WO2023045125A1 - 负极材料及其制备方法和钠离子电池 - Google Patents

负极材料及其制备方法和钠离子电池 Download PDF

Info

Publication number
WO2023045125A1
WO2023045125A1 PCT/CN2021/138549 CN2021138549W WO2023045125A1 WO 2023045125 A1 WO2023045125 A1 WO 2023045125A1 CN 2021138549 W CN2021138549 W CN 2021138549W WO 2023045125 A1 WO2023045125 A1 WO 2023045125A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
transition metal
electrode material
metal sulfide
nitrogen
Prior art date
Application number
PCT/CN2021/138549
Other languages
English (en)
French (fr)
Inventor
唐永炳
张晓明
薛松
章罗江
蒋春磊
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023045125A1 publication Critical patent/WO2023045125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/007Titanium sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/30Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/11Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of battery materials, and in particular relates to a negative electrode material, a preparation method thereof and a sodium ion battery.
  • Lithium-ion batteries are widely used in portable energy storage, electric vehicles and other fields because of their advantages such as high energy density, long life, high charge and discharge efficiency, and low pollution.
  • Li due to the scarcity and uneven distribution of key materials for lithium-ion batteries, such as Li, the price has been rising year after year.
  • sodium is abundant and has the most similar chemical properties to lithium, so sodium-ion batteries have been extensively studied and considered to be the most likely energy storage system to replace lithium-ion batteries.
  • Sodium-ion batteries are also mainly composed of positive electrodes, electrolytes and negative electrodes, and their electrode materials are a key link that restricts its development and application.
  • the purpose of the present application is to provide a negative electrode material and its preparation method and a sodium ion battery, aiming at solving the technical problem of how to simultaneously improve the conductivity of transition metal sulfides and reduce volume expansion.
  • the present application provides a method for preparing an anode material, comprising the steps of:
  • Fig. 1 is the structural representation of the sodium ion battery that the embodiment of the present application provides;
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and some or all steps may be executed in parallel or sequentially, and the execution order of each process shall be based on its functions and The internal logic is determined and should not constitute any limitation to the implementation process of the embodiment of the present application.
  • the general chemical formula of the transition metal sulfide is M x S y , where M is selected from the group consisting of Co (cobalt), Mo (molybdenum), Ti (titanium), V (vanadium), Cu (copper), Ni (nickel), Fe (iron), Mn (manganese), Zn (zinc) and W (tungsten).
  • M is selected from the group consisting of Co (cobalt), Mo (molybdenum), Ti (titanium), V (vanadium), Cu (copper), Ni (nickel), Fe (iron), Mn (manganese), Zn (zinc) and W (tungsten).
  • x is the number of atoms of the metal element M
  • y is the atom of sulfur
  • the valence of M is +2y/x; specifically, 0 ⁇ x ⁇ 9, 1 ⁇ y ⁇ 8.
  • the molar ratio of transition metal to nitrogen ion in the transition metal sulfide is 1:0.025 ⁇ 0.125. Nitrogen doping within this molar ratio range can better improve the intrinsic conductivity of transition metal sulfides.
  • the composite material provided in the examples of the present application is synthesized by a one-step high-temperature solid-phase method, and the steps of the preparation method are simple and easy, and can be prepared in batches.
  • the prepared transition metal sulfide can be doped with nitrogen ions and selenium ions at the same time, and by taking advantage of the advantages of the two anions of nitrogen and selenium, the capacity of the transition metal sulfide negative electrode material can be increased without reducing its rate performance and cycle stability, therefore, have good application prospects.
  • the transition metal salt is selected from at least one of cobalt salts, molybdenum salts, titanium salts, vanadium salts, copper salts, nickel salts, iron salts, manganese salts, zinc salts and tungsten salts; the above transition metal salts are Soluble transition metal-containing salts, specifically, the cobalt salt can be at least one of cobalt chloride (CoCl 2 ), cobalt nitrate (Co(NO 3 ) 2 ), and cobalt sulfate (Co(SO 4 ) 2 );
  • the molybdenum salt can be at least one of molybdenum pentachloride (MoCl 5 ), molybdenum trichloride (MoCl 3 ), ammonium molybdate ((NH 4 ) 2 MoO 4 );
  • the titanium salt can be titanium tetrachloride (TiCl 4 ), at least one of titanium trichloride (TiCl 3 );
  • the nitrogen-containing sulfur source is selected from thiourea.
  • the solvent is selected from at least one of water and ethanol; for example, the solvent can be absolute ethanol, or 95% ethanol, or deionized water, or a mixture of ethanol and water in any ratio.
  • the drying treatment is carried out at a temperature of 65° C. to 75° C. for 10 hours to 24 hours.
  • the above drying conditions better remove the solvent, thereby obtaining the precursor ready for use.
  • the negative electrode material obtained by the preparation method includes transition metal sulfide and nitrogen ions and selenium ions doped in the transition metal sulfide; wherein, the molar ratio of transition metal and nitrogen ion of the transition metal sulfide is 1:0.025 ⁇ 0.125, the molar ratio of the transition metal to the selenium ion of the transition metal sulfide is 1:0.2 ⁇ 1.
  • the nitrogen-containing sulfur source and selenium raw materials are generally added in excess.
  • the molar ratio of the transition metal in the transition metal salt raw material to the nitrogen in the nitrogen-containing sulfur source raw material is 1:1.2-16 to react;
  • the molar ratio of the transition metal and nitrogen ions in the transition metal sulfide in the final prepared negative electrode material is 1:0.025-0.125; nitrogen doping with this molar ratio can better improve the final Intrinsic conductivity of transition metal sulfides.
  • the calcination treatment includes: raising the temperature to 400°C-800°C at a heating rate of 8°C/min-12°C/min.
  • the above calcination conditions can better generate nitrogen-selenium dianion-doped transition metal sulfides.
  • a method for preparing a nitrogen-selenium dianion-doped transition metal sulfide comprises the following steps:
  • Step 1 add transition metal salt and thiourea at a molar ratio of 1:0.6 ⁇ 8, add an appropriate amount of solvent, continue to stir until completely dissolved, and then evaporate to dryness under heating at 75°C; put the evaporated sample into a vacuum oven for 65°C °C for 24 hours to obtain a precursor for future use.
  • Step 2 Put the precursor in the downstream of the tube furnace, place the selenium powder in the upstream of the precursor, raise the temperature at a rate of 10°C/min under the protective atmosphere of argon, keep it warm at 400-800°C for 2 hours, and then the product is naturally cooling, wherein the mass ratio of the precursor to the selenium powder is 1:0.1-0.5.
  • the negative electrode material provided in the examples of the present application that is, transition metal sulfides doped with nitrogen-selenium dianions, is prepared by the above-mentioned preparation method in the examples of the present application.
  • the electrical conductivity and ion transport channel ultimately improve its rate performance and cycle stability.
  • the third aspect of the embodiment of the present application provides a sodium ion battery, as shown in Figure 1, including a positive electrode, a negative electrode, a separator 4 and an electrolyte 3 between the positive electrode and the negative electrode, and the positive electrode includes a positive electrode current collector 6 and is coated on the positive electrode.
  • the positive electrode active layer 5 on the surface of the current collector 6, the negative electrode includes the negative electrode current collector 1 and the negative electrode active layer 2 coated on the surface of the negative electrode current collector 1, and the negative electrode material in the negative electrode active layer 2 includes the above-mentioned negative electrode material of the embodiment of the present application and/or Or the negative electrode material prepared by the above-mentioned preparation method of the embodiment of the present application.
  • the anode material can improve its rate performance and cycle stability without reducing the capacity of the transition metal sulfide anode material by taking advantage of the advantages of nitrogen and selenium anions , therefore, the Na-ion battery has good electrochemical performance.
  • the electrolyte includes sodium salt electrolyte and organic solvent.
  • the sodium salt electrolyte is selected from sodium trifluoromethanesulfonate (NaCF 3 SO 3 ), sodium bis(trifluoromethylsulfonyl)imide [NaN(CF 3 SO 2 ) 2 ] and its derivatives, perfluorinated Sodium Alkyl Phosphate [NaPF 3 (C 2 F 5 ) 3 ], Sodium Tetrafluorooxalate Phosphate [NaPF 4 (C 2 O 4 )], Sodium Dioxalate Borate [NaB(C 2 O 4 ) 2 ], Tris(O Hydroquinone) sodium phosphate (NTBP), sulfonated polysulfonamide sodium salt, sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), sodium tetrafluoroborate (NaBF 4 ), sodium hexafluoflu
  • the sodium salt electrolyte is sodium hexafluorophosphate, and its concentration ranges from 0.1 to 10 mol/L (preferably 1 mol/L).
  • the organic solvent in the electrolyte is selected from propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl formate ester (MF), methyl acetate (MA), N,N-dimethylacetamide (DMA), fluoroethylene carbonate (FEC), methyl propionate (MP), ethyl propionate (EP), Ethyl acetate (EA), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), 1,3-dioxolane (DOL), 4-methyl-1, 3-dioxolane (4MeDOL), dimethoxymethane (DM)
  • PC
  • the diaphragm is selected from one or more of insulating porous polymer films or inorganic porous films, specifically one of porous polypropylene film, porous polyethylene film, porous composite polymer film, glass fiber paper, and porous ceramic diaphragm or more.
  • the separator is glass fiber paper.
  • steps of the preparation method of the sodium ion battery include the following steps:
  • Step 3 prepare the diaphragm: cut the diaphragm to the required size and clean it.
  • cobalt chloride hexahydrate is used as the soluble metal salt
  • thiourea is used as the source of nitrogen and sulfur
  • the solvent is absolute ethanol
  • the source of selenium is selenium powder.
  • Negative electrode preparation the specific steps are the same as in Example 1 of the present invention.
  • Electrolyte solution configuration the specific steps are the same as in Example 1 of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及电池材料技术领域,尤其涉及一种负极材料及其制备方法和钠离子电池。该负极材料包括过渡金属硫化物和掺杂在过渡金属硫化物中的氮离子和硒离子。本申请通过氮掺杂会提高过渡金属硫化物的本征导电性,硒的引入可扩大离子传输通道,通过氮硒两种阴离子的优势,在不降低过渡金属硫化物负极材料容量的同时提高其倍率性能和循环稳定性,因此,该负极材料具有很好的应用前景。

Description

负极材料及其制备方法和钠离子电池 技术领域
本申请属于电池材料技术领域,尤其涉及一种负极材料及其制备方法和钠离子电池。
背景技术
锂离子电池因具有能量密度高、寿命长、充放电效率高以及污染小等优点被广泛应用在便携储能、电动汽车等领域。但由于锂离子电池关键材料,如Li等资源稀少且分布不均,导致价格连年上涨。相比之下,钠的储量丰富,且与锂具有最相似的化学性质,因此钠离子电池得到了广泛的研究,被认为是最有可能替代锂离子电池的储能体系。钠离子电池同样主要由正极、电解液和负极组成,其电极材料是制约它开发应用的关键一环。
过渡金属硫化合物因理论容量高、储藏丰富、无污染等优点而成为备受关注的负极材料研究对象。但该类材料存在导电性差和储钠过程中的体积膨胀等问题,导致倍率性能和循环稳定性不足。研究发现,通过合理的阴离子掺杂可以有效解决以上问题,但是单阴离子掺杂不能同时解决过渡金属硫化物负极导电性差和循环过程中体积膨胀严重的问题,而过渡金属硫化物与其他材料(如碳材料等)复合虽可以改善上述问题,但材料的比容量会出现一定程度的降低,并且合成方法比较复杂。
因此,相关技术有待改进。
发明内容
本申请的目的在于提供一种负极材料及其制备方法和钠离子电池,旨在解决如何同时提高过渡金属硫化物导电性和降低体积膨胀的技术问题。
为实现上述申请目的,本申请采用的技术方案如下:
第一方面,本申请提供一种负极材料,所述负极材料包括过渡金属硫化物和掺杂在所述过渡金属硫化物中的氮离子和硒离子。
本申请提供的负极材料,是一种氮和硒双阴离子掺杂的过渡金属硫化物,其中氮掺杂会提高过渡金属硫化物的本征导电性,硒的引入可扩大离子传输通道,降低离子扩散势垒,进而减缓循环过程中引起的体积膨胀,最终显著提高了过渡金属硫化物负极材料的倍率性能和循环稳定性。本申请通过利用氮和硒两种阴离子的优势,在不降低过渡金属硫化物负极材料容量的同时,可提高其倍率性能和循环稳定性,因此,具有很好的应用前景。
第二方面,本申请提供一种负极材料的制备方法,包括如下步骤:
将过渡金属盐和含氮的硫源溶于溶剂中,进行干燥处理,得到前驱体;
将所述前驱体与硒粉置于同一容器中,然后煅烧处理,得到所述负极材料。
本申请提供的复合材料通过一步高温固相法合成,该制备方法步骤简单易行,可批量制备。通过该制备方法,可将制备的过渡金属硫化物同时掺杂氮离子和硒离子,通过利用氮和硒两种阴离子的优势,在不降低过渡金属硫化物负极材料容量的同时,可提高其倍率性能和循环稳定性,因此,具有很好的应用前景。
第三方面,本申请提供一种钠离子电池,包括正极、负极以及位于所述正极与所述负极之间的隔膜和电解液,所述正极包括正极集流体和涂覆在所述正极集流体表面的正极活性层,所述负极包括负极集流体和涂覆在所述负极集流体表面的负极活性层,所述负极活性层中的负极材料包括本申请所述的负极材料和/或本申请所述的制备方法制得的负极材料。
本申请提供的钠离子,其负极使用了本申请特有的负极材料和/或本申请的制备方法制得的负极材料。因该负极材料包括过渡金属硫化物和掺杂在过渡金属硫化物中的氮离子和硒离子;氮掺杂提高过渡金属硫化物的本征导电性,硒的引入可扩大离子传输通道,降低离子扩散势垒,进而减缓循环过程中引起的 体积膨胀,该负极材料通过利用氮和硒两种阴离子的优势,在不降低过渡金属硫化物负极材料容量的同时,可提高其倍率性能和循环稳定性,因此,该钠离子电池具有很好的电化学性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的钠离子电池的结构示意图;
图2是本申请实施例1中负极材料N,Se-Co 9S 8的扫描电子显微镜图片;
图3是本申请实施例1中负极材料N,Se-Co 9S 8在2A/g电流密度下长循环性能;
其中,图中各附图标记为:1-负极集流体、2-负极活性层、3-电解液、4-隔膜、5-正极活性层、6-正极集流体。
具体实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一种”是指一种或者多种,“多种”是指两种或两种以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括 单项(个)或复数项(个)的任意组合。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中所述的质量可以是μg、mg、g、kg等化工领域公知的质量单位。
本申请实施例第一方面提供一种负极材料,该负极材料包括过渡金属硫化物和掺杂在过渡金属硫化物中的氮离子和硒离子。
本申请实施例提供的负极材料,是一种氮和硒双阴离子掺杂的过渡金属硫化物,其中氮掺杂会提高过渡金属硫化物的本征导电性,硒的引入可扩大离子传输通道,降低离子扩散势垒,进而减缓循环过程中引起的体积膨胀,最终显著提高了过渡金属硫化物负极材料的倍率性能和循环稳定性。本申请通过利用氮和硒两种阴离子的优势,在不降低过渡金属硫化物负极材料容量的同时,可提高其倍率性能和循环稳定性,因此,具有很好的应用前景。
在一个实施例中,过渡金属硫化物的化学通式为M xS y,其中M选自Co(钴)、Mo(钼)、Ti(钛)、V(钒)、Cu(铜)、Ni(镍)、Fe(铁)、Mn(锰)、Zn(锌)和W(钨)中的至少一种。其中,x为金属元素M的原子数,y为硫的原子,且M的化合价为+2y/x;具体地,0<x≤9,1≤y≤8。
进一步地,上述过渡金属硫化物包括多种过渡金属对应的不同价态的硫化物,具体地,当M选自Co时,过渡金属硫化物包括但不限于CoS 2、Co 3S 4、Co 9S 8、CoS、Co 1-aS中的至少一种;当M选自Ti时,过渡金属硫化物包括但不限于TiS 2、TiS 3中的至少一种;当M选自V时,过渡金属硫化物包括但不限于VS 2、V 5S 8、VS 4中的至少一种;当M选自Mn时,过渡金属硫化物包括但不限于MnS;当M选自Fe时,过渡金属硫化物包括但不限于FeS、FeS 2、Fe 3S 4、Fe 7S 8、Fe 1-aS中的至少一种;当M选自Ni时,过渡金属硫化物包括但不限于Ni 9S 8、Ni 3S 2、NiS、NiS 2、Ni 3S 4中的至少一种;当M选自Cu时,过渡金属硫化物包括但不限于Cu 2S、Cu 7S 4、CuS 2、CuS中的至少一种;当M选自Zn时,过渡金属硫化物包括但不限于ZnS;当M选自Mo时,过渡金属硫化物包括但不限于MoS 2、Mo 2S 3中的至少一种;当M选自W时,过渡金属硫化物包括但不限于WS 2。上述过渡金属硫化物中,0<a<1。
进一步地,该负极材料中,过渡金属硫化物的过渡金属与氮离子的摩尔比为1:0.025~0.125。该摩尔比范围内的氮掺杂,可以更好地提高过渡金属硫化物的本征导电性。
进一步地,过渡金属硫化物的过渡金属与硒离子的摩尔比为1:0.2~1。该摩尔比范围内的硒掺杂,可以更好地增大离子传输通道,更好地减缓钠离子嵌入引起的体积膨胀。
本申请实施例第二方面提供一种负极材料的制备方法,该制备方法包括如下步骤:
S01:将过渡金属盐和含氮的硫源溶于溶剂中,进行干燥处理,得到前驱体;
S02:将前驱体与硒粉置于同一容器中,然后煅烧处理,得到负极材料。
本申请实施例提供的复合材料通过一步高温固相法合成,该制备方法步骤简单易行,可批量制备。通过该制备方法,可将制备的过渡金属硫化物同时掺杂氮离子和硒离子,通过利用氮和硒两种阴离子的优势,在不降低过渡金属硫 化物负极材料容量的同时,可提高其倍率性能和循环稳定性,因此,具有很好的应用前景。
上述步骤S01中,过渡金属盐选自钴盐、钼盐、钛盐、钒盐、铜盐、镍盐、铁盐、锰盐、锌盐和钨盐中的至少一种;上述过渡金属盐为可溶性的含过渡金属的盐,具体地,钴盐可以为氯化钴(CoCl 2)、硝酸钴(Co(NO 3) 2)、硫酸钴(Co(SO 4) 2)中的至少一种;钼盐可以为五氯化钼(MoCl 5)、三氯化钼(MoCl 3)、钼酸铵((NH 4) 2MoO 4)中的至少一种;钛盐可以为四氯化钛(TiCl 4)、三氯化钛(TiCl 3)中的至少一种;钒盐可以为四氯化钒(VCl 4)、三氯化钒(VCl 3)、偏钒酸铵(NH 4VO 3)、偏钒酸钠(NaVO 3)、偏钒酸钾(KVO 3)中的至少一种;铜盐可以为氯化铜(CuCl 2)、硫酸铜(CuSO 4)、硝酸铜(Cu(NO 3) 2)中的至少一种;镍盐可以为氯化镍(NiCl 2)、硫酸镍(NiSO 4)、硝酸镍(Ni(NO 3) 2)中的至少一种;铁盐可以为三氯化铁(FeCl 3)、氯化亚铁(FeCl 2)、硫酸亚铁(FeSO 4)、硫酸铁(Fe 2(SO 4) 3)、硝酸亚铁(Fe(NO 3) 2)、硝酸铁(Fe(NO 3) 3)、乙酸铁(CH 3COO) 2Fe)中的至少一种;锰盐可以为氯化锰(MnCl 2)、三氯化锰(MnCl 3)、硝酸锰(Mn(NO 3) 2)、硫酸锰(MnSO 4)、乙酸锰((CH 3COO) 2Mn)中的至少一种;锌盐可以为氯化锌(ZnCl 2)、硫酸锌(ZnSO 4)、硝酸锌(Zn(NO 3) 2)、乙酸锌((CH 3COO) 2Zn)中的至少一种;钨盐可以为钨酸钠(Na 2WO 4);以及上述过渡金属盐存在的水合物等。选用上述过渡金属盐可以制得相应的过渡金属硫化物。
进一步地,含氮的硫源选自硫脲。溶剂选自水和乙醇中的至少一种;例如,溶剂可以为无水乙醇,或95%乙醇,或去离子水,或乙醇与水的任意比混合物。
在一个实施例中,将过渡金属盐和含氮的硫源溶于溶剂中后,干燥处理的温度为65℃~75℃,时间为10h~24h。上述干燥条件更好地去除溶剂,从而得到前驱体备用。
在一个实施例中,该制备方法得到的负极材料包括过渡金属硫化物和掺杂在过渡金属硫化物中的氮离子和硒离子;其中,过渡金属硫化物的过渡金属与 氮离子的摩尔比为1:0.025~0.125,过渡金属硫化物的过渡金属与硒离子的摩尔比为1:0.2~1。鉴于在实践操作过程中,含氮的硫源和硒都会有部分损失,因此加入的含氮的硫源和硒原料一般都要过量。因此,该制备方法所使用的原料中,按过渡金属盐原料中的过渡金属与含氮的硫源原料中氮的摩尔比为1:1.2-16进行反应;按该摩尔比将过渡金属盐原料与含氮的硫源原料溶于溶剂中实现最终制备的负极材料中过渡金属硫化物的过渡金属与氮离子的摩尔比为1:0.025~0.125;该摩尔比的氮掺杂可以更好提高最终过渡金属硫化物的本征导电性。同时,后续前驱体与硒粉按质量比为1:0.1~0.5进行煅烧处理,在该质量比条件下进行煅烧实现最终制备的负极材料中过渡金属硫化物的过渡金属与硒离子的摩尔比为1:0.2~1;该摩尔比范围内的硒掺杂可以更好地增大离子传输通道,更好地减缓钠离子嵌入引起的体积膨胀。
上述步骤S02中,煅烧处理包括:以8℃/min~12℃/min的升温速率升温至400℃~800℃。上述煅烧条件,可以更好的生成氮硒双阴离子掺杂的过渡金属硫化物。
在一个实施例中,将前驱体与硒粉置于同一容器为管式炉,且前驱体置入管式炉下游,硒粉置于前驱体上游,然后在氩气的保护氛围下煅烧。
上述煅烧结束后,可以将所得产物超声分散在去离子水中,进行抽滤、洗涤和烘干,得到更高纯度的负极材料。
在一个实施例中,一种氮硒双阴离子掺杂的过渡金属硫化物的制备方法,包括如下操作步骤:
步骤一,将过渡金属盐和硫脲按摩尔比1:0.6~8,加入适量的溶剂,持续搅拌至完全溶解,然后在75℃加热下搅拌蒸干;蒸干后的样品放入真空烘箱65℃干燥24h,得到前驱体备用。
步骤二,将前驱体置入管式炉下游,硒粉置于前驱体上游,在氩气的保护氛围下,以10℃/min速率升温,在400~800℃下保温2h,然后将产物自然冷却,其中前驱体与硒粉的质量比为1:0.1~0.5。
步骤三,将所得产物超声分散在去离子水中,随后进行抽滤,分别用去离子水和95%乙醇各洗涤3次。最后放入真空烘箱65℃干燥24h,得到氮硒双阴离子掺杂的过渡金属硫化物,即为本申请实施例的负极材料。
本申请实施例提供的负极材料即氮硒双阴离子掺杂的过渡金属硫化物由本申请实施例的上述制备方法制备得到,该负极材料通过引入氮、硒两种阴离子,从而增大过渡金属硫化物的导电性和离子传输通道,最终提升其倍率性能及循环稳定性。
本申请实施例第三方面提供一种钠离子电池,如图1所示,包括正极、负极以及位于正极与负极之间的隔膜4和电解液3,正极包括正极集流体6和涂覆在正极集流体6表面的正极活性层5,负极包括负极集流体1和涂覆在负极集流体1表面的负极活性层2,负极活性层2中的负极材料包括本申请实施例的上述负极材料和/或本申请实施例的上述制备方法制得的负极材料。
本申请实施例提供的钠离子电池,其负极使用了本申请实施例特有的负极材料和/或本申请实施例的制备方法制得的负极材料。因该负极材料包括过渡金属硫化物和掺杂在过渡金属硫化物中的氮离子和硒离子;氮掺杂提高过渡金属硫化物的本征导电性,硒的引入可扩大离子传输通道,降低离子扩散势垒,进而减缓循环过程中引起的体积膨胀,该负极材料通过利用氮和硒两种阴离子的优势,在不降低过渡金属硫化物负极材料容量的同时,可提高其倍率性能和循环稳定性,因此,该钠离子电池具有很好的电化学性能。
其中,负极集流体的材料选自铝箔、铜箔、钛箔、不锈钢、镍箔片中的一种。优选地,负极集流体为铜箔。负极活性层中的负极活性材料即本申请的氮离子和硒离子双阴离子掺杂的过渡金属硫化物。正极集流体的材料选自铝箔、铁箔、锡箔、锌箔、镍箔、钛箔、锰箔中的一种。优选地,正极集流体为铝箔。正极活性层中的正极活性材料选自NaFePO 4、Na 3V 2(PO 4) 3、普鲁士蓝类化合物中的一种或多种。优选地,正极材料为Na 3V 2(PO 4) 3
电解液包括钠盐电解质和有机溶剂。其中,钠盐电解质选自三氟甲基磺酸 钠(NaCF 3SO 3)、双(三氟甲基磺酰基)亚胺钠[NaN(CF 3SO 2) 2]及其衍生物、全氟烷基磷酸钠[NaPF 3(C 2F 5) 3]、四氟草酸磷酸钠[NaPF 4(C 2O 4)]、双草酸硼酸钠[NaB(C 2O 4) 2]、三(邻苯二酚)磷酸钠(NTBP)、磺化聚磺胺钠盐、六氟磷酸钠(NaPF 6)、高氯酸钠(NaClO 4)、四氟硼酸钠(NaBF 4)、六氟砷酸钠(NaAsF 6)、硝酸钠(NaNO 3)、碳酸钠(NaCO 3)、氯化钠(NaCl)等中的一种或几种。优选地,钠盐电解质为六氟磷酸钠,且浓度范围为0.1~10mol/L(优选为1mol/L)。其中,电解液中的有机溶剂选自碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、甲酸甲酯(MF)、乙酸甲酯(MA)、N,N-二甲基乙酰胺(DMA)、氟代碳酸乙烯酯(FEC)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙酸乙酯(EA)、γ-丁内酯(GBL)、四氢呋喃(THF)、2-甲基四氢呋喃(2MeTHF)、1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4MeDOL)、二甲氧甲烷(DMM)、1,2-二甲氧丙烷(DMP)、三乙二醇二甲醚(TEGDME)、二甲基砜(MSM)、二乙二醇二甲醚(DME)、亚硫酸乙烯酯(ES)、亚硫酸丙烯脂(PS)、亚硫酸二甲脂(DMS)、亚硫酸二乙脂(DES)、冠醚(12-冠-4)、1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐、N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐中等酯类、砜类、醚类、腈类或离子液体有机溶剂的一种或几种。优选地,有机溶剂为二乙二醇二甲醚。
隔膜选自绝缘的多孔聚合物薄膜或无机多孔薄膜的一种或几种,具体可以选用多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜、玻璃纤维纸、多孔陶瓷隔膜中的一种或多种。优选地,隔膜为玻璃纤维纸。
进一步地,本申请实施例提供的钠离子电池的制备方法步骤包括如下:
步骤一,制备负极:按一定比例称取负极活性材料、导电剂以及粘结剂,加入适当溶剂中充分混合成均匀负极活性浆料;将负极集流体清洗干净,然后将负极活性浆料均匀涂覆于负极集流体表面,待完全干燥后进行裁切,得所需尺寸的电池负极;该负极活性材料即本申请制备的氮离子和硒离子双阴离子掺杂的过渡金属硫化物。
步骤二,配制电解液:称取一定量钠盐电解质加入到相应有机溶剂中,充分搅拌溶解。
步骤三,制备隔膜:将隔膜裁切成所需尺寸,清洗干净。
步骤四,制备正极,按一定比例称取正极活性材料、导电剂以及粘结剂,加入适当溶剂中充分混合成均匀正极活性浆料;将正极集流体清洗干净,然后将正极活性浆料均匀涂覆于正极集流体表面,待完全干燥后进行裁切,得所需尺寸的电池正极。
步骤五,将上述制备的电池负极、电解液、隔膜以及电池正极进行组装。
下面结合具体实施例进行说明。
实施例1
一种氮硒双阴离子掺杂Co 9S 8(N,Se-Co 9S 8)的负极材料的制备
本实施例采用六水合氯化钴为可溶性金属盐,硫脲为氮源和硫源,溶剂为无水乙醇,硒源为硒粉。具体的制备过程如下:
将1.9g六水合氯化钴和0.37g硫脲加入100mL无水乙醇中,搅拌至形成完全均一的溶液,然后在75℃加热下搅拌蒸干,蒸干后的样品放入真空烘箱65℃干燥24h,得到前驱体备用。然后将前驱体研磨成粉末,装入瓷舟置于管式炉下游,后称取1g硒粉放入另一瓷舟置于管式炉上游,随后通入氩气作为保护气体,以10℃/min的升温速率升至550℃,并保温2h,然后自然冷却。后将得到的样品超声分散在去离子水中,随后进行抽滤,分别用去离子水和乙醇各洗涤3次。最后放入真空烘箱65℃烘干24h,得到N,Se-Co 9S 8,扫描电 子显微镜图如图2所示。
将上述获得的N,Se-Co 9S 8负极材料中加入导电剂和粘结剂,质量比为负极材料:导电剂:粘结剂=7:2:1,其中导电剂为导电炭黑、粘结剂为PVDF,混合均匀后加入N-甲基吡咯烷酮(NMP)溶剂进行充分搅拌获得浆料,然后将浆料均匀涂覆在铜箔表面,之后放入真空烘箱进行干燥处理,烘烤温度为80℃,烘烤时间为48h。
以本实施例所制备的N,Se-Co 9S 8作为钠离子电池负极活性材料,以钠金属片为对电极,以1M NaPF 6/DME为电解液组装半电池,并进行电化学性能测试,在2A/g的电流密度下循环500圈,比容量仍可保持在520mAh/g左右,库伦效率大于99.8%,表现出良好的循环性能(图3);在大倍率10A/g下比容量仍保持在350mAh/g左右,表现出良好的倍率性能。
实施例2-5
基于不同硫脲的量所制备出的不同化合价钴硫化物
实施例2-5与实施例1中的N,Se-Co 9S 8负极制备过程步骤相同,区别在于六水合氯化钴与硫脲的原料摩尔比不同,所采用的原料摩尔比分别为1:4、1:2.6、1:2.3、1:2,对实施例2-5的负极材料进行半电池电化学性能测试,并与实施例1进行比较,测试结果如表1所示。
表1
Figure PCTCN2021138549-appb-000001
实施例6-29
基于不同过渡金属的氮硒双阴离子掺杂硫化物
实施例6-29与实施例1中的N,Se-Co 9S 8负极制备过程步骤相同,区别在于采用不同的过渡金属盐,以及不同的过渡金属盐与硫脲的原料摩尔比(1:0.6~8),对实施例6-29的负极材料进行半电池电化学性能测试,并与实施例1进行比较,测试结果如表2所示。
表2
Figure PCTCN2021138549-appb-000002
Figure PCTCN2021138549-appb-000003
实施例30
基于氮硒双阴离子掺杂钴硫化物负极的全电池
采用本发明实施例1-5制备的氮硒双阴离子掺杂钴硫化物负极材料构筑全电池,其中正极材料为:磷酸钒钠。具体制备步骤如下:
负极制备:具体步骤同本发明实施例1。
电解液配置:具体步骤同本发明实施例1。
正极制备:将正极材料、导电炭黑和聚偏氟乙烯(PVDF)按照8:1:1的质量配比混合均匀,然后加入N-甲基吡咯烷酮(NMP)溶剂进行充分搅拌获得浆料,然后将所述浆料均匀涂覆在铝箔表面,之后放入真空烘箱进行干燥处理,烘烤温度为80℃,烘烤时间为48h。
全电池组装。
对本实施例制备的基于氮硒双阴离子掺杂钴硫化物负极材料的全电池进行循环及倍率性能测试,测试结果如表3所示。
表3
Figure PCTCN2021138549-appb-000004
Figure PCTCN2021138549-appb-000005
实施例31-54:
基于不同氮硒双阴离子掺杂硫化物负极的全电池
实施例31-54与实施例30中全电池制备步骤相同,区别在于采用实施例6-29中不同氮硒双阴离子掺杂硫化物作为负极材料,对实施例31-54的负极材料进行全电池电化学性能测试,测试结果如表4所示。
表4.本发明实施例31-54的全电池测试数据
Figure PCTCN2021138549-appb-000006
Figure PCTCN2021138549-appb-000007
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种负极材料,其特征在于,所述负极材料包括过渡金属硫化物和掺杂在所述过渡金属硫化物中的氮离子和硒离子。
  2. 如权利要求1所述的负极材料,其特征在于,所述过渡金属硫化物的化学通式为M xS y,其中M选自Co、Mo、Ti、V、Cu、Ni、Fe、Mn、Zn和W中的至少一种。
  3. 如权利要求1所述的负极材料,其特征在于,所述过渡金属硫化物的过渡金属与所述氮离子的摩尔比为1:0.025~0.125。
  4. 如权利要求1所述的负极材料,其特征在于,所述过渡金属硫化物的过渡金属与所述硒离子的摩尔比为1:0.2~1。
  5. 一种负极材料的制备方法,其特征在于,包括如下步骤:
    将过渡金属盐和含氮的硫源溶于溶剂中,进行干燥处理,得到前驱体;
    将所述前驱体与硒粉置于同一容器中,然后煅烧处理,得到所述负极材料。
  6. 如权利要求5所述的制备方法,其特征在于,所述干燥处理的温度为65℃~75℃,时间为10h~24h。
  7. 如权利要求5所述的制备方法,其特征在于,所述煅烧处理包括:以8℃/min~12℃/min的升温速率升温至400℃~800℃。
  8. 如权利要求5所述的制备方法,其特征在于,得到的所述负极材料包括过渡金属硫化物和掺杂在所述过渡金属硫化物中的氮离子和硒离子;其中,所述过渡金属硫化物的过渡金属与所述氮离子的摩尔比为1:0.025~0.125,所述过渡金属硫化物的过渡金属与所述硒离子的摩尔比为1:0.2~1。
  9. 如权利要求5-8任一项所述的制备方法,其特征在于,所述过渡金属盐选自钴盐、钼盐、钛盐、钒盐、铜盐、镍盐、铁盐、锰盐、锌盐和钨盐中的至少一种;和/或,
    所述溶剂选自水和乙醇中的至少一种;和/或,
    所述含氮的硫源选自硫脲。
  10. 一种钠离子电池,包括正极、负极以及位于所述正极与所述负极之间的隔膜和电解液,所述正极包括正极集流体和涂覆在所述正极集流体表面的正极活性层,所述负极包括负极集流体和涂覆在所述负极集流体表面的负极活性层,其特征在于,所述负极活性层中的负极材料包括权利要求1-4任一项所述的负极材料和/或权利要求5-9任一项所述的制备方法制得的负极材料。
PCT/CN2021/138549 2021-09-24 2021-12-15 负极材料及其制备方法和钠离子电池 WO2023045125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111122223.1A CN113937281A (zh) 2021-09-24 2021-09-24 负极材料及其制备方法和钠离子电池
CN202111122223.1 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045125A1 true WO2023045125A1 (zh) 2023-03-30

Family

ID=79276697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138549 WO2023045125A1 (zh) 2021-09-24 2021-12-15 负极材料及其制备方法和钠离子电池

Country Status (2)

Country Link
CN (1) CN113937281A (zh)
WO (1) WO2023045125A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497744A (zh) * 2022-03-07 2022-05-13 天津市捷威动力工业有限公司 钠离子电解液及其应用、钠离子电池及其制备方法
CN114808016B (zh) * 2022-05-06 2023-11-14 青岛科技大学 一种Fe7S8/CoS缺陷异质结微米片的制备方法
CN115050957B (zh) * 2022-06-07 2024-01-26 深圳珈钠能源科技有限公司 一种钠离子电池正极材料及其制备方法、钠离子电池
CN116247169B (zh) * 2023-04-01 2024-01-19 中国矿业大学 一种含Se掺杂的CoS2为负极的钠离子电池制备方法
CN117673331B (zh) * 2024-01-31 2024-05-10 帕瓦(长沙)新能源科技有限公司 正极材料包覆料及其制备方法、改性正极材料及其制备方法、钠离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172406A (zh) * 2017-12-29 2018-06-15 山东大学 一种以FeS2-xSex材料为负极材料的钠离子电容器
CN108346783A (zh) * 2018-01-11 2018-07-31 三峡大学 一种分层结构MoSxSe2-x/石墨烯负极材料及其制备方法
CN110589781A (zh) * 2019-08-01 2019-12-20 广东工业大学 一种N掺杂MoSe2负极材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172406A (zh) * 2017-12-29 2018-06-15 山东大学 一种以FeS2-xSex材料为负极材料的钠离子电容器
CN108346783A (zh) * 2018-01-11 2018-07-31 三峡大学 一种分层结构MoSxSe2-x/石墨烯负极材料及其制备方法
CN110589781A (zh) * 2019-08-01 2019-12-20 广东工业大学 一种N掺杂MoSe2负极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN SI, LEI WEIWEI, LIU DAN, CHEN YING: "Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 4, no. 4, 1 January 2016 (2016-01-01), GB , pages 1440 - 1445, XP093054455, ISSN: 2050-7488, DOI: 10.1039/C5TA10224C *

Also Published As

Publication number Publication date
CN113937281A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2023045125A1 (zh) 负极材料及其制备方法和钠离子电池
US11855285B2 (en) Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof
Ming et al. Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications
Liu et al. Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2
Li et al. The role of SnO2 surface coating in the electrochemical performance of Li1. 2Mn0. 54Co0. 13Ni0. 13O2 cathode materials
CN108493435B (zh) 锂离子电池正极材料Li(Ni0.8Co0.1Mn0.1)1-xYxO2及制备方法
WO2012022256A1 (en) Method for preparing negative active material, negative electrode material and lithium ion battery
WO2021136490A1 (zh) 一种富锂锰基材料及其制备方法和应用
Chen et al. Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries
Liu et al. Study on the action mechanism of doping transitional elements in spinel LiNi0. 5Mn1. 5O4
BR112014031358B1 (pt) Método para preparar um composto de metal de transição compósito de um precursor de metal de transição
EP3224887A1 (en) Anode materials for sodium-ion batteries and methods of making same
Zeng et al. Enhanced electrochemical performances of LiNi0. 8Co0. 1Mn0. 1O2 by synergistic modification of sodium ion doping and silica coating
Li et al. Synthesis and properties of nanostructured LiNi1/3Co1/3Mn1/3O2 as cathode with lithium bis (oxalate) borate-based electrolyte to improve cycle performance in Li-ion battery
Zhao et al. A phthalocyanine-grafted MA–VA framework polymer as a high performance anode material for lithium/sodium-ion batteries
Sun et al. Study on potassium doped modification of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 materials synthesized by novel method for lithium ion battery
Etefagh et al. Enhanced Li-storage performance of In-doped Li 1.21 [Mn 0.54 Ni 0.125 Co 0.125] O 2 as Li-and Mn-rich cathode materials for lithium-ion batteries
Li et al. Effect of Nb 5+ doping on LiNi 0.5 Co 0.25 Mn 0.25 O 2 cathode material
CN113659198A (zh) 一种全固态电解质及其在锂钠电池中的应用
Bai et al. Synthesis of Ni–rich LiNi0. 83Co0. 12Mn0. 05O2 cathode materials with low residual lithium content without washing
CN114938686B (zh) 一种钴酸锂层状正极材料及其制备方法和应用
Jiang et al. Sheet-like Li1. 2Mn0. 54Ni0. 16Co0. 10O2 prepared by glucose-urea bubbling and post-annealing process as high capacity cathode of Li-ion batteries
CN111349005A (zh) 草酸盐材料、制备方法、用途、锂离子电池正极材料及锂离子电池
CN115241435A (zh) 一种层状Na3M2XO6氧化物包覆改性的锰酸钠正极材料及其制备方法
CN107834054A (zh) 一种锂离子电池用镍锰锂‑石墨烯复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE