the second switch tube Q2 and the negative terminal Ubus- of the DC bus.
  • the third switching tube Q3 and the fourth switching tube Q4 are provided in the circuit, the third switching tube Q3 and the first switching tube are connected in parallel, and the fourth switching tube Q4 and the second switching tube Q2 are connected in parallel. If none of the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, and the fourth switching tube Q4 fails, then the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, and the fourth switching tube Q3 are not faulty.
  • the switch Q4 will form a parallel redundant bridge arm. Through this redundant bridge arm, the carrying current of the DC-DC conversion circuit will be reduced by 50%, and the ability of the DC-DC conversion circuit to deal with extreme currents will be improved, ensuring that the system can continue to operate in the event of a failure.
  • Fig. 3 is a structural diagram of a DC-DC conversion circuit according to further embodiments of the present disclosure.
  • the freewheeling diode in the first switching tube Q1 is controlled to be turned on, and the second switching tube Q2 is controlled Intermittent conduction according to the preset duty cycle to achieve boost discharge; if the battery 41 needs to be charged, the freewheeling diode in the second switching tube Q2 is controlled to conduct, and the first switching tube Q1 is controlled to conduct intermittently according to the preset duty cycle To achieve step-down charging.
  • the battery charging and discharging mode is controlled by the program.
  • the circuit further includes: a fifth switch tube Q5 for connecting the first switch tube Q1 and the second switch tube When none of Q2 fails, it is disconnected, so that the first switching tube Q1 and the second switching tube Q2 are connected to the circuit, and the third switching tube Q3 and the fourth switching tube Q4 cut out the circuit to realize the isolation function.
  • the fifth switching tube Q5 is turned on, so that the switching tube that has not failed is connected to the circuit.
  • the source of the fifth switch Q5 is connected between the source of the first switch Q1 and the drain of the second switch Q2, and the drain of the fifth switch Q5 is connected Switching between the drain of the fourth switching tube Q4 and the source of the third switching tube Q3 is realized.
  • the third switching tube Q3 can replace the function of the first switching tube Q1 to complete charging and discharging; when the second switching tube Q2 fails to form an open circuit state, the function of the first switching tube Q1 can be replaced by The fourth switching tube Q4 replaces the function of the second switching tube Q2 to complete charging and discharging.
  • the first switching tube Q1 and the second switching tube Q2 can be replaced at the same time or individually.
  • the circuit further includes: a third switch K3, a fourth switch K4, and a fifth switch K5.
  • the third switch K3 is connected between the second end of the inductance L and the positive terminal of the battery;
  • the fourth switch K4 is connected between the second end of the resistor R and the positive terminal of the battery;
  • the fifth The switch K5 is connected between the source of the second switch tube Q2 and the negative terminal of the battery.
  • control the fifth switch K5 and the fourth switch K4 When it is necessary to control the DC bus terminal to charge the battery, control the fifth switch K5 and the fourth switch K4 to close, and control the third switch K3 to open; when it is necessary to control the battery discharge, control the fifth switch K5 and the third switch K3 to keep closed , Control the fourth switch K4 to turn off.
  • first switch K1, second switch K2, third switch K3, fourth switch K4, and fifth switch K5 are contactors or relays.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, the fourth switching tube Q4, and the fifth switching tube Q5 are power switching devices, for example, MOS tube switches, or other The power switch can be selected by those skilled in the art according to actual needs.
  • FIG. 4 is a structural diagram of an energy storage cabinet according to some embodiments of the present disclosure.
  • the energy storage cabinet includes a battery 41, a controller 42 and an auxiliary power supply. 43.
  • the energy storage cabinet further includes the aforementioned DC-DC conversion circuit.
  • the controller 42 is used to collect the voltage of the DC bus and the voltage across the capacitor C, and control the on of the first switch K1 and the second switch K2 according to the voltage of the DC bus and the voltage across the capacitor C. Off.
  • the controller 42 is also used to control the on and off of the switching tubes Q1 to Q3.
  • the first switch K1 is controlled to be turned on, and the first switch tube Q1 is controlled to be turned on in the direction from the source to the drain.
  • the first switch K1 is controlled to be turned off, and the second switch K2 is controlled to be turned on.
  • the freewheeling diode in the first switch tube Q1 is controlled to be turned on, and the second switch tube Q2 is controlled to be turned on intermittently according to the preset duty cycle to achieve boost discharge; if the battery 41 needs to be charged , The freewheeling diode in the second switching tube Q2 is controlled to be turned on, and the first switching tube Q1 is controlled to be turned on intermittently according to the preset duty ratio to realize the step-down charging.
  • the controller 42 is also used to control the on and off of the third switch K3, the fourth switch K4, and the fifth switch K5. As described above, the controller 42 determines whether it is necessary to control the DC bus terminal to charge the battery, and controls the fifth switch K5 according to the determination result, and at the same time controls one of the third switch K3 or the fourth switch K4 to close.
  • the controller 42 needs to be powered on to ensure its normal operation.
  • the energy storage cabinet further includes an auxiliary power supply 43 for supplying power to the controller 42 after taking power from the DC bus.
  • the auxiliary power supply 43 is energized and operated, and then the controller 42 is energized and operated.
  • the auxiliary power source 43 takes power from the positive terminal Ubus+ of the DC bus and the negative terminal Ubus- of the DC bus. Since the power provided by the DC bus is a strong current, the auxiliary power source 43 needs to convert the strong current output from the DC bus into a weak current. And provide weak current power to the controller 42.
  • Fig. 5 is a flowchart of a control method of an energy storage cabinet according to some embodiments of the present disclosure. As shown in Fig. 5, the method includes S101 and S102.
  • the controller determines whether the first switching tube fails.
  • the first switching tube is turned on, a small voltage is generated between the drain and the source; when the first switching tube is damaged, the voltage between the drain and the source will change.
  • the hardware circuit The voltage at this time is converted into a negative voltage and transmitted to the controller, and the controller determines that the first switch tube is damaged.
  • the first switch tube is damaged according to the charging time of the capacitor. For example, if the charging time of the capacitor is within the preset time period, the first switching tube is normal; if the charging time of the capacitor exceeds the preset time period, the first switching tube is damaged.
  • steps S101-S102 are executed after the first switch is closed. After the first switch is closed, the first switching tube is energized, and then it is determined whether the first switching tube is faulty.
  • the method before determining whether the first switch tube is faulty, the method further includes: after the positive terminal of the DC bus and the negative terminal of the DC bus of the energy storage cabinet are connected to the DC bus, controlling the The first switch is closed to turn on the first switch tube; the DC bus voltage and the voltage across the capacitor are collected, and the first switch is controlled according to the DC bus voltage and the voltage across the capacitor And the on-off of the second switch. For example, it is determined whether the ratio of the voltage across the capacitor to the DC bus voltage exceeds a preset value; if it is, the first switch is controlled to be opened, the second switch is controlled to be closed, and then according to the charging of the battery , Discharge state, control the conduction state of the first switch tube and the second switch tube.
  • the freewheeling diode in the first switch tube is controlled to conduct, and the second switch tube is controlled to conduct intermittently according to the preset duty cycle to achieve boost discharge; if the battery needs to be charged, the second switch is controlled
  • the freewheeling diode in the tube is turned on, and the first switch tube is controlled to be turned on intermittently according to the preset duty ratio to realize the step-down charging.
  • the preset duty cycle of the second switching tube or the first switching tube is determined by the voltage of the battery and the voltage across the DC bus. For example, if the voltage of the battery during discharge is 1/ of the voltage across the DC bus 5.
  • the preset duty cycle of the second switch tube is 1 minus 1/5, that is, 4/5.
  • the DC bus voltage and the voltage across the capacitor are collected synchronously, that is, the DC bus voltage collected at the same time is compared with the voltage across the capacitor.
  • these embodiments only describe the solution of determining whether the ratio of the voltage across the capacitor to the DC bus voltage exceeds a preset value.
  • the difference between the DC bus voltage and the voltage across the capacitor is also possible to use the difference between the DC bus voltage and the voltage across the capacitor as a judgment condition, that is, to determine whether the difference between the DC bus voltage and the voltage across the capacitor is less than a preset threshold.
  • the method further includes: judging whether the battery needs to be charged or discharged; if the battery needs to be discharged, control The fifth switch and the third switch are turned on; if the battery needs to be charged, the fifth switch and the fourth switch are controlled to be closed.
  • the third switch is connected between the second end of the inductor and the positive terminal of the battery; the fourth switch is connected between the second end of the resistor and the positive terminal of the battery; The fifth switch is connected between the source of the second switch tube and the negative terminal of the battery.
  • the method further includes: judging whether the second switching tube fails; if the second switching tube fails, controlling the fourth switching tube to be turned on instead of the The second switch tube.
  • the method further includes:
  • the fifth switching tube is controlled to be turned off to realize the isolation of the two groups of switching tubes, ensuring that only the first switching tube and the second switching tube are connected Circuit; if the first switching tube or the second switching tube fails, the fifth switching tube is controlled to be turned on, so as to realize the switching of the switching tube.
  • the source of the fifth switching tube is connected between the source of the first switching tube and the drain of the second switching tube, and the drain of the fifth switching tube is connected to the fourth switching tube.
  • the drain of is connected between the source of the third switch tube.
  • Fig. 6 is a flowchart of a control method of an energy storage cabinet according to other embodiments of the present disclosure. As shown in Fig. 6, the method includes steps S1-S8.
  • the auxiliary power supply is energized and then the controller is energized and operated.
  • S3 The controller outputs a control signal to close the contact of the first switch K1, and the first switch tube is turned on. At this time, the voltage output by the positive terminal Ubus+ of the DC bus passes through the first switch K1, resistance R, inductance L, first switch tube Q1, capacitor C to the negative terminal Ubus- of the DC bus to form a path, so that the voltage across the capacitor C is slow. rise.
  • the controller detects the synchronous high voltage DC bus voltage U and the voltage across capacitor C U C.
  • step S5 determines the DC bus voltage U and the voltage across capacitor C U C meets a preset condition: voltage across capacitor C is greater than 96% of the DC bus voltage U, if the preset conditions are met, performing step S6, the if not, Then step S4 is executed.
  • the controller outputs a control signal to close the second switch K2, and outputs a control signal to open the first switch K1 to complete the thermal connection.
  • the conduction state of the first switching tube Q1 and the second switching tube Q2 is controlled according to the charging and discharging status of the battery. If the battery needs to be discharged, control the freewheeling diode in the first switching tube Q1 to conduct, and control the second switching tube Q2 to conduct intermittently according to the preset duty cycle to achieve boost discharge; if the battery needs to be charged, control the second The freewheeling diode in the switching tube Q2 is turned on, and the first switching tube Q1 is controlled to be turned on intermittently according to the preset duty ratio to realize the step-down charging.
  • step S7 Determine whether the first switching tube Q1 or the second switching tube Q2 is faulty, or whether the circuit has over-current or over-voltage, if yes, execute step S8, if not, execute step S7.
  • Some embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned control method of the energy storage cabinet is realized.
  • each implementation manner can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic A disc, an optical disc, etc., include several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本公开公开一种DC-DC变换电路、储能柜及其控制方法。其中,该DC-DC变换电路,设置于蓄电池和直流母线之间,包括:依次设置在所述直流母线的正极端子和所述蓄电池的正极端子之间的第二开关、第一开关管、电感和电阻,所述电阻的第一端与所述电感连接;设置在所述电阻的第二端与所述直流母线的正极端子之间的第一开关;与所述第一开关管串联的第二开关管;并联设置在所述第一开关管和所述第二开关管两端的电容;以及第三开关管,所述第三开关管与所述第一开关管并联,用于在所述第一开关管发生故障时导通。

Description

DC-DC变换电路、储能柜及其控制方法
相关申请的交叉引用
本申请是以CN申请号为202010342635.5,申请日为2020年4月26日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及一种DC-DC变换电路、储能柜及其控制方法。
背景技术
在直流微网系统或者光储系统中,所选用的储能柜自带储能DC/DC电路。在该系统中,储能柜直接对接高压直流母线时需要热拔插功能。在极端电压和电流导致DC/DC电路中的元件损坏时,无法保持系统正常运行,影响用户体验和系统整体的运行效率。
发明内容
本公开实施例提供了一种DC-DC变换电路,设置与设置于蓄电池和直流母线之间,依次设置在所述直流母线的正极端子和所述蓄电池的正极端子之间的第二开关、第一开关管、电感和电阻,所述电阻的第一端与所述电感连接;设置在所述电阻的第二端与所述直流母线的正极端子之间的第一开关;与所述第一开关管串联的第二开关管;并联设置在所述第一开关管和所述第二开关管两端的电容;以及第三开关管,所述第三开关管与所述第一开关管并联,用于在所述第一开关管发生故障时导通。
在一些实施例中,所述第三开关管的漏极连接在所述第一开关管的漏极与所述直流母线的正极端子之间,所述第三开关管的源极连接所述第一开关管的源极。
在一些实施例中,所述电路还包括:第四开关管,用于在所述第二开关管发生故障时导通,替代所述第二开关管,所述第四开关管的漏极连接在所述第三开关管的源极与所述第一开关管的源极之间,所述第四开关管的源极连接在所述第二开关管的源极与所述直流母线的负极端子之间。
在一些实施例中,所述电路还包括:第五开关管,用于在所述第一开关管和所述第二开关管均未发生故障时断开,所述第五开关管的源极连接在所述第一开关管的源 极与所述第二开关管的漏极之间,漏极连接在所述第四开关管的漏极与所述第三开关管的源极之间。
在一些实施例中,所述电路还包括:第三开关,连接在所述电感的第二端和所述蓄电池的正极端子之间,所述电阻的第一端与所述电感的第二端连接;第四开关,连接在所述电阻的第二端和所述蓄电池的正极端子之间;以及第五开关,连接在所述第二开关管的源极和所述蓄电池的负极端子之间,所述蓄电池的负极端子连接所述直流母线的负极端子。
本公开实施例还提供一种DC-DC变换电路,设置于蓄电池和直流母线之间,包括:依次设置在所述直流母线的正极端子和所述蓄电池的正极端子之间的第二开关、第一开关管、电感和电阻,所述电阻的第一端与所述电感连接;设置在所述电阻的第二端与所述直流母线的正极端子之间的第一开关;与所述第一开关管串联的第二开关管;电容,所述电容的两端中的一端连接在第一开关管和所述第二开关之间,所述电容的两端中的另一端连接在所述第二开关管与所述直流母线的负极端子之间;以及第三开关管,所述第三开关管与所述第一开关管并联,用于在所述第一开关管发生故障时导通。
本公开实施例还提供一种储能柜,包括:蓄电池、控制器和辅助电源,所述储能柜还包括上述任意一个实施例的DC-DC变换电路。
在一些实施例中,所述控制器,用于采集所述直流母线的电压和所述电容的两端的电压;根据所述直流母线的电压和所述电容的两端的电压控制所述第一开关和所述第二开关的通断。
在一些实施例中,所述DC-DC变换电路还包括:第三开关,连接在所述电感的第二端和所述蓄电池的正极端子之间,所述电阻的第一端与所述电感的第二端连接;第四开关,连接在所述电阻的第二端和所述蓄电池的正极端子之间;以及第五开关,连接在所述第二开关管的源极和所述蓄电池的负极端子之间,所述蓄电池的负极端子连接所述直流母线的负极端子;所述控制器还用于控制所述第三开关、所述第四开关以及所述第五开关的通断。
在一些实施例中,所述辅助电源,用于从所述直流母线取电后,为所述控制器供电。
本公开实施例还提供一种储能柜控制方法,应用于上述任意一个实施例的储能柜,所述方法包括:判断第一开关管是否发生故障;如果是,则控制第三开关管导通,替 代所述第一开关管。
在一些实施例中,在判断第一开关管是否发生故障之前,所述方法还包括:在所述储能柜的直流母线的正极端子和直流母线的负极端子接入直流母线之后,控制所述第一开关闭合,使所述第一开关管导通;采集所述直流母线的电压和所述电容的两端的电压,根据所述直流母线电压和所述电容的两端的电压控制所述第一开关和所述第二开关的通断。
在一些实施例中,根据所述直流母线电压和所述电容的两端的电压控制所述第一开关和所述第二开关的通断,包括:判断所述电容的两端的电压与所述直流母线的电压的比值是否超过预设值;如果是,则控制所述第一开关断开,控制所述第二开关闭合。
在一些实施例中,控制所述第二开关闭合后,所述方法还包括:判断蓄电池需要进行充电还是放电;如果蓄电池需要放电,则控制第五开关和第三开关闭合;如果蓄电池需要充电,则控制第五开关和第四开关闭合;其中,所述第三开关连接在所述电感的第二端和所述蓄电池的正极端子之间,所述电阻的第一端与所述电感的第二端连接;所述第四开关连接在所述电阻的第二端和所述蓄电池的正极端子之间;所述第五开关连接在所述第二开关管的源极和所述蓄电池的负极端子之间。
在一些实施例中,控制所述第二开关闭合后,所述方法还包括:判断第二开关管是否发生故障;如果是,则控制第四开关管导通,替代所述第二开关管,所述第四开关管的漏极连接在所述第三开关管的源极与所述第一开关管的源极之间,所述第四开关管的源极连接在所述第二开关管的源极与所述直流母线的负极端子之间。
在一些实施例中,控制所述第二开关闭合后,所述方法还包括:如果所述第一开关管和所述第二开关管均未发生故障,则控制第五开关管关断;如果所述第一开关管或所述第二开关管发生故障,则控制第五开关管导通;其中,所述第五开关管的源极连接在所述第一开关管的源极与所述第二开关管的漏极之间,漏极连接在所述第四开关管的漏极连接在所述第三开关管的源极之间。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述任意一个实施例的方法。
附图说明
图1为根据本公开一些实施例的DC-DC变换电路的结构图;
图2为根据本公开另一些实施例的DC-DC变换电路的结构图;
图3为根据本公开又一些实施例的DC-DC变换电路的结构图;
图4为根据本公开一些实施例的储能柜的结构图;
图5为根据本公开一些实施例的储能柜的控制方法的流程图;
图6为根据本公开另一些实施例的储能柜的控制方法的流程图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作在一些实施例中详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本公开实施例中可能采用术语第一、第二、第三等来描述开关管,但这些开关管不应限于这些术语。这些术语仅用来将不同开关管区分开。例如,在不脱离本公开实施例范围的情况下,第一开关管也可以被称为第二开关管,类似地,第二开关管也可以被称为第一开关管。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括 没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本公开的的一些实施例。
本公开一些实施例提供一种DC-DC变换电路,图1为根据本公开一些实施例的DC-DC变换电路的结构图,如图1所示,该电路包括:第一开关管Q1、第二开关管Q2、电感L、电容C、第一开关K1、第二开关K2和电阻R。
第二开关K2、第一开关管Q1、电感L和电阻R依次设置在直流母线的正极端子Ubus+和蓄电池的正极端子之间,电阻R的第一端与电感L连接。第一开关K1连接在电阻R的第二端与直流母线正极端子Ubus+之间,第二开关管Q2与第一开关管Q1串联。电容C并联设置在第一开关管Q1和第二开关管Q2两端。在一些实施例中,电容C的两端中的一端连接在第一开关管Q1和第二开关K2之间,电容C的两端中的另一端连接在第二开关管Q1与直流母线的负极端子Ubus-之间。
例如,所述第一开关管Q1的源极与所述第二开关管Q2的漏极连接,所述电感L第一端连接在所述第一开关管Q1与所述第二开关管Q2之间;所述电感L的第二端通过所述电阻R的第一端和第二端连接直流母线的正极端子Ubus+;所述第一开关K1连接在所述电阻R的第二端与直流母线的正极端子Ubus+之间;所述第二开关K2连接在所述第一开关管Q1的漏极和直流母线的正极端子Ubus+之间;蓄电池的负极端子、所述第二开关管Q2的源极、所述直流母线的负极端子Ubus-相连;所述电容C连接在所述第一开关管Q1的漏极和所述第二开关管Q2的源极之间。
在具体实施时,控制第一开关K1的触点闭合,此时,直流母线的正极端子Ubus+输出的电压依次经过经第一开关K1、电阻R、电感L、第一开关管Q1、电容C至直流母线的负极端子Ubus-形成通路,使电容C两端的电压缓慢上升,实现为电容C充电。检测直流母线电压和电容C两端电压,当满足预设条件,即电容C两端电压与直流母线电压的比值超过预设阈值,例如96%时,控制第二开关K2闭合,同时控制第一开关K1断开。完成储能柜热接入后,根据蓄电池的充、放电状态,控制第一开关管Q1和第二开关管Q2的导通状态。例如,如果蓄电池需要放电,则控制第一开关管Q1内的续流二极管导通,控制第二开关管Q2按照预设占空比间歇导通,实现升压放电;如果蓄电池需要充电,则控制第二开关管Q2内的续流二极管导通,控制第一开关管按照预设占空比间歇导通,实现降压充电。
上述电路中,当有极端电压和电流通过整个电路时,可能会导致第一开关管Q1损坏,一旦第一开关管Q1损坏,会导致系统发生故障无法运行,影响用户体验和系统整体的运行效率。
该电路中还包括:第三开关管Q3,所述第三开关管Q3与所述第一开关管Q1并联。在一些实施例中,所述第三开关管Q3的漏极连接在所述第一开关管Q1的漏极与所述直流母线的正极端子Ubus+之间,所述第三开关管Q3的源极连接所述第一开关管Q1的源极。当电路中产生极端电流或电压,导致第一开关管Q1发生故障,无法正常导通时,第三开关管Q3导通,以替代所述第一开关管Q1。
本公开一些实施例的DC-DC变换电路设置了备用的第三开关管Q3,与电路中的第一开关管Q1并联。DC-DC变换电路的第一开关管Q1损坏时,启用备用的第三开关管Q3,能够实现在DC-DC变换电路的第一开关管Q1损坏时,仍保证整个系统正常运行。
本公开一些实施例提供另一种DC-DC变换电路,图2为根据本公开另一些实施例的DC-DC变换电路的结构图。在实际使用过程中,有极端电压和电流通过整个电路时,第二开关管Q2同样有损坏的风险。在一些实施例中,设置一个备用的开关管,在第二开关管Q2损坏,无法正常导通和关断时,替代第二开关管Q2接入电路。
如图2所示,在一些实施例中,该DC-DC变换电路还包括:第四开关管Q4,用于在所述第二开关管Q2发生故障时导通,替代所述第二开关管Q2。所述第四开关管Q4的漏极连接在所述第三开关管Q3的源极与所述第一开关管Q1的源极之间,所述第四开关管Q4的源极连接在所述第二开关管Q2的源极与所述直流母线的负极端子Ubus-之间。
当电路中设置第三开关管Q3和第四开关管Q4后,第三开关管Q3和第一开关管并联,第四开关管Q4和第二开关管Q2并联。如果第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4均未发生故障,那么第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4将形成并联的冗余桥臂。通过该冗余桥臂,DC-DC变换电路承载电流将降低50%,DC-DC变换电路应对极端电流的能力提高,保障系统可以在出现故障的情况下继续运行。
图3为根据本公开又一些实施例的DC-DC变换电路的结构图。在具体实施时,在第一开关管Q1和第二开关管Q2均没有发生故障时,如果蓄电池41需要放电,则控制第一开关管Q1内的续流二极管导通,控制第二开关管Q2按照预设占空比间歇 导通,实现升压放电;如果蓄电池41需要充电,则控制第二开关管Q2内的续流二极管导通,控制第一开关管Q1按照预设占空比间歇导通,实现降压充电。例如,电池充放电模式由程序控制。
在上述过程中,为了实现正常二极管和故障二极管的隔离,如图3所示,所述电路还包括:第五开关管Q5,用于在所述第一开关管Q1和所述第二开关管Q2均未发生故障时断开,使第一开关管Q1和第二开关管Q2接入电路,第三开关管Q3和第四开关管Q4切出电路,实现隔离功能。当第一开关管Q1和第二开关管Q2中的一个发生故障,或者,第三开关管Q3和第四开关管Q4中的一个发生故障,或者,第一开关管Q1和第二开关管Q2中的一个、以及第三开关管Q3和第四开关管Q4中的一个发生故障时,第五开关管Q5导通,使未发生故障的开关管接入电路。具体地,所述第五开关管Q5的源极连接在所述第一开关管Q1的源极与所述第二开关管Q2的漏极之间,所述第五开关管Q5的漏极连接在所述第四开关管Q4的漏极与所述第三开关管Q3的源极之间,实现开关管的切换。举例来说,当第一开关管Q1发生故障形成开路状态,可以由第三开关管Q3替换第一开关管Q1的功能,完成充放电;当第二开关管Q2发生故障形成开路状态,可以由第四开关管Q4替换第二开关管Q2的功能,完成充放电。第一开关管Q1与第二开关管Q2可以同时被替换掉也可以单个被替换掉。
在完成储能柜热接入后,为了实现控制蓄电池放电或者充电,如图2或图3所示,所述电路还包括:第三开关K3、第四开关K4以及第五开关K5。所述第三开关K3连接在上述电感L的第二端和蓄电池的正极端子之间;所述第四开关K4连接在上述电阻R的第二端和蓄电池的正极端子之间;所述第五开关K5连接在第二开关管Q2的源极和蓄电池的负极端子之间。当需要控制直流母线端为蓄电池充电时,控制第五开关K5以及第四开关K4闭合,控制第三开关K3断开;当需要控制蓄电池放电时,控制第五开关K5以及第三开关K3保持闭合,控制第四开关K4断开。
需要说明的是,在一些实施例中,上述第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关K5是接触器或继电器。在一些实施例中,上述第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5为功率开关器件,例如,是MOS管开关,或其他功率开关,本领域技术人员可以根据实际需要进行选择。
本公开一些实施例提供一种储能柜,图4为根据本公开一些实施例的储能柜的结 构图,如图4所示,该储能柜包括:蓄电池41、控制器42和辅助电源43,所述储能柜还包括上述DC-DC变换电路。所述控制器42,用于采集所述直流母线的电压和电容C两端的电压,并根据直流母线的电压和电容C两端的电压控制所述第一开关K1、所述第二开关K2的通断。所述控制器42还用于控制开关管Q1~Q3的通断。
首先,控制第一开关K1导通,控制第一开关管Q1沿源极向漏极方向导通。当电容C两端的电压与直流母线的电压的比值超过预设阈值时,控制第一开关K1关断,控制第二开关K2导通。此时,如果蓄电池41需要放电,则控制第一开关管Q1内的续流二极管导通,控制第二开关管Q2按照预设占空比间歇导通,实现升压放电;如果蓄电池41需要充电,则控制第二开关管Q2内的续流二极管导通,控制第一开关管Q1按照预设占空比间歇导通,实现降压充电。所述控制器42还用于控制所述第三开关K3、所述第四开关K4以及所述第五开关K5的通断。如上文所述,所述控制器42判断是否需要控制直流母线端为蓄电池充电,根据判断结果控制第五开关K5,同时控制第三开关K3或第四开关K4其中之一闭合。
控制器42作为电子器件,需要接通电源,才能保证其正常工作。如图4所示,该储能柜还包括辅助电源43,用于从所述直流母线取电后,为所述控制器42供电。当储能柜接入到正在运行的高压直流母线时,辅助电源43得电运行,随后控制器42得电运行。具体地,辅助电源43从直流母线的正极端子Ubus+和直流母线的负极端子Ubus-取电,由于直流母线提供的电源为强电,辅助电源43需将直流母线输出的强电电源转化为弱电,并给控制器42提供弱电电源。
本公开一些实施例提供一种储能柜的控制方法,应用于上述储能柜。图5为根据本公开一些实施例的储能柜的控制方法的流程图,如图5所示,所述方法包括S101和S102。
在S101,判断第一开关管是否发生故障。
例如,通过检测第一开关管的漏极与源极之间的电压来判断第一开关管是否发生故障。当第一开关管导通时,漏极与源极之间产生较小的电压;当第一开关管损坏时一直维持断开状态,则漏极与源极之间电压会发生变化,硬件电路将此时的电压转换为负电压传输到控制器,控制器判定第一开关管损坏。
在电容充电过程也可以根据电容的充电时间判断第一开关管是否损坏。例如:电容的充电时间在预设时长内,则第一开关管正常;电容的充电时间超出预设时长,则第一开关管损坏。
在S102,如果是,则控制第三开关管导通,替代所述第一开关管。
上述步骤S101-S102在第一开关闭合之后执行。在第一开关闭合之后,使第一开关管得电,进而判断出第一开关管是否发生故障。
在一些实施例中,在判断第一开关管是否发生故障之前,所述方法还包括:在所述储能柜的直流母线的正极端子和直流母线的负极端子接入直流母线之后,控制所述第一开关闭合,使所述第一开关管导通;采集所述直流母线电压和所述电容的两端的电压,根据所述直流母线电压和所述电容的两端的电压控制所述第一开关和所述第二开关的通断。例如,判断所述电容的两端的电压与所述直流母线电压的比值是否超过预设值;如果是,则控制所述第一开关断开,控制所述第二开关闭合,然后根据蓄电池的充、放电状态,控制第一开关管和第二开关管的导通状态。例如,如果蓄电池需要放电,则控制第一开关管内的续流二极管导通,控制第二开关管按照预设占空比间歇导通,实现升压放电;如果蓄电池需要充电,则控制第二开关管内的续流二极管导通,控制第一开关管按照预设占空比间歇导通,实现降压充电。在一些实施例中,第二开关管或者第一开关管的预设占空比由蓄电池的电压和直流母线两端的电压确定,例如,如果放电时蓄电池的电压为直流母线两端的电压的1/5,则第二开关管的预设占空比为1减1/5,即4/5。
需要说明的是,在一些实施例中,采集所述直流母线电压和所述电容的两端的电压同步进行,即将同一时刻采集的直流母线电压和电容的两端的电压进行比较。此外,这些实施例中仅说明了判断所述电容的两端的电压与所述直流母线电压的比值是否超过预设值这一方案,本领域技术人员应当知晓,在本公开的其他实施例中,也可以将所述直流母线电压与所述电容的两端的电压的差值作为判断条件,即判断所述直流母线电压与所述电容两端的电压的差值是否小于预设阈值。
在完成储能柜热接入后,为了实现控制直流母线端是否为蓄电池充电,控制所述第二开关闭合后,该方法还包括:判断蓄电池需要进行充电还是放电;如果蓄电池需要放电,则控制第五开关和第三开关导通;如果蓄电池需要充电,则控制第五开关和第四开关闭合。
所述第三开关连接在所述电感的第二端和所述蓄电池的正极端子之间;所述第四开关连接在所述电阻的第二端和所述蓄电池的正极端子之间;所述第五开关连接在所述第二开关管的源极和所述蓄电池的负极端子之间。
在实际使用过程中,有极端电压和电流通过整个电路时,第二开关管同样有损坏 的风险。在一些实施例中,控制所述第二开关闭合后,所述方法还包括:判断第二开关管是否发生故障;如果第二开关管发生故障,则控制第四开关管导通,替代所述第二开关管。
控制所述第二开关闭合后,第一开关管、第二开关管、第三开关管和第四开关管均接入电路中,形成该冗余桥臂。为了实现在第一开关管Q1和第二开关管Q2均没有发生故障时,只控制第一开关管Q1和第二开关管Q2这一组串联的开关管接入电路,所述方法还包括:
如果所述第一开关管和所述第二开关管均未发生故障,则控制第五开关管关断,实现两组开关管的隔离,保证仅有第一开关管和第二开关管接入电路;如果所述第一开关管或所述第二开关管发生故障,则控制第五开关管导通,以实现开关管的切换。所述第五开关管的源极连接在所述第一开关管的源极与所述第二开关管的漏极之间,所述第五开关管的漏极连接在所述第四开关管的漏极连接在所述第三开关管的源极之间。
本公开一些实施提供一种储能柜的控制方法,应用于上述储能柜。图6为根据本公开另一些实施例的储能柜的控制方法的流程图,如图6所示,该方法包括步骤S1-S8。
S1,将储能柜接入到正在运行的高压直流母线。
S2,辅助电源得电运行,随后控制器得电运行。
S3,控制器输出控制信号使第一开关K1触点闭合,第一开关管导通。此时,直流母线的正极端子Ubus+输出的电压经第一开关K1、电阻R、电感L、第一开关管Q1、电容C至直流母线的负极端子Ubus-形成通路,使电容C两端的电压缓慢上升。
S4,控制器同步检测高压直流母线电压U和电容C两端电压U C
S5,判断直流母线电压U和电容C两端电压U C是否满足预设条件:电容C两端电压大于直流母线电压U的96%,如果满足预设条件,则执行步骤S6,如果不满足,则执行步骤S4。
S6,控制器输出控制信号使第二开关K2闭合,并输出控制信号使第一开关K1断开,完成热接入。完成热接入后,根据蓄电池的充、放电状态,控制第一开关管Q1和第二开关管Q2的导通状态。如果蓄电池需要放电,则控制第一开关管Q1内的续流二极管导通,控制第二开关管Q2按照预设占空比间歇导通,实现升压放电;如果蓄电池需要充电,则控制第二开关管Q2内的续流二极管导通,控制第一开关管Q1按照预设占空比间歇导通,实现降压充电。
S7,判断第一开关管Q1或第二开关管Q2是否出现故障,或者电路是否出现过流或过压,如果是,则执行步骤S8,如果否,则执行步骤S7。
S8,控制第五开关Q5导通,以实现控制直流母线电流波形保持稳定。
本公开一些实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述储能柜的控制方法。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (17)

  1. 一种DC-DC变换电路,设置于蓄电池和直流母线之间,包括:
    依次设置在所述直流母线的正极端子和所述蓄电池的正极端子之间的第二开关、第一开关管、电感和电阻,所述电阻的第一端与所述电感连接;
    设置在所述电阻的第二端与所述直流母线的正极端子之间的第一开关;
    与所述第一开关管串联的第二开关管;
    并联设置在第一开关管和所述第二开关管两端的电容;以及
    第三开关管,所述第三开关管与所述第一开关管并联,用于在所述第一开关管发生故障时导通。
  2. 根据权利要求1所述的DC-DC变换电路,其特征在于,所述第三开关管的漏极连接在所述第一开关管的漏极与所述直流母线的正极端子之间,所述第三开关管的源极连接所述第一开关管的源极。
  3. 根据权利要求2所述的DC-DC变换电路,其特征在于,还包括:
    第四开关管,用于在所述第二开关管发生故障时导通,所述第四开关管的漏极连接在所述第三开关管的源极与所述第一开关管的源极之间,所述第四开关管的源极连接在所述第二开关管的源极与所述直流母线的负极端子之间。
  4. 根据权利要求3所述的DC-DC变换电路,其特征在于,还包括:
    第五开关管,用于在所述第一开关管和所述第二开关管均未发生故障时断开,所述第五开关管的源极连接在所述第一开关管的源极与所述第二开关管的漏极之间,漏极连接在所述第四开关管的漏极与所述第三开关管的源极之间。
  5. 根据权利要求1所述的DC-DC变换电路,其特征在于,还包括:
    第三开关,连接在所述电感的第二端和所述蓄电池的正极端子之间,所述电阻的第一端与所述电感的第二端连接;
    第四开关,连接在所述电阻的第二端和所述蓄电池的正极端子之间;以及
    第五开关,连接在所述第二开关管的源极和所述蓄电池的负极端子之间,所述蓄电池的负极端子连接所述直流母线的负极端子。
  6. 一种DC-DC变换电路,设置于蓄电池和直流母线之间,包括:
    依次设置在所述直流母线的正极端子和所述蓄电池的正极端子之间的第二开关、第一开关管、电感和电阻,所述电阻的第一端与所述电感连接;
    设置在所述电阻的第二端与所述直流母线的正极端子之间的第一开关;
    与所述第一开关管串联的第二开关管;
    电容,所述电容的两端中的一端连接在第一开关管和所述第二开关之间,所述电容的两端中的另一端连接在所述第二开关管与所述直流母线的负极端子之间;以及
    第三开关管,所述第三开关管与所述第一开关管并联,用于在所述第一开关管发生故障时导通。
  7. 一种储能柜,包括:蓄电池、控制器、辅助电源、以及权利要求1至6中任一项所述的DC-DC变换电路。
  8. 根据权利要求7所述的储能柜,其特征在于,所述控制器,用于采集所述直流母线的电压和所述电容的两端的电压;根据所述直流母线的电压和所述电容的两端的电压控制所述第一开关和所述第二开关的通断。
  9. 根据权利要求7所述的储能柜,其特征在于,所述DC-DC变换电路还包括:
    第三开关,连接在所述电感的第二端和所述蓄电池的正极端子之间,所述电阻的第一端与所述电感的第二端连接;
    第四开关,连接在所述电阻的第二端和所述蓄电池的正极端子之间;以及
    第五开关,连接在所述第二开关管的源极和所述蓄电池的负极端子之间,所述蓄电池的负极端子连接所述直流母线的负极端子;
    所述控制器还用于控制所述第三开关、所述第四开关以及所述第五开关的通断。
  10. 根据权利要求7所述的储能柜,其特征在于,所述辅助电源,用于从所述直流母线取电后,为所述控制器供电。
  11. 一种储能柜的控制方法,应用于权利要求7至10中任一项所述的储能柜,其特征在于,所述方法包括:
    判断第一开关管是否发生故障;
    如果是,则控制第三开关管导通,替代所述第一开关管。
  12. 根据权利要求11所述的方法,其特征在于,在判断第一开关管是否发生故障之前,所述方法还包括:
    在所述储能柜的直流母线的正极端子和直流母线的负极端子接入直流母线之后,控制所述第一开关闭合,使所述第一开关管导通;
    采集所述直流母线的电压和所述电容的两端的电压,根据所述直流母线的电压和所述电容两端的电压控制所述第一开关和所述第二开关的通断。
  13. 根据权利要求12所述的方法,其特征在于,根据所述直流母线的电压和所述电容的两端的电压控制所述第一开关和所述第二开关的通断,包括:
    判断所述电容的两端的电压与所述直流母线的电压的比值是否超过预设值;
    如果是,则控制所述第一开关断开,控制所述第二开关闭合。
  14. 根据权利要求13所述的方法,其特征在于,控制所述第二开关闭合后,所述方法还包括:
    判断蓄电池需要进行充电还是放电;
    如果蓄电池需要放电,则控制第五开关和第三开关闭合;
    如果蓄电池需要充电,则控制第五开关和第四开关闭合;
    其中,所述第三开关连接在所述电感的第二端和所述蓄电池的正极端子之间,所述电阻的第一端与所述电感的第二端连接;所述第四开关连接在所述电阻的第二端和所述蓄电池的正极端子之间;所述第五开关连接在所述第二开关管的源极和所述蓄电池的负极端子之间。
  15. 根据权利要求13所述的方法,其特征在于,控制所述第二开关闭合后,所述方法还包括:
    判断第二开关管是否发生故障;
    如果是,则控制第四开关管导通,替代所述第二开关管,所述第四开关管的漏极连接在所述第三开关管的源极与所述第一开关管的源极之间,所述第四开关管的源极连接在所述第二开关管的源极与所述直流母线的负极端子之间。
  16. 根据权利要求11或15所述的方法,其特征在于,控制所述第二开关闭合后,所述方法还包括:
    如果所述第一开关管和所述第二开关管均未发生故障,则控制第五开关管关断;
    如果所述第一开关管或所述第二开关管发生故障,则控制第五开关管导通;
    其中,所述第五开关管的源极连接在所述第一开关管的源极与所述第二开关管的漏极之间,漏极连接在所述第四开关管的漏极连接在所述第三开关管的源极之间。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求11至16中任一项所述的方法。
PCT/CN2021/078796 2020-04-26 2021-03-03 Dc-dc变换电路、储能柜及其控制方法 WO2021218366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010342635.5A CN111416511A (zh) 2020-04-26 2020-04-26 Dc-dc变换电路、储能柜及其热接入控制方法
CN202010342635.5 2020-04-26

Publications (1)

Publication Number Publication Date
WO2021218366A1 true WO2021218366A1 (zh) 2021-11-04

Family

ID=71493697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078796 WO2021218366A1 (zh) 2020-04-26 2021-03-03 Dc-dc变换电路、储能柜及其控制方法

Country Status (2)

Country Link
CN (1) CN111416511A (zh)
WO (1) WO2021218366A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416511A (zh) * 2020-04-26 2020-07-14 珠海格力电器股份有限公司 Dc-dc变换电路、储能柜及其热接入控制方法
CN114301291A (zh) * 2021-12-17 2022-04-08 科华数据股份有限公司 直流变换装置及控制方法
CN116811588B (zh) * 2023-08-31 2024-02-09 宁德时代新能源科技股份有限公司 电力系统及电动汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233508A (en) * 1991-09-13 1993-08-03 Motorola, Inc. Dc/dc voltage converting device
JP2005143259A (ja) * 2003-11-10 2005-06-02 Toyota Motor Corp 負荷駆動装置およびその動作をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
CN108539968A (zh) * 2018-03-21 2018-09-14 华为技术有限公司 开关电源及其控制方法
CN109510503A (zh) * 2018-12-21 2019-03-22 博众精工科技股份有限公司 一种高可靠、冗余性逆变电路
CN110224600A (zh) * 2019-06-11 2019-09-10 珠海格力电器股份有限公司 具有双向半桥dc-dc变换器的储能柜热接入直流母线的方法
CN111416511A (zh) * 2020-04-26 2020-07-14 珠海格力电器股份有限公司 Dc-dc变换电路、储能柜及其热接入控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233508A (en) * 1991-09-13 1993-08-03 Motorola, Inc. Dc/dc voltage converting device
JP2005143259A (ja) * 2003-11-10 2005-06-02 Toyota Motor Corp 負荷駆動装置およびその動作をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
CN108539968A (zh) * 2018-03-21 2018-09-14 华为技术有限公司 开关电源及其控制方法
CN109510503A (zh) * 2018-12-21 2019-03-22 博众精工科技股份有限公司 一种高可靠、冗余性逆变电路
CN110224600A (zh) * 2019-06-11 2019-09-10 珠海格力电器股份有限公司 具有双向半桥dc-dc变换器的储能柜热接入直流母线的方法
CN111416511A (zh) * 2020-04-26 2020-07-14 珠海格力电器股份有限公司 Dc-dc变换电路、储能柜及其热接入控制方法

Also Published As

Publication number Publication date
CN111416511A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021218366A1 (zh) Dc-dc变换电路、储能柜及其控制方法
CN101447666B (zh) 一种电源供电系统及电源过压安全保护控制方法
US20230283189A1 (en) Soft Start Circuit and Power Supply Circuit
CN108028547B (zh) 供电装置以及其开关控制方法
US8213134B2 (en) Apparatus, system, and method to prevent smoke in a power supply powered by a current limited source
CN101277085A (zh) 电动机驱动装置
JPWO2019077958A1 (ja) 電源装置、電力制御装置、電源装置のリレー判定方法
JP7169467B2 (ja) 双方向dc/dcコンバータ及びエネルギ貯蔵システム
JP2015115173A (ja) 直流開閉装置
CN111756232A (zh) 功率单元
CN109342941A (zh) 继电器检测装置、及其检测方法
JPH0515051A (ja) 電源装置及び電源接続方法
CN113328484A (zh) 一种充电模块、充电控制方法及装置
JP4583283B2 (ja) 系統連系用インバータとその制御方法並びに連系運転システム
CN111627735A (zh) 混合开关装置的控制方法、装置、设备和介质
CN112383217B (zh) 一种直流母线充电电路及其控制方法
CN212086057U (zh) Dc-dc变换电路及储能柜
CN210201543U (zh) 用于提升可靠性的充电电路及光伏空调设备
CN112271805A (zh) 一种电源切换电路、电源切换方法、线控器及空调设备
CN214045432U (zh) 一种软启动电路及电源电路
CN111555386A (zh) 一种供电电源产品以及供电电源的电池充电保护电路
CN114552528B (zh) 一种列车lcu保护电路及其故障检测方法
KR102646734B1 (ko) 직류/직류 컨버터 및 이의 제어 방법
CN217692660U (zh) 一种端口保护电路、控制组件及供电电源
CN110783969A (zh) 电池管理系统和电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797738

Country of ref document: EP

Kind code of ref document: A1