WO2023045061A1 - 一种伺服切刀控制方法及装置 - Google Patents

一种伺服切刀控制方法及装置 Download PDF

Info

Publication number
WO2023045061A1
WO2023045061A1 PCT/CN2021/132951 CN2021132951W WO2023045061A1 WO 2023045061 A1 WO2023045061 A1 WO 2023045061A1 CN 2021132951 W CN2021132951 W CN 2021132951W WO 2023045061 A1 WO2023045061 A1 WO 2023045061A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutter
gypsum board
shaft
speed
curve
Prior art date
Application number
PCT/CN2021/132951
Other languages
English (en)
French (fr)
Inventor
王兵
杨正波
张兴添
杨小东
冯宪良
董雷
Original Assignee
北新集团建材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北新集团建材股份有限公司 filed Critical 北新集团建材股份有限公司
Publication of WO2023045061A1 publication Critical patent/WO2023045061A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/12Apparatus or processes for treating or working the shaped or preshaped articles for removing parts of the articles by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0036Cutting means, e.g. water jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to the technical field of gypsum board production lines, in particular to a servo cutter control method and device.
  • gypsum board In the production process of gypsum board, three-control trimming is an essential process.
  • the gypsum board is driven by the crawler trolley for high-speed trimming through the position of the high-speed saw.
  • the traditional cutter cutting board is cut by a servo motor driving the upper cutter and the lower cutter.
  • the servo motor shaft is connected with a pulley, which is connected to the cutter side pulley through a belt, and then there is a
  • the small gear drives the big gear of the lower cutter to rotate through the small gear, and the big gear of the upper cutter and the big gear of the lower cutter rotate in the opposite direction, so that it is controlled by mechanical gear transmission, and the transmission distance of the mechanical gear is short, there is mechanical loss, and the transmission ratio It is easy to be limited.
  • This control method is very unfavorable to the three-control sawing edge, which is easy to cause failure and increase the number of waste boards.
  • each gypsum board is cut long and causes waste, which is not conducive to the improvement of input-output ratio.
  • the purpose of the present invention is to provide a servo cutter control method and device to solve the technical problems in the prior art that the mechanical gear transmission distance is short, there is mechanical loss, and the transmission ratio is easily limited.
  • the present invention specifically provides the following technical solutions:
  • a servo cutter device comprising:
  • the upper cutter servo motor is used for independent installation of the upper cutter
  • the lower cutter servo motor is used to install the lower cutter independently
  • the output shafts of the upper cutter servo motor and the lower cutter servo motor are synchronized through electronic gears
  • the upper cutter or the lower cutter is synchronized with the gypsum board production line respectively through a CAM cam, and both the electronic gear and the CAM cam are connected with a motion controller;
  • the motion controller regulates the working parameters of the CAM cam and synchronously regulates the working parameters of the electronic gear according to the corresponding relationship between the rotation position of the lower cutter servo motor and the travel position of the plasterboard production line, so that When the upper cutter and the lower cutter are in the shearing position, the horizontal velocity is the same as the travel speed of the gypsum board production line.
  • the CAM cam and the electronic gear are externally connected encoders.
  • a control method for a servo cutter device comprising the following steps:
  • Step 100 adding a CAM cam between the rotary knife shaft of the cutter and the material shaft of the gypsum board production line, and establishing a synchronous relationship between the CAM cam and the material shaft;
  • Step 200 establishing a synchronous relationship between the upper and lower rotary knife shafts of the cutter, and simultaneously establishing a synchronous relationship between the two rotary knife shafts of the cutter and the electronic gear;
  • Step 300 Determine the speed adjustment mode of the rotary knife shaft of the cutter according to the target shear length of the gypsum board until the shear length of the rotary knife shaft of the cutter is the same as the target shear length of the gypsum board when the rotary knife shaft rotates with frequency conversion for one revolution, And set the CAM curve about the synchronous process of the rotary knife axis of the cutter and the CAM cam;
  • Step 400 Determine the rotation path of the rotary knife shaft of the cutter corresponding to the traveling position of the gypsum board production line according to the CAM curve, and adjust the rotation frequency of the rotary knife shaft of the cutter to make the rotary knife shaft of the cutter Cut work at the target cut length for the gypsum board.
  • the encoder signal of the material shaft of the gypsum board production line is obtained to determine the travel speed of the gypsum board production line and the travel position of the gypsum board material, and the motion control
  • the controller determines the time for each gypsum board to pass through the rotary knife shaft of the cutter
  • the motion controller determines the time when each gypsum board passes through the cutter shaft
  • the timing of the rotary knife shaft controls the start of the rotary knife shaft of the cutter and accelerates to perform cutting work synchronously with the speed of the gypsum board production line.
  • step 300 the motion controller regulates the start of the rotary knife shaft of the cutter and accelerates it to be synchronized with the speed of the gypsum board production line.
  • the target shearing length is compared with the target shearing length of the gypsum board and the cutter circle of the rotary cutter shaft of the cutter, and the speed adjustment method of the rotary cutter shaft of the cutter is determined according to the comparison result, and the speed adjustment method is divided into the following three conditions:
  • the rotary shaft of the cutter When the target shearing length is less than the circumference of the cutter, the rotary shaft of the cutter is divided into a steady speed section, a synchronous section and a speed reduction section during one rotation, and the rotary knife shaft of the cutter is accelerated in the steady speed section To exceed the travel speed of the gypsum board production line, and then decelerate to the travel speed of the gypsum board production line, the rotary knife shaft of the cutter is kept in synchronization with the travel speed of the gypsum board production line in the synchronous section, and the The rotary cutter shaft of the cutter decelerates to the set value in the deceleration section;
  • the rotary knife shaft of the cutter is divided into synchronous segments during one revolution, and the rotary knife shaft of the cutter always runs at the same speed as the speed of the gypsum board production line ;
  • the rotating shaft of the cutter When the target shearing length is greater than the circumference of the cutter, the rotating shaft of the cutter is divided into an acceleration section, a synchronous section and a deceleration section during one rotation, and the rotating shaft of the cutting knife accelerates to the same speed as the speed reduction section in the acceleration section.
  • the moving speed of the gypsum board production line is the same, and maintains the same speed as the moving speed of the gypsum board production line in the synchronous section, and finally the rotary knife shaft of the cutter decelerates to stop in the speed-down section.
  • the rotary cutter shaft of the cutter is divided into an upper rotary cutter shaft and a lower rotary cutter shaft, and the upper rotary cutter shaft and the lower rotary cutter shaft rotate synchronously, so
  • the trajectory of the upper cutter and the lower cutter installed on the rotary cutter shaft of the upper cutter and the rotary cutter shaft of the lower cutter is divided into three steps when the target cutting length is greater than the circumference of the cutter, which are: acceleration section, In the synchronous section and the deceleration section, the upper cutter and the lower cutter are raised from zero speed to the same speed as the plate during the acceleration section;
  • the horizontal component of the linear velocity of the upper cutter and the lower cutter in the synchronous section is the same as the traveling speed of the plate;
  • the upper cutter and the lower cutter decelerate to stop in the deceleration section.
  • the CAM curve includes a start synchronization curve corresponding to the acceleration segment, a desynchronization curve corresponding to the deceleration segment, and a synchronous cutting curve corresponding to the synchronization segment, so
  • the CAM curve is used to determine the positional relationship of the rotary knife axis of the cutter in the acceleration section, the synchronous section, the deceleration section and the advancing position of the gypsum board, and the rotary knife axis of the cutter follows the start synchronous curve and the synchronous cutting curve.
  • the combined curve out of the synchronous curve completes the shearing work of a single gypsum board;
  • the CAM curve generates a combined cycle curve according to the start synchronization curve, the synchronization cutting curve and the out-of-synchronization curve, and the combined cycle curve in the CAM curve follows the starting synchronization curve and the out-of-synchronization curve.
  • the rotational position of the rotary knife shaft of the cutter takes the time when the blade of the cutter is directly below as the origin, and the rotational position of the rotary knife shaft of the cutter is determined clockwise or counterclockwise, and the rotational position of the rotational position
  • is the rotation angle of the rotating shaft of the cutter
  • r is the combined radius of the cutting blade and the rotating shaft of the cutting knife.
  • the target shear length of the gypsum board and the perimeter of the trajectory of the cutter blade and the rotary knife shaft of the cutter are both fixed values, and by reading the gypsum board The encoder signal of the material axis of the production line determines the travel speed of the gypsum board and the travel length of the gypsum board;
  • the rotational position of the cutter blade on the cutter axis is determined.
  • the rotary knife shaft of the cutter when reading the encoder signal of the material shaft of the gypsum board production line indicates that the equipment is started, the rotary knife shaft of the cutter starts to run synchronously at the stop point so that the rotation of the rotary knife shaft of the cutter
  • the horizontal dividing speed is synchronized with the traveling speed of the gypsum board production line;
  • the rotary cutter shaft of the cutter After the rotary cutter shaft of the cutter is synchronized with the gypsum board production line, the rotary cutter shaft of the cutter performs shearing work according to the combined cycle curve in the CAM curve, and works according to the set length of each gypsum board board. fixed-length shearing motion;
  • the rotary cutter shaft of the cutter When the rotary cutter shaft of the cutter or the plasterboard production line fails, the rotary cutter shaft of the cutter performs out-of-synchronization work according to the out-of-synchronization curve in the CAM curve, and after desynchronization, the rotary cutter shaft of the cutter stops at the stopping point.
  • the present invention has the following beneficial effects:
  • an external encoder is used as a virtual main shaft without considering mechanical loss, stepless speed regulation can be realized through software, the transmission is flexible, the gear ratio can be modified arbitrarily, the control precision is high, and no mechanical backlash occurs.
  • the response time of the control method is short, the machining difficulty is low, and the theoretical error is ⁇ 0.5mm, but considering the mechanical aspect or other reasons, the control accuracy of this method is ⁇ 1mm.
  • Fig. 1 is a schematic structural diagram of a servo cutter device provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the rotational position of the rotary knife shaft of the cutter provided by the embodiment of the present invention
  • FIG. 3 is a structural block diagram of a synchronous driving process provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the start synchronization curve in the CAM curve provided by the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a desynchronization curve in a CAM curve provided by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the combined cycle curve in the CAM curve provided by the embodiment of the present invention.
  • 1-upper cutter servo motor 2-lower cutter servo motor; 3-electronic gear; 4-CAM cam; 5-gypsum board production line; 6-motion controller.
  • the present invention provides a servo cutter device, which includes an upper cutter servo motor 1 , a lower cutter servo motor 2 , an electronic gear 3 , a CAM cam 4 and a motion controller 6 .
  • the upper cutter servo motor 1 is used to independently install the upper cutter; the lower cutter servo motor 2 is used to independently install the lower cutter; the output shafts of the upper cutter servo motor 1 and the lower cutter servo motor 2 are synchronized through the electronic gear 3, that is, the upper cutter
  • the knife servo motor 1 and the lower cutting knife servo motor 2 realize synchronous rotation and synchronous stop through the electronic gear 3, and the speed and position of the rotation are uniformly synchronized.
  • the upper cutter or the lower cutter is synchronized with the gypsum board production line respectively through the CAM cam 4, and the electronic gear 3 and the CAM cam 4 are both connected with a motion controller 6.
  • the motion controller 6 regulates the working parameters of the CAM cam 4 and the working parameters of the electronic gear 3 synchronously according to the functional relationship between the rotational position of the lower cutter servo motor 2 and the advancing position of the gypsum board production line 5, so that the upper cutter and the lower cutter
  • the horizontal velocity of the knife at the shearing position is the same as the traveling speed of the gypsum board production line, thereby realizing the cutting work of the gypsum board at the target shearing position.
  • the CAM cam 4 is evolved from a mechanical cam, which describes the functional relationship between the nonlinear running curve of the rotary knife axis of the cutter and the linear running curve of the gypsum board plate, and uses the rotary knife axis of the cutter as the main axis , the material axis of the gypsum board sheet travel is taken as the slave axis, and the principal axis and the slave axis maintain the corresponding relationship of the function.
  • the speed and position of the main shaft are measured values, which are easily disturbed by the influence of the measurement period and the external environment, which will cause greater disturbance on the slave shaft, while the rotary knife shaft of the cutter and the gypsum board production line CAM cam synchronization is carried out on the main conveying line.
  • This control method has a short response time and low machining difficulty.
  • the theoretical error is ⁇ 0.5mm, but considering mechanical or other reasons, the control accuracy of this method is ⁇ 1mm.
  • the CAM cam 4 does not have a driving device and cannot control its own speed and position.
  • the speed or position relationship between the main shaft and the slave shaft can be defined in the table or a polynomial curve can be used to reduce the impact of speed changes on the mechanical equipment and make the relationship between the main shaft and the slave shaft more precise. flexible.
  • the control method of the above-mentioned servo cutter device specifically includes the following steps:
  • Step 100 adding a CAM cam between the rotary cutter shaft of the cutter and the material shaft of the gypsum board production line, and establishing a nonlinear synchronization relationship between the CAM cam and the material shaft.
  • Step 200 establishing a synchronous relationship between the upper and lower rotary knife shafts of the cutter, and simultaneously establishing a synchronous relationship between the two rotary knife shafts of the cutter and the electronic gear.
  • the synchronous relationship between the upper and lower cutter shafts is also synchronized through electronic gears, so the electronic gear acts as a medium between the cutter shaft and the material shaft, making the two cutter shafts
  • the axis and the material axis realize synchronous work, and this synchronization process does not need to consider mechanical loss, stepless speed regulation can be realized through software, the transmission is flexible, the gear ratio can be modified arbitrarily, the control accuracy is high, and there will be no mechanical backlash.
  • the control method synchronized with the main line of the production line has a short response time and low machining difficulty. The theoretical error is ⁇ 0.5mm, but considering mechanical or other reasons, the control accuracy of this method is ⁇ 1mm.
  • the motion controller 6 determines the time for each piece of gypsum board to pass through the rotary cutter shaft of the cutter according to the travel speed of the gypsum board production line and the travel position of the gypsum board;
  • the motion controller 6 regulates the start of the rotary cutter shaft of the cutter according to the time when each gypsum board passes through the rotary cutter shaft of the cutter, and accelerates to perform shearing work synchronously with the speed of the gypsum board production line.
  • the speed change process of the rotary cutter shaft of the cutter is divided through the above-mentioned synchronous work, so that the cutter on the rotary cutter shaft of the cutter is synchronized with the speed of the gypsum board production line when the gypsum board moves to the target cutting length, and the gypsum board is cut. Shearing work.
  • Step 300 Determine the speed adjustment mode of the rotary knife shaft of the cutter according to the target shear length of the gypsum board until the shear length of the rotary knife shaft of the cutter is the same as the target shear length of the gypsum board when the rotary knife shaft rotates with frequency conversion for one revolution, And set the CAM curve about the synchronous process of the rotary knife axis of the cutter and the CAM cam.
  • the motion controller 6 regulates the start of the rotary cutter shaft of the cutter and accelerates it to be synchronized with the speed of the gypsum board production line.
  • the cutting length and the cutter circle of the rotary cutter shaft of the cutter are determined according to the comparison results, and the speed adjustment method of the rotary cutter shaft of the cutter is determined.
  • the speed adjustment methods are divided into the following three situations:
  • the rotary knife shaft of the cutter When the target cutting length is less than the circumference of the cutter, the rotary knife shaft of the cutter is divided into a steady speed section, a synchronous section and a speed reduction section during one rotation, and the rotary knife shaft of the cutter accelerates to exceed the traveling speed of the gypsum board production line in the steady speed section , and then decelerate to the travel speed of the gypsum board production line, the rotary knife shaft of the cutter is kept in sync with the travel speed of the gypsum board production line in the synchronous section, and the rotary knife shaft of the cutter decelerates to the set value in the deceleration section, that is, the rotary knife of the cutter
  • the rotation speed of the cutter on the shaft should be greater than the travel speed of the gypsum board production line, so as to ensure that when the rotary cutter shaft of the cutter rotates to the circumference of the cutter, the slitting work of the target cutting length of the small length is completed.
  • the rotary cutter shaft of the cutter is divided into synchronous segments during one revolution. , at this time, the traveling length of the gypsum board is the target cutting length, so as to realize the stable cutting work of the gypsum board.
  • the rotary knife shaft of the cutter is divided into an acceleration section, a synchronous section and a deceleration section during one rotation. And maintain the same speed as the gypsum board production line in the synchronous section, and finally the rotary cutter shaft of the cutter slows down to stop in the deceleration section.
  • the blade length of the cutter is relatively short, and similarly, the diameter of the rotating shaft of the cutter is also relatively small, so the above-mentioned target cutting length is less than the circumference of the cutting knife and the target cutting length is equal to the cutting length.
  • the appearance of the knife circle is relatively rare, so this embodiment focuses on analyzing and processing the situation that the target cutting length is greater than the knife circle.
  • the rotary knife shaft of the cutter is divided into the rotary knife shaft of the upper cutter and the rotary knife shaft of the lower cutter, and the rotary knife shaft of the upper cutter and the rotary knife shaft of the lower cutter rotate synchronously, and the rotary knife shaft of the upper cutter and the rotary knife shaft of the lower cutter
  • the trajectory of the installed upper cutter and lower cutter is divided into three steps when the target cutting length is greater than the cutter circle:
  • the upper cutter and the lower cutter are raised from zero speed to the same speed as the plate during the acceleration section (the trajectory between the stop point and the start synchronization point in Figure 2).
  • the horizontal component of the linear velocity of the upper cutter and the lower cutter in the synchronous section is the same as the traveling speed of the plate (the trajectory between the start synchronization point and the end synchronization point in Figure 2).
  • the upper cutter and the lower cutter decelerate to stop in the deceleration section (the track between the end synchronous point and the stop point in Fig. 2).
  • the blade accelerates to the speed of the plate to enter the synchronous section.
  • the velocity component of the linear velocity of the blade in the horizontal direction is consistent with the speed of the plate to ensure the quality of the shear section without scratching the surface of the plate. Then the blade enters the deceleration section.
  • the CAM curve includes the start synchronous curve corresponding to the acceleration segment (as shown in Figure 4), the desynchronization curve corresponding to the deceleration segment (as shown in Figure 5) and the synchronous cutting curve corresponding to the synchronous segment, and the CAM curve is used to determine the cutter The positional relationship of the rotary knife shaft between the acceleration section, the synchronous section and the deceleration section and the traveling position of the gypsum board. cut work.
  • the CAM curve can be set by interpolation point table or generated by polynomial.
  • the synchronous cutting curve is specifically a point.
  • the moving position of the gypsum board corresponding to the abscissa is the target shearing position
  • the rotation position of the cutter shaft corresponding to the ordinate is a point.
  • the rotation angle of the knife shaft, so the rotary knife shaft of the cutter operates cyclically according to the combination curve of starting synchronous curve, synchronous cutting curve and detaching synchronous curve, so as to realize the cutting work of multiple gypsum boards.
  • Step 400 Determine the rotation path of the rotary knife shaft of the cutter corresponding to the traveling position of the gypsum board production line according to the CAM curve, and adjust the rotation frequency of the rotary knife shaft of the cutter to make the rotary knife shaft of the cutter Cut work at the target cut length for the gypsum board.
  • the combination curve in the CAM curve is the combination curve of the start synchronization curve, the synchronization cutting curve and the separation curve (as shown in Figure 6).
  • the corresponding relationship between the rotation positions of the rotary cutter shaft runs in a cycle to complete the online continuous shearing of multiple gypsum boards.
  • the rotation position of the rotary knife shaft of the cutter is based on when the blade of the cutter is directly below as the origin, and the rotation position of the rotary knife shaft of the cutter is determined according to the clockwise or counterclockwise direction, and the rotation position Among them, ⁇ is the rotation angle of the rotary cutter shaft of the cutter, and r is the combined radius of the cutter blade and the rotary cutter shaft of the cutter.
  • the target shearing length of the gypsum board, and the perimeter of the trajectory of the cutter blade and the cutter shaft for one rotation are both fixed values.
  • the speed of the gypsum board and the speed of the gypsum board are determined by reading the encoder signal of the material axis of the gypsum board production line. travel length.
  • the time required for each gypsum sheet to pass the cutter position is determined from the travel speed of the gypsum sheet to determine the time required for the cutter's rotating knife shaft to accelerate from rest to synchronize with the travel speed of the gypsum board sheet.
  • the rotational position of the cutter blade on the cutter shaft is determined.
  • the rotary cutter axis of the cutter After the rotary cutter axis of the cutter is synchronized with the gypsum board production line, the rotary cutter axis of the cutter performs cyclical operation according to the combination curve of the starting synchronization curve, the synchronous cutting curve and the out-of-synchronization curve in the CAM curve corresponding to the normal shearing work stage of the gypsum board, according to the setting Each fixed length of gypsum board is used for fixed-length shearing movement.
  • the rotary knife shaft of the cutter when reading the encoder signal of the material shaft of the gypsum board production line indicates that the equipment is started, the rotary knife shaft of the cutter starts to run synchronously at the stop point so that the horizontal division of the rotary knife shaft of the cutter The speed is synchronized with the travel speed of the gypsum board production line.
  • the corresponding relationship between the travel position of the gypsum board and the rotation position of the rotary cutter shaft of the cutter is quickly determined through the start synchronization curve in the CAM curve.
  • the out-of-synchronization curve in the CAM curve corresponds to the equipment pause section of the entire gypsum board production line, that is, the rotary knife axis of the cutter starts the out-of-synchronization process according to the out-of-synchronization curve. After desynchronization, the rotary knife axis of the cutter stops at the stop point.
  • an external encoder is used as the main shaft to control the synchronous work of the gypsum board production line and the rotary knife shaft of the cutter, and the encoder main shaft does not have a driving device, so the speed and position of the rotary knife shaft of the cutter cannot be controlled.
  • the speed or position relationship between the main shaft and the slave shaft is defined through the CAM curve.
  • the CAM curve can be defined in the table or a polynomial curve can be used to reduce the impact of speed changes on the mechanical equipment, and also to make the main shaft (electronic gear) and the slave shaft (cutting Knife rotation tool axis) relationship is more flexible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Cutting Processes (AREA)

Abstract

本发明公开了一种伺服切刀控制方法及装置,在切刀旋转刀轴与石膏板生产线的材料轴之间增加电子齿轮,且建立电子齿轮与材料轴之间的同步关系;建立上下两个切刀旋转刀轴之间的同步关系,同时建立切刀旋转刀轴与电子齿轮之间的同步关系;根据石膏板材目标剪切长度确定切刀旋转刀轴的速度调整方式,且设定关于切刀旋转刀轴与电子齿轮同步过程的CAM曲线;将CAM曲线分别与切刀旋转刀轴以及电子齿轮连接,根据CAM曲线以及石膏板生产线的行进位置调整切刀旋转刀轴进行剪切工作;本发明不需要考虑机械损耗,可以通过软件实现无级调速,传动柔性好,齿轮比可以任意修改,控制精度高。

Description

一种伺服切刀控制方法及装置 技术领域
本发明涉及石膏板生产线技术领域,具体涉及一种伺服切刀控制方法及装置。
背景技术
在石膏板生产过程中,三控切边是必不可少的工序。石膏板在履带小车的推动下通过高速锯的位置进行高速切边。
传统的切刀切板是由一台伺服电机驱动上切刀、下切刀进行剪切,伺服电机轴连接有皮带轮,该皮带轮与切刀侧皮带轮通过皮带连接,然后切刀侧皮带轮同轴有个小齿轮,通过小齿轮带动下切刀大齿轮转动,上切刀的大齿轮与下切刀的大齿轮反向旋转,这样通过机械齿轮传动来控制,而机械齿轮传动距离短,存在机械损耗,传动比容易受限,该控制方式非常不利于三控进锯锯边,容易造成故障,也造成放废板的增加,同时每张石膏板切长了造成浪费,不利于投入产出率的提高。
发明内容
本发明的目的在于提供一种伺服切刀控制方法及装置,以解决现有技术中机械齿轮传动距离短,存在机械损耗,传动比容易受限的技术问题。
为解决上述技术问题,本发明具体提供下述技术方案:
一种伺服切刀装置,包括:
上切刀伺服电机,用于独立安装上切刀;
下切刀伺服电机,用于独立安装下切刀;
所述上切刀伺服电机和所述下切刀伺服电机的输出轴通过电子齿轮同步;
所述上切刀或所述下切刀分别与石膏板生产线之间通过CAM凸轮同步,且所述电子齿轮和所述CAM凸轮均连接有运动控制器;
所述运动控制器根据所述下切刀伺服电机的转动位置与所述石膏板生产 线的行进位置之间的对应关系调控所述CAM凸轮的工作参数以及同步调控所述电子齿轮的工作参数,以使得上切刀和下切刀在剪切位置时的水平分速度与石膏板生产线的行进速度相同。
作为本发明的一种优选方案,所述CAM凸轮和所述电子齿轮为外接的编码器。
为解决上述技术问题,本发明还进一步提供下述技术方案:一种伺服切刀装置的控制方法,包括以下步骤:
步骤100、在切刀旋转刀轴与石膏板生产线的材料轴之间增加CAM凸轮,且建立CAM凸轮与所述材料轴之间的同步关系;
步骤200、建立上下两个所述切刀旋转刀轴之间的同步关系,同时建立两个所述切刀旋转刀轴与电子齿轮之间的同步关系;
步骤300、根据石膏板材目标剪切长度确定所述切刀旋转刀轴的速度调整方式,直至所述切刀旋转刀轴变频转动一周时的剪切长度与所述石膏板材目标剪切长度相同,且设定关于所述切刀旋转刀轴与所述CAM凸轮同步过程的CAM曲线;
步骤400、根据所述CAM曲线确定所述石膏板生产线的行进位置对应的所述切刀旋转刀轴的转动路径,调整所述切刀旋转刀轴的转动频率以使得所述切刀旋转刀轴在石膏板材目标剪切长度进行剪切工作。
作为本发明的一种优选方案,在步骤100和步骤200中,获取所述石膏板生产线的材料轴的编码器信号,以确定所述石膏板生产线的行进速度以及石膏板材的行进位置,运动控制器根据所述石膏板生产线的行进速度以及石膏板材的行进位置确定每块石膏板材通过所述切刀旋转刀轴的时间,且所述运动控制器根据所述每块石膏板材通过所述切刀旋转刀轴的时间调控所述切刀旋转刀轴的启动并加速至与所述石膏板生产线的行进速度同步进行剪切工作。
作为本发明的一种优选方案,在步骤300中,运动控制器调控所述切刀旋转刀轴的启动并加速至与所述石膏板生产线的行进速度同步的实现过程为 确定所述石膏板材的目标剪切长度,对比所述石膏板材的目标剪切长度以及切刀旋转刀轴的切刀圆周,根据对比结果确定所述切刀旋转刀轴的速度调整方式,所述速度调整方式分为以下三种情况:
所述目标剪切长度小于所述切刀圆周时,所述切刀旋转刀轴在其旋转一周分为稳速段、同步段和降速段,所述切刀旋转刀轴在稳速段加速至超过所述石膏板生产线的行进速度,再减速至所述石膏板生产线的行进速度,所述切刀旋转刀轴在所述同步段保持与所述石膏板生产线的行进速度同步,且所述切刀旋转刀轴在所述降速段减速至设定值;
所述目标剪切长度等于所述切刀圆周时,所述切刀旋转刀轴在其旋转一周分为同步段,所述切刀旋转刀轴始终与所述石膏板生产线的行进速度同速运行;
所述目标剪切长度大于所述切刀圆周时,所述切刀旋转刀轴在其旋转一周分为加速段、同步段和降速段,所述切刀旋转刀轴在加速段加速至与所述石膏板生产线的行进速度相同,并在同步段维持与所述所述石膏板生产线的行进速度相同,最后所述切刀旋转刀轴在所述降速段降速至停止。
作为本发明的一种优选方案,所述切刀旋转刀轴分为上切刀旋转刀轴和下切刀旋转刀轴,且所述上切刀旋转刀轴和下切刀旋转刀轴同步转动,所述上切刀旋转刀轴和下切刀旋转刀轴上安装的上切刀和下切刀的运动轨迹在所述目标剪切长度大于所述切刀圆周时分为三个步骤,分别为:加速段、同步段和减速段,所述上切刀和所述下切刀在所述加速段时从速度为零提升至与板材行进速度相同;
所述上切刀和所述下切刀在所述同步段的线速度水平分量与所述板材行进速度相同;
所述上切刀和所述下切刀在所述减速段进行降速至停止。
作为本发明的一种优选方案,在步骤300中,所述CAM曲线包括对应所述加速段的开始同步曲线、对应所述减速段的脱离同步曲线以及对应所述同步段的同步切割曲线,所述CAM曲线用于确定所述切刀旋转刀轴分别在 加速段、同步段以及减速段与石膏板材的行进位置之间的位置关系,所述切刀旋转刀轴按照开始同步曲线、同步切割曲线以及脱离同步曲线的组合曲线完成对单块石膏板材的剪切工作;
其中,所述CAM曲线的横坐标为石膏板材的目标剪切长度,纵坐标为切刀刀刃与所述切刀旋转刀轴旋转一周的轨迹周长C=2πr,其中r为切刀刀刃与所述切刀旋转刀轴的组合半径。
作为本发明的一种优选方案,所述CAM曲线按照所述开始同步曲线、同步切割曲线以及脱离同步曲线生成组合循环曲线,所述CAM曲线中的组合循环曲线按照开始同步曲线和脱离同步曲线中的石膏板行进位置与切刀旋转刀轴旋转位置之间的对应关系完成对单块石膏板材的剪切工作;
所述切刀旋转刀轴旋转位置以切刀刀刃处于正下方时为原点,且按照顺时针或逆时针方向确定所述切刀旋转刀轴的旋转位置,所述旋转位置旋转位置
Figure PCTCN2021132951-appb-000001
其中θ为所述切刀旋转刀轴的旋转角度,r为切刀刀刃与所述切刀旋转刀轴的组合半径。
作为本发明的一种优选方案,在步骤400中,所述石膏板的目标剪切长度,以及切刀刀刃与所述切刀旋转刀轴旋转一周的轨迹周长均为定值,通过读取石膏板生产线的材料轴的编码器信号确定石膏板材的行进速度以及石膏板材的行进长度;
根据所述石膏板材的行进速度确定每个石膏板材经过切刀位置所需的时间,以确定所述切刀旋转刀轴从静止加速到与石膏板板材行进速度同步所需的时间;
且根据所述CAM曲线中的石膏板材的行进长度与切刀刀刃的旋转位置之间的对应关系,确定所述切刀旋转刀轴上的切刀刀刃的旋转位置。
作为本发明的一种优选方案,当读取石膏板生产线的材料轴的编码器信号表示设备启动时,所述切刀旋转刀轴在停止点开始同步运行以使得所述切刀旋转刀轴的水平分速度与所述石膏板生产线的行进速度同步;
所述切刀旋转刀轴与所述石膏板生产线同步后,所述切刀旋转刀轴按照所述CAM曲线中的组合循环曲线做剪切工作,按照设定好的每张石膏板板 长作定长剪切运动;
所述切刀旋转刀轴或所述石膏板生产线故障时,所述切刀旋转刀轴按照所述CAM曲线中的脱离同步曲线进行脱离同步工作,解除同步后,所述切刀旋转刀轴停止在所述停止点处。
本发明与现有技术相比较具有如下有益效果:
本发明通过一个外接的编码器作为虚拟主轴,不需要考虑机械损耗,可以通过软件实现无级调速,传动柔性好,齿轮比可以任意修改,控制精度高,不会产生机械背隙,且该控制方式响应时间短,机械加工难度低,理论上误差在±0.5mm,但考虑到机械方面或其他原因,该方法控制精度在±1mm。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本发明实施例提供的伺服切刀装置的结构示意图;
图2为本发明实施例提供的切刀旋转刀轴的旋转位置示意图;
图3为本发明实施例提供的同步驱动流程的结构框图;
图4为本发明实施例提供的CAM曲线中的开始同步曲线示意图;
图5为本发明实施例提供的CAM曲线中的脱离同步曲线示意图;
图6为本发明实施例提供的CAM曲线中的组合循环曲线示意图。
图中的标号分别表示如下:
1-上切刀伺服电机;2-下切刀伺服电机;3-电子齿轮;4-CAM凸轮;5-石膏板生产线;6-运动控制器。
本发明的较佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而 不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供了一种伺服切刀装置,包括上切刀伺服电机1、下切刀伺服电机2、电子齿轮3、CAM凸轮4以及运动控制器6。
上切刀伺服电机1用于独立安装上切刀;下切刀伺服电机2用于独立安装下切刀;上切刀伺服电机1和下切刀伺服电机2的输出轴通过电子齿轮3同步,即上切刀伺服电机1和下切刀伺服电机2通过电子齿轮3实现同步转动和同步停止,且转动的速度和位置均一一对应同步。
上切刀或下切刀分别与石膏板生产线之间通过CAM凸轮4同步,且电子齿轮3和CAM凸轮4均连接有运动控制器6。
运动控制器6根据下切刀伺服电机2的转动位置与石膏板生产线5的行进位置之间的函数关系调控CAM凸轮4的工作参数以及同步调控电子齿轮3的工作参数,以使得上切刀和下切刀在剪切位置时的水平分速度与石膏板生产线的行进速度相同,从而实现对石膏板在目标剪切位置的切刀工作。
其中,作为本实施方式的创新点,其一,上切刀与下切刀之间没有机械连接关系,而是在上切刀与下切刀之间进行电子齿轮3同步,电子齿轮为一个外接的编码器作为虚拟轴,不需要考虑机械损耗,可以通过软件实现无级调速,传动柔性好,齿轮比可以任意修改,控制精度高,不会产生机械背隙,而本实施方式中,可以采用虚轴作为主轴,将主轴的值经过优化计算后再传递给从轴,从而从轴减少速度和位置的扰动。
其二,CAM凸轮4是由机械凸轮演化过来的,描述了切刀旋转刀轴的非线性运行曲线与和石膏板板材行进的线性运行曲线之间的函数关系,将切刀旋转刀轴作为主轴,石膏板板材行进的材料轴作为从轴,主轴和从轴保持该函数对应关系。在实际应用中主轴的速度和位置值是一个测量值,容易受到测量周期及外部环境的影响而产生扰动,这样在从轴上产生更大的扰动,而切刀旋转刀轴与石膏板生产线的输送主线进行CAM凸轮同步,该控制方式响应时间短,机械加工难度低,理论上误差在±0.5mm,但考虑到机械方 面或其他原因,该方法控制精度在±1mm。
CAM凸轮4作为一个主轴,并没有驱动装置而不能对本身的速度和位置进行控制。CAM凸轮4与切刀旋转刀轴同步时,主轴与从轴的速度或位置关系可以在表中定义也可以采用多项式曲线,减少速度变化对机械设备的冲击,也使主轴与从轴的关系更灵活。
上述伺服切刀装置的控制方法,具体包括以下步骤:
步骤100、在切刀旋转刀轴与石膏板生产线的材料轴之间增加CAM凸轮,且建立CAM凸轮与所述材料轴之间的非线性同步关系。
步骤200、建立上下两个所述切刀旋转刀轴之间的同步关系,同时建立两个所述切刀旋转刀轴与电子齿轮之间的同步关系。
需要补充说明的是,上下两个切刀旋转刀轴之间的同步关系也是通过电子齿轮实现同步,因此电子齿轮作为切刀旋转刀轴与材料轴之间的媒介,使得两个切刀旋转刀轴与材料轴实现同步工作,而此同步过程不需要考虑机械损耗,可以通过软件实现无级调速,传动柔性好,齿轮比可以任意修改,控制精度高,不会产生机械背隙,切刀与生产线主线同步的控制方式响应时间短,机械加工难度低,理论上误差在±0.5mm,但考虑到机械方面或其他原因,该方法控制精度在±1mm。
具体实现两个切刀旋转刀轴与材料轴之间同步工作的步骤为:
(1)获取石膏板生产线的材料轴的编码器信号,以确定石膏板生产线的行进速度以及石膏板材的行进位置;
(2)运动控制器6根据石膏板生产线的行进速度以及石膏板材的行进位置确定每块石膏板材通过切刀旋转刀轴的时间;
(3)运动控制器6根据每块石膏板材通过切刀旋转刀轴的时间调控切刀旋转刀轴的启动并加速至与石膏板生产线的行进速度同步进行剪切工作。
从而通过上述同步工作划分切刀旋转刀轴的速度变化过程,使得切刀旋转刀轴上的切刀在石膏板材移动至目标剪切长度时,与石膏板生产线的行进速度同步并对石膏板进行剪切工作。
步骤300、根据石膏板材目标剪切长度确定所述切刀旋转刀轴的速度调整方式,直至所述切刀旋转刀轴变频转动一周时的剪切长度与所述石膏板材目标剪切长度相同,且设定关于所述切刀旋转刀轴与所述CAM凸轮同步过程的CAM曲线。
如图2至图3所示,运动控制器6调控切刀旋转刀轴的启动并加速至与石膏板生产线的行进速度同步的实现过程为确定石膏板材的目标剪切长度,对比石膏板材的目标剪切长度以及切刀旋转刀轴的切刀圆周,根据对比结果确定切刀旋转刀轴的速度调整方式,速度调整方式分为以下三种情况:
目标剪切长度小于切刀圆周时,切刀旋转刀轴在其旋转一周分为稳速段、同步段和降速段,切刀旋转刀轴在稳速段加速至超过石膏板生产线的行进速度,再减速至石膏板生产线的行进速度,切刀旋转刀轴在同步段保持与石膏板生产线的行进速度同步,且切刀旋转刀轴在降速段减速至设定值,即切刀旋转刀轴上的切刀转动速度要大于石膏板生产线的行进速度,以保证当切刀旋转刀轴转动至切刀圆周时完成对小长度的目标剪切长度的分切工作。
目标剪切长度等于切刀圆周时,切刀旋转刀轴在其旋转一周分为同步段,切刀旋转刀轴始终与石膏板生产线的行进速度同速运行,即切刀旋转刀轴每转动一周,此时石膏板行进长度为目标剪切长度,从而实现对石膏板的稳定分切工作。
目标剪切长度大于切刀圆周时,切刀旋转刀轴在其旋转一周分为加速段、同步段和降速段,切刀旋转刀轴在加速段加速至与石膏板生产线的行进速度相同,并在同步段维持与石膏板生产线的行进速度相同,最后切刀旋转刀轴在降速段降速至停止。
由于石膏板的厚度比较小,因此切刀的刀刃长度比较短,且同样的,切刀旋转刀轴的直径也相对比较小,因此上述目标剪切长度小于切刀圆周以及目标剪切长度等于切刀圆周的出现情况都比较少,因此本实施方式着重对目标剪切长度大于切刀圆周的情况进行分析处理。
上述切刀旋转刀轴分为上切刀旋转刀轴和下切刀旋转刀轴,且上切刀旋 转刀轴和下切刀旋转刀轴同步转动,上切刀旋转刀轴和下切刀旋转刀轴上安装的上切刀和下切刀的运动轨迹在目标剪切长度大于切刀圆周时分为三个步骤:
上切刀和下切刀在加速段时从速度为零提升至与板材行进速度相同(图2中的停止点到开始同步点之间的轨迹)。
上切刀和下切刀在同步段的线速度水平分量与板材行进速度相同(图2中的开始同步点到结束同步点之间的轨迹)。
上切刀和下切刀在减速段进行降速至停止(图2中的结束同步点到停止点之间的轨迹)。
加速段刀刃加速到板材行进速度从而进入同步段,这时刀刃的线速度在水平方向的速度分量和板材行进速度保持一致,保证剪切断面的质量,并且不划伤板材的表面,接着刀刃进入减速段。
因此,CAM曲线包括对应加速段的开始同步曲线(如图4所示)、对应减速段的脱离同步曲线(如图5所示)以及对应同步段的同步切割曲线,CAM曲线用于确定切刀旋转刀轴分别在加速段、同步段以及减速段与石膏板材的行进位置之间的位置关系,切刀旋转刀轴按照开始同步曲线、同步切割曲线以及脱离同步曲线完成对单块石膏板材的剪切工作。
其中,CAM曲线可以通过插补点表设定或多项式生成。
CAM曲线的横坐标为石膏板材的目标剪切长度,纵坐标为切刀刀刃与切刀旋转刀轴旋转一周的轨迹周长C=2πr,其中r为切刀刀刃与切刀旋转刀轴的组合半径。
其中,同步切割曲线具体为一个点,此时横坐标对应的石膏板行进位置为目标剪切位置,且纵坐标对应的切刀旋转刀轴的旋转位置为一个点,剪切时的切刀旋转刀轴旋转角度,因此切刀旋转刀轴按照开始同步曲线、同步切割曲线以及脱离同步曲线的组合曲线循环操作,实现对多块石膏板的剪切工作。
步骤400、根据所述CAM曲线确定所述石膏板生产线的行进位置对应 的所述切刀旋转刀轴的转动路径,调整所述切刀旋转刀轴的转动频率以使得所述切刀旋转刀轴在石膏板材目标剪切长度进行剪切工作。
其中,CAM曲线中的组合曲线为开始同步曲线、同步切割曲线以及脱离同步曲线的组合曲线(如图6所示),组合曲线按照开始同步曲线和脱离同步曲线中的石膏板行进位置与切刀旋转刀轴旋转位置之间的对应关系循环运行,完成对多块石膏板材的在线持续剪切工作。
切刀旋转刀轴旋转位置以切刀刀刃处于正下方时为原点,且按照顺时针或逆时针方向确定切刀旋转刀轴的旋转位置,旋转位置
Figure PCTCN2021132951-appb-000002
其中θ为切刀旋转刀轴的旋转角度,r为切刀刀刃与切刀旋转刀轴的组合半径。
具体确定开始同步曲线的加速时间以及脱离同步曲线的降速时间的实现原理为:
石膏板的目标剪切长度,以及切刀刀刃与切刀旋转刀轴旋转一周的轨迹周长均为定值,通过读取石膏板生产线的材料轴的编码器信号确定石膏板材的行进速度以及石膏板材的行进长度。
根据石膏板材的行进速度确定每个石膏板材经过切刀位置所需的时间,以确定切刀旋转刀轴从静止加速到与石膏板板材行进速度同步所需的时间。
且根据CAM曲线中的石膏板材的行进长度与切刀刀刃的旋转位置之间的对应关系,确定切刀旋转刀轴上的切刀刀刃的旋转位置。
在切刀旋转刀轴与石膏板生产线同步后,切刀旋转刀轴按照CAM曲线中开始同步曲线、同步切割曲线以及脱离同步曲线的组合曲线对应石膏板材正常剪切工作阶段做循环运行,按照设定好的每张石膏板板长作定长剪切运动。
作为本实施方式的另一种实施例,当读取石膏板生产线的材料轴的编码器信号表示设备启动时,切刀旋转刀轴在停止点开始同步运行以使得切刀旋转刀轴的水平分速度与石膏板生产线的行进速度同步,整个石膏板生产线的设备启动阶段通过CAM曲线中的开始同步曲线快速确定石膏板行进位置与切刀旋转刀轴的旋转位置之间的对应关系。
CAM曲线中的脱离同步曲线对应整个石膏板生产线的设备暂停段,即 切刀旋转刀轴根据脱离同步曲线开始进行脱离同步过程,解除同步后,切刀旋转刀轴停止在停止点处。
本实施方式通过一个外接的编码器作为控制石膏板生产线和切刀旋转刀轴同步工作的主轴,且该编码器主轴并没有驱动装置,因此不能对切刀旋转刀轴的速度和位置进行控制,而是通过CAM曲线定义主轴与从轴的速度或位置关系,CAM曲线可以在表中定义也可以采用多项式曲线,减少速度变化对机械设备的冲击,也使主轴(电子齿轮)与从轴(切刀旋转刀轴)的关系更灵活。
以上实施例仅为本申请的示例性实施例,不用于限制本申请,本申请的保护范围由权利要求书限定。本领域技术人员可以在本申请的实质和保护范围内,对本申请做出各种修改或等同替换,这种修改或等同替换也应视为落在本申请的保护范围内。

Claims (10)

  1. 一种伺服切刀装置,其特征在于,包括:
    上切刀伺服电机(1),用于独立安装上切刀;
    下切刀伺服电机(2),用于独立安装下切刀;
    所述上切刀伺服电机(1)和所述下切刀伺服电机(2)的输出轴通过电子齿轮(3)同步;
    所述上切刀或所述下切刀分别与石膏板生产线(5)之间通过CAM凸轮(4)同步,且所述电子齿轮(3)和所述CAM凸轮(4)均连接有运动控制器(6);
    所述运动控制器(6)根据所述下切刀伺服电机(2)或上切刀伺服电机(1)的旋转位置与所述石膏板生产线(1)的行进位置之间的对应关系调控所述CAM凸轮(4)的工作参数以及同步调控所述电子齿轮(1)的工作参数,以使得上切刀和下切刀在剪切位置时的水平分速度与石膏板生产线的行进速度相同。
  2. 根据权利要求1所述的一种伺服切刀装置,其特征在于:所述CAM凸轮(2)和所述电子齿轮(1)为同一个外接的编码器。
  3. 一种基于权利要求1所述的伺服切刀装置的控制方法,其特征在于,包括以下步骤:
    步骤100、在切刀旋转刀轴与石膏板生产线的材料轴之间增加CAM凸轮,且建立CAM凸轮与所述材料轴之间的同步关系;
    步骤200、建立上下两个所述切刀旋转刀轴之间的同步关系,同时建立两个所述切刀旋转刀轴与电子齿轮之间的同步关系;
    步骤300、根据石膏板材目标剪切长度确定所述切刀旋转刀轴的速度调整方式,直至所述切刀旋转刀轴变频转动一周时的剪切长度与所述石膏板材目标剪切长度相同,且设定关于所述切刀旋转刀轴与所述CAM凸轮同步过程的CAM曲线;
    步骤400、根据所述CAM曲线确定所述石膏板生产线的行进位置对应的所述切刀旋转刀轴的转动路径,调整所述切刀旋转刀轴的转动频率以使得所述切刀旋转刀轴在石膏板材目标剪切长度进行剪切工作。
  4. 根据权利要求3所述的一种伺服切刀装置的控制方法,其特征在于,在步骤100和步骤200中,获取所述石膏板生产线的材料轴的编码器信号,以确定所述石膏板生产线的行进速度以及石膏板材的行进位置,运动控制器根据所述石膏板生产线的行进速度以及石膏板材的行进位置确定每块石膏板材通过所述切刀旋转刀轴的时间,且所述运动控制器根据所述每块石膏板材通过所述切刀旋转刀轴的时间调控所述切刀旋转刀轴的启动并加速至与所述石膏板生产线的行进速度同步进行剪切工作。
  5. 根据权利要求4所述的一种伺服切刀装置的控制方法,其特征在于,在步骤300中,运动控制器调控所述切刀旋转刀轴的启动并加速至与所述石膏板生产线的行进速度同步的实现过程为确定所述石膏板材的目标剪切长度,对比所述石膏板材的目标剪切长度以及切刀旋转刀轴的切刀圆周,根据对比结果确定所述切刀旋转刀轴的速度调整方式,所述速度调整方式分为以下三种情况:
    所述目标剪切长度小于所述切刀圆周时,所述切刀旋转刀轴在其旋转一周分为稳速段、同步段和降速段,所述切刀旋转刀轴在稳速段加速至超过所述石膏板生产线的行进速度,再减速至所述石膏板生产线的行进速度,所述切刀旋转刀轴在所述同步段保持与所述石膏板生产线的行进速度同步,且所述切刀旋转刀轴在所述降速段减速至设定值;
    所述目标剪切长度等于所述切刀圆周时,所述切刀旋转刀轴在其旋转一周分为同步段,所述切刀旋转刀轴始终与所述石膏板生产线的行进速度同速运行;
    所述目标剪切长度大于所述切刀圆周时,所述切刀旋转刀轴在其旋转一周分为加速段、同步段和降速段,所述切刀旋转刀轴在加速段加速至与所述石膏板生产线的行进速度相同,并在同步段维持与所述所述石膏板生产线的 行进速度相同,最后所述切刀旋转刀轴在所述降速段降速至停止。
  6. 根据权利要求5所述的一种伺服切刀装置的控制方法,其特征在于,所述切刀旋转刀轴分为上切刀旋转刀轴和下切刀旋转刀轴,且所述上切刀旋转刀轴和下切刀旋转刀轴同步转动,所述上切刀旋转刀轴和下切刀旋转刀轴上安装的上切刀和下切刀的运动轨迹在所述目标剪切长度大于所述切刀圆周时分为三个步骤,分别为:加速段、同步段和减速段,所述上切刀和所述下切刀在所述加速段时从速度为零提升至与板材行进速度相同;
    所述上切刀和所述下切刀在所述同步段的线速度水平分量与所述板材行进速度相同;
    所述上切刀和所述下切刀在所述减速段进行降速至停止。
  7. 根据权利要求5所述的一种伺服切刀控制方法,其特征在于:在步骤300中,所述CAM曲线包括对应所述加速段的开始同步曲线、对应所述减速段的脱离同步曲线以及对应所述同步段的同步切割曲线,所述CAM曲线用于确定所述切刀旋转刀轴分别在加速段、同步段以及减速段与石膏板材的行进位置之间的位置关系,所述切刀旋转刀轴按照开始同步曲线、同步切割曲线以及脱离同步曲线的组合曲线完成对单块石膏板材的剪切工作;
    其中,所述CAM曲线的横坐标为石膏板材的目标剪切长度,纵坐标为切刀刀刃与所述切刀旋转刀轴旋转一周的轨迹周长C=2πr,其中r为切刀刀刃与所述切刀旋转刀轴的组合半径。
  8. 根据权利要求7所述的一种伺服切刀控制方法,其特征在于:所述CAM曲线按照所述开始同步曲线、同步切割曲线以及脱离同步曲线生成组合循环曲线,所述CAM曲线中的组合循环曲线按照开始同步曲线和脱离同步曲线中的石膏板行进位置与切刀旋转刀轴旋转位置之间的对应关系完成对单块石膏板材的剪切工作;
    所述切刀旋转刀轴旋转位置以切刀刀刃处于正下方时为原点,且按照顺时针或逆时针方向确定所述切刀旋转刀轴的旋转位置,所述旋转位置
    Figure PCTCN2021132951-appb-100001
    其中θ为所述切刀旋转刀轴的旋转角度,r为切刀刀刃与所述切刀旋转刀轴的组合半径。
  9. 根据权利要求8所述的一种伺服切刀控制方法,其特征在于:在步骤400中,所述石膏板的目标剪切长度,以及切刀刀刃与所述切刀旋转刀轴旋转一周的轨迹周长均为定值,通过读取石膏板生产线的材料轴的编码器信号确定石膏板材的行进速度以及石膏板材的行进长度;
    根据所述石膏板材的行进速度确定每个石膏板材经过切刀位置所需的时间,以确定所述切刀旋转刀轴从静止加速到与石膏板板材行进速度同步所需的时间;
    且根据所述CAM曲线中的石膏板材的行进长度与切刀刀刃的旋转位置之间的对应关系,确定所述切刀旋转刀轴上的切刀刀刃的旋转位置。
  10. 根据权利要求7所述的一种伺服切刀控制方法,其特征在于:当读取石膏板生产线的材料轴的编码器信号表示设备启动时,所述切刀旋转刀轴在停止点开始同步运行以使得所述切刀旋转刀轴的水平分速度与所述石膏板生产线的行进速度同步;
    所述切刀旋转刀轴与所述石膏板生产线同步后,所述切刀旋转刀轴按照所述CAM曲线中的组合循环曲线做剪切工作,按照设定好的每张石膏板板长作定长剪切运动;
    所述切刀旋转刀轴或所述石膏板生产线故障时,所述切刀旋转刀轴按照所述CAM曲线中的脱离同步曲线进行脱离同步工作,解除同步后,所述切刀旋转刀轴停止在所述停止点处。
PCT/CN2021/132951 2021-09-24 2021-11-25 一种伺服切刀控制方法及装置 WO2023045061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111119825.1A CN113815100B (zh) 2021-09-24 2021-09-24 一种伺服切刀控制方法及装置
CN202111119825.1 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045061A1 true WO2023045061A1 (zh) 2023-03-30

Family

ID=78921263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132951 WO2023045061A1 (zh) 2021-09-24 2021-11-25 一种伺服切刀控制方法及装置

Country Status (2)

Country Link
CN (1) CN113815100B (zh)
WO (1) WO2023045061A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327929A (zh) * 2022-09-21 2022-11-11 中建材创新科技研究院有限公司 一种纸面石膏板高精度切断的控制优化方法
CN115609736A (zh) * 2022-09-21 2023-01-17 中建材创新科技研究院有限公司 一种纸面石膏板高精度切断方法及控制系统
CN115383887B (zh) * 2022-09-21 2024-02-23 中建材创新科技研究院有限公司 一种纸面石膏板自动化高精度切断装置及方法
CN115481356A (zh) * 2022-09-21 2022-12-16 中建材创新科技研究院有限公司 一种纸面石膏板高精度切断用切断长度调控方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180983A (ja) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp 電子カム制御装置
CN202137857U (zh) * 2011-06-02 2012-02-08 北新集团建材股份有限公司 一种凸轮运行轨迹切断机
CN202640434U (zh) * 2012-06-02 2013-01-02 深圳市威科达科技有限公司 一体化轮切伺服驱动装置
CN202846598U (zh) * 2012-10-10 2013-04-03 北新集团建材股份有限公司 一种切断机
CN103163822A (zh) * 2011-12-19 2013-06-19 苏州汇川技术有限公司 电子凸轮控制装置及方法
CN203818347U (zh) * 2014-03-26 2014-09-10 北新集团建材股份有限公司 一种切断装置
CN204036506U (zh) * 2014-09-05 2014-12-24 南阳市东福印务包装有限公司 一种瓦楞纸横切机装置
CN204471458U (zh) * 2015-02-05 2015-07-15 科比传动技术(上海)有限公司 瓦楞纸横切机
CN205572742U (zh) * 2016-04-20 2016-09-14 湖北楚钟新型建材(集团)有限公司 一种用于生产石膏板的伺服切刀系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461667B2 (ja) * 2002-07-10 2010-05-12 株式会社安川電機 電子カム方式ロータリカッタ制御方法及び装置
CN103076756A (zh) * 2011-10-25 2013-05-01 科比传动技术(上海)有限公司 伺服驱动器中实现带电子凸轮功能的方法
CN205291085U (zh) * 2015-12-09 2016-06-08 广州德重科技有限公司 一种基于电子凸轮的双轴瓦楞纸旋切机的控制系统
CN109382899A (zh) * 2018-11-23 2019-02-26 山东腾飞机电科技有限公司 一种用于石膏板生产线的石膏板切断机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180983A (ja) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp 電子カム制御装置
CN202137857U (zh) * 2011-06-02 2012-02-08 北新集团建材股份有限公司 一种凸轮运行轨迹切断机
CN103163822A (zh) * 2011-12-19 2013-06-19 苏州汇川技术有限公司 电子凸轮控制装置及方法
CN202640434U (zh) * 2012-06-02 2013-01-02 深圳市威科达科技有限公司 一体化轮切伺服驱动装置
CN202846598U (zh) * 2012-10-10 2013-04-03 北新集团建材股份有限公司 一种切断机
CN203818347U (zh) * 2014-03-26 2014-09-10 北新集团建材股份有限公司 一种切断装置
CN204036506U (zh) * 2014-09-05 2014-12-24 南阳市东福印务包装有限公司 一种瓦楞纸横切机装置
CN204471458U (zh) * 2015-02-05 2015-07-15 科比传动技术(上海)有限公司 瓦楞纸横切机
CN205572742U (zh) * 2016-04-20 2016-09-14 湖北楚钟新型建材(集团)有限公司 一种用于生产石膏板的伺服切刀系统

Also Published As

Publication number Publication date
CN113815100B (zh) 2023-03-17
CN113815100A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2023045061A1 (zh) 一种伺服切刀控制方法及装置
CN104238447A (zh) 一种实现双轴同步控制的方法
EP0460224A4 (en) Servo motor control method
US9283688B2 (en) Method for cutting block materials and cutting machine for cutting block materials
JPS6236806B2 (zh)
CN203876055U (zh) 一种双电机驱动的石膏板切断机构
CN203818347U (zh) 一种切断装置
CN112536841B (zh) 一种横切飞剪控制系统及其控制方法
CN115383887B (zh) 一种纸面石膏板自动化高精度切断装置及方法
JP3073727B2 (ja) 同期制御装置および同期制御方法
CN107052444A (zh) 基于矢量控制器的飞剪控制方法
CN213795246U (zh) 倒角机
CN104570933A (zh) 一种基于高阶曲线的飞剪机控制方法
CN103076756A (zh) 伺服驱动器中实现带电子凸轮功能的方法
JPH0620662B2 (ja) ロ−タリカツタの制御方法
WO1990001388A1 (en) Device for confirming the tap operation in the rigid tapping
CN111857039B (zh) 多电机剪切系统协同规划方法及系统
CN102371392B (zh) 高速精密在线数控铣床及其控制方法
CN1593907A (zh) 能随被切割物品同速同向移动的横切机
CN115609736A (zh) 一种纸面石膏板高精度切断方法及控制系统
JP2591396B2 (ja) 印刷ロール装置
JPS6325114Y2 (zh)
CN220593325U (zh) 切割机构
JPH0657397B2 (ja) 板紙溝切り装置
JP2004122731A (ja) 製袋機用コントロールシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE