WO2023045189A1 - 基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统 - Google Patents

基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统 Download PDF

Info

Publication number
WO2023045189A1
WO2023045189A1 PCT/CN2022/071335 CN2022071335W WO2023045189A1 WO 2023045189 A1 WO2023045189 A1 WO 2023045189A1 CN 2022071335 W CN2022071335 W CN 2022071335W WO 2023045189 A1 WO2023045189 A1 WO 2023045189A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering wheel
signal
triboelectric
driver
electrical signal
Prior art date
Application number
PCT/CN2022/071335
Other languages
English (en)
French (fr)
Inventor
黄岩军
杜嘉彤
袁康
陈诗阳
陈龙平
王宇雷
莫璟玥
李伦鹏
余宁海
陈虹
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2023045189A1 publication Critical patent/WO2023045189A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/06Rims, e.g. with heating means; Rim covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the field of intelligent man-machine co-driving, in particular to a method and system for monitoring the holding posture of a steering wheel based on a triboelectric nanosensor.
  • the existing detection schemes based on the driver can be mainly divided into two categories, one is to analyze the driver’s manipulation behavior through the physiological data collected by wearable devices; the other is to use the sensors of the vehicle system (such as camera, controller area network (CAN), etc.) to monitor and analyze the driving state of the driver.
  • the above method may have some drawbacks. For example, data from cameras will be affected by vibration, light, and occlusion; equipment used to obtain physiological information will inevitably interfere with drivers; and other sophisticated sensors may have non-negligible costs and consumption.
  • the object of the present invention is to provide a method and system for monitoring the holding attitude of the steering wheel based on triboelectric nanosensors in order to overcome the above-mentioned defects in the prior art.
  • a method for monitoring the holding attitude of a steering wheel based on a triboelectric nanosensor is used to detect the holding attitude of a driver's steering wheel, comprising the following steps:
  • S1 Set up a signal monitoring component.
  • the signal monitoring component When the driver holds the steering wheel, the signal monitoring component generates an electrical signal.
  • the signal monitoring component includes a plurality of triboelectric nanosensors, and the triboelectric nanosensors are arranged on the wheel of the steering wheel. edge;
  • S2 Obtain the driver's holding posture, and collect and store the electrical signal generated by the signal monitoring component when the driver holds the steering wheel;
  • S4 Collect and obtain the electrical signal generated by the signal monitoring component when the driver holds the steering wheel in real time, and judge the current driver's holding posture according to the mapping relationship.
  • the triboelectric nano sensor is one of polyimide-polyurethane-copper sensor, nylon-polytetrafluoroethylene-copper sensor and nylon-polytetrafluoroethylene-aluminum sensor.
  • the signal monitoring assembly includes a plurality of sensor groups, the plurality of sensor groups are evenly arranged around the steering wheel rim, each of the sensor groups includes three triboelectric nanosensors, each of the sensor groups The triboelectric nanosensors are respectively arranged on the front side, the peripheral side and the rear side of the steering wheel rim at the same angle.
  • the triboelectric nanosensor adopts a contact-separation mode to generate an electrical signal when the driver holds the steering wheel, and the contact-separation mode is when two polymer films with different electron adsorption capabilities in the triboelectric nanosensor are in contact with each other.
  • the contact-separation mode is when two polymer films with different electron adsorption capabilities in the triboelectric nanosensor are in contact with each other.
  • the electrical signal generated by the signal monitoring component is collected, stored and processed by setting the signal collection and processing component.
  • the signal collection and processing component includes a signal collection module, a signal processing module, and a storage module,
  • the signal acquisition module is used to collect and obtain the electrical signal generated by the signal monitoring component when the driver holds the steering wheel,
  • the signal processing module is used to carry the mapping relationship, judge the electrical signal collected in real time according to the mapping relationship, and judge the driver's steering wheel holding posture,
  • the storage module is used for storing the collected electrical signals.
  • the signal collection and processing component further includes a communication module, and the communication module is used to send the collected electrical signal to a host computer for obtaining the mapping relationship.
  • the mapping relationship is obtained in the step S3
  • the collected holding posture and electrical signal data are sent to the host computer for processing, and the mapping relationship between the electrical signal and the holding posture is constructed.
  • the holding posture includes the driver's holding position and holding strength.
  • a steering wheel holding posture monitoring system based on a triboelectric nanosensor including a signal monitoring component, a signal collection and processing component, and a host computer,
  • the signal monitoring assembly includes a plurality of triboelectric nanosensors, the triboelectric nanosensors are arranged on the rim of the steering wheel, and the signal monitoring assembly is used to generate electrical signals when the driver holds the steering wheel;
  • the signal collection and processing component collects and stores the electrical signal generated by the signal monitoring component when the driver holds the steering wheel, and is also used for real-time collection and acquisition of the electrical signal generated by the signal monitoring component when the driver holds the steering wheel. According to the mapping relationship Judging the current driver's holding posture;
  • the upper computer constructs a mapping relationship between the electrical signal and the holding posture according to the electrical signal data and the holding posture corresponding to the electrical signal data.
  • the present invention has following advantage:
  • the holding posture detection method of the present invention can effectively obtain the electric signal that the driver produces when holding the steering wheel, and construct the mapping relationship between the electric signal and the holding posture, and monitor the driver's holding posture in real time according to the mapping relationship, It can accurately and sensitively monitor without affecting the structure of the steering wheel, taking into account the manufacturing cost, installation convenience and comfort of use, and realizes active adaptation to the driver's driving habits through the detected data, improving the human-computer interaction experience;
  • the signal monitoring component of the present invention uses triboelectric nanosensors to generate and collect electrical signals held by the driver, and the collected electrical signals can be used as training data for interpretable decision-making algorithms.
  • the characteristics of low cost can adapt to various irregular shaped surfaces, and it is easy to lay.
  • the triboelectric nano sensor has the characteristics of self-power supply and does not need external power supply, which can effectively reduce the cost of equipment.
  • Fig. 1 is a flowchart of the present invention
  • Fig. 2 is the structural representation of triboelectric nano sensor of the present invention
  • Fig. 3 is a structural schematic diagram of the monitoring system of the present invention applied to a steering wheel.
  • a method for monitoring the gripping posture of a steering wheel based on a triboelectric nanosensor which is used to detect the gripping posture of the driver's steering wheel.
  • the gripping posture includes the driver's gripping position and gripping strength.
  • the invention can be applied to cars, Passenger cars, trucks, special-purpose vehicles and other vehicles equipped with steering wheels, as shown in Figure 1, include the following steps:
  • S1 Set up a signal monitoring component, which generates an electrical signal when the driver holds the steering wheel.
  • the present invention adopts triboelectric nanometer sensor technology to build a signal monitoring assembly.
  • the signal monitoring assembly includes a plurality of sensor groups, and the plurality of sensor groups are evenly arranged around the steering wheel rim, and each of the sensor groups includes three friction Electrical nanosensors, the triboelectric nanosensors of each sensor group are respectively arranged on the front side, outer peripheral side and rear side of the steering wheel at the same angle, which can completely monitor the driver's gripping action and generate corresponding electrical signals.
  • the triboelectric nano sensor in this embodiment is one of polyimide-polyurethane-copper sensor, nylon-polytetrafluoroethylene-copper sensor, nylon-polytetrafluoroethylene-aluminum sensor.
  • the present invention utilizes the contact-separation mode of the triboelectric nanometer sensor. When two active triboelectric materials with different electron adsorption capacities contact under the action of extrusion or bending, triboelectric charges will be generated on the surface (for example, polytetrafluoroethylene in FIG.
  • the nylon-polytetrafluoroethylene-copper triboelectric nanosensor is used in this embodiment, which includes a conductive copper foil 1, a polytetrafluoroethylene thin layer 2, and a nylon thin layer 3, and the outermost layer consists of a layer
  • the heat shrink wrap acts as a cover for the sensor.
  • Both the nylon thin layer 3 and the Teflon thin layer 2 have copper electrodes on their top surfaces.
  • the prepared sensor has a sandwich structure, wherein the free surface of the polytetrafluoroethylene thin layer 2 is located on the free surface of the nylon thin layer 3 . Then, a layer of heat-shrinkable film is covered on the two layers of film.
  • the shrink wrap is heated using a handheld heat gun to keep the polymer layer attached and completely cover and tighten the core of the sensor.
  • a sensor based on a sandwich structure can be fabricated using shrink wrap, the overall structure is encapsulated, thin and flexible, highly flexible and thermally durable.
  • the signal monitoring component includes eight sensor groups, and one sensor group is arranged at intervals of 45° around the steering wheel rim to realize the setting of the signal monitoring component.
  • the wires of all triboelectric nanosensors are hidden under the film, and are aggregated to the signal collection and processing components through the inner cavity of the steering wheel. The stronger the grip, the higher the voltage of the electrical signal generated.
  • a total of 24 triboelectric nanosensors monitor in real time hold information.
  • the membrane of the sensor is easy to maintain, disassemble and replace.
  • the sensor does not require additional power supply, and is a self-powered device.
  • the steering wheel can be equipped with a personalized outer steering wheel cover, which does not affect the responsiveness of the triboelectric nano-film.
  • step S1 specifically includes generating a driving posture for the driver holding the steering wheel during driving; triboelectric nanosensors distributed around the outer rim of the steering wheel are pressurized to generate electrical signals; the electrical signals are collected by wires into the central cavity of the steering wheel signal collection and processing components.
  • S2 Obtain the driver's holding posture, and collect and store the electrical signal generated by the signal monitoring component when the driver holds the steering wheel.
  • step S2 the electrical signal generated by the signal monitoring component is collected and stored by setting a signal collection and processing component.
  • an embedded single-chip computer is used to form a signal collection and processing component.
  • the signal collection and processing component includes a signal collection module, a signal processing module, a storage module, and a communication module.
  • the signal processing module is a single-chip processor
  • the storage module It is a single-chip microcomputer TF card
  • the communication module uses a UART Bluetooth module in this embodiment.
  • the signal acquisition module is based on embedded technology, and the function is realized by a micro single-chip microcomputer supplemented by a simple filter circuit.
  • the signal acquisition module is mainly interrupted by the PIT module to read the filtered data
  • the ADC analog-to-digital conversion module to realize the analog-to-digital conversion from the electrical signal of the sensor to the digital signal, form an array of the electrical signal and its corresponding time series, and form a two-dimensional array of all signal arrays, which can then be used by the UART Bluetooth module Send the data to the host computer for storage and analysis, or directly store the data to the TF card by the single-chip microcomputer.
  • the signal processing module can carry the mapping relationship, and is used to judge the real-time collected electrical signal according to the mapping relationship, and judge the driver's steering wheel holding posture.
  • the signal conversion and sending part is small in size and simple in structure, and can be built in the central cavity of the steering wheel, and the signals of each sensor are collected by wires to the receiving end of the single-chip microcomputer.
  • the single-chip microcomputer adopts the Infineon TC264 single-chip microcomputer, which has multiple ADC analog-to-digital conversion modules and UART communication modules to meet the signal acquisition requirements of 24 sensors arranged.
  • the PIT module can regularly generate interrupt commands and execute signal reading.
  • the interrupt time can be set by yourself to ensure that the time interval of each signal reading is equal;
  • the ADC analog-to-digital conversion module can convert the constantly changing voltage signal generated by the sensor into a discrete digital signal, and compose the electrical signal and its corresponding time sequence into a Array, all signal arrays form a two-dimensional array and store them in the TF card or send them to the host computer through the communication module, that is, the PC end;
  • the UART Bluetooth module with the baud rate set to 23400, can quickly transmit a large amount of data, and the data includes time series and Corresponding to each sensor voltage signal at the time point, the master and slave can transmit instructions to each other.
  • the collected holding posture and electrical signal data are sent to the host computer for processing, and the mapping relationship between the electrical signal and the holding posture is constructed.
  • Send the collected electrical signals to the host computer through the communication module use Matlab or python software to draw the obtained two-dimensional array signals into a voltage-time chart to obtain and store the electrical signal waveforms of each group of sensors, and construct the collected electrical signals and the time
  • Matlab or python software to draw the obtained two-dimensional array signals into a voltage-time chart to obtain and store the electrical signal waveforms of each group of sensors, and construct the collected electrical signals and the time
  • the waveform characteristics of each sensor are obtained, and the mapping relationship is established to realize the monitoring of the driving posture by the triboelectric nanometer sensor.
  • the stronger the grip the higher the voltage of the electrical signal generated.
  • classifying and summarizing the waveform diagrams can establish a mature mapping relationship.
  • S4 Collect and obtain the electrical signal generated by the signal monitoring component when the driver holds the steering wheel in real time, and judge the current driver's holding posture according to the mapping relationship.
  • the signal processing module of the signal collection and processing component that is, the single-chip processor is equipped with a well-built mapping relationship.
  • the real-time processing steps include: the embedded micro-single-chip located in the central cavity of the steering wheel is interrupted by the PIT module at regular intervals, and the reading is filtered.
  • the sensor electrical signal processed by the circuit, the signal acquisition module converts the voltage analog signal into a digital signal, and forms a two-dimensional array together with the time series; the chip computer analyzes the change characteristics of the sensor electrical signal two-dimensional array according to the mapping relationship algorithm carried, and deduces Driver's driving posture; the derived driving posture information is transmitted to the smart car electronic control unit, so that the power control unit can grasp the driver's current driving intention.
  • the present invention also provides a steering wheel holding attitude monitoring system based on triboelectric nanosensors, including a signal monitoring component, a signal collection and processing component, and a host computer, and the signal monitoring component includes a plurality of triboelectric nanosensors , the triboelectric nanosensor is arranged on the rim of the steering wheel, and the signal monitoring component is used to generate an electrical signal when the driver holds the steering wheel; the signal collection and processing component collects and processes the electrical signal generated by the signal monitoring component when the driver holds the steering wheel It is also used for real-time collection and acquisition of the electrical signal generated by the signal monitoring component when the driver holds the steering wheel, and judges the current driver's holding posture according to the mapping relationship; the host computer uses the electrical signal data and the corresponding holding posture of the electrical signal data Construct the mapping relationship between the electrical signal and the holding posture.
  • the signal monitoring component includes a plurality of triboelectric nanosensors , the triboelectric nanosensor is arranged on the rim of the steering wheel, and the
  • the system is applied to a steering wheel 5 as shown in FIG. 3 .
  • a rotating shaft 6 is arranged on the rear side of the middle of the steering wheel, and a plurality of triboelectric nanosensors 4 are arranged along the rim of the steering wheel 5 .

Abstract

一种基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统,方法包括以下步骤:S1:设置信号监测组件,当驾驶员握持方向盘时,信号监测组件产生电信号,信号监测组件包括多个摩擦电纳米传感器,摩擦电纳米传感器设于方向盘的轮缘上;S2:获取驾驶员的握持姿态,并对驾驶员握持方向盘时信号监测组件产生的电信号进行采集和储存;S3:根据采集到的握持姿态、电信号数据构建电信号与握持姿态的映射关系;S4:实时采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,根据映射关系判断当前驾驶员的握持姿态。

Description

基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统 技术领域
本发明涉及智能人机共驾领域,尤其是涉及一种基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统。
背景技术
在人机共驾层面,现有基于对驾驶员的检测方案主要可分为两类,一是通过可穿戴设备收集的生理数据来分析驾驶员的操纵行为;二是通过车辆系统的传感器(如摄像机、控制器局域网(CAN)等)监测和分析驾驶员的驾驶状态。然而,在对驾驶员转向操纵的研究中,上述方法可能存在一些缺陷。例如,来自相机的数据会受到振动、光线和遮挡的影响;用于获取生理信息的设备则会不可避免地对驾驶员产生干扰;而其他精密传感器又可能具有不可忽视的成本和消耗。
因此,亟需将小型、低成本而具有高可靠性的传感器集成到汽车固有硬件当中,以实现在不影响驾驶员正常操作的前提下准确、有效地检测驾驶员地驾驶状态。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统。
本发明的目的可以通过以下技术方案来实现:
一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,用于对驾驶员的方向盘握持姿态进行检测,包括以下步骤:
S1:设置信号监测组件,当驾驶员握持方向盘时,所述信号监测组件产生电信号,所述的信号监测组件包括多个摩擦电纳米传感器,所述的摩擦电纳米传感器设于方向盘的轮缘上;
S2:获取驾驶员的握持姿态,并对驾驶员握持方向盘时信号监测组件产生的电信号进行采集和储存;
S3:根据采集到的握持姿态、电信号数据构建电信号与握持姿态的映射关系;
S4:实时采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,根据映射关系判断当前驾驶员的握持姿态。
优选地,所述的摩擦电纳米传感器为聚酰亚胺-聚氨酯-铜传感器、尼龙-聚四氟乙烯-铜传感器、尼龙-聚四氟乙烯-铝传感器中的一种。
优选地,所述的信号监测组件包括多个传感器组,所述的多个传感器组均匀环绕方向盘轮缘设置,每个所述传感器组包括三个摩擦电纳米传感器,每个所述传感器组的摩擦电纳米传感器分别设于方向盘轮缘的同一角度的前侧面、外周侧面和后侧面。
优选地,所述的摩擦电纳米传感器采用接触分离模式产生驾驶员握持方向盘时的电信号,所述的接触分离模式为当摩擦电纳米传感器中两种具有不同吸附电子能力的聚合物膜接触和分离时,接触带电所引起的摩擦电荷会在界面区和电极中引起电位差,产生电信号。
优选地,所述的步骤S2、S4中通过设置信号收集处理组件对信号监测组件产生的电信号进行采集、存储和处理。
优选地,所述的信号收集处理组件包括信号采集模块、信号处理模块、存储模块,
所述的信号采集模块用于采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,
所述的信号处理模块用于搭载映射关系,根据映射关系对实时采集的电信号进行判断,判断驾驶员的方向盘握持姿态,
所述的存储模块用于存储采集到的电信号。
优选地,所述的信号收集处理组件还包括通信模块,所述的通信模块用于将采集到的电信号发送至用于获取映射关系的上位机。
优选地,所述的步骤S3获取所述映射关系时,将采集到的握持姿态、电信号数据发送至上位机进行处理,构建电信号与握持姿态的映射关系。
优选地,所述的握持姿态包括驾驶员的握持位置和握持力度。
一种基于摩擦电纳米传感器的方向盘握持姿态监测系统,包括信号监测组件、信号收集处理组件、上位机,
所述的信号监测组件包括多个摩擦电纳米传感器,所述的摩擦电纳米传感器设于方向盘的轮缘上,所述的信号监测组件用于当驾驶员握持方向盘时产生电信号;
所述的信号收集处理组件对驾驶员握持方向盘时信号监测组件产生的电信号进行采集和储存,还用于实时采集并获取驾驶员握持方向盘时信号监测组件产生的 电信号,根据映射关系判断当前驾驶员的握持姿态;
所述的上位机根据电信号数据及电信号数据对应的握持姿态构建电信号与握持姿态的映射关系。
与现有技术相比,本发明具有如下优点:
(1)本发明的握持姿态检测方法能够有效获取驾驶员握持方向盘时产生的电信号,并构建电信号与握持姿态间的映射关系,根据映射关系实时监测驾驶员的握持姿态,能够在不影响方向盘结构的前提下精确灵敏地进行监测,兼顾制造成本与安装便捷性以及使用舒适感,通过检测得的数据实现对驾驶者驾驶习惯的主动适应,提高人机交互体验;
(2)本发明的信号监测组件采用摩擦电纳米传感器进行驾驶员握持电信号的产生和采集,采集的电信号可用于可解释性决策算法的训练数据,摩擦电纳米传感器具备轻薄柔韧、成本低廉的特点,可以适应各种不规则形状表面,易于铺设,摩擦电纳米传感器具备自供电特性,无需外接电源供能,能够有效降低设备成本。
附图说明
图1为本发明的流程图;
图2为本发明的摩擦电纳米传感器的结构示意图;
图3为本发明的监测系统应用于方向盘的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。注意,以下的实施方式的说明只是实质上的例示,本发明并不意在对其适用物或其用途进行限定,且本发明并不限定于以下的实施方式。
实施例
一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,用于对驾驶员的方向盘握持姿态进行检测,握持姿态包括驾驶员的握持位置和握持力度,本发明可应用于轿车、客车、载货汽车、专用汽车等各式装配有方向盘的载具,如图1所示,包括以下步骤:
S1:设置信号监测组件,当驾驶员握持方向盘时,所述信号监测组件产生电信号。
本发明采用摩擦电纳米传感器技术,构建信号监测组件,具体地,信号监测组件包括多个传感器组,所述的多个传感器组均匀环绕方向盘轮缘设置,每个所述传感器组包括三个摩擦电纳米传感器,每个所述传感器组的摩擦电纳米传感器分别设于方向盘同一角度的前侧面、外周侧面和后侧面,能够对驾驶员的握持动作进行完整监测,产生对应的电信号。
进一步地,本实施例中摩擦电纳米传感器为聚酰亚胺-聚氨酯-铜传感器、尼龙-聚四氟乙烯-铜传感器、尼龙-聚四氟乙烯-铝传感器中的一种。本发明利用摩擦电纳米传感器的接触分离模式,当两种具有不同吸附电子能力的活性摩擦电材料在挤压或弯曲的作用下接触时,其表面会产生摩擦电荷(例如图2中聚四氟乙烯层2和尼龙薄层3接触时,聚四氟乙烯薄层2带正电,尼龙薄层3带负电),随着外力的释放,接触带电所引起的摩擦电荷会在界面区和电极中引起电位差。如果接有外部负载可产生电流流动,产生电信号。基于这一原理,将其制成压力传感器,对驾驶者握持姿态进行检测。具体地,当手掌与方向盘接触并施加压力时,由接触带电引起的摩擦电荷将在界面区域产生电势差,在摩擦电纳米传感器中体现为一个高电位信号,且电位高低与压力大小正相关。
如图2所示,本实施例中采用尼龙-聚四氟乙烯-铜摩擦电纳米传感器,其包括导电铜箔1、聚四氟乙烯薄层2、尼龙薄层3,最外层由一层热收缩包作为传感器的覆盖层。尼龙薄层3和聚四氟乙烯薄层2的顶部表面都有铜作为电极。所述制备的传感器具有夹层式结构,其中聚四氟乙烯薄层2的自由表面位于尼龙薄层3的自由表面上。然后,在这两层薄膜上覆盖一层热收缩膜。热收缩包装使用手持热风枪加热,以保持聚合物层附着,并完全覆盖和收紧传感器的核心部分。使用热收缩包装可以制造一个基于三明治结构的传感器,整体结构是封装的,轻薄柔韧,高度灵活且热耐用。
本实施例中,信号监测组件包括八个传感器组,环绕所述方向盘轮缘每间隔45°设置一个传感器组,实现信号监测组件的设置。具体地,所有摩擦电纳米传感器的导线隐藏于薄膜下方,经方向盘内部空腔汇总到信号收集处理组件,握持力度越大,产生的电信号电压越高,共24个摩擦电纳米传感器实时监测握持信息。传感器的薄膜易于维护、拆解、更换。并且,所述传感器无需额外供电,是一种自供电设备。方向盘可配备个性化外层方向盘套,不影响摩擦电纳米薄膜反应灵敏性。
进一步地,步骤S1具体包括为驾驶过程中,驾驶员握持方向盘产生驾驶姿态; 分布于方向盘外轮缘四周的摩擦电纳米传感器受压产生电信号;电信号由导线汇总到位于方向盘中央空腔内的信号收集处理组件。
S2:获取驾驶员的握持姿态,并对驾驶员握持方向盘时信号监测组件产生的电信号进行采集和储存。
本实施例中,步骤S2中通过设置信号收集处理组件对信号监测组件产生的电信号进行采集、存储。
具体地,本实施例中采用嵌入式单片机构成信号收集处理组件,信号收集处理组件包括信号采集模块、信号处理模块、存储模块、通信模块,对应的,信号处理模块即为单片机处理器,存储模块为单片机TF卡,通信模块本实施例中采用UART蓝牙模块,信号采集模块基于嵌入式技术,由微型单片机辅以简单的滤波电路实现功能信号采集模块主要由PIT模块定时中断读取经过滤波后的传感器生成的电信号,使用ADC模数转换模块实现传感器电信号到数字信号的模数转换,将电信号与其对应的时间序列组成一个数组,将所有信号数组组成二维数组,继而可由UART蓝牙模块将数据发送至上位机进行存储及分析,或者直接由单片机将数据存储至TF卡。信号处理模块能搭载映射关系,并用于根据映射关系对实时采集的电信号进行判断,判断驾驶员的方向盘握持姿态。
信号收集处理组件信号转换发送部分体积小,结构简单,可内置于方向盘中央空腔处,各传感器信号由导线汇总至单片机接收端。
本实施例中单片机采用英飞凌TC264单片机,具有多个ADC模数转换模块和UART通信模块,满足所布置的24个传感器信号采集需求,所述PIT模块可以定时产生中断命令,执行信号读取步骤,中断时间可以自行设置,确保每次信号读取时间间隔相等;ADC模数转换模块可以将传感器产生的不断变化的电压信号转化为离散的数字信号,将电信号与其对应的时间序列组成一个数组,将所有信号数组组成二维数组存储在TF卡中或通过通信模块发送至上位机,即PC端;UART蓝牙模块,波特率设置为23400,可快速传输大量数据,数据包含时间序列和对应时间点的各传感器电压信号,主从机可以互相传输指令。
S3:根据采集到的握持姿态、电信号数据构建电信号与握持姿态的映射关系。
获取所述映射关系时,将采集到的握持姿态、电信号数据发送至上位机进行处理,构建电信号与握持姿态的映射关系。通过通信模块将采集到的电信号发送至上位机,运用Matlab或python软件将获得的二维数组信号绘制成电压-时间图表得 到各组传感器电信号波形并储存,构建采集到的电信号和当时驾驶员的不同驾驶姿态,得出的各传感器波形特征,建立映射关系,实现由摩擦电纳米传感器对驾驶姿态进行监测。握持力度越大,产生的电信号电压越高,基于这一基础对波形图进行分类归纳可以建立成熟的映射关系。
S4:实时采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,根据映射关系判断当前驾驶员的握持姿态。
在信号收集处理组件的信号处理模块,即单片机处理器上搭载构建好的映射关系,其实时处理步骤包括:位于方向盘中央空腔内的嵌入式微型单片机由PIT模块定时中断,读取经过了滤波电路处理的传感器电信号,信号采集模块对电压模拟信号转换为数字信号,并与时间序列共同组成二维数组;片机根据搭载的映射关系算法,分析传感器电信号二维数组变化特征,推导出驾驶员驾驶姿态;将推导得到的驾驶姿态信息传递给智能汽车电控单元,以供电控单元掌握驾驶员当前驾驶意图。
根据采集到的握持姿态、电信号数据构建电信号与握持姿态的映射关系;
实时采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,根据映射关系判断当前驾驶员的握持姿态。
与本发明的方法对应,本发明还提供了一种基于摩擦电纳米传感器的方向盘握持姿态监测系统,包括信号监测组件、信号收集处理组件、上位机,信号监测组件包括多个摩擦电纳米传感器,摩擦电纳米传感器设于方向盘的轮缘上,信号监测组件用于当驾驶员握持方向盘时产生电信号;信号收集处理组件对驾驶员握持方向盘时信号监测组件产生的电信号进行采集和储存,还用于实时采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,根据映射关系判断当前驾驶员的握持姿态;上位机根据电信号数据及电信号数据对应的握持姿态构建电信号与握持姿态的映射关系。
该系统应用于如图3所示的方向盘5上,方向盘中部后侧设置转轴6,沿方向盘5的轮缘上设置多个摩擦电纳米传感器4。
上述实施方式仅为例举,不表示对本发明范围的限定。这些实施方式还能以其它各种方式来实施,且能在不脱离本发明技术思想的范围内作各种省略、置换、变更。

Claims (10)

  1. 一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,用于对驾驶员的方向盘握持姿态进行检测,包括以下步骤:
    S1:设置信号监测组件,当驾驶员握持方向盘时,所述信号监测组件产生电信号,所述的信号监测组件包括多个摩擦电纳米传感器,所述的摩擦电纳米传感器设于方向盘的轮缘上;
    S2:获取驾驶员的握持姿态,并对驾驶员握持方向盘时信号监测组件产生的电信号进行采集和储存;
    S3:根据采集到的握持姿态、电信号数据构建电信号与握持姿态的映射关系;
    S4:实时采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,根据映射关系判断当前驾驶员的握持姿态。
  2. 根据权利要求1所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的摩擦电纳米传感器为聚酰亚胺-聚氨酯-铜传感器、尼龙-聚四氟乙烯-铜传感器、尼龙-聚四氟乙烯-铝传感器中的一种。
  3. 根据权利要求1所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的信号监测组件包括多个传感器组,所述的多个传感器组均匀环绕方向盘轮缘设置,每个所述传感器组包括三个摩擦电纳米传感器,每个所述传感器组的摩擦电纳米传感器分别设于方向盘轮缘的同一角度的前侧面、外周侧面和后侧面。
  4. 根据权利要求1所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的摩擦电纳米传感器采用接触分离模式产生驾驶员握持方向盘时的电信号,所述的接触分离模式为当摩擦电纳米传感器中两种具有不同吸附电子能力的聚合物膜接触和分离时,接触带电所引起的摩擦电荷会在界面区和电极中引起电位差,产生电信号。
  5. 根据权利要求1所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的步骤S2、S4中通过设置信号收集处理组件对信号监测组件产生的电信号进行采集、存储和处理。
  6. 根据权利要求5所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的信号收集处理组件包括信号采集模块、信号处理模块、 存储模块,
    所述的信号采集模块用于采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,
    所述的信号处理模块用于搭载映射关系,根据映射关系对实时采集的电信号进行判断,判断驾驶员的方向盘握持姿态,
    所述的存储模块用于存储采集到的电信号。
  7. 根据权利要求6所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的信号收集处理组件还包括通信模块,所述的通信模块用于将采集到的电信号发送至用于获取映射关系的上位机。
  8. 根据权利要求1所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的步骤S3获取所述映射关系时,将采集到的握持姿态、电信号数据发送至上位机进行处理,构建电信号与握持姿态的映射关系。
  9. 根据权利要求1所述的一种基于摩擦电纳米传感器的方向盘握持姿态监测方法,其特征在于,所述的握持姿态包括驾驶员的握持位置和握持力度。
  10. 一种基于摩擦电纳米传感器的方向盘握持姿态监测系统,其特征在于,包括信号监测组件、信号收集处理组件、上位机,
    所述的信号监测组件包括多个摩擦电纳米传感器,所述的摩擦电纳米传感器设于方向盘的轮缘上,所述的信号监测组件用于当驾驶员握持方向盘时产生电信号;
    所述的信号收集处理组件对驾驶员握持方向盘时信号监测组件产生的电信号进行采集和储存,还用于实时采集并获取驾驶员握持方向盘时信号监测组件产生的电信号,根据映射关系判断当前驾驶员的握持姿态;
    所述的上位机根据电信号数据及电信号数据对应的握持姿态构建电信号与握持姿态的映射关系。
PCT/CN2022/071335 2021-09-27 2022-01-11 基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统 WO2023045189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111135287.5A CN113815707B (zh) 2021-09-27 2021-09-27 一种驾驶员方向盘握持姿态监测方法及系统
CN202111135287.5 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023045189A1 true WO2023045189A1 (zh) 2023-03-30

Family

ID=78915644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071335 WO2023045189A1 (zh) 2021-09-27 2022-01-11 基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统

Country Status (2)

Country Link
CN (1) CN113815707B (zh)
WO (1) WO2023045189A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815707B (zh) * 2021-09-27 2023-04-07 同济大学 一种驾驶员方向盘握持姿态监测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110246028A1 (en) * 2010-04-02 2011-10-06 Tk Holdings Inc. Steering wheel with hand pressure sensing
CN104076084A (zh) * 2013-03-28 2014-10-01 国家纳米科学中心 一种摩擦电纳米传感器
CN105730496A (zh) * 2014-12-31 2016-07-06 哈曼国际工业有限公司 测力方向盘
US20190258250A1 (en) * 2018-02-22 2019-08-22 Honda Motor Co., Ltd. Vehicle control device
CN110667687A (zh) * 2019-10-23 2020-01-10 吉林大学 一种带有触觉手势识别功能的人机交互智能方向盘系统
EP3783327A1 (en) * 2019-08-20 2021-02-24 SABIC Global Technologies B.V. Triboelectric-based force/pressure sensor
CN113364339A (zh) * 2021-07-14 2021-09-07 上海电力大学 基于摩擦纳米发电机实时监测驾驶员行为的自驱动传感器
CN113815707A (zh) * 2021-09-27 2021-12-21 同济大学 一种驾驶员方向盘握持姿态监测方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006023287B4 (de) * 2006-05-18 2017-01-12 Leopold Kostal Gmbh & Co. Kg Greifkraftsensor für das Lenkrad eines Kraftfahrzeugs mit einem piezoelektrischen Drucksensor
DE112016001183B4 (de) * 2015-03-13 2020-07-30 Panasonic Intellectual Property Management Co., Ltd. Lenkradgrifferfassungsvorrichtung
US10160484B2 (en) * 2015-07-31 2018-12-25 GM Global Technology Operations LLC Enhanced steering wheel hold detection by a hybrid method
JP6631802B2 (ja) * 2016-09-30 2020-01-15 トヨタ自動車株式会社 把持状態判定装置
KR20200075933A (ko) * 2018-12-12 2020-06-29 현대자동차주식회사 스티어링휠의 핸즈온오프 감지시스템 및 방법
CN210985963U (zh) * 2019-09-16 2020-07-10 华中科技大学 一种混合型摩擦纳米发电机
CN110572073A (zh) * 2019-09-16 2019-12-13 华中科技大学 一种混合型摩擦纳米发电机
CN113206913B (zh) * 2020-01-31 2022-05-10 华为技术有限公司 一种握持姿态检测方法及电子设备
CN112611401B (zh) * 2020-11-25 2022-08-30 北京纳米能源与系统研究所 一种柔性摩擦纳米传感器及人机交互系统
CN113057603A (zh) * 2021-03-25 2021-07-02 斑马网络技术有限公司 方向盘握持状态的检测方法及装置、终端设备、存储介质
CN113197569B (zh) * 2021-04-23 2022-05-20 华中科技大学 基于摩擦发电的人体意图识别传感器及其识别方法
CN113288123A (zh) * 2021-05-29 2021-08-24 南京摩盛科技有限公司 一种集成关节角度测量与运动姿势测量的柔性可拉伸穿戴设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110246028A1 (en) * 2010-04-02 2011-10-06 Tk Holdings Inc. Steering wheel with hand pressure sensing
CN104076084A (zh) * 2013-03-28 2014-10-01 国家纳米科学中心 一种摩擦电纳米传感器
CN105730496A (zh) * 2014-12-31 2016-07-06 哈曼国际工业有限公司 测力方向盘
US20190258250A1 (en) * 2018-02-22 2019-08-22 Honda Motor Co., Ltd. Vehicle control device
EP3783327A1 (en) * 2019-08-20 2021-02-24 SABIC Global Technologies B.V. Triboelectric-based force/pressure sensor
CN110667687A (zh) * 2019-10-23 2020-01-10 吉林大学 一种带有触觉手势识别功能的人机交互智能方向盘系统
CN113364339A (zh) * 2021-07-14 2021-09-07 上海电力大学 基于摩擦纳米发电机实时监测驾驶员行为的自驱动传感器
CN113815707A (zh) * 2021-09-27 2021-12-21 同济大学 一种驾驶员方向盘握持姿态监测方法及系统

Also Published As

Publication number Publication date
CN113815707B (zh) 2023-04-07
CN113815707A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN103411710B (zh) 一种压力传感器、电子皮肤和触屏设备
Schurmann et al. A modular high-speed tactile sensor for human manipulation research
WO2023045189A1 (zh) 基于摩擦电纳米传感器的方向盘握持姿态监测方法及系统
CN105711591A (zh) 无人驾驶车辆、无人驾驶车辆的控制方法和装置
CN202183155U (zh) 基于姿态识别的防疲劳驾驶辅助系统
CN202010160U (zh) 基于方向盘握力和温度的驾驶员疲劳监测装置
CN100493453C (zh) 基于驾驶模拟器的驾驶员疲劳状态分析实验系统
CN109470386B (zh) 一种力/位触觉传感器检测系统及检测方法
KR20200011687A (ko) 다점 시스템화되어 구성된 타이어용 센서 및 이를 구비한 타이어
CN202255582U (zh) 公路称重系统
Chen et al. Triboelectric nanogenerator sensors for intelligent steering wheel aiming at automated driving
CN106515644A (zh) 一种防疲劳驾驶装置
CN116348251A (zh) 用于对象实例的分类和识别的交互式触觉感知方法
CN206369951U (zh) 一种电动两轮平衡车智能控制装置
CN106377266A (zh) 一种基于眼部识别的疲劳监测装置
CN102402837A (zh) 疲劳报警设备
CN207148588U (zh) 柔性触觉传感器以及机器人处理系统
CN207072417U (zh) 一种自跟随代步车
CN103257370A (zh) 碰撞检测装置和包含其的机器人
CN206133509U (zh) 压感检测装置和压感笔
CN110154888A (zh) 驾驶行为监控装置和方法
CN215870884U (zh) 一种控制设备
Sui et al. Piezoelectric Based Smart Tire for Vehicle Speed and Load Detection and Energy Harvesting
CN110327052A (zh) 一种基于智能座椅的体征监测系统
CN206383141U (zh) 一种坐式服务机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871257

Country of ref document: EP

Kind code of ref document: A1