WO2023044911A1 - 一种信息上报方法及装置、终端、网络设备 - Google Patents

一种信息上报方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2023044911A1
WO2023044911A1 PCT/CN2021/121001 CN2021121001W WO2023044911A1 WO 2023044911 A1 WO2023044911 A1 WO 2023044911A1 CN 2021121001 W CN2021121001 W CN 2021121001W WO 2023044911 A1 WO2023044911 A1 WO 2023044911A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
zero
terminal
network
network node
Prior art date
Application number
PCT/CN2021/121001
Other languages
English (en)
French (fr)
Inventor
王淑坤
林雪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/121001 priority Critical patent/WO2023044911A1/zh
Priority to CN202180099796.9A priority patent/CN117561727A/zh
Publication of WO2023044911A1 publication Critical patent/WO2023044911A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the technical field of mobile communications, and in particular to an information reporting method and device, a terminal, and a network device.
  • Zero-power terminals need to collect radio waves sent by network nodes to obtain energy before they can drive themselves to work. Therefore, before obtaining energy, the zero-power terminal is in the "off" state, that is, in the off-grid state.
  • the network deployment may be an island coverage method, which cannot achieve full coverage, so zero-power terminals will be offline because there is no network coverage.
  • zero-power terminals due to limited energy supply and limited network coverage, they may often be in an off-network state, making it impossible for the network side to clarify the location information of the zero-power terminals.
  • Embodiments of the present application provide an information reporting method and device, a terminal, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the zero-power consumption terminal receives network system information
  • the zero-power consumption terminal reports first information based on the received network system information, and the first information includes at least one of the following: related information of a network node, and a terminal identifier of the zero-power consumption terminal.
  • the information reporting method provided in the embodiment of the present application includes:
  • Network nodes send network system information
  • the network node receives first information reported by the zero-power terminal based on the network system information, where the first information includes at least one of the following: related information of the network node, and a terminal identifier of the zero-power terminal.
  • the information reporting device provided in the embodiment of the present application is applied to a zero-power consumption terminal, and the device includes:
  • a receiving unit configured to receive network system information
  • the reporting unit is configured to report first information based on the received network system information, where the first information includes at least one of the following: related information of network nodes, and a terminal identifier of the zero-power consumption terminal.
  • the information reporting device provided in the embodiment of the present application is applied to a network node, and the device includes:
  • a sending unit configured to send network system information
  • the receiving unit is configured to receive first information reported by the zero-power terminal based on the network system information, where the first information includes at least one of the following: related information of a network node, and a terminal identifier of the zero-power terminal.
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to invoke and run the computer programs stored in the memory to execute the above information reporting method.
  • the network device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to invoke and run the computer programs stored in the memory to execute the above information reporting method.
  • the chip provided in the embodiment of the present application is used to implement the above information reporting method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device equipped with the chip executes the above information reporting method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute the above information reporting method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above information reporting method.
  • the computer program provided in the embodiment of the present application when running on a computer, enables the computer to execute the above information reporting method.
  • the zero-power consumption terminal reports first information based on the received network system information, and the first information includes at least one of the following: related information of network nodes, and a terminal identifier of the zero-power consumption terminal.
  • the network side can specify the location of the zero-power terminal through the first information, thereby providing a guarantee for providing services for the zero-power terminal based on the location of the zero-power terminal.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic diagram of zero-power communication provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of energy harvesting provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of backscatter communication provided by an embodiment of the present application.
  • FIG. 5 is a circuit schematic diagram of resistive load modulation provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the reverse non-return-to-zero encoding provided by the embodiment of the present application.
  • Fig. 7 is a schematic diagram of Manchester coding provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the unipolar return-to-zero encoding provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of differential bi-phase encoding provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of Miller encoding provided by the embodiment of the present application.
  • FIG. 11 is a first architecture diagram of a zero-power communication system provided by an embodiment of the present application.
  • FIG. 12 is the second architecture diagram of the zero-power communication system provided by the embodiment of the present application.
  • Fig. 13 is a schematic flowchart of an information reporting method provided by an embodiment of the present application.
  • Fig. 14 is a schematic diagram of the structure and composition of the information reporting device provided by the embodiment of the present application.
  • FIG. 15 is a second schematic diagram of the structure and composition of the information reporting device provided by the embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal 110 and a network device 120 .
  • the network device 120 can communicate with the terminal 110 through an air interface. Multi-service transmission is supported between the terminal 110 and the network device 120 .
  • the embodiment of the present application is only described with the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal 110 .
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminals 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wear
  • the terminal 110 may be any terminal, including but not limited to a terminal connected to the network device 120 or other terminals by wire or wirelessly.
  • the terminal 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device , User Agent, or User Device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); the access network device
  • a next-generation wireless access base station gNB
  • UPF can establish a user plane data connection with UPF through NG interface 3 (N3 for short); an access network device can establish a control plane signaling connection with AMF through NG interface 2 (N2 for short);
  • UPF can establish control plane signaling connection with SMF through NG interface 4 (abbreviated as N4);
  • UPF can exchange user plane data with data network through NG interface 6 (abbreviated as N6);
  • AMF can establish with SMF through NG interface 11 (abbreviated as N11)
  • Control plane signaling connection the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows a base station, a core network device, and two terminals.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area. This embodiment of the present application does not limit it.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • predefined or “predefined rules” mentioned in the embodiments of this application can be used to indicate related information, and this application does not limit its specific implementation. For example, pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • Zero Power (Zero Power) communication uses energy harvesting and backscatter communication technology.
  • the zero-power communication system consists of network devices and zero-power terminals, as shown in Figure 2.
  • the network device is used to send an energy supply signal (that is, a radio wave) and a downlink communication signal to the zero-power terminal, and receive backscattered signals from the zero-power terminal.
  • the zero-power terminal includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • the zero-power consumption terminal may also be equipped with memory and/or sensors, the memory is used to store some basic information (such as item identification, etc.), and the sensor is used to obtain sensing data such as ambient temperature and ambient humidity.
  • FIG 3 is a schematic diagram of energy harvesting.
  • the energy harvesting module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive the zero-power consumption terminal to drive the load circuit (such as drivers for low-power computing modules, sensors, etc.). Therefore, the zero-power terminal does not need a traditional battery, and realizes battery-free communication.
  • the energy collection module refers to a radio frequency energy collection module, and the radio frequency energy collection module can collect energy carried by radio waves in space to realize the collection of space electromagnetic wave energy.
  • Figure 4 is a schematic diagram of backscatter communication.
  • the zero-power terminal receives the wireless signal sent by the network device (that is, the carrier wave in Figure 4), and modulates the wireless signal, that is, loads the wireless signal on the wireless signal.
  • the information that needs to be sent and the modulated signal is radiated from the antenna. This information transmission process is called backscatter communication.
  • load modulation is a method often used by zero-power terminals to load information.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the magnitude and/or phase of the impedance of the zero-power terminal changes accordingly, thereby completing the modulation process.
  • the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • a resistor is connected in parallel with the load, which is called a load modulation resistor.
  • the resistor is turned on or off based on the control of the binary data flow.
  • Amplitude keying modulation ASK
  • signal modulation is realized by adjusting the amplitude of the backscattered signal of the zero-power terminal.
  • capacitive load modulation a capacitor is connected in parallel with the load, which is called a load modulation capacitor. This capacitor replaces the load modulation resistor in Figure 5.
  • the circuit resonant frequency can be changed by switching the capacitor on and off, thus realizing frequency keying modulation.
  • (FSK) that is, the modulation of the signal is realized by adjusting the working frequency of the backscattered signal of the zero-power terminal.
  • the zero-power terminal performs information modulation on the incoming signal by means of load modulation, thereby realizing the backscatter communication process. Therefore, the zero-power terminal has the following significant advantages: On the one hand, the zero-power terminal does not actively transmit signals, so it does not require complex radio frequency links, such as power amplifiers and radio frequency filters. On the other hand, zero-power terminals do not need to actively generate high-frequency signals, so high-frequency crystal oscillators are not required. On the other hand, the zero-power terminal communicates through backscattering, and the transmission process does not need to consume the energy of the zero-power terminal itself.
  • the data transmitted by the zero-power terminal can use different forms of codes to represent binary "1" and "0".
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return zero (NRZ) encoding, Manchester encoding, unipolar RZ encoding, differential biphase ( DBP) coding, Miller coding, and differential coding.
  • NRZ reverse non-return zero
  • DBP differential biphase
  • Using different forms of codes to represent binary "1” and "0” can also be understood as representing 0 and 1 with different pulse signals.
  • the reverse non-return-to-zero encoding uses a high level to represent a binary "1”, and a low level to represent a binary "0", as shown in Figure 6.
  • Manchester encoding is also known as Split-Phase Coding.
  • the value of a certain bit is represented by the change (rise/fall) of the level during half a bit period within the bit length, and a negative transition during half a bit period represents a binary "1".
  • a positive transition at half a bit period represents a binary "0", as shown in Figure 7.
  • Manchester encoding is usually used for data transmission from a zero-power terminal to a network device when carrier load modulation or backscatter modulation is used, because it is beneficial to discover errors in data transmission. This is because the "no change" state is not allowed within the bit length. When the data bits sent by multiple zero-power terminals at the same time have different values, the rising and falling edges of the reception cancel each other out, resulting in an uninterrupted carrier signal within the entire bit length. Since this state is not allowed, the network device uses This error can determine the specific location of the collision.
  • the high level of the unipolar return-to-zero code in the first half bit period represents a binary "1", and the low level signal that lasts for the entire bit period represents a binary "0", as shown in Figure 8.
  • Unipolar return-to-zero coding can be used to extract bit synchronization signals.
  • Any edge of the differential biphase encoding in half a bit period represents a binary "0", and no edge is a binary "1", as shown in FIG. 9 .
  • the levels are inverted at the beginning of each bit period. Therefore, bit beats are relatively easy to reconstruct for the receiving end.
  • Any edge of the Miller code in half a bit period represents a binary "1", and a constant level in the next bit period represents a binary "0".
  • a level transition occurs at the beginning of a bit period, as shown in Figure 10. Thus, bit beats are easier for the receiver to reconstruct.
  • each binary "1" to be transmitted causes a change in signal level, whereas for a binary "0" the signal level remains unchanged.
  • zero-power terminals can be divided into the following types:
  • the zero-power terminal does not need a built-in battery.
  • the zero-power terminal When the zero-power terminal is close to the network device, the zero-power terminal is within the near-field range formed by the antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction.
  • the current drives the low-power computing module (that is, the low-power chip circuit) of the zero-power terminal to work, to realize the demodulation of the forward link signal and the signal modulation of the backward link.
  • the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
  • the radio frequency circuit and baseband circuit of the passive zero-power terminal are very simple, such as no low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, ADC, etc., so It has many advantages such as small size, light weight, cheap price and long service life.
  • the semi-passive zero-power terminal itself does not install a conventional battery, but can use an energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power computing module (that is, the low-power chip circuit) of the zero-power terminal to work, realize the demodulation of the forward link signal, and the signal modulation of the backward link, etc. Work. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • an energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power computing module (that is, the low-power chip circuit) of the zero-power terminal to work, realize the demodulation of the forward link signal, and the signal modulation of the backward link, etc. Work.
  • the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the radio collected by the energy harvesting module. Wave energy, so it is also a true zero-power consumption terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, cheap price, and long service life.
  • the zero-power consumption terminal used in some scenarios can also be an active zero-power consumption terminal, and this type of terminal can have a built-in battery.
  • the battery is used to drive the low-power computing module (that is, the low-power chip circuit) of the zero-power terminal to realize the demodulation of the forward link signal and the signal modulation of the backward link.
  • the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
  • the built-in battery supplies power to the RF chip to increase the communication distance and improve the reliability of communication. Therefore, it can be applied in some scenarios that require relatively high communication distance and communication delay.
  • passive IoT devices can be based on zero-power communication technology, such as radio frequency identification (Radio Frequency Identification, RFID) technology, and extended on this basis to be suitable for cellular IoT.
  • RFID Radio Frequency Identification
  • Zero-power terminals need to collect the energy of radio waves sent by network devices, and can drive themselves to work after obtaining energy. Therefore, before obtaining energy, the zero-power terminal is in the "off" state, that is, it cannot receive signals sent by network devices at this time, nor can it send signals to network devices.
  • the zero-power terminal Since the zero-power terminal has the characteristics of limited energy supply, small amount of transmitted data, and limited processing capacity, the communication system requirements are simple and applicable.
  • Figure 11 is the first architecture diagram of the zero-power communication system provided by the embodiment of the present application. As shown in Figure 11, the system includes at least one of the following: zero-power terminals, access network nodes, core network nodes, and data center nodes and service control nodes; where,
  • the zero-power consumption terminal is capable of communicating with the access network node
  • the access network node is capable of communicating with at least one of the zero-power consumption terminal and the access network node;
  • the core network node is capable of communicating with at least one of the access network node, the data center node, and the service control node;
  • the data center node is capable of communicating with at least one of the core network node and the service control node;
  • the service control node is capable of communicating with at least one of the core network node and the data center node.
  • the zero-power consumption communication system may include all the above-mentioned function nodes, or may include some of the above-mentioned function nodes. Not limited thereto, the zero-power communication system may include other functional nodes in addition to all or part of the above-mentioned functional nodes.
  • the zero-power consumption terminal includes: an energy collection module and a communication module; wherein, the energy collection module is configured to collect radio wave energy and provide energy to the communication module; the A communication module, configured to perform signal transmission between the zero-power consumption terminal and the access network node.
  • the energy harvesting module is an RF energy harvesting module.
  • the zero-power terminal can collect the energy of radio waves by using the RF energy harvesting module, and drive the zero-power terminal to work through the collected energy.
  • the communication module is configured to use backscatter communication to perform signal transmission between the zero-power consumption terminal and the access network node.
  • the communication module may be a backscatter communication module, and the zero-power consumption terminal may use the backscatter communication module to transmit signals in a backscatter communication manner.
  • the zero-power consumption terminal further includes: a low-power computing module.
  • the low-power computing module may include a low-power demodulation module and/or a low-power modulation module.
  • the zero-power consumption terminal further includes: a sensor, configured to acquire sensing data.
  • the sensor may be a temperature sensor, a humidity sensor, or the like.
  • the zero-power consumption terminal may be an RFID tag.
  • the access network node is also a radio access network node (RAN node).
  • RAN node radio access network node
  • an access network node may be a base station node.
  • the access network node may be, but not limited to, a 5G access network node or a 6G access network node.
  • the access network node is configured to: send radio waves to the zero-power consumption terminal, where the radio waves are used to power the zero-power consumption terminal; and/or, to The zero-power consumption terminal provides a communication link, and the communication link is used for signal transmission between the zero-power consumption terminal and the access network node.
  • the core network node may be, but not limited to, a 5G core network node or a 6G core network node.
  • the core network node may include at least one of the following network elements: AMF, UDP.
  • the core network node is configured to perform at least one of the following: receiving data of zero-power consumption terminals; processing data of zero-power consumption terminals; controlling services of zero-power consumption terminals; managing zero-power consumption terminal business.
  • the core network node is configured to provide functions such as a gateway.
  • the data center node may be a unified data management network element (Unified Data Management, UDM).
  • UDM Unified Data Management
  • the data center node is configured to store at least one of the following: subscription data of the zero-power consumption terminal, and communication-related configuration of the zero-power consumption terminal.
  • the communication-related configuration includes at least one of the following: bearer configuration, zero-power consumption terminal identification, security configuration, and service identification.
  • the service control node may be a Cellular Internet of Things service (Cellular Internet of Things service, CIoT service) control node.
  • Cellular Internet of Things service Cellular Internet of Things service, CIoT service
  • the service control node is configured to perform at least one of the following: configure the service-related configuration of the zero-power terminal; manage the zero-power terminal identification of the zero-power terminal; manage the zero-power terminal business.
  • the managing the service of the zero-power terminal includes at least one of the following: enabling the service of the zero-power terminal; disabling the service of the zero-power terminal.
  • the service control node may be a service server or a third party providing services.
  • the interface between the zero-power consumption terminal and the access network node is the first interface.
  • the first interface may be called a Uu interface.
  • the interface between the access network node and the core network node is the second interface.
  • the second interface may be called an NG interface.
  • the number of the above functional nodes in the zero-power communication system may be one or multiple.
  • the number of zero-power terminals in the zero-power communication system may be one or more, which is not limited in this application.
  • Fig. 12 is the second architecture diagram of the zero-power communication system provided by the embodiment of the present application.
  • the system includes at least one of the following: access node.
  • the access network node can send an energy supply signal and a trigger signal to the zero-power terminal, and the zero-power terminal is charged through the energy supply signal.
  • Nodes communicate and send back reflection signals to access network nodes.
  • Case 1 is applicable to the communication scenario of cellular direct connection.
  • the zero-power terminal can be regarded as an additional module of the conventional terminal.
  • the conventional terminal can send energy supply signals and trigger signals to the zero-power terminal, and the zero-power terminal is charged through the energy supply signal.
  • Case 2 is suitable for zero-power wakeup communication scene.
  • the micro access network node such as a micro base station
  • the macro access network node such as a macro base station
  • the terminal is charged through the energy supply signal, communicates with the macro access network node based on the trigger signal, and sends a reverse reflection signal to the macro access network node.
  • Case 3 is applicable to the communication scenario of the auxiliary function of the cellular direct connection.
  • the access network node that supplies energy for the zero-power consumption terminal and the access network node that communicates with the zero-power consumption terminal may be the same or different.
  • the access network node that supplies energy for the zero-power terminal is the same as the access network node that communicates with the zero-power terminal; for example, in case 3, the access network node that supplies energy for the zero-power terminal It is different from the access network node communicating with the zero power consumption terminal.
  • access network nodes dedicated to energy supply can be deployed (such as case 3).
  • conventional terminals can also be used to supply energy for zero-power terminals and integrate with zero-power consumption The terminal communicates (as in case 2).
  • the zero-power terminal needs to collect radio waves to obtain energy before it can drive itself to work. Therefore, before obtaining energy, the zero-power terminal is in the "off" state, that is, in the off-grid state.
  • the network deployment may be an island coverage method, which cannot achieve full coverage, so zero-power terminals will be offline because there is no network coverage.
  • zero-power terminals due to limited energy supply and limited network coverage, they may often be in an off-network state, making it impossible for the network side to clarify the location information of the zero-power terminals.
  • the technical solutions of the embodiments of the present application may be applied to, but not limited to, the zero-power communication system shown in FIG. 11 or FIG. 12 .
  • terminal refers to a zero-power consumption terminal unless otherwise specified.
  • network node may be an access node (Access Point, AP) or a radio access network (Radio Access Network, RAN) node.
  • AP Access Point
  • RAN Radio Access Network
  • Fig. 13 is a schematic flow chart of the information reporting method provided by the embodiment of the present application. As shown in Fig. 13, the information reporting method includes the following steps:
  • Step 1301 The zero-power consumption terminal receives network system information.
  • a zero-power terminal when a network node sends network system information, a zero-power terminal enters the network coverage of the network node and the zero-power terminal obtains energy supply (it can be understood that the zero-power terminal is in the "power-on” state ), can receive the network system information sent by the network node.
  • the network system information includes at least one of the following: the name of the network node, the identifier of the network node, the area code of the area where the network node is located, and the area ID of the area where the network node is located.
  • the network system information includes at least one of the following: the name (AP-name) of the AP, the identification (AP-ID) of the AP, and the area code (Area code) of the area where the AP is located , the area ID (Area ID) of the area where the AP is located.
  • Step 1302 The zero-power terminal reports first information based on the received network system information, and the first information includes at least one of the following: related information of a network node, and a terminal identifier of the zero-power terminal.
  • the zero-power terminal after obtaining the network system information, the zero-power terminal reports first information based on the received network system information, and correspondingly, the network node receives the first information reported by the zero-power terminal based on the network system information.
  • the first information includes at least one of the following: related information of a network node, and a terminal identifier of the zero-power consumption terminal.
  • the relevant information of the network node includes at least one of the following: the name of the network node, the identifier of the network node, the area code of the area where the network node is located, the area ID of the area where the network node is located, the Signal quality.
  • the first information is used by the network to determine the location of the zero-power consumption terminal.
  • the first information may be called terminal location information, and may also be called network identification information. This application does not limit the name of the first information.
  • the zero-power consumption terminal may report the first information in the following manner.
  • the zero-power terminal after the zero-power terminal receives the network system information, if the zero-power terminal does not store the network system information before receiving the network system information, the zero-power terminal reports the The first information, at least part of the first information is determined based on the received network system information.
  • the content reported by the zero-power terminal in the first information includes the content in the network system information it receives, for example: including at least one of the following: the name of the network node, the identifier of the network node, the area where the network node is located The area code of the network node and the area identifier of the area where the network node is located.
  • the content reported by the zero-power terminal in the first information may also include the signal quality of the network node.
  • the signal quality of the network node may be obtained by measuring the synchronization signal sent by the network node by the zero-power terminal.
  • the signal quality includes at least one of the following: received power, signal-to-interference ratio, and signal-to-noise ratio.
  • the content reported by the zero-power terminal in the first information may also include a terminal identifier of the zero-power terminal.
  • the terminal identifier of the zero-power terminal is the unique identifier of the zero-power terminal in the entire network, which can be written into the zero-power terminal before or when the zero-power terminal enters the network, or after the zero-power terminal enters the network It is configured for a zero-power terminal, and the terminal identifier of the zero-power terminal is used to identify the zero-power terminal.
  • the zero-power consumption terminal After the zero-power consumption terminal receives the network system information, if the zero-power consumption terminal does not store the network system information before receiving the network system information, the zero-power consumption terminal stores the received network system information information.
  • the zero-power terminal when the zero-power terminal changes from the "trawling state (that is, the power-off state)" to the "network-connected state (that is, the power-on state)", its position may change, resulting in a failure of the service network node. In this case, the zero-power terminal will obtain network system information when it re-connects to the network. If the zero-power terminal has not stored network system information before, then the zero-power terminal can choose to directly report the first information , so that the network side obtains the location information of the zero-power consumption terminal.
  • the zero-power terminal receives the network system information
  • the zero-power terminal receives the When there is a difference between the received network system information and the stored network system information, report the first information, and at least part of the information in the first information is determined based on the received network system information.
  • the content reported by the zero-power terminal in the first information includes the content in the network system information it receives, for example: including at least one of the following: the name of the network node, the identifier of the network node, the area where the network node is located The area code of the network node and the area identifier of the area where the network node is located.
  • the content reported by the zero-power terminal in the first information may also include the signal quality of the network node.
  • the signal quality of the network node may be obtained by measuring the synchronization signal sent by the network node by the zero-power terminal.
  • the signal quality includes at least one of the following: received power, signal-to-interference ratio, and signal-to-noise ratio.
  • the content reported by the zero-power terminal in the first information may also include a terminal identifier of the zero-power terminal.
  • the terminal identifier of the zero-power terminal is the unique identifier of the zero-power terminal in the entire network, which can be written into the zero-power terminal before or when the zero-power terminal enters the network, or after the zero-power terminal enters the network It is configured for a zero-power terminal, and the terminal identifier of the zero-power terminal is used to identify the zero-power terminal.
  • the difference between the received network system information and the stored network system information means that at least part of the received network system information is different from the stored network system information.
  • Option 1 The name of the network node in the received network system information is different from the name of the network node in the stored network system information.
  • the identifier of the network node in the received network system information is different from the identifier of the network node in the stored network system information.
  • the area code of the area where the network node is located in the received network system information is different from the area code of the area where the network node is located in the stored network system information.
  • the area ID of the area where the network node is located in the received network system information is different from the area ID of the area where the network node is located in the stored network system information.
  • the zero-power consumption terminal After the zero-power consumption terminal receives the network system information, if there is a difference between the received network system information and the stored network system information, the zero-power consumption terminal updates the stored network system information to the received network system information.
  • the zero-power terminal when the zero-power terminal changes from the “trawling state (that is, the power-off state)" to the "network-connected state (that is, the power-on state)", its position may change, resulting in a failure of the service network node.
  • the zero-power terminal will obtain network system information when it re-connects to the network. If the zero-power terminal has stored network system information before but the stored network system information is different from the newly acquired network system information , then the zero-power terminal may choose to directly report the first information, so that the network side obtains the location information of the zero-power terminal.
  • the zero-power terminal after the zero-power terminal receives the network system information, if the network system information received by the zero-power terminal carries the first indication information, the zero-power terminal reports the first indication information. Information, at least part of the information in the first information is determined based on the received network system information; wherein the first indication information is used to indicate to report the first information.
  • the content reported by the zero-power terminal in the first information includes the content in the network system information it receives, for example: including at least one of the following: the name of the network node, the identifier of the network node, the area where the network node is located The area code of the network node and the area identifier of the area where the network node is located.
  • the content reported by the zero-power terminal in the first information may also include the signal quality of the network node.
  • the signal quality of the network node may be obtained by measuring the synchronization signal sent by the network node by the zero-power terminal.
  • the signal quality includes at least one of the following: received power, signal-to-interference ratio, and signal-to-noise ratio.
  • the content reported by the zero-power terminal in the first information may also include a terminal identifier of the zero-power terminal.
  • the terminal identifier of the zero-power terminal is the unique identifier of the zero-power terminal in the entire network, which can be written into the zero-power terminal before or when the zero-power terminal enters the network, or after the zero-power terminal enters the network It is configured for a zero-power terminal, and the terminal identifier of the zero-power terminal is used to identify the zero-power terminal.
  • the zero-power consumption terminal receives the network system information
  • the zero-power consumption terminal if the zero-power consumption terminal does not store the network system information before receiving the network system information, the zero-power consumption terminal stores the received network system information information. If the zero-power consumption terminal stores network system information before receiving the network system information, the zero-power consumption terminal updates the stored network system information with the received network system information.
  • the first indication information is sent to the zero-power consumption terminal at a specific period, so as to trigger the zero-power consumption terminal to report the first information periodically.
  • the zero-power terminal independently decides whether to report the first information, which belongs to the method of proactive reporting.
  • the zero-power consumption terminal decides whether to report the first information based on the first indication information sent by the network node, which belongs to the manner of network control reporting.
  • the network node stores the first information in one or some devices.
  • the first information is stored in at least one of the following devices: an access network device, a core network device, the zero-power The service network node that consumes the terminal.
  • the network node stores the first information in at least one of the following devices: an access network device, a core network device, and a serving network node of the zero-power consumption terminal.
  • the network side may also configure the zero-power terminal to report the information in the network system information.
  • the network system information further includes second indication information, where the second indication information is used to indicate content reported by the zero-power consumption terminal in the first information.
  • the second indication information is used to indicate that the content reported by the zero-power terminal in the first information includes at least one of the following: related information of the serving network node, related information of adjacent network nodes, the zero-power consumption Terminal ID of the terminal.
  • the second indication information is also used to indicate at least one of the following: a threshold value of signal quality reported by adjacent network nodes; a maximum number of reports by adjacent network nodes.
  • the zero-power consumption terminal can determine what content needs to be reported according to the second indication information.
  • the zero-power consumption terminal may report the relevant information of the network node and/or the terminal identifier of the zero-power consumption terminal in the first information.
  • the related information of the network node includes at least one of the following: related information of a serving network node, and related information of a neighboring network node meeting a condition.
  • the condition includes: the signal quality of the neighboring network node is greater than or equal to a threshold value.
  • the network side may also carry second indication information in the network system information, and the second indication information is used to indicate that the content reported by the zero-power consumption terminal includes at least one of the following:
  • the name of the serving network node the identification of the serving network node, the area code of the area where the serving network node is located, the area identification of the area where the serving network node is located, and the signal quality of the serving network node;
  • the name of the adjacent network node the identification of the adjacent network node, the area code of the area where the adjacent network node is located, the area identification of the area where the adjacent network node is located, and the signal quality of the adjacent network node;
  • the terminal ID of the zero-power terminal is the terminal ID of the zero-power terminal.
  • the second indication information is also used to indicate the threshold value of the signal quality report of the neighboring network node (only the neighboring network node meeting the threshold value will report its related information) and/or the neighboring network node will report the maximum number of .
  • the zero-power consumption terminal may report relevant information of one or more neighboring network nodes, but it needs to be satisfied that the number of neighboring network nodes does not exceed the maximum number indicated by the second indication information.
  • the content reported by the zero-power terminal in the first information includes at least one of the following based on the second indication information:
  • the name of the serving network node the identification of the serving network node, the area code of the area where the serving network node is located, the area identification of the area where the serving network node is located, and the signal quality of the serving network node;
  • the name of the neighboring network node that satisfies the condition the identifier of the neighboring network node that meets the condition, the area code of the area where the neighboring network node satisfies the condition, the area identifier of the area where the neighboring network node satisfies the condition, the signal of the neighboring network node that satisfies the condition quality;
  • the terminal ID of the zero-power terminal is the terminal ID of the zero-power terminal.
  • the technical solution of the embodiment of the present application defines a method for the zero-power terminal to report location information (that is, the first information), so that the network side can grasp the location of the zero-power terminal, and it is convenient for the network side to count or update the location of the zero-power terminal .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • FIG. 14 is a schematic diagram of the structure and composition of the information reporting device provided by the embodiment of the present application. It is applied to a zero-power consumption terminal. As shown in FIG. 14, the information reporting device includes:
  • a receiving unit 1401, configured to receive network system information
  • the reporting unit 1402 is configured to report first information based on the received network system information, where the first information includes at least one of the following: related information of network nodes, and a terminal identifier of the zero-power consumption terminal.
  • the relevant information of the network node includes at least one of the following: the name of the network node, the identifier of the network node, the area code of the area where the network node is located, the area ID of the area where the network node is located, the Signal quality.
  • the reporting unit 1402 is configured to report the first information if the zero-power terminal does not store the network system information before receiving the network system information, and the first At least part of the information is determined based on the received network system information.
  • the reporting unit 1402 is configured to combine the received network system information with the stored network system information if the zero-power terminal stores the network system information before receiving the network system information. If there is a difference between the system information, the first information is reported, and at least part of the information in the first information is determined based on the received network system information.
  • the difference between the received network system information and the stored network system information refers to: at least part of the received network system information and the stored network system information The information is different.
  • the reporting unit 1402 is configured to report the first information if the network system information received by the zero-power terminal carries first indication information, and the first information includes At least part of the information is determined based on the received network system information; wherein the first indication information is used to indicate to report the first information.
  • the first indication information is issued to the zero-power consumption terminal in a specific period.
  • the network system information includes at least one of the following: the name of the network node, the identifier of the network node, the area code of the area where the network node is located, and the area ID of the area where the network node is located.
  • the network system information further includes second indication information, where the second indication information is used to indicate content reported by the zero-power consumption terminal in the first information.
  • the second indication information is used to indicate that the content reported by the zero-power terminal in the first information includes at least one of the following: information about a serving network node, information about a neighboring network node , the terminal identifier of the zero-power consumption terminal.
  • the second indication information is also used to indicate at least one of the following:
  • the threshold value of the signal quality report of the adjacent network node is the threshold value of the signal quality report of the adjacent network node
  • the related information of the network node includes at least one of the following: related information of a serving network node, and related information of neighboring network nodes meeting a condition.
  • the condition includes: the signal quality of the neighboring network node is greater than or equal to a threshold value.
  • the first information is stored in at least one of the following devices: an access network device, a core network device, the zero power consumption The service network node of the terminal.
  • the first information is used by the network to determine the location of the zero-power consumption terminal.
  • Fig. 15 is a schematic diagram of the second structural composition of the information reporting device provided by the embodiment of the present application, which is applied to a network node. As shown in Fig. 15, the information reporting device includes:
  • a sending unit 1501 configured to send network system information
  • the receiving unit 1502 is configured to receive first information reported by the zero-power terminal based on the network system information, where the first information includes at least one of the following: information about network nodes, and a terminal identifier of the zero-power terminal.
  • the relevant information of the network node includes at least one of the following: the name of the network node, the identifier of the network node, the area code of the area where the network node is located, the area ID of the area where the network node is located, the Signal quality.
  • the network system information carries first indication information, and the first indication information is used to indicate to report the first information; wherein at least part of the first information is based on the The network system information is confirmed.
  • the first indication information is issued to the zero-power consumption terminal in a specific period.
  • the network system information includes at least one of the following: the name of the network node, the identifier of the network node, the area code of the area where the network node is located, and the area ID of the area where the network node is located.
  • the network system information further includes second indication information, where the second indication information is used to indicate content reported by the zero-power consumption terminal in the first information.
  • the second indication information is used to indicate that the content reported by the zero-power terminal in the first information includes at least one of the following: information about a serving network node, information about a neighboring network node , the terminal identifier of the zero-power consumption terminal.
  • the second indication information is also used to indicate at least one of the following:
  • the threshold value of the signal quality report of the adjacent network node is the threshold value of the signal quality report of the adjacent network node
  • the related information of the network node includes at least one of the following: related information of a serving network node, and related information of neighboring network nodes meeting a condition.
  • the condition includes: the signal quality of the neighboring network node is greater than or equal to a threshold value.
  • the apparatus further includes: a storage unit, configured to store the first information in at least one of the following devices: an access network device, a core network device, and a device of the zero-power consumption terminal service network node.
  • the first information is used by the network to determine the location of the zero-power consumption terminal.
  • FIG. 16 is a schematic structural diagram of a communication device 1600 provided by an embodiment of the present application.
  • the communication device may be a terminal (such as a zero-power consumption terminal in the above solution), or a network device (such as a network node in the above solution).
  • the communication device 1600 shown in FIG. 16 includes a processor 1610, and the processor 1610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1600 may further include a memory 1620 .
  • the processor 1610 can invoke and run a computer program from the memory 1620, so as to implement the method in the embodiment of the present application.
  • the memory 1620 may be an independent device independent of the processor 1610 , or may be integrated in the processor 1610 .
  • the communication device 1600 may further include a transceiver 1630, and the processor 1610 may control the transceiver 1630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 1610 may control the transceiver 1630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 1630 may include a transmitter and a receiver.
  • the transceiver 1630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 1600 may specifically be the network device in the embodiment of the present application (such as the network node in the above solution), and the communication device 1600 may implement the various methods in the embodiments of the present application by the network device (such as the network node in the above solution)
  • the network device such as the network node in the above solution
  • the corresponding process implemented by the network node in will not be repeated here.
  • the communication device 1600 may specifically be the mobile terminal/terminal of the embodiment of the present application (such as the zero-power consumption terminal in the above solution), and the communication device 1600 may implement the mobile terminal in each method of the embodiment of the present application
  • the corresponding process of implementing the terminal (such as the zero-power consumption terminal in the above solution) will not be repeated here.
  • FIG. 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1700 shown in FIG. 17 includes a processor 1710, and the processor 1710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1700 may further include a memory 1720 .
  • the processor 1710 can invoke and run a computer program from the memory 1720, so as to implement the method in the embodiment of the present application.
  • the memory 1720 may be an independent device independent of the processor 1710 , or may be integrated in the processor 1710 .
  • the chip 1700 may also include an input interface 1730 .
  • the processor 1710 can control the input interface 1730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1700 may also include an output interface 1740 .
  • the processor 1710 can control the output interface 1740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application (such as the network node in the above-mentioned solution), and the chip can implement the network device (such as the network node in the above-mentioned solution) in each method of the embodiment of the present application. Node) to achieve the corresponding process, for the sake of brevity, will not repeat them here.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application (such as the zero-power consumption terminal in the above solution), and the chip can implement the mobile terminal/terminal (
  • the chip can implement the mobile terminal/terminal (
  • the corresponding process of realizing the zero-power consumption terminal in the above solution will not be repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 18 is a schematic block diagram of a communication system 1800 provided by an embodiment of the present application. As shown in FIG. 18 , the communication system 1800 includes a terminal 1810 and a network device 1820 .
  • the terminal 1810 can be used to realize the corresponding functions realized by the terminal (such as the zero-power consumption terminal in the above solution) in the above method
  • the network device 1820 can be used to realize the corresponding functions realized by the network device (such as the zero power consumption terminal in the above solution) in the above method.
  • the corresponding functions implemented by the network nodes in will not be repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application (such as the network node in the above solution), and the computer program enables the computer to execute each method in the embodiment of the present application by the network device (for the sake of brevity, the corresponding process implemented by the network node in the above solution will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal in the embodiments of the present application (such as the zero-power consumption terminal in the above solution), and the computer program enables the computer to execute the various methods in the embodiments of the present application
  • the corresponding process implemented by the mobile terminal/terminal (such as the zero-power consumption terminal in the above solution) will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application (such as the network node in the above solution), and the computer program instructions enable the computer to execute the various methods in the embodiments of the present application by the network device (such as For the sake of brevity, the corresponding process implemented by the network node in the above solution will not be repeated here.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application (such as the zero-power consumption terminal in the above solution), and the computer program instructions cause the computer to execute the various methods in the embodiments of the present application consisting of
  • the corresponding procedures for realizing the mobile terminal/terminal (such as the zero-power consumption terminal in the above solution) will not be repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application (such as the network node in the above scheme), and when the computer program is run on the computer, the computer executes each method in the embodiment of the present application by
  • the corresponding processes implemented by the network device (such as the network node in the above solution) will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiment of the present application (such as the zero-power consumption terminal in the above solution), and when the computer program is run on the computer, the computer executes the
  • the corresponding processes implemented by the mobile terminal/terminal (such as the zero-power consumption terminal in the above solution) in each method will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息上报方法及装置、终端、网络设备,该方法包括:零功耗终端接收网络系统信息;所述零功耗终端基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。

Description

一种信息上报方法及装置、终端、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种信息上报方法及装置、终端、网络设备。
背景技术
零功耗终端需要采集网络节点发送的无线电波获得能量后,才可以驱动自身进行工作。因此,在获得能量之前,零功耗终端是处于“关机”状态的,即脱网状态。此外,对于零功耗通信系统,网络部署可能是孤岛覆盖方式,不能做到全覆盖方式,所以零功耗终端会因为没有网络覆盖而处于脱网状态。
对于零功耗终端,由于供能受限以及网络覆盖受限,因而可能会经常处于脱网状态,导致网络侧不能明确零功耗终端的位置信息。
发明内容
本申请实施例提供一种信息上报方法及装置、终端、网络设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的信息上报方法,包括:
零功耗终端接收网络系统信息;
所述零功耗终端基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
本申请实施例提供的信息上报方法,所述方法包括:
网络节点发送网络系统信息;
所述网络节点接收零功耗终端基于所述网络系统信息上报的第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
本申请实施例提供的信息上报装置,应用于零功耗终端,所述装置包括:
接收单元,用于接收网络系统信息;
上报单元,用于基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
本申请实施例提供的信息上报装置,应用网络节点,所述装置包括:
发送单元,用于发送网络系统信息;
接收单元,用于接收零功耗终端基于所述网络系统信息上报的第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信息上报方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信息上报方法。
本申请实施例提供的芯片,用于实现上述的信息上报方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安 装有该芯片的设备执行上述的信息上报方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的信息上报方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信息上报方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的信息上报方法。
通过上述技术方案,零功耗终端基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。如此,网络侧通过第一信息便可以明确零功耗终端的位置,从而基于零功耗终端的位置为零功耗终端提供服务提供了保障。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例提供的零功耗通信的原理图;
图3是本申请实施例提供的能量采集的原理图;
图4是本申请实施例提供的反向散射通信的原理图;
图5是本申请实施例提供的电阻负载调制的电路原理图;
图6是本申请实施例提供的反向不归零编码的示意图;
图7是本申请实施例提供的曼彻斯特编码的示意图;
图8是本申请实施例提供的单极性归零编码的示意图;
图9是本申请实施例提供的差动双相编码的示意图;
图10是本申请实施例提供的米勒编码的示意图;
图11是本申请实施例提供的零功耗通信系统的架构图一;
图12是本申请实施例提供的零功耗通信系统的架构图二;
图13是本申请实施例提供的信息上报方法的流程示意图;
图14是本申请实施例提供的信息上报装置的结构组成示意图一;
图15是本申请实施例提供的信息上报装置的结构组成示意图二;
图16是本申请实施例提供的一种通信设备示意性结构图;
图17是本申请实施例的芯片的示意性结构图;
图18是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端110和网络设备120。网络设备120可以通过空口与终端110通信。终端110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定 于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端110可以是任意终端,其包括但不限于与网络设备120或其它终端采用有线或者无线连接的终端。
例如,所述终端110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进网络中的终端等。
终端110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11) 与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
零功耗通信技术原理
零功耗(Zero Power)通信采用能量采集和反向散射通信技术。零功耗通信系统由网络设备和零功耗终端构成,如图2所示。其中,网络设备用于向零功耗终端发送供能信号(也即无线电波)、下行通信信号以及接收零功耗终端的反向散射信号。作为示例,零功耗终端包括能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备存储器和/或传感器,存储器用于存储一些基本信息(如物品标识等),传感器用于获取环境温度、环境湿度等传感数据。
以下对零功耗通信的关键技术做进一步说明。
(1)能量采集(Power Harvesting)
图3是能量采集的原理图,如图3所示,能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,实现对负载电路的驱动(如对低功耗计算模块、传感器等的驱动)。因此,零功耗终端无需传统电池,实现了免电池通信。
作为示例,能量采集模块是指射频能量采集模块,射频能量采集模块可以采集空间中的无线电波携带的能量,实现对空间电磁波能量的采集。
(2)反向散射通信(Back Scattering)
图4是反向散射通信的原理图,如图4所示,零功耗终端接收网络设备发送的无线信号(即图4中的载波),对该无线信号进行调制,即在无线信号上加载需要发送的信息,并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。
反向散射通信和负载调制功能密不可分,负载调制是零功耗终端经常使用的加载信 息的方法。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗终端的阻抗的大小和/或相位随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。
如图5所示,在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻基于二进制数据流的控制接通或断开,电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制。类似地,在电容负载调制中,负载并联一个电容,称为负载调制电容,该电容取代了图5中负载调制电阻,通过电容的通断可以实现电路谐振频率的变化,因此实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制。
可见,零功耗终端借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有以下显著的优点:一方面,零功耗终端不主动发射信号,因此不需要复杂的射频链路,如功率放大器、射频滤波器等。另一方面,零功耗终端不需要主动产生高频信号,因此不需要高频晶振。再一方面,零功耗终端借助反向散射通信,其传输过程不需要消耗零功耗终端自身的能量。
零功耗通信的编码方式
零功耗终端传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(Non Return Zero,NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码以及差动编码。用不同形式的代码来表示二进制的“1”和“0”,也可以理解为,用不同的脉冲信号表示0和1。以下对几种编号方式进行说明。
(1)反向不归零编码
反向不归零编码用高电平表示二进制的“1”,低电平表示二进制的“0”,如图6所示。
(2)曼彻斯特编码
曼彻斯特编码也被称为分相编码(Split-Phase Coding)。在曼彻斯特编码中,某位的值是由该位长度内半个位周期时电平的变化(上升/下降)来表示的,在半个位周期时的负跳变表示二进制的“1”,半个位周期时的正跳变表示二进制的“0″,如图7所示。
曼彻斯特编码在采用载波的负载调制或者反向散射调制时,通常用于从零功耗终端到网络设备的数据传输,因为这有利于发现数据传输的错误。这是因为在位长度内,“没有变化”的状态是不允许的。当多个零功耗终端同时发送的数据位有不同值时,接收的上升边和下降边互相抵消,导致在整个位长度内是不间断的载波信号,由于该状态不允许,所以网络设备利用该错误就可以判定碰撞发生的具体位置。
(3)单极性归零编码
单极性归零编码在第一个半个位周期中的高电平表示二进制的“1”,而持续整个位周期内的低电平信号表示二进制的“0”,如图8所示。单极性归零编码可用来提取位同步信号。
(4)差动双相编码
差动双相编码在半个位周期中的任意的边沿表示二进制的“0”,而没有边沿就是二进制的“1”,如图9所示。此外,在每个位周期开始时,电平都要反相。因此,对接收端来说,位节拍比较容易重建。
(5)米勒(Miller)编码
米勒编码在半个位周期内的任意边沿表示二进制的“1”,而经过下一个位周期中不变的电平表示二进制的“0”。位周期开始时产生电平交变,如图10所示。因此,对接收器来说,位节拍比较容易重建。
(6)差动编码
在差动编码中,每个要传输的二进制“1”都会引起信号电平的变化,而对于二进制“0”,信号电平保持不变。
零功耗终端的分类
基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
(1)无源零功耗终端
零功耗终端不需要内装电池,零功耗终端接近网络设备时,零功耗终端处于网络设备天线辐射形成的近场范围内,因此,零功耗终端的天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗计算模块(也即低功耗芯片电路)工作,实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
由于无源零功耗终端不需要电池,因而无源零功耗终端的射频电路以及基带电路都非常简单,例如不需要低噪声放大器(LNA)、功率放大器(PA)、晶振、ADC等,因此具有体积小、重量轻、价格便宜、使用寿命长等诸多优点。
(2)半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗计算模块(也即低功耗芯片电路)工作,实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电波的能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格便宜、使用寿命长等诸多优点。
(3)有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,该类终端可以内置电池。电池用于驱动零功耗终端的低功耗计算模块(也即低功耗芯片电路)工作,实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
有源零功耗终端,内置电池向射频芯片供电,以增加通信距离,提高通信的可靠性。因此在一些对通信距离,通信时延等方面要求相对较高的场景得以应用。
蜂窝无源物联网
随着行业应用增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求。免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实了网络链接终端类型和数量,真正实现万物互联。其中,无源物联网设备可以基于零功耗通信技术,如无线射频识别(Radio Frequency Identification,RFID)技术,并在此基础上进行延伸,以适用于蜂窝物联网。
零功耗终端需要采集网络设备发送的无线电波的能量,在获得能量后才可以驱动自身进行工作。因此,在获得能量之前,零功耗终端是处于“关机”状态的,即此时不能接收网络设备发送的信号,也不能向网络设备发送信号。
由于零功耗终端具有供能受限、传输数据量小、处理能力有限等特点,所以通信系 统要求简单且适用。
图11是本申请实施例提供的零功耗通信系统的架构图一,如图11所示,该系统包括以下至少之一:零功耗终端、接入网节点、核心网节点、数据中心节点以及业务控制节点;其中,
所述零功耗终端,能够与所述接入网节点进行通信;
所述接入网节点,能够与所述零功耗终端和所述接入网节点中的至少之一进行通信;
所述核心网节点,能够与所述接入网节点、所述数据中心节点和所述业务控制节点中的至少之一进行通信;
所述数据中心节点,能够与所述核心网节点和所述业务控制节点中的至少之一进行通信;
所述业务控制节点,能够与所述核心网节点和所述数据中心节点中的至少之一进行通信。
需要说明的是,零功耗通信系统可以包括上述全部的功能节点,也可以包括上述部分的功能节点。不局限于此,零功耗通信系统除了包括上述全部或部分功能节点以外,还可以包括其他的功能节点。
以下对零功耗通信系统中的各个功能节点进行描述。
1)零功耗终端
在一些可选实施方式中,所述零功耗终端包括:能量采集模块和通信模块;其中,所述能量采集模块,用于采集无线电波的能量,将能量提供给所述通信模块;所述通信模块,用于进行所述零功耗终端与所述接入网节点之间的信号传输。
在一些可选实施方式中,所述能量采集模块为RF能量采集模块。零功耗终端可以通过使用RF能量采集模块采集无线电波的能量,通过采集的能量驱动零功耗终端进行工作。
在一些可选实施方式中,所述通信模块,用于使用反向散射通信的方式,进行所述零功耗终端与所述接入网节点之间的信号传输。这里,所述通信模块可以是反向散射通信模块,零功耗终端可以使用反向散射通信模块按照反向散射通信的方式进行信号的传输。
进一步,可选地,所述零功耗终端还包括:低功耗计算模块。这里,作为示例,低功耗计算模块可以包括低功耗解调模块和/或低功耗调制模块。
进一步,可选地,所述零功耗终端还包括:传感器,用于获取传感数据。这里,作为示例,传感器可以是温度传感器、湿度传感器等。
在一些可选实施方式中,所述零功耗终端可以是RFID标签。
需要说明的是,零功耗终端的理解可以参照前述有关“零功耗终端”的描述。
2)接入网节点
接入网节点也即是无线接入网节点(RAN node)。作为示例,接入网节点可以是基站节点。
在一些可选实施方式中,所述接入网节点可以但不局限于是5G接入网节点或者6G接入网节点。
在一些可选实施方式中,所述接入网节点,用于:向所述零功耗终端发送无线电波,所述无线电波用于为所述零功耗终端供能;和/或,为所述零功耗终端提供通信链路,所述通信链路用于所述零功耗终端与所述接入网节点之间的信号传输。
3)核心网节点
在一些可选实施方式中,所述核心网节点可以但不局限于是5G核心网节点或者6G核心网节点。
以5G核心网节点为例,所述核心网节点可以包括以下至少一种网元:AMF、UDP。
在一些可选实施方式中,所述核心网节点,用于执行以下至少之一:接收零功耗终端的数据;处理零功耗终端的数据;控制零功耗终端的业务;管理零功耗终端的业务。
在一些可选实施方式中,所述核心网节点,用于提供网关等功能。
4)数据中心节点
在一些可选实施方式中,所述数据中心节点可以是统一数据管理网元(Unified Data Management,UDM)。
在一些可选实施方式中,所述数据中心节点,用于存储以下至少之一:零功耗终端的签约数据、零功耗终端的通信相关配置。
进一步,可选地,所述通信相关配置包括以下至少之一:承载配置、零功耗终端标识、安全配置、业务标识。
5)业务控制节点
在一些可选实施方式中,所述业务控制节点可以是蜂窝物联网业务(Cellular Internet of Things service,CIoT service)控制节点。
在一些可选实施方式中,所述业务控制节点,用于执行以下至少之一:配置零功耗终端的业务相关配置;管理零功耗终端的零功耗终端标识;管理零功耗终端的业务。
进一步,可选地,所述管理零功耗终端的业务包括以下至少之一:开启零功耗终端的业务;关闭零功耗终端的业务。
这里,业务控制节点可以是业务服务器或者提供业务的第三方。
本申请实施例中,零功耗终端与接入网节点之间的接口为第一接口。在一些可选实施方式中,所述第一接口可以称为Uu接口。
本申请实施例中,接入网节点与核心网节点之间的接口为第二接口。在一些可选实施方式中,所述第二接口可以称为NG接口。
需要说明的是,零功耗通信系统中的以上功能节点的数目可以是一个,也可以是多个。例如,零功耗通信系统中的零功耗终端的数目可以是一个或者多个,本申请对此不做限定。
图12是本申请实施例提供的零功耗通信系统的架构图二,如图12所示,该系统包括以下至少之一:零功耗终端、常规终端(如12以手机为例)、接入网节点。如图12所示,在情况1中,接入网节点可以向零功耗终端发送供能信号和触发信号,零功耗终端通过供能信号进行充能,基于触发信号的触发与接入网节点进行通信,向接入网节点发送反向反射信号,情况1适用于蜂窝直连的通信场景。在情况2中,零功耗终端可以视为常规终端的附加模块,常规终端可以向零功耗终端发送供能信号和触发信号,零功耗终端通过供能信号进行充能,基于触发信号的触发与常规终端进行通信,向常规终端发送唤醒信号;常规终端被唤醒后,可以接收接入网节点发送的Uu信令,也可以向接入网节点发送数据,情况2适用于零功耗唤醒的通信场景。在情况3中,微接入网节点(如微基站)向零功耗终端仅发送供能信号,宏接入网节点(如宏基站)向终零功耗终端仅发送触发信号,零功耗终端通过供能信号进行充能,基于触发信号的触发与宏接入网节点进行通信,向宏接入网节点发送反向反射信号,情况3适用于辅助功能的蜂窝直连的通信场景。
从图12可知,为零功耗终端供能的接入网节点和与零功耗终端通信的接入网节点可以相同,或者也可以不同。例如在情况1中,为零功耗终端供能的接入网节点和与零功耗终端通信的接入网节点相同;例如在情况3中,为零功耗终端供能的接入网节点和与零功耗终端通信的接入网节点不同。为了提高供能的覆盖范围和供能效率,可以部署专门用于供能的接入网节点(如情况3),此外,也可以利用常规终端为零功耗终端进行 供能以及与零功耗终端进行通信(如情况2)。
基于以上描述,零功耗终端需要采集无线电波获得能量后,才可以驱动自身进行工作。因此,在获得能量之前,零功耗终端是处于“关机”状态的,即脱网状态。此外,对于零功耗通信系统,网络部署可能是孤岛覆盖方式,不能做到全覆盖方式,所以零功耗终端会因为没有网络覆盖而处于脱网状态。对于零功耗终端,由于供能受限以及网络覆盖受限,因而可能会经常处于脱网状态,导致网络侧不能明确零功耗终端的位置信息。
为此,提出了本申请实施例的以下技术方案。本申请实施例的技术方案可以但不局限于应用于图11或图12所示零功耗通信系统。
需要说明的是,本申请实施例中描述的“终端”如不做特别说,是指零功耗终端。
需要说明的是,本申请实施例中描述的“网络节点”可以是接入节点(Access Point,AP)或者无线接入网(Radio Access Network,RAN)节点。本申请对网络节点的类型不做限制,任何可以实现网络接入的节点都可以作为本申请的网络节点。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图13是本申请实施例提供的信息上报方法的流程示意图,如图13所示,所述信息上报方法包括以下步骤:
步骤1301:零功耗终端接收网络系统信息。
本申请实施例中,网络节点发送网络系统信息,零功耗终端进入该网络节点的网络覆盖范围内且零功耗终端获得供能的情况下(可以理解为零功耗终端处于“开机”状态),可以接收该网络节点发送的网络系统信息。
在一些可选实施方式中,所述网络系统信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
作为示例:以网络节点为AP为例,所述网络系统信息包括以下至少之一:AP的名字(AP-name)、AP的标识(AP-ID)、AP所在区域的区域码(Area code)、AP所在区域的区域标识(Area ID)。
步骤1302:所述零功耗终端基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
本申请实施例中,零功耗终端获得网络系统信息后,基于接收到的网络系统信息上报第一信息,相应地,网络节点接收零功耗终端基于所述网络系统信息上报的第一信息。其中,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
在一些可选实施方式中,所述网络节点的相关信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识、网络节点的信号质量。
本申请实施例中,所述第一信息用于网络确定所述零功耗终端的位置。
这里,所述第一信息可以称为终端位置信息,也可以称为网络标识信息。本申请对所述第一信息的名称不做限定。
本申请实施例中,零功耗终端可以通过以下方式上报第一信息。
方式一
在一些可选实施方式中,零功耗终端接收到网络系统信息后,若所述零功耗终端在接收到所述网络系统信息之前未存储网络系统信息,则所述零功耗终端上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到的网络系统信息确定。
这里,零功耗终端在所述第一信息中上报的内容包括其接收到的网络系统信息中的 内容,例如:包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
此外,可选地,零功耗终端在所述第一信息中上报的内容还可以包括网络节点的信号质量。这里,网络节点的信号质量可以是零功耗终端对网络节点发送的同步信号进行测量得到,可选地,信号质量包括以下至少之一:接收功率、信干比、信噪比。
此外,可选地,零功耗终端在所述第一信息中上报的内容还可以包括零功耗终端的终端标识。这里,零功耗终端的终端标识为该零功耗终端的全网唯一标识,可以在零功耗终端入网前或入网时写入零功耗终端内,或者也可以在零功耗终端入网后配置给零功耗终端,零功耗终端的终端标识用于标识该零功耗终端。
进一步,零功耗终端接收到网络系统信息后,若所述零功耗终端在接收到所述网络系统信息之前未存储网络系统信息,则所述零功耗终端存储所述接收到的网络系统信息。
对于上述方式来说,零功耗终端在从“拖网状态(也即关机状态)”变化到“入网状态(也即开机状态)”的过程中,其位置可能发生了变化,导致服务网络节点发生了变化,在这种情况下,零功耗终端重新“入网”时会获取网络系统信息,若零功耗终端之前未存储有网络系统信息,那么,零功耗终端可以选择直接上报第一信息,从而使得网络侧获得零功耗终端的位置信息。
方式二
在一些可选实施方式中,零功耗终端接收到网络系统信息后,若所述零功耗终端在接收到所述网络系统信息之前存储有网络系统信息,则所述零功耗终端在接收到的网络系统信息与存储的网络系统信息之间存在区别的情况下,上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到网络系统信息确定。
这里,零功耗终端在所述第一信息中上报的内容包括其接收到的网络系统信息中的内容,例如:包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
此外,可选地,零功耗终端在所述第一信息中上报的内容还可以包括网络节点的信号质量。这里,网络节点的信号质量可以是零功耗终端对网络节点发送的同步信号进行测量得到,可选地,信号质量包括以下至少之一:接收功率、信干比、信噪比。
此外,可选地,零功耗终端在所述第一信息中上报的内容还可以包括零功耗终端的终端标识。这里,零功耗终端的终端标识为该零功耗终端的全网唯一标识,可以在零功耗终端入网前或入网时写入零功耗终端内,或者也可以在零功耗终端入网后配置给零功耗终端,零功耗终端的终端标识用于标识该零功耗终端。
上述方案中,所述接收到的网络系统信息与存储的网络系统信息之间存在区别,是指:所述接收到的网络系统信息与所述存储的网络系统信息中的至少部分信息不同。
作为示例:所述接收到的网络系统信息与存储的网络系统信息之间存在区别,包括以下任意一个或多个选项:
选项1)接收到的网络系统信息中的网络节点的名字与存储的网络系统信息中的网络节点的名字不同。
选项2)接收到的网络系统信息中的网络节点的标识与存储的网络系统信息中的网络节点的标识不同。
选项3)接收到的网络系统信息中的网络节点所在区域的区域码与存储的网络系统信息中的网络节点所在区域的区域码不同。
选项4)接收到的网络系统信息中的网络节点所在区域的区域标识与存储的网络系统信息中的网络节点所在区域的区域标识不同。
进一步,零功耗终端接收到网络系统信息后,若接收到的网络系统信息与存储的网 络系统信息之间存在区别,则所述零功耗终端将存储的网络系统信息更新为所述接收到的网络系统信息。
对于上述方式来说,零功耗终端在从“拖网状态(也即关机状态)”变化到“入网状态(也即开机状态)”的过程中,其位置可能发生了变化,导致服务网络节点发生了变化,在这种情况下,零功耗终端重新“入网”时会获取网络系统信息,若零功耗终端之前存储有网络系统信息但是存储的网络系统信息与新获取的网络系统信息存在区别,那么,零功耗终端可以选择直接上报第一信息,从而使得网络侧获得零功耗终端的位置信息。
方式三
在一些可选实施方式中,零功耗终端接收到网络系统信息后,若所述零功耗终端接收到的网络系统信息中携带第一指示信息,则所述零功耗终端上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到网络系统信息确定;其中,所述第一指示信息用于指示上报所述第一信息。
这里,零功耗终端在所述第一信息中上报的内容包括其接收到的网络系统信息中的内容,例如:包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
此外,可选地,零功耗终端在所述第一信息中上报的内容还可以包括网络节点的信号质量。这里,网络节点的信号质量可以是零功耗终端对网络节点发送的同步信号进行测量得到,可选地,信号质量包括以下至少之一:接收功率、信干比、信噪比。
此外,可选地,零功耗终端在所述第一信息中上报的内容还可以包括零功耗终端的终端标识。这里,零功耗终端的终端标识为该零功耗终端的全网唯一标识,可以在零功耗终端入网前或入网时写入零功耗终端内,或者也可以在零功耗终端入网后配置给零功耗终端,零功耗终端的终端标识用于标识该零功耗终端。
进一步,零功耗终端接收到网络系统信息后,若所述零功耗终端在接收到所述网络系统信息之前未存储网络系统信息,则所述零功耗终端存储所述接收到的网络系统信息。若所述零功耗终端在接收到所述网络系统信息之前存储有网络系统信息,则所述零功耗终端将存储的网络系统信息更新为所述接收到的网络系统信息。
在一些可选实施方式中,所述第一指示信息按照特定的周期下发给所述零功耗终端,从而触发零功耗终端周期性上报所述第一信息。
需要说明的是,对于上述方式一和方式二来说,是零功耗终端自主决定是否上报第一信息,属于主动上报的方式。对于上述方式三来说,是零功耗终端基于网络节点发送的第一指示信息决定是否上报第一信息,属于网络控制上报的方式。
本申请实施例中,零功耗终端通过上述任意一种方式上报第一信息后,网络节点将所述第一信息存储在某一个或某些设备中。在一些可选实施方式中,所述零功耗终端上报所述第一信息后,所述第一信息被存储在以下至少一种设备中:接入网络设备、核心网设备、所述零功耗终端的服务网络节点。或者说,所述网络节点将所述第一信息存储在以下至少一种设备中:接入网络设备、核心网设备、所述零功耗终端的服务网络节点。
在一些可选实施方式中,网络侧还可以在网络系统信息中配置零功耗终端上报那种信息。具体地,所述网络系统信息还包括第二指示信息,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容。其中,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容包括以下至少之一:服务网络节点的相关信息、邻网络节点的相关信息、所述零功耗终端的终端标识。进一步,可选地,所述第二指示信息还用于指示以下至少之一:邻网络节点的信号质量上报的门限值;邻网络节点上报的最大数量。
基于此,零功耗终端可以根据第二指示信息确定需要上报的内容有哪些。零功耗终端可以在第一信息中上报网络节点的相关信息和/或所述零功耗终端的终端标识。其中,在所述第一信息中,所述网络节点的相关信息包括以下至少之一:服务网络节点的相关信息、满足条件的邻网络节点的相关信息。这里,可选地,所述条件包括:邻网络节点的信号质量大于等于门限值。
作为示例:网络侧还可以在网络系统信息携带第二指示信息,所述第二指示信息用于指示零功耗终端上报的内容包括以下至少之一:
服务网络节点的名字、服务网络节点的标识、服务网络节点所在区域的区域码、服务网络节点所在区域的区域标识、服务网络节点的信号质量;
邻网络节点的名字、邻网络节点的标识、邻网络节点所在区域的区域码、邻网络节点所在区域的区域标识、邻网络节点的信号质量;
零功耗终端的终端标识。
进一步,可选地,所述第二指示信息还用于指示邻网络节点的信号质量上报的门限值(只有满足门限值的邻网络节点才上报其相关信息)和/或邻网络节点上报的最大数量。
这里,零功耗终端可以上报一个或多个邻网络节点的相关信息,但需要满足邻网络节点的数量不超过所述第二指示信息指示的最大数量。
零功耗终端基于第二指示信息,在第一信息中上报的内容包括以下至少之一:
服务网络节点的名字、服务网络节点的标识、服务网络节点所在区域的区域码、服务网络节点所在区域的区域标识、服务网络节点的信号质量;
满足条件的邻网络节点的名字、满足条件的邻网络节点的标识、满足条件的邻网络节点所在区域的区域码、满足条件的邻网络节点所在区域的区域标识、满足条件的邻网络节点的信号质量;
零功耗终端的终端标识。
本申请实施例的技术方案,定义了零功耗终端上报位置信息(即第一信息)的方法,使得网络侧可以掌握零功耗终端的位置,便于网络侧统计或者更新零功耗终端的位置。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种 “或”的关系。
图14是本申请实施例提供的信息上报装置的结构组成示意图一,应用于零功耗终端,如图14所示,所述信息上报装置包括:
接收单元1401,用于接收网络系统信息;
上报单元1402,用于基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
在一些可选实施方式中,所述网络节点的相关信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识、网络节点的信号质量。
在一些可选实施方式中,所述上报单元1402,用于若所述零功耗终端在接收到所述网络系统信息之前未存储网络系统信息,则上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到的网络系统信息确定。
在一些可选实施方式中,所述上报单元1402,用于若所述零功耗终端在接收到所述网络系统信息之前存储有网络系统信息,则在接收到的网络系统信息与存储的网络系统信息之间存在区别的情况下,上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到网络系统信息确定。
在一些可选实施方式中,所述接收到的网络系统信息与存储的网络系统信息之间存在区别,是指:所述接收到的网络系统信息与所述存储的网络系统信息中的至少部分信息不同。
在一些可选实施方式中,所述上报单元1402,用于若所述零功耗终端接收到的网络系统信息中携带第一指示信息,则上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到网络系统信息确定;其中,所述第一指示信息用于指示上报所述第一信息。
在一些可选实施方式中,所述第一指示信息按照特定的周期下发给所述零功耗终端。
在一些可选实施方式中,所述网络系统信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
在一些可选实施方式中,所述网络系统信息还包括第二指示信息,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容。
在一些可选实施方式中,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容包括以下至少之一:服务网络节点的相关信息、邻网络节点的相关信息、所述零功耗终端的终端标识。
在一些可选实施方式中,所述第二指示信息还用于指示以下至少之一:
邻网络节点的信号质量上报的门限值;
邻网络节点上报的最大数量。
在一些可选实施方式中,在所述第一信息中,所述网络节点的相关信息包括以下至少之一:服务网络节点的相关信息、满足条件的邻网络节点的相关信息。
在一些可选实施方式中,所述条件包括:邻网络节点的信号质量大于等于门限值。
在一些可选实施方式中,所述上报单元1402上报所述第一信息后,所述第一信息被存储在以下至少一种设备中:接入网络设备、核心网设备、所述零功耗终端的服务网络节点。
在一些可选实施方式中,所述第一信息用于网络确定所述零功耗终端的位置。
本领域技术人员应当理解,本申请实施例的上述信息上报装置的相关描述可以参照本申请实施例的信息上报方法的相关描述进行理解。
图15是本申请实施例提供的信息上报装置的结构组成示意图二,应用于网络节点, 如图15所示,所述信息上报装置包括:
发送单元1501,用于发送网络系统信息;
接收单元1502,用于接收零功耗终端基于所述网络系统信息上报的第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
在一些可选实施方式中,所述网络节点的相关信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识、网络节点的信号质量。
在一些可选实施方式中,所述网络系统信息携带第一指示信息,所述第一指示信息用于指示上报所述第一信息;其中,所述第一信息中的至少部分信息基于所述网络系统信息确定。
在一些可选实施方式中,所述第一指示信息按照特定的周期下发给所述零功耗终端。
在一些可选实施方式中,所述网络系统信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
在一些可选实施方式中,所述网络系统信息还包括第二指示信息,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容。
在一些可选实施方式中,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容包括以下至少之一:服务网络节点的相关信息、邻网络节点的相关信息、所述零功耗终端的终端标识。
在一些可选实施方式中,所述第二指示信息还用于指示以下至少之一:
邻网络节点的信号质量上报的门限值;
邻网络节点上报的最大数量。
在一些可选实施方式中,在所述第一信息中,所述网络节点的相关信息包括以下至少之一:服务网络节点的相关信息、满足条件的邻网络节点的相关信息。
在一些可选实施方式中,所述条件包括:邻网络节点的信号质量大于等于门限值。
在一些可选实施方式中,所述装置还包括:存储单元,用于将所述第一信息存储在以下至少一种设备中:接入网络设备、核心网设备、所述零功耗终端的服务网络节点。
在一些可选实施方式中,所述第一信息用于网络确定所述零功耗终端的位置。
本领域技术人员应当理解,本申请实施例的上述信息上报装置的相关描述可以参照本申请实施例的信息上报方法的相关描述进行理解。
图16是本申请实施例提供的一种通信设备1600示意性结构图。该通信设备可以终端(如上述方案中的零功耗终端),也可以是网络设备(如上述方案中的网络节点)。图16所示的通信设备1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,通信设备1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
可选地,如图16所示,通信设备1600还可以包括收发器1630,处理器1610可以控制该收发器1630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1630可以包括发射机和接收机。收发器1630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1600具体可为本申请实施例的网络设备(如上述方案中的网络节点),并且该通信设备1600可以实现本申请实施例的各个方法中由网络设备(如上 述方案中的网络节点)实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1600具体可为本申请实施例的移动终端/终端(如上述方案中的零功耗终端),并且该通信设备1600可以实现本申请实施例的各个方法中由移动终端/终端(如上述方案中的零功耗终端)实现的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例的芯片的示意性结构图。图17所示的芯片1700包括处理器1710,处理器1710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,芯片1700还可以包括存储器1720。其中,处理器1710可以从存储器1720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1720可以是独立于处理器1710的一个单独的器件,也可以集成在处理器1710中。
可选地,该芯片1700还可以包括输入接口1730。其中,处理器1710可以控制该输入接口1730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1700还可以包括输出接口1740。其中,处理器1710可以控制该输出接口1740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备(如上述方案中的网络节点),并且该芯片可以实现本申请实施例的各个方法中由网络设备(如上述方案中的网络节点)实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端(如上述方案中的零功耗终端),并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端(如上述方案中的零功耗终端)实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图18是本申请实施例提供的一种通信系统1800的示意性框图。如图18所示,该通信系统1800包括终端1810和网络设备1820。
其中,该终端1810可以用于实现上述方法中由终端(如上述方案中的零功耗终端)实现的相应的功能,以及该网络设备1820可以用于实现上述方法中由网络设备(如上述方案中的网络节点)实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器 (Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备(如上述方案中的网络节点),并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备(如上述方案中的网络节点)实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端(如上述方案中的零功耗终端),并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现(如上述方案中的零功耗终端)的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备(如上述方案中的网络节点),并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备(如上述方案中的网络节点)实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端(如上述方案中的零功耗终端),并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端(如上述方案中的零功耗终端)实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备(如上述方案中的网络节点),当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备(如上述方案中的网络节点)实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端(如上述方案中的零功耗终端),当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端(如上述方案中的零功耗终端)实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元 及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (39)

  1. 一种信息上报方法,所述方法包括:
    零功耗终端接收网络系统信息;
    所述零功耗终端基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
  2. 根据权利要求1所述的方法,其中,所述网络节点的相关信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识、网络节点的信号质量。
  3. 根据权利要求1或2所述的方法,其中,所述零功耗终端基于接收到的网络系统信息上报第一信息,包括:
    若所述零功耗终端在接收到所述网络系统信息之前未存储网络系统信息,则所述零功耗终端上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到的网络系统信息确定。
  4. 根据权利要求1或2所述的方法,其中,所述零功耗终端基于接收到的网络系统信息上报第一信息,包括:
    若所述零功耗终端在接收到所述网络系统信息之前存储有网络系统信息,则所述零功耗终端在接收到的网络系统信息与存储的网络系统信息之间存在区别的情况下,上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到网络系统信息确定。
  5. 根据权利要求4所述的方法,其中,所述接收到的网络系统信息与存储的网络系统信息之间存在区别,是指:所述接收到的网络系统信息与所述存储的网络系统信息中的至少部分信息不同。
  6. 根据权利要求1或2所述的方法,其中,所述零功耗终端基于接收到的网络系统信息上报第一信息,包括:
    若所述零功耗终端接收到的网络系统信息中携带第一指示信息,则所述零功耗终端上报所述第一信息,所述第一信息中的至少部分信息基于所述接收到网络系统信息确定;其中,所述第一指示信息用于指示上报所述第一信息。
  7. 根据权利要求6所述的方法,其中,所述第一指示信息按照特定的周期下发给所述零功耗终端。
  8. 根据权利要求3至7中任一项所述的方法,其中,所述网络系统信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
  9. 根据权利要求3至8中任一项所述的方法,其中,所述网络系统信息还包括第二指示信息,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容。
  10. 根据权利要求9所述的方法,其中,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容包括以下至少之一:服务网络节点的相关信息、邻网络节点的相关信息、所述零功耗终端的终端标识。
  11. 根据权利要求9或10所述的方法,其中,所述第二指示信息还用于指示以下至少之一:
    邻网络节点的信号质量上报的门限值;
    邻网络节点上报的最大数量。
  12. 根据权利要求1至11中任一项所述的方法,其中,在所述第一信息中,所 述网络节点的相关信息包括以下至少之一:服务网络节点的相关信息、满足条件的邻网络节点的相关信息。
  13. 根据权利要求12所述的方法,其中,所述条件包括:邻网络节点的信号质量大于等于门限值。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述零功耗终端上报所述第一信息后,所述第一信息被存储在以下至少一种设备中:接入网络设备、核心网设备、所述零功耗终端的服务网络节点。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述第一信息用于网络确定所述零功耗终端的位置。
  16. 一种信息上报方法,所述方法包括:
    网络节点发送网络系统信息;
    所述网络节点接收零功耗终端基于所述网络系统信息上报的第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
  17. 根据权利要求16所述的方法,其中,所述网络节点的相关信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识、网络节点的信号质量。
  18. 根据权利要求16或17所述的方法,其中,所述网络系统信息携带第一指示信息,所述第一指示信息用于指示上报所述第一信息;其中,所述第一信息中的至少部分信息基于所述网络系统信息确定。
  19. 根据权利要求18所述的方法,其中,所述第一指示信息按照特定的周期下发给所述零功耗终端。
  20. 根据权利要求18或19所述的方法,其中,所述网络系统信息包括以下至少之一:网络节点的名字、网络节点的标识、网络节点所在区域的区域码、网络节点所在区域的区域标识。
  21. 根据权利要求18至20中任一项所述的方法,其中,所述网络系统信息还包括第二指示信息,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容。
  22. 根据权利要求21所述的方法,其中,所述第二指示信息用于指示零功耗终端在所述第一信息中上报的内容包括以下至少之一:服务网络节点的相关信息、邻网络节点的相关信息、所述零功耗终端的终端标识。
  23. 根据权利要求21或22所述的方法,其中,所述第二指示信息还用于指示以下至少之一:
    邻网络节点的信号质量上报的门限值;
    邻网络节点上报的最大数量。
  24. 根据权利要求16至23中任一项所述的方法,其中,在所述第一信息中,所述网络节点的相关信息包括以下至少之一:服务网络节点的相关信息、满足条件的邻网络节点的相关信息。
  25. 根据权利要求24所述的方法,其中,所述条件包括:邻网络节点的信号质量大于等于门限值。
  26. 根据权利要求16至25中任一项所述的方法,其中,所述方法还包括:
    所述网络节点将所述第一信息存储在以下至少一种设备中:接入网络设备、核心网设备、所述零功耗终端的服务网络节点。
  27. 根据权利要求16至26中任一项所述的方法,其中,所述第一信息用于网络确定所述零功耗终端的位置。
  28. 一种信息上报装置,应用于零功耗终端,所述装置包括:
    接收单元,用于接收网络系统信息;
    上报单元,用于基于接收到的网络系统信息上报第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
  29. 一种信息上报装置,应用网络节点,所述装置包括:
    发送单元,用于发送网络系统信息;
    接收单元,用于接收零功耗终端基于所述网络系统信息上报的第一信息,所述第一信息包括以下至少之一:网络节点的相关信息、所述零功耗终端的终端标识。
  30. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法。
  31. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求16至27中任一项所述的方法。
  32. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  33. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16至27中任一项所述的方法。
  34. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  35. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求16至27中任一项所述的方法。
  36. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  37. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求16至27中任一项所述的方法。
  38. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  39. 一种计算机程序,所述计算机程序使得计算机执行如权利要求16至27中任一项所述的方法。
PCT/CN2021/121001 2021-09-27 2021-09-27 一种信息上报方法及装置、终端、网络设备 WO2023044911A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/121001 WO2023044911A1 (zh) 2021-09-27 2021-09-27 一种信息上报方法及装置、终端、网络设备
CN202180099796.9A CN117561727A (zh) 2021-09-27 2021-09-27 一种信息上报方法及装置、终端、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121001 WO2023044911A1 (zh) 2021-09-27 2021-09-27 一种信息上报方法及装置、终端、网络设备

Publications (1)

Publication Number Publication Date
WO2023044911A1 true WO2023044911A1 (zh) 2023-03-30

Family

ID=85719914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121001 WO2023044911A1 (zh) 2021-09-27 2021-09-27 一种信息上报方法及装置、终端、网络设备

Country Status (2)

Country Link
CN (1) CN117561727A (zh)
WO (1) WO2023044911A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324068A (zh) * 2018-03-28 2019-10-11 上海华为技术有限公司 射频识别系统、组建中继网络的方法和阅读器、中继器
CN110858799A (zh) * 2018-08-24 2020-03-03 索尼公司 无线通信系统中的标签设备、电子设备、通信方法及存储介质
CN111712727A (zh) * 2018-02-13 2020-09-25 华为技术有限公司 协作辅助位置估计技术
CN112368704A (zh) * 2018-06-27 2021-02-12 瑞典爱立信有限公司 用于实现对无线通信网络中的无线标签的接入的网络控制实体、接入点及其方法
CN113141572A (zh) * 2021-04-16 2021-07-20 天津大学 一种面向个人移动设备的Wi-Fi射频识别标签及识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712727A (zh) * 2018-02-13 2020-09-25 华为技术有限公司 协作辅助位置估计技术
CN110324068A (zh) * 2018-03-28 2019-10-11 上海华为技术有限公司 射频识别系统、组建中继网络的方法和阅读器、中继器
CN112368704A (zh) * 2018-06-27 2021-02-12 瑞典爱立信有限公司 用于实现对无线通信网络中的无线标签的接入的网络控制实体、接入点及其方法
CN110858799A (zh) * 2018-08-24 2020-03-03 索尼公司 无线通信系统中的标签设备、电子设备、通信方法及存储介质
CN113141572A (zh) * 2021-04-16 2021-07-20 天津大学 一种面向个人移动设备的Wi-Fi射频识别标签及识别方法

Also Published As

Publication number Publication date
CN117561727A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US20240171269A1 (en) Wireless communication method and apparatus, and communication device
WO2023044911A1 (zh) 一种信息上报方法及装置、终端、网络设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050043A1 (zh) 一种资源配置方法及装置、终端、网络设备
WO2023050051A1 (zh) 一种接入网络的方法及装置、终端、网络设备
WO2023044895A1 (zh) 一种移动性管理方法及装置、终端
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023004791A1 (zh) 一种零功耗通信系统及其通信方法
WO2023004769A1 (zh) 一种数据传输方法及装置、终端、网络设备
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2023004788A1 (zh) 一种安全认证方法及装置、终端
WO2023000231A1 (zh) 无线通信方法、终端设备和网络设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
US20240160866A1 (en) Wireless communication method, terminal device and network device
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2023133840A1 (zh) 无线通信方法、终端设备和供能节点
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
WO2023004748A1 (zh) 无线通信方法、终端设备和网络设备
WO2023044781A1 (zh) 无线通信方法及设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2024103317A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099796.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE