WO2023045292A1 - 抽油烟机及其测试方法和测试装置 - Google Patents

抽油烟机及其测试方法和测试装置 Download PDF

Info

Publication number
WO2023045292A1
WO2023045292A1 PCT/CN2022/083943 CN2022083943W WO2023045292A1 WO 2023045292 A1 WO2023045292 A1 WO 2023045292A1 CN 2022083943 W CN2022083943 W CN 2022083943W WO 2023045292 A1 WO2023045292 A1 WO 2023045292A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
range hood
target
power
current
Prior art date
Application number
PCT/CN2022/083943
Other languages
English (en)
French (fr)
Inventor
颜雪平
Original Assignee
佛山市顺德区美的洗涤电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的洗涤电器制造有限公司 filed Critical 佛山市顺德区美的洗涤电器制造有限公司
Priority to EP22871357.4A priority Critical patent/EP4318000A1/en
Publication of WO2023045292A1 publication Critical patent/WO2023045292A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2021Arrangement or mounting of control or safety systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2825Testing of electronic circuits specially adapted for particular applications not provided for elsewhere in household appliances or professional audio/video equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the disclosure relates to the field of electrical appliances, and in particular to a range hood, a testing method and a testing device thereof.
  • the purpose of the present disclosure is at least partly to provide a range hood and its testing method and testing device, at least to a certain extent, to solve the current scheme of improving the energy efficiency level of the range hood by adjusting the structure of the range hood, and the existing cost is relatively high. High, technical issues with poor versatility.
  • the present disclosure provides a method for testing a range hood, including: performing constant power control on the fans of the range hood according to the set power, obtaining M candidate performance points of the fans and each candidate The fan efficiency corresponding to the performance point; the performance point to be selected is the air volume and wind pressure data pair of the fan when the fan efficiency meets the set conditions; M ⁇ 1 and is an integer; according to the set power and the Fan efficiency, determine the target performance point from the M performance points to be selected; the target performance point is the performance point to be selected so that the energy efficiency level of the range hood is not lower than the target level; according to the target performance point , to determine the target operating parameters of the range hood.
  • the constant power control method it can be determined faster and more accurately to make the fan efficiency meet the set conditions, such as the highest or better operating point of the fan efficiency, thereby significantly speeding up the development speed of improving the energy efficiency level of the range hood, And it is not necessary to change the structure of the range hood, so as to reduce the process cost and installation cost.
  • the present disclosure provides a test device for a range hood, including: an obtaining module for performing constant power control on the fan of the range hood according to the set power, and obtaining M performance points to be selected for the fan
  • the fan efficiency corresponding to each performance point to be selected, the performance point to be selected is the air volume and wind pressure performance point of the fan when the efficiency of the fan meets the set conditions, M ⁇ 1 and is an integer
  • the first determination module for determining a target performance point from the M performance points to be selected according to the set power and the fan efficiency, the target performance point is to make the energy efficiency level of the range hood not lower than the target level The performance point to be selected
  • a second determining module configured to determine the target operating parameter of the range hood according to the target performance point.
  • the above-mentioned test device can quickly and more accurately determine the fan efficiency to meet the set conditions, such as the highest or better operating point of the fan efficiency, thereby significantly speeding up the process of improving the energy efficiency level of the range hood.
  • the development speed is fast, and the structure of the range hood does not need to be changed, so as to reduce the process cost and installation cost.
  • the present disclosure provides a test device for range hoods, including: a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • a test device for range hoods, including: a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, the aforementioned The test method described in any one of the embodiments.
  • the present disclosure provides a range hood, including a blower fan and the testing device in the foregoing implementation manner.
  • This disclosure provides a test method for range hoods.
  • a number of performance points to be selected to make the efficiency of the fan meet the set conditions are found, and then the The target performance point that makes the energy efficiency level of the whole range hood not lower than the target level is determined in the selected performance point, so that the target operating parameters of the range hood are determined according to the target performance point.
  • the setting condition can be that the efficiency of the fan is the highest, it can be that the efficiency of the fan is ranked high, or the efficiency of the fan can be greater than a certain set value;
  • the reason why the candidate performance point of the fan is determined under the constant power control state is because Efficiency algorithm and energy efficiency level judgment standard, the use of constant power control can determine the operating point with the highest or better fan efficiency faster and more accurately, thereby significantly speeding up the development speed of improving the energy efficiency level of the range hood;
  • the range hood can be controlled according to the target operating parameters in the follow-up test process of the range hood and during the user's use, so that the range hood can work at the target performance point, so as to ensure the energy efficiency of the range hood The level reaches the target level.
  • the above scheme improves the target level of the range hood through an algorithm without improving the structure of the range hood or adding additional control appliances, so it can reduce the process cost and installation cost, and has a better Good versatility.
  • FIG. 1 is a schematic flow chart of a test method for a range hood according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a constant power control algorithm according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of curves of air volume and air pressure measured during constant power control according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of curves of air volume and air pressure measured when the range hood is under constant current control during the test phase according to an embodiment of the present disclosure
  • FIG. 5 is a functional module diagram of a range hood testing device according to an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a range hood testing device according to an embodiment of the disclosure.
  • the embodiment of the present disclosure provides a test method for the range hood.
  • the fan of the range hood is controlled by constant power, and under constant power control, a number of candidate performance points are found to make the efficiency of the fan meet the set conditions, and then it is determined from these candidate performance points that the energy efficiency level of the range hood is not low.
  • the target performance point at the target level so as to determine the target operating parameters of the range hood according to the target performance point.
  • the setting condition can be that the efficiency of the fan is the highest, it can be that the efficiency of the fan is ranked high, or the efficiency of the fan can be greater than a certain set value;
  • the reason why the candidate performance point of the fan is determined under the constant power control state is because Efficiency algorithm and energy efficiency level judgment standard, the use of constant power control can determine the operating point with the highest or better fan efficiency faster and more accurately, thereby significantly speeding up the development speed of improving the energy efficiency level of the range hood;
  • the range hood can be controlled according to the target operating parameters in the follow-up test process of the range hood and during the user's use, so that the range hood can work at the target performance point, so as to ensure the range hood.
  • the energy efficiency level reaches the target level.
  • Energy efficiency Index is an energy efficiency index that characterizes the level of energy efficiency.
  • the energy efficiency index EEI needs to be less than 30.
  • SAEC is the standard annual energy consumption, and the unit is kWh/a.
  • AEC is the annual energy consumption in kWh/a.
  • P fan the input power of the fan, the unit is watts, W; P others : the power of other energy-consuming devices on the range hood, the unit is W.
  • T fan is the average daily fan running time, the unit is minutes, and the value is 60;
  • TOthers is the average daily turn-on time of other energy-consuming electrical appliances, the unit is minutes, and the value is 120.
  • F is the time growth factor, which is related to the efficiency of the fan.
  • One way of definition is as follows:
  • FDE is the fan efficiency, which is related to the air volume and wind pressure generated by the fan.
  • One way to define the fan efficiency is as follows:
  • the unit of air volume is cubic meter per hour, and the unit of wind pressure is Pa.
  • the research shows that, according to formulas (1)-(5), it can be seen that under the condition of a certain lighting power (P lighting lamp ), the fan efficiency FDE determines the energy efficiency level of the range hood. Therefore, it can be considered that in the test gear, the higher the FDE corresponding to the working point passed by the fan when it is working, the higher the energy efficiency level that can be claimed. Therefore, improving the energy efficiency level can start with the efficiency of the fan. It is necessary to find the operating point that meets the set conditions such as the highest fan efficiency, or near the highest point, or greater than a certain set efficiency.
  • the fastest way to find the required operating point is to fix one of the variables, such as using a constant air volume or constant air pressure control method.
  • the constant air volume control method and the constant air pressure control method are estimated to be unable to achieve closed-loop control, while the constant power control can calculate the corresponding power in real time through the feedback current of the fan motor.
  • the fan efficiency FDE is proportional to the product of air volume and air pressure. The greater the product of air volume and wind pressure, the greater the FDE, so the algorithm to fix the fan input power is particularly important, which can greatly increase the development speed of finding the required fan efficiency target operating point. Therefore, the present disclosure uses a constant power control scheme to find the desired target performance point.
  • the present disclosure provides a test method for a range hood.
  • the overall idea is to perform constant power control on the fan of the range hood, and to find the energy efficiency level of the range hood as a whole under a constant input power state. No less than the target performance point of the target class.
  • a method for testing a range hood may include steps S101 , S102 and S103 .
  • step S101 according to the set power, the fan of the range hood is subjected to constant power control to obtain M performance points to be selected of the fan and the efficiency of the fan corresponding to each performance point to be selected; the performance points to be selected are When the efficiency of the fan satisfies the set condition, the air volume of the fan is matched with the wind pressure data.
  • the set power is predetermined and applied to the control input power of the fan mounted on the range hood.
  • the set power can be determined according to the specific fan type of the range hood. For example, for fan A of a certain type of range hood, you can choose 30W-70W
  • the set power is constant power control. One or more power settings may be selected, which is not specifically limited here.
  • the blower After determining the set power, start to prepare for constant power control of the fan of the range hood. At this time, the blower is mounted on the whole machine or the prototype of the range hood, so it can also be considered as a constant power output to the whole machine of the range hood by using the set power. Firstly, it is necessary to calculate the control current of the fan according to the set power. This control current cannot exceed the current range of the normal operation of the fan. After the control current is determined, the range hood is controlled according to the set power and the corresponding control current.
  • an initial control current can be preliminarily calculated according to the set power.
  • the initial control current cannot exceed the current range of the normal operation of the fan, that is, it cannot be lower than the minimum current of the fan operation, nor can it exceed the rated current of the fan operation; then control the output of the fan motor according to the initial control current, and monitor the fan.
  • the running state of the motor is used to judge whether the motor can run stably. It may be to collect the real-time operating current and rotational speed of the motor, and judge whether the fan is running stably according to whether the real-time operating current and real-time rotational speed satisfy the preset state.
  • the preset state may be that the operating current and rotational speed remain stable within the set time range and do not change. If the monitoring result shows that the running state of the fan motor is stable, the feedback current at this time is collected, and the closed-loop control of constant power is carried out according to the feedback current. If the monitoring result shows that the stable state of the fan motor is unstable, then adjust the initial control current and then monitor the above method again until it is confirmed that the fan motor can run stably. By collecting feedback electrical signals to perform constant power control after the stable operation of the blower motor is monitored, the speed of entering constant power control and the accuracy of constant power control can be improved.
  • constant power control after controlling the fan motor according to the control current and the set power, and confirming that the fan motor is running stably, constant power control is performed.
  • the specific method of the constant power control is as follows:
  • the feedback current and the feedback voltage of the motor are obtained, and according to the feedback current and the feedback voltage, it is determined that the fan enters the constant power control.
  • Mode 1 According to the product of the feedback current and the feedback voltage, the output power of the motor is obtained, and when the output power of the motor remains constant, it is confirmed that the fan enters constant power control.
  • Method 1 is characterized by simplification, but has the defect that the accuracy of the judgment result of constant power is not high enough.
  • Mode 2 obtain the quadrature axis current and the direct axis current as the feedback current, obtain the quadrature axis voltage and the direct axis voltage as the feedback voltage; calculate the active power of the motor according to the quadrature axis current and the quadrature axis voltage power; calculate the reactive power of the motor according to the direct axis current and the direct axis voltage; calculate the total power of the motor according to the active power and the reactive power; calculate the total power of the motor according to the total power and the When the set power satisfies a preset relationship, it is determined that the fan enters the constant power control.
  • the active power of the motor can be calculated directly according to the product of the quadrature axis current and the quadrature axis voltage, or the active power coefficient can be introduced to calculate the active power using the following formula:
  • the active power coefficient K active is the conversion coefficient between the product of current and voltage and the active power on the quadrature axis
  • I Q is the Q-axis current, that is, the current of the motor on the quadrature axis
  • U Q is the Q-axis voltage, That is, the voltage of the motor on the quadrature axis.
  • the reactive power of the motor can be calculated directly based on the product of the direct-axis current and the direct-axis voltage, or the reactive power coefficient can be introduced to calculate the reactive power using the following formula:
  • the reactive power coefficient K reactive is a conversion coefficient between the product of current and voltage and reactive power on the direct axis
  • ID is the D-axis current, that is, the current of the motor on the direct axis
  • U D is D-axis voltage, that is, the voltage of the motor on the direct axis.
  • the total power of the motor can be calculated according to the sum of the active power and the reactive power.
  • the total power is the current power that needs to be calculated.
  • the preset relationship can be that the total power is equal to the set power, or that the deviation between the total power and the set power does not exceed a preset value, such as the deviation value does not exceed 1 of the set power %.
  • the constant power control of mode 2 takes motor feedback electrical signals, such as feedback current and feedback voltage as input, calculates the actual total power of the current motor, and determines whether the relationship between the total power and the set power satisfies the preset The relationship determines whether the motor enters the constant power state, thereby realizing the constant power closed-loop control, which can significantly improve the control accuracy of the motor constant power.
  • the next step is to obtain the PQ performance data of the air volume Q-wind pressure P generated by the fan or range hood under the current set power.
  • the PQ performance data includes a large number of air volume-wind pressure data pairs (Q ,P), each set of data pairs includes a wind volume data and wind pressure data corresponding to the wind volume data.
  • the test method of PQ performance data is to control the constant power of the fan by setting the power, and then control the blockage rate of the air duct from 0% to 100%, and collect the performance data of the air volume and wind pressure generated by the fan under different blockage rates.
  • the next step is to calculate the fan efficiency corresponding to each set of data pairs or operating points, so as to find the candidate performance points that can make the fan efficiency meet the set conditions from the PQ performance data of the fan.
  • fan efficiency you can calculate each pair of data in the PQ performance data according to formula (5), calculate the product of air volume and wind pressure, and then divide it by the set power to get the fan efficiency; or, between the air volume and The wind pressure product is multiplied by the fan efficiency correction coefficient, and then divided by the set power to obtain the fan efficiency.
  • the required candidate performance points are found according to the fan efficiency.
  • the setting condition can be the highest fan efficiency, or it can be near the highest point, such as not lower than 90%-95% of the highest efficiency, or greater than a certain efficiency value preset based on experience. Among them, if the fan efficiency is the highest as the setting condition, then the number M of performance points to be selected is one and only one; if the efficiency of other fans is near the highest efficiency point as the setting condition, then the number M of performance points to be selected is at least one.
  • step S102 according to the set power and the fan efficiency, determine the target performance point from the M performance points to be selected; the target performance point is to make the energy efficiency level of the range hood not lower than the target The candidate performance point of the grade.
  • the energy efficiency level can be characterized by the energy efficiency index EEI.
  • the configuration of other energy-consuming devices is fixed, that is: P and others are determined, so after obtaining the fan efficiency and set power corresponding to each performance point to be selected , the energy efficiency level of the range hood at this working point can be calculated.
  • L1 is the standard annual energy consumption coefficient
  • c is a constant term
  • L2 is the annual energy consumption coefficient.
  • the energy efficiency index reflects the energy efficiency level of the range hood at the current performance point.
  • the energy efficiency level corresponding to one or more performance points to be selected is determined, and then the required target operating point is determined according to the requirement that the energy efficiency level is not lower than the target level.
  • the target grade can be A+++, or A++, or other energy efficiency grades, which are determined according to the actual development needs of the range hood.
  • step S103 according to the target performance point, determine the target operating parameters of the range hood.
  • the target operating parameters of the range hood or fan at the target performance point After obtaining the target performance point, it is necessary to obtain the target operating parameters of the range hood or fan at the target performance point, and control according to the target operating parameters in the subsequent range hood test stage and the user's use stage, so that the range hood
  • the whole range hood has an energy efficiency level not lower than the target level.
  • the actual operating current or the actual rotational speed of the fan when working at the target performance point can be used as the target operating parameter; wherein, the actual operating current can be used in the test phase of the range hood, or
  • the range hood is controlled by a constant current during the user use phase, and the actual speed can be used to control the range hood with a constant speed during the test phase of the range hood or the user use phase. In this way, combined with the air duct control algorithm, It can ensure that the fan can work stably at or near the target performance point, so that the energy efficiency of the whole fan can reach the required energy efficiency level.
  • the fan of the range hood is subjected to constant current control according to the actual operating current, or according to the The actual speed is used to control the fan of the range hood at a constant speed; after entering the constant speed control of the constant current control station, the second mapping of the air volume-wind pressure of the range hood in the test gear is collected relationship; when the preset correspondence condition is satisfied between the target performance point and the second mapping relationship, verify that the energy efficiency level of the range hood reaches the target level.
  • the actual operating current or the actual rotational speed corresponding to the target performance point is used to perform constant target parameter control, and the second mapping relationship at this time is collected.
  • the second mapping relationship is also the air volume-wind pressure performance data of the range hood.
  • the test plan is to control the air duct blockage rate within the preset blockage range, such as 30%-70%.
  • the fan of the range hood is controlled with constant target parameters, and the air volume-wind pressure performance data in this process is collected.
  • the key is to verify whether the PQ performance curve corresponding to the second mapping relationship intersects with the PQ performance curve of the first mapping relationship at the target performance point. Since the target operating parameters used in the test phase are derived from the actual operating parameters of the fan at the target performance point, when the target operating parameters are used for constant parameter control, the collected PQ performance curve will theoretically pass through the target performance point. , so as to confirm that the range hood can be rated at the energy efficiency level corresponding to the target performance point.
  • the preset corresponding condition for verifying whether the energy efficiency of the range hood really reaches the target energy efficiency may be that the second mapping relationship includes the target performance point, or the Euclidean distance between the target performance point and the second mapping relationship is less than or equal to the set distance threshold. This ensures that when the range hood is running at the test gear, it can work stably at the target performance point and operate at the best efficiency point of the whole machine, so that the range hood's energy efficiency level can be improved and the product's energy efficiency level can be verified If the required target level has indeed been achieved, it can be declared that the range hood has reached the target energy efficiency level.
  • the Euclidean distance is greater than the distance threshold, it means that the deviation between the target performance point and the second mapping relationship is large, the range hood cannot work near the target performance point when the range hood is running in the test gear, and the product cannot claim the target energy efficiency level.
  • the above scheme relies on software algorithms, and through constant power control technology, estimates the total power according to the electrical feedback signal of the motor to form a closed-loop control to make the motor run more stably; combined with the energy efficiency level judgment standard, constant power control is more conducive to finding the efficiency of the fan Meet the set conditions, such as the highest efficiency, or the performance point near the highest efficiency, thereby significantly speeding up the search for the target operating point of the whole machine, ensuring that the whole range hood has a development speed that is not lower than the target energy efficiency level, and at the same time can ensure that users When using the range hood, the range hood can work while maintaining the nominal energy efficiency level.
  • the energy efficiency level to be achieved by the range hood as a whole that is, the target level is not lower than A+++.
  • the energy efficiency index EEI must not exceed 30;
  • the set power range is determined to be 30W-70W; the setting condition of the performance point to be selected is the performance point with the highest fan efficiency.
  • Step 1 Use a constant power of 30W to test on the prototype, and the tested "air volume-wind pressure" curve is shown in Figure 3; in Figure 3, the abscissa is the air volume in cubic meters per minute, and the ordinate is Wind pressure, in Pa.
  • Step 2 Use the formula (5) to calculate the fan efficiency FDE corresponding to each sampling data point on the curve, and get the point with the highest FDE in the 30W curve (2.722,168.4), and the FDE value is 25.4%, and take this performance point as a candidate performance point;
  • Step 3 Set the power according to the FDE value.
  • the power of the lighting lamp is 1.5W.
  • the energy efficiency index EEI is calculated to be 39.87, which belongs to the A+ level energy efficiency. It has not reached the A+++ energy efficiency, so the setting needs to be re-determined The power is tested again;
  • Step 4 Confirm that the set power is 70W, and repeat the process of steps 1 to 3.
  • the "air volume-wind pressure" curve obtained from the test is shown in Figure 3.
  • FDE the highest FDE point in the 70W curve is (5.212, 283.5), and the corresponding FDE is 35.18%; this point is used as the performance point to be selected, combined with the power of the lighting lamp 1.5W, calculated by formula (1)-(4)
  • the energy efficiency index EEI is 36.32, which belongs to the A++ level, and the energy efficiency has not reached the A+++ energy efficiency, so the next step is to take a set power between 30W-70W for testing;
  • Step 5 Confirm that the set power is 45W, and repeat the process of steps 1 to 3.
  • the "air volume-wind pressure" curve obtained from the test is shown in Figure 3.
  • FDE the highest FDE point in the 45W curve is (6.36, 161.33), and the corresponding FDE is 38.01%; this point is used as the performance point to be selected, combined with the power of the lighting lamp 1.5W, calculated by formula (1)-(4)
  • the energy efficiency index EEI is 28.07, and the energy efficiency reaches A+++ energy efficiency, so (6.36, 161.33) is the target performance point required by the range hood, and record the current I and speed S corresponding to the target performance point;
  • Step 6 In order to verify that the range hood can claim the A+++ grade, in the test stage, the range hood needs to be tested in the test position. At this time, the air volume-wind pressure curve of the range hood must be obtained through a 45W constant power test.
  • the highest FDE target performance point in the air volume-wind pressure curve (as shown in Figure 3): (6.36, 161.33), the fan efficiency FDE corresponding to this target performance point is 38%, and the EEI is 28.07.
  • the test gear adopts the current I recorded in step 5 to carry out constant current control, and the air volume-wind pressure curve of the range hood is measured when testing on the test equipment (in Fig.
  • Coordinate is air volume, unit is cubic meter/minute, and ordinate is wind pressure, and unit is Pa), it and the air volume-wind pressure curve (using * as graphic mark in Fig. The curve) exactly intersects at the target performance point (6.36, 161.33), so as to ensure that the range hood can work stably near the intersection point during the test, that is, to verify that the range hood can be marked with A+++ energy efficiency.
  • step 1 to step 5 are the same as the foregoing embodiment
  • Step 6 During the test phase, the range hood is tested at the test gear.
  • the test gear uses the speed S recorded in step 5 for constant speed control. It will pass the target performance point (6.36, 161.33).
  • the calculated EEI is 28.07, which meets the standard of less than 30, and can be rated as A+++ energy efficiency level.
  • the above-mentioned embodiments provide a test method for range hoods, by performing constant power control on the fans of the range hoods, under constant power control, multiple candidate performances are found to make the efficiency of the fans meet the set conditions Points, and then determine the target performance point that makes the energy efficiency level of the range hood not lower than the target level from these candidate performance points, so as to determine the target operating parameters of the range hood according to the target performance point.
  • the setting condition can be that the efficiency of the fan is the highest, it can be that the efficiency of the fan is ranked high, or the efficiency of the fan can be greater than a certain set value;
  • the reason why the candidate performance point of the fan is determined under the constant power control state is because Efficiency algorithm and energy efficiency level judgment standard, the use of constant power control can determine the operating point with the highest or better fan efficiency faster and more accurately, thereby significantly speeding up the development speed of improving the energy efficiency level of the range hood;
  • the range hood can be controlled according to the target operating parameters in the follow-up test process of the range hood and during the user's use, so that the range hood can work at the target performance point, so as to ensure the energy efficiency of the range hood The level reaches the target level.
  • the above scheme improves the target level of the range hood through an algorithm without improving the structure of the range hood or adding additional control appliances, so it can reduce the process cost and installation cost, and has a better Good versatility.
  • a test device for a range hood including:
  • the obtaining module 501 is used to perform constant power control on the fan of the range hood according to the set power, and obtain M candidate performance points of the fan and the efficiency of the fan corresponding to each candidate performance point; the candidate performance points is the air volume and wind pressure performance point of the fan when the efficiency of the fan meets the set conditions; M ⁇ 1 and is an integer;
  • the first determining module 502 is configured to determine a target performance point from the M performance points to be selected according to the set power and the fan efficiency; the target performance point is the energy efficiency level of the range hood Candidate performance points not lower than the target level;
  • the second determining module 503 is configured to determine target operating parameters of the range hood according to the target performance point.
  • the first determining module 502 is used to:
  • the candidate performance points whose energy efficiency level is not lower than the target level are determined as the target performance points.
  • the obtaining module 501 is used to:
  • control the motor of the fan According to the control current and the set power, control the motor of the fan to obtain the feedback current and the feedback voltage of the motor;
  • the obtaining module 501 is used to:
  • the feedback current and the feedback voltage are obtained after the real-time rotational speed and the real-time current satisfy a preset state.
  • the feedback current includes a quadrature axis current and a direct axis current
  • the feedback voltage includes a quadrature axis voltage and a direct axis voltage
  • the obtaining module 501 is used for:
  • the obtaining module 501 is used to:
  • the first mapping relationship includes N sets of data pairs of air volume and air pressure , N ⁇ 2 and is an integer;
  • the data pair whose efficiency of the fan satisfies the set condition is determined as the performance point to be selected.
  • the set power includes P test powers, P ⁇ 2 and is an integer; the obtaining module 501 is used for:
  • a sampling data set includes multiple data pairs of wind volume and wind pressure.
  • the second determining module 503 is used for:
  • the actual operating current or the actual rotational speed is determined as the target operating parameter; wherein, the actual operating current is used for constant current control of the range hood, and the actual rotational speed is used for controlling the range hood
  • the machine performs constant speed control.
  • the test device also includes a verification module, and the verification module is used for:
  • control the fan of the range hood to run constantly with the target operating parameters
  • the second mapping relationship is a corresponding relationship between air volume and wind pressure of the range hood;
  • a test device for a range hood is provided.
  • the test device includes: a memory 604, a processor 602, and a The computer program running on the processor, the processor 602 executing the computer program program is the testing method described in any one of the implementation manners of the first aspect.
  • bus 600 may include any number of interconnected buses and bridges, and bus 600 will include one or more processors represented by processor 602 and memory 604.
  • the various circuits of the memory are linked together.
  • the bus 600 may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and thus will not be further described herein.
  • the bus interface 605 provides an interface between the bus 600 and the receiver 601 and the transmitter 603 .
  • Receiver 601 and transmitter 603 may be the same element, a transceiver, providing means for communicating with various other devices over a transmission medium.
  • Processor 602 is responsible for managing bus 600 and general processing, while memory 604 may be used to store data used by processor 602 in performing operations.
  • a range hood including a fan and the testing device described in any implementation manner of the third aspect.
  • the test device refer to the foregoing, and for other implementation details, refer to related technologies, which will not be repeated here.
  • each functional unit may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the disclosed technical content can be realized in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of units or modules may be in electrical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component as a control device may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ventilation (AREA)

Abstract

一种抽油烟机的测试方法,包括:根据设定功率对抽油烟机的风机进行恒功率控制,获得风机的M个待选性能点和每个待选性能点对应的风机效率;待选性能点是在风机效率满足设定条件时,风机的风量与风压数据对;M≥1且为整数(S101);根据设定功率和风机效率,从M个待选性能点中确定目标性能点;目标性能点是使抽油烟机的能效等级不低于目标等级的待选性能点(S102);根据目标性能点,确定抽油烟机的目标运行参数(S103)。显著加快了提高抽油烟机整机能效等级的开发速度,并降低工艺成本和安装成本。还提供一种抽油烟机的测试装置和一种抽油烟机。

Description

抽油烟机及其测试方法和测试装置
相关申请的交叉引用
本申请要求于2021年9月26日提交、申请号为202111131743.9且名称为“抽油烟机及其测试方法和测试装置”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容涉及电器领域,尤其涉及一种抽油烟机及其测试方法和测试装置。
背景技术
由于节能减排的要求,各类家用电器的能效等级要求不断提高。对于抽油烟机而言,目前提高能效的方案主要是通过改进电器结构,新增电器装置实现的。
发明内容
本公开内容的目的至少部分在于,提供一种抽油烟机及其测试方法和测试装置,至少在一定程度上解决了目前通过抽油烟机结构调整实现提高抽油烟机能效等级的方案,存在成本较高,通用性较差的技术问题。
第一方面,本公开提供了一种抽油烟机的测试方法,包括:根据设定功率对抽油烟机的风机进行恒功率控制,获得所述风机的M个待选性能点和每个待选性能点对应的风机效率;所述待选性能点是在风机效率满足设定条件时,所述风机的风量与风压数据对;M≥1且为整数;根据所述设定功率和所述风机效率,从所述M个待选性能点中确定目标性能点;所述目标性能点是使所述抽油烟机的能效等级不低于目标等级的待选性能点;根据所述目标性能点,确定所述抽油烟机的目标运行参数。通过恒功率控制方法,能够更快,更精确地确定出到使风机效率满足设定条件,如风机效率最高或较佳的工作点,从而显著加快提高抽油烟机整机能效等级的开发速度,且不需要对抽油烟机的结构进行改变,以降低工艺成本和安装成本。
第二方面,本公开提供了一种抽油烟机的测试装置,包括:获得模块,用于 根据设定功率对抽油烟机的风机进行恒功率控制,获得所述风机的M个待选性能点和每个待选性能点对应的风机效率,所述待选性能点是在风机效率满足设定条件时,所述风机的风量与风压性能点,M≥1且为整数;第一确定模块,用于根据所述设定功率和所述风机效率,从所述M个待选性能点中确定目标性能点,所述目标性能点是使所述抽油烟机的能效等级不低于目标等级的待选性能点;以及第二确定模块,用于根据所述目标性能点,确定所述抽油烟机的目标运行参数。
上述测试装置通过恒功率控制方法,能够更快,更精确地确定出到使风机效率满足设定条件,如风机效率最高或较佳的工作点,从而显著加快提高抽油烟机整机能效等级的开发速度,且不需要对抽油烟机的结构进行改变,以降低工艺成本和安装成本。
第三方面,本公开提供了一种抽油烟机的测试装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现前述实施方式中任一项所述的测试方法。
第四方面,本公开提供了一种抽油烟机,包括风机和前述实施方式中的测试装置。
本公开提供了一种抽油烟机的测试方法,通过对抽油烟机的风机进行恒功率控制,在恒功率控制下找到使风机效率满足设定条件的多个待选性能点,然后从这些待选性能点中确定出使抽油烟机整机的能效等级不低于目标等级的目标性能点,从而根据所述目标性能点确定抽油烟机的目标运行参数。其中,设定条件可以是风机效率最高,可以是风机效率排名靠前,也可以是风机效率大于某设定值;之所以在恒功率控制状态下确定风机的待选性能点,是因为根据风机效率算法和能效等级判定标准,采用恒功率控制能够更快,更精确地确定出到风机效率最高或较佳的工作点,从而显著加快提高抽油烟机整机能效等级的开发速度;在确定目标运行参数后,可以在抽油烟机后续的测试过程以及用户使用过程中,根据目标运行参数进行运行控制,使抽油烟机整机在目标性能点处的工况工作,从而保证抽油烟机的能效等级达到目标等级。总的来说,上述方案通过算法提高抽油烟机的目标等级,不需要对抽油烟机的结构进行改进,也不需要增加额外的控制电器,故而能够减小工艺成本和安装成本,并具有更好的通用性。
附图说明
为了更清楚地说明本公开内容实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开内容的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为依据本公开实施例的抽油烟机测试方法的流程示意图;
图2为依据本公开实施例的恒功率控制算法的流程示意图;
图3为依据本公开实施例的恒功率控制时测得的风量与风压的曲线示意图;
图4为依据本公开实施例的在测试阶段对抽油烟机进行恒电流控制时测得的风量与风压的曲线示意图;
图5为依据本公开实施例的抽油烟机测试装置的功能模块图;
图6为依据本公开实施例的抽油烟机测试装置的结构示意图。
具体实施方式
为了解决目前通过抽油烟机结构调整实现提高抽油烟机能效等级的方案,存在成本较高,通用性较差的技术问题,本公开实施例提供一种抽油烟机的测试方法,通过对抽油烟机的风机进行恒功率控制,在恒功率控制下找到使风机效率满足设定条件的多个待选性能点,然后从这些待选性能点中确定出使抽油烟机整机的能效等级不低于目标等级的目标性能点,从而根据所述目标性能点确定抽油烟机的目标运行参数。其中,设定条件可以是风机效率最高,可以是风机效率排名靠前,也可以是风机效率大于某设定值;之所以在恒功率控制状态下确定风机的待选性能点,是因为根据风机效率算法和能效等级判定标准,采用恒功率控制能够更快,更精确地确定出到风机效率最高或较佳的工作点,从而显著加快提高抽油烟机整机能效等级的开发速度;在确定目标运行参数后,可以在抽油烟机后续的测试过程以及用户使用过程中,根据目标运行参数进行运行控制,使抽油烟机整机在目标性能点处的工况下工作,从而保证抽油烟机的能效等级达到目标等级。
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
对于抽油烟机的能效等级,一种判定标准如下:
EEI>85能效等级为D;
85>EEI>70能效等级为C;
70>EEI>55能效等级为B;
55>EEI>45能效等级为A;
45>EEI>37能效等级为A+;
37>EEI>30能效等级为A++;
EEI<30能效等级A+++。
上述内容中的EEI:Energy efficiency Index为表征能效等级高低的能效指数。
由此可知,想要提高抽油烟机的能效等级,能效指数越小越好。例如,想要达到A+++能效等级,则能效指数EEI需要小于30。
根据能效指数的定义,其计算方式如下:
Figure PCTCN2022083943-appb-000001
上式中,SAEC为标准年能耗,单位为kWh/a。AEC为年能耗,单位为kWh/a。
其中,一种标准年能耗SAEC的计算方式如下:
Figure PCTCN2022083943-appb-000002
上式中,P 风机:风机输入功率,单位为瓦特,W;P 其它:抽油烟机上其它耗能器件的功率,单位为W。
进一步的,年能耗AEC的计算方式如下:
Figure PCTCN2022083943-appb-000003
上式中,T 风机为平均每天的风机运行时间,单位为分钟,取值为60;
T 其它为其它耗能电器平均每天的开启时间,单位为分钟,取值为120。
对抽油烟机来说,常见的耗能器件为照明灯,因此在没有其它电器的情况下,在式(2)和(3)中,P 其它=P 照明灯,T 其它=T 照明灯
F为时间增长因子,与风机效率相关,一种定义方式如下:
Figure PCTCN2022083943-appb-000004
上式中,FDE为风机效率,与风机产生的风量和风压相关,一种定义风机效率的方式如下:
Figure PCTCN2022083943-appb-000005
上式中,风量的单位为立方米/小时,风压的单位为帕。
研究表明,根据式(1)-(5)可以看出,在照明灯功率(P 照明灯)一定的情况下,风机效率FDE决定了抽油烟机的能效等级。因此可以认为,在测试档位中,风机工作时经过的工作点对应的FDE越高,能够标称的能效等级越高。因此,提高能效等级可以从风机效率入手,需要找到风机效率最高,或者在最高点附近,或者大于某设定效率等满足设定条件的工作点。
根据式(5)可知,要想找到所需的工作点,最快的方式是将其中一个变量固定,如使用恒定风量或者恒定风压控制方法。但恒定风量控制方法和恒定风压控制方法经估算无法实现闭环控制,而恒功率控制能够通过风机电机的反馈电流实时计算出对应的功率。当风机输入功率一定时,风机效率FDE大小与风量和风压的乘积成正比。风量和风压的乘积越大,FDE越大,所以将风机输入功率固定下来的算法显得尤为重要,能够大大提升寻找所需的风机效率目标工作点的开发速度。故而,本公开采用恒功率控制方案寻找所需要的目标性能点。
在第一方面,本公开提供了一种抽油烟机的测试方法,其整体思路是要对抽油烟机的风机进行恒功率控制,找到在恒定输入功率状态下使抽油烟机整机的能效等级不低于目标等级的目标性能点。
如图1所示,一种抽油烟机的测试方法可以包括步骤S101、S102和S103。
在步骤S101:根据设定功率对抽油烟机的风机进行恒功率控制,以获得所述风机的M个待选性能点和每个待选性能点对应的风机效率;所述待选性能点是在风机效率满足设定条件时,所述风机的风量与风压数据对。
具体的,设定功率是预先确定的,应用于抽油烟机搭载的风机的控制输入功率。对于不同类型的抽油烟机,由于其搭载的风机不同,因此设定功率可根据抽油烟 机具体搭载的风机类型确定,例如,对于某型号的抽油烟机搭载的风机A,可选用30W-70W的设定功率进行恒功率控制。设定功率可以选择一个,也可以选择多个,在此不作具体限定。
在确定了设定功率后,开始准备对抽油烟机的风机进行恒功率控制。风机此时搭载在抽油烟机的整机或样机上,故而也可以认为是采用设定功率对抽油烟机的整机进行恒功率输出。首先需要根据设定功率计算出风机的控制电流。这个控制电流不能超出风机正常运行的电流范围。在确定好控制电流之后,根据设定功率和对应的控制电流,对抽油烟机进行控制。
考虑到风机电机的运行状态的稳定与否,对恒功率的控制非常关键,因此在一些实施方式中,可根据设定功率,初步计算出一个初始控制电流。同理,初始控制电流也不能超出风机正常运行的电流范围,即不能低于风机运行的最小电流,也不能超过风机运行的额定电流;然后根据初始控制电流对风机电机进行控制输出,并监控风机电机的运行状态,判断电机是否能够稳定运行。可以是采集电机的实时运行电流和转速,根据所述实时运行电流和实时转速是否满足预设状态来判断风机是否稳定运行。预设状态可以是运行电流和转速在设定时间范围内保持稳定,不发生变化。若监控结果表明风机电机的运行状态是稳定的,则采集此时的反馈电流,根据反馈电流进行恒功率的闭环控制。若监控结果表明风机电机的稳定状态不稳定,则调整初始控制电流后重新上述的方法进行监控,直到确认风机电机可以稳定运行。通过在监控到风机电机稳定运行后,采集反馈电信号进行恒功率控制,能够提高进入恒功率控制的速度,以及恒功率控制的精度。
在一些实施方式中,在根据所述控制电流和所述设定功率对风机电机进行控制,并确认风机的电机稳定运行后,进行恒功率控制,所述恒功率控制的具体方法如下:
获得所述电机的反馈电流和反馈电压,根据所述反馈电流和所述反馈电压,确定所述风机进入所述恒功率控制。
其中,根据所述反馈电流和所述反馈电压判断风机是否进入恒功率控制状态,可以有以下两种方式:
方式1、根据所述反馈电流与所述反馈电压的乘积,得到电机的输出功率,当电机的输出功率保持恒定时,确认所述风机进入恒功率控制。方式一的特点是比较 简化,但存在恒功率的判断结果的精确度不够高的缺陷。
方式2、获得交轴电流和直轴电流作为所述反馈电流,获得交轴电压和直轴电压作为所述反馈电压;根据所述交轴电流和所述交轴电压,计算所述电机的有功功率;根据所述直轴电流和所述直轴电压,计算所述电机的无功功率;根据所述有功功率和所述无功功率,计算所述电机的总功率;在所述总功率与所述设定功率满足预设关系时,确定所述风机进入所述恒功率控制。
在一些实施例中,可以直接根据所述交轴电流和所述交轴电压的乘积,计算所述电机的有功功率,或者引入有功功率系数,采用下式计算有功功率:
P 有功=K 有功×I Q×U Q           (6)
上式中,有功功率系数K 有功是电流和电压乘积与有功功率之间在交轴上的转换系数,I Q为Q轴电流,即电机在交轴上的电流,U Q为Q轴电压,即电机在交轴上的电压。
在另一些实施例中,可以直接根据所述直轴电流和所述直轴电压的乘积,计算所述电机的无功功率,或者引入无功功率系数,采用下式计算无功功率:
P 有功=K 无功×I D×U D           (7)
上式中,无功功率系数K 无功是一个电流和电压乘积与无功功率之间在直轴上的转换系数,I D为D轴电流,即电机在直轴上的电流,U D为D轴电压,即电机在直轴上的电压。
接下来,可根据所述有功功率和所述无功功率之和,计算出所述电机的总功率。此处的总功率便是需要计算的当前功率。
为了确认此时电机是否按照设定功率进行恒功率输出,需要判断所述总功率与所述设定功率是否满足预设关系。预设关系可以是所述总功率与所述设定功率相等,也可以是所述总功率与所述设定功率之间的偏差不超过预设值,如偏差值不超过设定功率的1%。
以所述总功率与所述设定功率相等为预设关系为例,为了保证电机按照设定功率进行恒功率输出,需要使根据反馈电压和反馈电流计算的总功率与设定功率相等:当计算出来的总功率和设定功率相等时,则认为电机输出达到了需要恒定的目标功率; 若不相等,则需要调整控制电流大小并重新计算,直到使设定功率与总功率相等。在确认恒功率控制后,持续对电机运行状态进行实时监控,当存在负载扰动或设定功率改变的时候,需要重新进入上述的恒功率控制方法进行计算并控制。上述恒功率控制的控制逻辑如图2所示。
总的来说,方式2的恒功率控制,以电机反馈电信号,如反馈电流和反馈电压为输入,通过计算当前电机实际的总功率,并根据总功率与设定功率之间是否满足预设关系,确定电机是否进入恒功率状态,从而实现了恒功率闭环控制,能够显著提高电机恒功率的控制精度。
在进入恒功率控制后,接下来是获取在当前设定功率下,风机或抽油烟机产生的风量Q-风压P的PQ性能数据,PQ性能数据包括大量的风量-风压数据对(Q,P),每一组数据对包括一个风量数据和与风量数据对应的风压数据。PQ性能数据的测试方法是通过设定功率对风机进行恒功率控制,然后控制风道堵塞率从0%变化至100%,采集在不同堵塞率下风机产生的风量和风压的性能数据。接下来是计算每组数据对或工作点对应的风机效率,从而从风机的PQ性能数据中找出能够使风机效率满足设定条件的待选性能点。在计算风机效率时,可以根据式(5),计算PQ性能数据中每一组数据对,计算风量与风压的乘积,然后再除以设定功率,得到风机效率;又或者,在风量与风压的乘积的基础上再乘以风机效率修正系数,然后再除以设定功率,也可以得到风机效率。
在计算得到所有数据对的风机效率后,根据风机效率找出所需的待选性能点。如前所述,设定条件可以是风机效率最高,也可以是在最高点附近,如不低于最高效率的90%-95%,或者大于某个根据经验预先设定的效率值等。其中,若是以风机效率最高为设定条件,则待选性能点的数量M有且只有一个;若是以其它风机效率在最高效率点附近为设定条件,则待选性能点的数量M至少有一个。
对于根据多个设定功率进行恒功率控制的情况,只需要按照上述逻辑,分别对每一个设定/测试功率进行恒功率控制,然后采集抽油烟机在每个设定功率下的PQ性能数据,从而确定出在不同设定功率下,风机效率满足设定条件的待选性能点。
结合式(3)和(4)可知,风机效率越高,抽油烟机的能效等级就越高,因此接下来通过计算每个待选性能点对应的抽油烟机的能效等级,从而判断待选性能点的能效等级是否不低于目标等级。
在步骤S102:根据所述设定功率和所述风机效率,从所述M个待选性能点中确定目标性能点;所述目标性能点是使所述抽油烟机的能效等级不低于目标等级的待选性能点。
具体的,能效等级可通过能效指数EEI表征。在抽油烟机早期设计时,除了风机之外,其它的耗能器件的配置是固定的,即:P其它是确定的,因此在得到每个待选性能点对应的风机效率和设定功率后,就可以计算出抽油烟机在此工作点处的能效等级,可采用两种方式进行能效等级的计算:
方式1,结合式(1),(2),(3),(4)进行计算;
方式2,根据下式,计算标准年能耗SAEC:
Figure PCTCN2022083943-appb-000006
上式中,L1为标准年能耗系数,c为常数项。
根据下式,计算年能耗AEC:
AEC=(P 风机×T 风机×FDE+∑P 其它×T 其它)×L 2       (9)
上式中,L2为年能耗系数。
在计算出SAEC和AEC之后,再利用式(1)计算出能效指数。能效指数反映了抽油烟机在当前性能点的能效等级。
通过上述方法,确定出一个或多个待选性能点对应的能效等级,然后再按照能效等级不低于目标等级的要求,确定出所需的目标工作点。目标等级可以是A+++,或A++,或其它能效等级,根据抽油烟机实际开发需求确定。
在步骤S103:根据所述目标性能点,确定所述抽油烟机的目标运行参数。
在获得目标性能点之后,需要获取目标性能点处的抽油烟机或风机的目标运行参数,并在后续的抽油烟机测试阶段,以及用户的使用阶段,根据目标运行参数进行控制,以使抽油烟机整机具有不低于目标等级的能效等级。在一些实施例中,可以将风机在所述目标性能点处工作时的实际运行电流或实际转速作为所述目标运行参数;其中,所述实际运行电流可用于在抽油烟机的测试阶段,或用户使用阶段对所述抽油烟机进行恒电流控制,所述实际转速可用于在抽油烟机的测试阶段,或用户使用阶段对所述抽油烟机进行恒转速控制,如此结合风道控制算法,可以确保风机能够稳 定在目标性能点处或逼近目标性能点附近处工作,使风机整机能效达到所需要的能效水平。
以风机在测试阶段,按照测试档位运行为例说明在获得目标运行参数后如何验证抽油烟机的能效等级。在一些实施方式中,在获得所述抽油烟机的目标运行参数之后,在对抽油烟机进行测试时,根据所述实际运行电流对所述抽油烟机的风机进行恒电流控制,或根据所述实际转速对所述抽油烟机的风机进行恒转速控制;在进入所述恒电流控制所恒转速控制后,采集所述抽油烟机在测试档位下的的风量-风压的第二映射关系;在所述目标性能点与第二映射关系之间满足预设对应条件时,验证所述抽油烟机的能效等级达到所述目标等级。
具体的,在抽油烟机测试时,使用目标性能点对应的实际运行电流或实际转速进行恒目标参数控制,并采集此时的第二映射关系。第二映射关系同样是抽油烟机的风量-风压性能数据,其测试方案是将风道堵塞率控制在预设堵塞范围内,如30%-70%的范围内变化,在预设堵塞范围内按照目标运行参数对抽油烟机的风机进行恒目标参数控制,采集这一过程中的风量-风压性能数据。
因此,在测试阶段验证抽油烟机是否能够标称目标能效等级,如A+++,关键在于验证第二映射关系对应的PQ性能曲线是否与第一映射关系的PQ性能曲线相交于目标性能点。由于测试阶段采用的目标运行参数源自风机在目标性能点处的实际运行参数,因此在采用目标运行参数进行恒参数控制时,采集的PQ性能曲线从理论上来说是一定会经过目标性能点的,从而确认抽油烟机能够标称目标性能点对应的能效等级。
故而,用于验证抽油烟机能效是否真正达到目标能效的预设对应条件可以是第二映射关系包括所述目标性能点,或者目标性能点与所述第二映射关系之间的欧氏距离小于或等于设定的距离阈值。如此确保在抽油烟机在测试档位测试运行时,能够稳定在目标性能点处工作,运行在整机最佳效率工况点,从而使抽油烟机的能效等级提升,并能够验证产品能效等级确实达到了所需要的目标等级,可标称抽油烟机达到目标能效等级。若欧氏距离大于所述距离阈值,则说明目标性能点与第二映射关系偏差较大,抽油烟机在测试档位运行时无法在目标性能点附近工作,产品无法标称目标能效等级。
总之,上述方案依靠软件算法,通过恒功率控制技术,根据电机反馈电信号 估算出总功率,形成闭环控制,使电机运行更加稳定;结合能效等级判定标准,恒功率控制更加有利于寻找到风机效率满足设定条件,如最高效率,或最高效率附近的性能点,从而显著加快寻找整机目标工作点,保证抽油烟机整机具有不低于目标能效等级工作的开发速度,同时也可以确保用户使用抽油烟机时,抽油烟机能够按照保持在标称的能效等级的状态下工作。
接下来以某型号的抽油烟机为例以及相应的具体数值为例,对本公开实施例的技术方案进行举例性描述,以理解本公开所保护的技术方案,但是,所涉及的具体数值不作为对本公开技术方案的限制,可以根据实际需求进行调整:
在一个可选的实施例中,在某型号的抽油烟机开发阶段,抽油烟机整机所要达到的能效等级,即目标等级不低于A+++,要达到此能效等级,需要能效指数EEI不超过30;根据样机搭载的风机类型,确定设定功率范围为30W-70W;待选性能点的设定条件为风机效率最高的性能点。
步骤1:使用30W的恒功率在样机上进行测试,测试出来的“风量-风压”曲线如图3所示;在图3中,横坐标为风量,单位为立方米/分钟,纵坐标为风压,单位为Pa。
步骤2:利用公式(5)计算出曲线上各个采样数据点对应的风机效率FDE,得到30W曲线中FDE最高的点为(2.722,168.4),FDE值为25.4%,将此性能点作为待选性能点;
以最高效率点的计算过程举例,公式(5)中风量单位为立方米/小时,因此根据风量Q=2.722立方米/min,风压P=168.4Pa和设定功率P=30W,计算FDE=[(2.722×60)×168.4]/(30×60×60)=0.254,即25.4%。
步骤3:根据FDE值,设定功率,照明灯功率1.5W,结合公式(1)至(4)计算出能效指数EEI为39.87,属于A+级能效,未达到A+++能效,于是需要重新确定设定功率再进行测试;
步骤4:确定设定功率为70W,重复步骤1至3的过程,测试得到的“风量-风压”曲线如图3所示,同理,利用公式(5)计算出曲线上各个采样点的FDE,得到70W曲线中FDE最高的点为(5.212,283.5),对应的FDE为35.18%;将此点作为待选性能点,结合照明灯功率1.5W,通过式(1)-(4)计算出能效指数EEI为36.32,属于A++级,能效未达到A+++能效,于是接下来在30W-70W之间取一个设定功率进行 测试;
步骤5:确定设定功率为45W,重复步骤1至3的过程,测试得到的“风量-风压”曲线如图3所示,同理,利用公式(5)计算出曲线上各个采样点的FDE,得到45W曲线中FDE最高的点为(6.36,161.33),对应的FDE为38.01%;将此点作为待选性能点,结合照明灯功率1.5W,通过式(1)-(4)计算出能效指数EEI为28.07,能效达到A+++能效,故而(6.36,161.33)为本抽油烟机所需的目标性能点,记录下目标性能点对应的电流I和转速S;
步骤6:为了验证抽油烟机能够标称A+++等级,在测试阶段,需要使抽油烟机在测试档位测试,此时的抽油烟机的风量-风压曲线要经过45W的恒功率测试得到的风量-风压曲线(如图3所示)中FDE最高的目标性能点:(6.36,161.33),此目标性能点对应的风机效率FDE为38%,EEI为28.07。测试档位采用步骤5记录的电流I进行恒电流控制,在测试设备上测试时测得抽油烟机的风量-风压曲线(图4中用菱形作为图形标识的曲线,在图4中,横坐标为风量,单位为立方米/分钟,纵坐标为风压,单位为Pa),它与在步骤5中获得的45W恒功率控制时的风量-风压曲线(图4中用*作为图形标识的曲线)正好相交于目标性能点(6.36,161.33),从而确保测试时抽油烟机能够稳定在交点附近工作,即验证此抽油烟机可标识A+++能效。
在另一个可选的实施例中,步骤1至步骤5同前述实施例;
步骤6:在测试阶段使抽油烟机在测试档位测试,测试档位采用步骤5记录的转速S进行恒转速控制,在测试设备上测试时测得抽油烟机的风量-风压曲线,发现它会经过目标性能点(6.36,161.33),此时通过计算得到EEI为28.07,符合小于30的标准,可以标称A+++能效等级。
总的来说,上述实施例提供了一种抽油烟机的测试方法,通过对抽油烟机的风机进行恒功率控制,在恒功率控制下找到使风机效率满足设定条件的多个待选性能点,然后从这些待选性能点中确定出使抽油烟机整机的能效等级不低于目标等级的目标性能点,从而根据所述目标性能点确定抽油烟机的目标运行参数。其中,设定条件可以是风机效率最高,可以是风机效率排名靠前,也可以是风机效率大于某设定值;之所以在恒功率控制状态下确定风机的待选性能点,是因为根据风机效率算法和能效等级判定标准,采用恒功率控制能够更快,更精确地确定出到风机效率最高或较佳的工作点,从而显著加快提高抽油烟机整机能效等级的开发速度;在确定目标运行参数 后,可以在抽油烟机后续的测试过程以及用户使用过程中,根据目标运行参数进行运行控制,使抽油烟机整机在目标性能点处的工况工作,从而保证抽油烟机的能效等级达到目标等级。总的来说,上述方案通过算法提高抽油烟机的目标等级,不需要对抽油烟机的结构进行改进,也不需要增加额外的控制电器,故而能够减小工艺成本和安装成本,并具有更好的通用性。
如图5所示,在本公开第二方面,提供了一种抽油烟机的测试装置,包括:
获得模块501,用于根据设定功率对抽油烟机的风机进行恒功率控制,获得所述风机的M个待选性能点和每个待选性能点对应的风机效率;所述待选性能点是在风机效率满足设定条件时,所述风机的风量与风压性能点;M≥1且为整数;
第一确定模块502,用于根据所述设定功率和所述风机效率,从所述M个待选性能点中确定目标性能点;所述目标性能点是使所述抽油烟机的能效等级不低于目标等级的待选性能点;
第二确定模块503,用于根据所述目标性能点,确定所述抽油烟机的目标运行参数。
在一些实施方式中,所述第一确定模块502用于:
根据所述设定效率和所述每个待选性能点对应的风机效率,确定所述每个待选性能点对应的抽油烟机的能效等级;
将所述能效等级不低于所述目标等级的待选性能点确定为所述目标性能点。
在一些实施方式中,所述获得模块501用于:
根据所述设定功率,确定控制电流;
根据所述控制电流和所述设定功率,对所述风机的电机进行控制,以获得所述电机的反馈电流和反馈电压;
根据所述反馈电流和所述反馈电压,确定所述风机进入所述恒功率控制。
在一些实施方式中,所述获得模块501用于:
根据所述控制电流和所述设定功率,对所述风机的电机进行控制;
获得所述电机的实时转速和实时电流;
在所述实时转速和所述实时电流满足预设状态后,获得所述反馈电流和所述反馈电压。
在一些实施方式中,所述反馈电流包括交轴电流和直轴电流,所述反馈电压 包括交轴电压和直轴电压;所述获得模块501用于:
根据所述交轴电流和所述交轴电压,确定所述电机的有功功率;
根据所述直轴电流和所述直轴电压,确定所述电机的无功功率;
根据所述有功功率和所述无功功率,确定所述电机的总功率;
在所述总功率与所述设定功率满足预设关系时,确定所述风机进入所述恒功率控制。
在一些实施方式中,所述获得模块501用于:
根据所述设定功率对抽油烟机的风机进行恒功率控制,获得在所述设定功率下所述风机的第一映射关系;所述第一映射关系包括N组风量与风压的数据对,N≥2且为整数;
根据所述第一映射关系和所述设定功率,确定与每一组数据对关联的风机效率;
将风机效率满足设定条件的数据对确定为所述待选性能点。
在一些实施方式中,所述设定功率包括P个测试功率,P≥2且为整数;所述获得模块501用于:
根据每一个测试功率,对所述风机进行恒功率控制,获得在每一个测试功率下所述风机的风量与风压的采样数据集,并将所有采样数据集作为所述第一映射关系;其中,一个采样数据集中包括多组风量与风压的数据对。
在一些实施方式中,所述第二确定模块503用于:
获得所述风机在所述目标性能点处工作时的实际运行电流或实际转速;
将所述实际运行电流或所述实际转速确定为所述目标运行参数;其中,所述实际运行电流用于对所述抽油烟机进行恒电流控制,所述实际转速用于对所述抽油烟机进行恒转速控制。
在一些实施方式中,所述测试装置还包括验证模块,所述验证模块用于:
根据所述目标运行参数,控制所述抽油烟机的风机以所述目标运行参数恒定运行;
获得所述抽油烟机的第二映射关系;所述第二映射关系是所述抽油烟机的风量与风压的对应关系;
在所述目标性能点与所述第二映射关系满足预设对应条件时,验证所述抽油 烟机的能效等级达到所述目标等级。
如图6所示,在本公开第三方面,提供了一种抽油烟机的测试装置,如图6所示,所述测试装置包括:存储器604、处理器602及存储在存储器604上并可在处理器上运行的计算机程序,处理器602执行所述计算机程序程序时第一方面任一实施方式所述的测试方法。
其中,在图6中,总线架构(用总线600来代表),总线600可以包括任意数量的互联的总线和桥,总线600将包括由处理器602代表的一个或多个处理器和存储器604代表的存储器的各种电路链接在一起。总线600还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口605在总线600和接收器601和发送器603之间提供接口。接收器601和发送器603可以是同一个元件,即收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器602负责管理总线600和通常的处理,而存储器604可以被用于存储处理器602在执行操作时所使用的数据。
在本公开第四方面,提供了一种抽油烟机,包括风机以及第三方面任一实施方式所述的测试装置。所述测试装置的具体实施细节参考前文所述,而其他实施细节可以参考相关技术,在此不再赘述。
本文中所描述的功能可在硬件、由处理器执行的软件、固件或其任何组合中实施。如果在由处理器执行的软件中实施,那么可将功能作为一或多个指令或代码存储于计算机可读媒体上或经由计算机可读媒体予以传输。其它实例及实施方案在本公开及所附权利要求书的范围及精神内。举例来说,归因于软件的性质,上文所描述的功能可使用由处理器、硬件、固件、硬连线或这些中的任何者的组合执行的软件实施。此外,各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在本公开所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为控制装置的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (12)

  1. 一种抽油烟机的测试方法,包括:
    根据设定功率对抽油烟机的风机进行恒功率控制,获得所述风机的M个待选性能点和每个待选性能点对应的风机效率;所述待选性能点是在风机效率满足设定条件时,所述风机的风量与风压数据对;M≥1且为整数;
    根据所述设定功率和所述风机效率,从所述M个待选性能点中确定目标性能点;所述目标性能点是使所述抽油烟机的能效等级不低于目标等级的待选性能点;
    根据所述目标性能点,确定所述抽油烟机的目标运行参数。
  2. 如权利要求1所述的测试方法,其中,所述根据所述设定功率和所述风机效率,从所述M个待选性能点中确定目标性能点,包括:
    根据所述设定效率和所述每个待选性能点对应的风机效率,确定所述每个待选性能点对应的抽油烟机的能效等级;
    将所述能效等级不低于所述目标等级的待选性能点确定为所述目标性能点。
  3. 如权利要求1或2所述的测试方法,其中,所述根据设定功率对抽油烟机的风机进行恒功率控制,包括:
    根据所述设定功率,确定控制电流;
    根据所述控制电流和所述设定功率,对所述风机的电机进行控制,以获得所述电机的反馈电流和反馈电压;
    根据所述反馈电流和所述反馈电压,确定所述风机进入所述恒功率控制。
  4. 如权利要求3所述的测试方法,其中,所述根据所述控制电流和所述设定功率,对所述风机的电机进行控制,以获得所述电机的反馈电流和反馈电压,包括:
    根据所述控制电流和所述设定功率,对所述风机的电机进行控制;
    获得所述电机的实时转速和实时电流;
    在所述实时转速和所述实时电流满足预设状态后,获得所述反馈电流和所述反馈电压。
  5. 如权利要求3所述的测试方法,其中,所述反馈电流包括交轴电流和直轴电流;所述反馈电压包括交轴电压和直轴电压;
    所述根据所述反馈电流和所述反馈电压,确定所述风机进入所述恒功率控制,包括:
    根据所述交轴电流和所述交轴电压,确定所述电机的有功功率;
    根据所述直轴电流和所述直轴电压,确定所述电机的无功功率;
    根据所述有功功率和所述无功功率,确定所述电机的总功率;
    在所述总功率与所述设定功率满足预设关系时,确定所述风机进入所述恒功率控制。
  6. 如权利要求1至5中任一项所述的测试方法,其中,所述根据设定功率对抽油烟机的风机进行恒功率控制,获得所述风机的M个待选性能点和每个待选性能点对应的风机效率,包括:
    根据所述设定功率对抽油烟机的风机进行恒功率控制,获得在所述设定功率下所述风机的第一映射关系;所述第一映射关系包括N组风量与风压的数据对,N≥2且为整数;
    根据所述第一映射关系和所述设定功率,确定与每一组数据对关联的风机效率;
    将风机效率满足设定条件的数据对确定为所述待选性能点。
  7. 如权利要求6所述的测试方法,其中,所述设定功率包括P个测试功率,P≥2且为整数;
    所述根据设定功率对抽油烟机的风机进行恒功率控制,获得在所述设定功率下所述风机的第一映射关系,包括:
    根据每一个测试功率,对所述风机进行恒功率控制,获得在每一个测试功率下所述风机的风量与风压的采样数据集,并将所有采样数据集作为所述第一映射关系;其中,一个采样数据集中包括多组风量与风压的数据对。
  8. 如权利要求1至7中任一项所述的测试方法,其中,所述根据所述目标性能点,确定所述抽油烟机的目标运行参数,包括:
    获得所述风机在所述目标性能点处工作时的实际运行电流或实际转速;
    将所述实际运行电流或所述实际转速确定为所述目标运行参数;其中,所述实际运行电流用于对所述抽油烟机进行恒电流控制,所述实际转速用于对所述抽油烟机进行恒转速控制。
  9. 如权利要求1至8中任一项所述的测试方法,还包括:
    根据所述目标运行参数,控制所述抽油烟机的风机以所述目标运行参数恒定运行;
    获得所述抽油烟机的第二映射关系;所述第二映射关系是所述抽油烟机的风量与风压的对应关系;
    在所述第二映射关系与所述目标性能点满足预设对应条件时,验证所述抽油烟机的能效等级达到所述目标等级。
  10. 一种抽油烟机的测试装置,包括:
    获得模块,用于根据设定功率对抽油烟机的风机进行恒功率控制,获得所述风机的M个待选性能点和每个待选性能点对应的风机效率;所述待选性能点是在风机效率满足设定条件时,所述风机的风量与风压性能点;M≥1且为整数;
    第一确定模块,用于根据所述设定功率和所述风机效率,从所述M个待选性能点中确定目标性能点;所述目标性能点是使所述抽油烟机的能效等级不低于目标等级的待选性能点;和
    第二确定模块,用于根据所述目标性能点,确定所述抽油烟机的目标运行参数。
  11. 一种抽油烟机的测试装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1-9中任一项所述的测试方法。
  12. 一种抽油烟机,包括风机和如权利要求11所述的测试装置。
PCT/CN2022/083943 2021-09-26 2022-03-30 抽油烟机及其测试方法和测试装置 WO2023045292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22871357.4A EP4318000A1 (en) 2021-09-26 2022-03-30 Range hood and testing method and testing apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111131743.9 2021-09-26
CN202111131743.9A CN113687175B (zh) 2021-09-26 2021-09-26 抽油烟机及其测试方法和测试装置

Publications (1)

Publication Number Publication Date
WO2023045292A1 true WO2023045292A1 (zh) 2023-03-30

Family

ID=78587588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083943 WO2023045292A1 (zh) 2021-09-26 2022-03-30 抽油烟机及其测试方法和测试装置

Country Status (3)

Country Link
EP (1) EP4318000A1 (zh)
CN (1) CN113687175B (zh)
WO (1) WO2023045292A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687175B (zh) * 2021-09-26 2023-08-22 佛山市顺德区美的洗涤电器制造有限公司 抽油烟机及其测试方法和测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397321B1 (en) * 1998-08-06 2002-05-28 Yamaha Corporation Digital signal processor
CN1459054A (zh) * 2000-09-18 2003-11-26 霍内尔国际公司 用于电动机风扇流量控制的方法与装置
CN103216867A (zh) * 2013-04-25 2013-07-24 中山华帝燃具股份有限公司 一种基于变频电机的油烟机风量风压补偿系统及其控制方法
CN103836691A (zh) * 2014-02-28 2014-06-04 广东威灵电机制造有限公司 油烟机及其恒定风量调节方法及系统
CN104121217A (zh) * 2014-07-31 2014-10-29 佛山市顺德万和电气配件有限公司 抽油烟机直流风机恒功率控制装置
CN113687175A (zh) * 2021-09-26 2021-11-23 佛山市顺德区美的洗涤电器制造有限公司 抽油烟机及其测试方法和测试装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409157B2 (ja) * 2002-10-02 2010-02-03 パナソニックエコシステムズ株式会社 ファンモータおよびそれを搭載した電気機器
CN201556078U (zh) * 2009-11-12 2010-08-18 付鹏 抽油烟机节能降噪控制系统
CN103672995B (zh) * 2012-08-31 2016-02-10 芜湖美的厨卫电器制造有限公司 吸油烟机的风量自动控制方法及吸油烟机
CN106917611B (zh) * 2015-12-24 2020-01-07 中国石油天然气股份有限公司 抽油机恒功率控制方法及装置
CN113108330B (zh) * 2020-03-09 2022-06-10 青岛海尔智慧厨房电器有限公司 一种烟机的调节方法及装置
CN111637503B (zh) * 2020-06-16 2022-03-08 广东万家乐燃气具有限公司 一种吸油烟机的风机控制方法、控制装置和吸油烟机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397321B1 (en) * 1998-08-06 2002-05-28 Yamaha Corporation Digital signal processor
CN1459054A (zh) * 2000-09-18 2003-11-26 霍内尔国际公司 用于电动机风扇流量控制的方法与装置
CN103216867A (zh) * 2013-04-25 2013-07-24 中山华帝燃具股份有限公司 一种基于变频电机的油烟机风量风压补偿系统及其控制方法
CN103836691A (zh) * 2014-02-28 2014-06-04 广东威灵电机制造有限公司 油烟机及其恒定风量调节方法及系统
CN104121217A (zh) * 2014-07-31 2014-10-29 佛山市顺德万和电气配件有限公司 抽油烟机直流风机恒功率控制装置
CN113687175A (zh) * 2021-09-26 2021-11-23 佛山市顺德区美的洗涤电器制造有限公司 抽油烟机及其测试方法和测试装置

Also Published As

Publication number Publication date
EP4318000A1 (en) 2024-02-07
CN113687175A (zh) 2021-11-23
CN113687175B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2023045292A1 (zh) 抽油烟机及其测试方法和测试装置
CN109237751B (zh) 快速达到机组目标能力的方法、装置、设备及介质
US8219259B2 (en) Maintaining uniform power consumption from an electric utility by a local load in a power distribution system
CN102348365B (zh) 一种对机柜温度进行调节的方法、装置和机柜
CN103488532A (zh) 一种调整处理器频率的方法和设备
WO2022267317A1 (zh) 基于电网构造型的柔性直流孤岛控制方法、装置及介质
US20120151233A1 (en) Network device for controlling power consumption and method employing the same
US20150317229A1 (en) Device state estimation apparatus, device power consumption estimation apparatus, and program
CN108599966A (zh) 一种网安设备功耗动态调整系统和方法
CN105676996A (zh) 一种龙芯服务器的功耗控制方法和装置
CN104991851A (zh) 终端电量监控方法及装置
WO2019076028A1 (zh) 变流器、变流器的高电压穿越控制方法和装置
US6128905A (en) Back pressure optimizer
CN108536259A (zh) 一种应用于服务器的风扇智能调控方法和系统
CN106371540A (zh) 系统电源管理方法、芯片及电子设备
CN103225620B (zh) 风扇控制方法以及电子装置
CN111562835A (zh) 一种控制方法及电子设备
CN101105713A (zh) 数据传输速率调整方法以及计算机系统
CN113374001A (zh) 挖掘机转速控制方法及装置
CN111914000B (zh) 一种基于功耗预测模型的服务器功率封顶方法、系统
CN111882126A (zh) 一种基于n-1-1静态安全校验优化方法及系统
KR20100032756A (ko) 풍력 발전기의 피치 제어 시스템 및 방법을 실행하는 프로그램 기록매체
CN116436081A (zh) 满足宽频振荡稳定约束的构网机组接入容量优化方法
CN106099858A (zh) 一种提高发电机逆功率保护精度的方法
WO2022134856A1 (zh) 空调器控制方法、空调器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871357

Country of ref document: EP

Ref document number: 22871357.4

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871357

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE