WO2023044853A1 - 一种电子后视镜系统和控制方法 - Google Patents

一种电子后视镜系统和控制方法 Download PDF

Info

Publication number
WO2023044853A1
WO2023044853A1 PCT/CN2021/120637 CN2021120637W WO2023044853A1 WO 2023044853 A1 WO2023044853 A1 WO 2023044853A1 CN 2021120637 W CN2021120637 W CN 2021120637W WO 2023044853 A1 WO2023044853 A1 WO 2023044853A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
vehicle
pan
rearview mirror
tilt
Prior art date
Application number
PCT/CN2021/120637
Other languages
English (en)
French (fr)
Inventor
姚任畅零
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/120637 priority Critical patent/WO2023044853A1/zh
Priority to CN202180011604.4A priority patent/CN116194335A/zh
Priority to KR1020247009538A priority patent/KR20240049594A/ko
Publication of WO2023044853A1 publication Critical patent/WO2023044853A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/062Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position
    • B60R1/07Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators
    • B60R1/074Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators for retracting the mirror arrangements to a non-use position alongside the vehicle

Definitions

  • the present application relates to the technical field of automotive electronic control, in particular to an electronic rearview mirror system and a control method.
  • the structure of the current electronic rearview mirror system is as follows: the left rearview camera and the right rearview camera replace the glass rearview mirror to collect rearview images, and display the field of view observed from the perspective of the rearview mirror in real time through the display in the cockpit.
  • a camera with a larger field of view FOV is selected, so that the driver can obtain a wider field of view than the glass rearview mirror.
  • the installation platform of the original rearview mirror is generally used to install the camera module of the electronic rearview mirror system. That is, the camera module is fixedly installed at the position of the left glass rearview mirror and the right glass rearview mirror, replacing the original left glass rearview mirror and right glass rearview mirror; or the camera module is directly fixed and installed on the on the door.
  • the rear view camera module of the existing solution is easily damaged by bumps, and the maintenance cost on the customer side is high.
  • the external camera module also has wind resistance.
  • the embodiment of the present application provides an electronic rearview mirror system and control method, which not only realizes the storage and concealment of the camera pan/tilt module, reduces driving wind resistance and avoids being damaged by bumps, but also can adaptively open the stored camera pan/tilt
  • the module collects rear view images through the first camera in time.
  • the present application provides an electronic rearview mirror system, which is applied to a vehicle.
  • the electronic rearview mirror system includes a camera pan/tilt module and a control unit.
  • the camera pan-tilt module is installed on the front fender of the vehicle, and the camera pan-tilt module includes a pan-tilt bracket, a first camera and a first stepping motor.
  • the first camera is installed on the pan-tilt bracket, and the pan-tilt bracket is connected with the front fender through the first stepping motor.
  • the first stepping motor is connected with the control unit.
  • the control unit is used for generating the first control signal or the second control signal, and sending the first control signal or the second control signal to the first stepper motor.
  • the first stepping motor is used to fold the pan-tilt support in the direction of the front fender according to the first control signal, or deploy the pan-tilt support from the front fender according to the second control signal.
  • the first stepper motor folds the pan-tilt bracket in the direction of the front fender according to the first control signal, so as to realize the storage and concealment of the camera pan-tilt module, reduce driving wind resistance and avoid being damaged by bumps.
  • the first stepper motor deploys the pan-tilt support from the front fender according to the second control signal, and then starts the first camera to collect rear-view images in time.
  • the camera pan/tilt module further includes a first ultrasonic sensor.
  • the first ultrasonic sensor is connected to the control unit.
  • the first ultrasonic sensor is used to detect the first distance, the first distance is the distance between the first obstacle and the pan-tilt support, and the first obstacle is in the first direction and/or the second direction of the pan-tilt support For obstacles, the first direction is opposite to the second direction.
  • the control unit is used for sending a first control signal to the first stepping motor when the first distance is less than or equal to the preset distance.
  • the camera pan/tilt module further includes a second ultrasonic sensor.
  • the second ultrasonic sensor is connected to the control unit.
  • the second ultrasonic sensor is used to detect a second distance when the pan/tilt bracket is retracted toward the front fender, and the second distance is the vertical distance between the first obstacle and the vehicle body plane of the front fender.
  • the control unit is configured to send a second control signal to the first stepping motor.
  • control unit is further configured to acquire the driving speed of the vehicle, and send a first control signal to the first stepper motor when the driving speed is greater than or equal to a preset speed.
  • control unit is further configured to obtain indication information of the turn signal of the vehicle, and send a second control signal to the first stepping motor according to the indication information of the turn signal.
  • the second control signal is sent to the first stepper motor through the obtained turn signal indication information, which can be applied to high-speed scenes to deploy the camera pan-tilt module as needed.
  • the electronic rearview mirror system further includes a second camera, and the second camera is connected to the control unit.
  • the second camera is used to collect images of the driver's driving behavior.
  • the control unit is also used to send a second control signal to the first stepper motor according to the driver's driving behavior image.
  • the control unit is used to obtain the vehicle posture information of the vehicle and/or the driver's facial feature information, and process the vehicle posture information and/or the driver's facial feature information to obtain the first Camera corner control information. Then, the control unit also controls the first camera to rotate according to the rotation angle control information, so that the first camera collects a first image whose first field of view meets the target range. By controlling the rotation of the first camera, the rotated first camera can collect the first image in a larger field of view, which not only expands the blind spot field of view, but also further prevents the driver from rubbing against obstacles when driving the vehicle , which is conducive to driving safety.
  • the electronic rearview mirror system includes a first display, the first display is installed on the B-pillar of the vehicle, and the first display is connected to the control unit.
  • the control unit is used to obtain the parking information of the vehicle, and according to the parking information, determine that when the vehicle's driving speed has dropped to a first value, determine that the vehicle has stopped driving, and send the rear view image to the first display, and the first value indicates that the vehicle has stopped driving , the rear view image is collected by the first camera.
  • the first display is used for displaying the rear view image.
  • the rear view image obtained from the first camera is displayed to the rear passengers to watch through the first display, so that the rear passengers can check the situations of vehicles coming from behind in real time.
  • control unit is further configured to obtain first information, where the first information indicates the distance between the vehicle and the vehicle behind. Then the control unit also determines the safe distance range when the passenger leaves the vehicle according to the rear view image and the first information, and instructs the passenger to leave the vehicle when the safe distance range is met.
  • the electronic rearview mirror system further includes a second display connected to the control unit.
  • the control unit is also used to send the rearview image to the second display, and the rearview image is collected by the first camera.
  • the second display is used to display the rear view image.
  • the rearview image collected by the first camera is displayed on the second display, so that the driver can view the rearview image in real time, satisfying the driver's demand for the rearview mirror.
  • the camera pan/tilt module further includes a second stepping motor, and the first camera is installed on the pan/tilt bracket through the second stepping motor.
  • the second stepping motor is used for receiving the rotation angle control information sent by the control unit, and adjusting the rotation angle of the first camera according to the rotation angle control information.
  • the first camera is installed on the pan-tilt bracket through the second stepping motor, not only the rotation angle of the first camera can be adjusted through the second stepping motor, but also when the first camera is rotated, a stable rotation speed can be provided for the first camera. support.
  • the first camera when the first camera is folded in the direction of the front fender, the first camera is folded into the concave position of the shrapnel of the front fender; Pops out of the recessed position when deployed from the front fenders.
  • the first camera head when the first camera head is folded in the direction of the front fender of the pan-tilt support, the first camera can be folded into the recessed position of the elastic piece of the front fender. Not only the whole first camera is completely accommodated in the recessed position, but also the surface of the pan-tilt bracket is flush with the plane of the vehicle body, which is more beautiful.
  • the shrapnel when deployed, the shrapnel can fill the recessed position, so that there is no recess in the plane of the vehicle body, ensuring a good aerodynamic shape.
  • the camera pan/tilt module further includes a casing, which is used to cover the first camera to ensure a good aerodynamic shape.
  • an embodiment of the present application provides a control method, the control method is applied to an electronic rearview mirror system, and the electronic rearview mirror system is applied to a vehicle.
  • the electronic rearview mirror system includes a camera pan-tilt module and a control unit, and the camera pan-tilt module is installed on the front fender of the vehicle.
  • the camera pan-tilt module may include a pan-tilt bracket, a first camera and a first stepper motor.
  • the first camera is installed on the pan-tilt bracket, and the pan-tilt bracket is connected with the front fender through the first stepping motor.
  • the first stepping motor is connected with the control unit.
  • a first control signal or a second control signal is generated, and the pan-tilt support is folded in the direction of the front fender of the vehicle according to the first control signal, or the pan-tilt bracket is folded according to the second control signal
  • the brackets extend from the front fenders.
  • control method further includes detecting a first distance, the first distance is the distance between the first obstacle and the pan-tilt support, and the first obstacle is in the first direction of the pan-tilt support and/or For an obstacle in the second direction, the first direction is opposite to the second direction; when the first distance is less than or equal to the preset distance, a first control signal is generated.
  • control method further includes detecting a second distance after the pan/tilt support is retracted in the direction of the front fender, and the second distance is between the first obstacle and the vehicle body plane of the front fender The vertical distance; when it is determined that the camera pan/tilt module has avoided the first obstacle based on the second distance, a second control signal is generated.
  • control method further includes acquiring a driving speed of the vehicle; and generating a first control signal when the driving speed is greater than or equal to a preset speed.
  • control method further includes acquiring turn signal information of the vehicle; and generating a second control signal based on the turn signal information.
  • control method further includes collecting an image of the driver's driving behavior; and generating a second control signal according to the image of the driver's driving behavior.
  • control method further includes acquiring the vehicle attitude information of the vehicle and/or the driver's facial feature information; processing the vehicle attitude information and/or the driver's facial feature information to obtain the first camera's Rotation angle control information: controlling the rotation of the first camera according to the rotation angle control information, so that the first camera captures a first image whose first field of view meets the target range.
  • control method further includes acquiring the parking information of the vehicle; when it is determined according to the parking information that the driving speed of the vehicle has dropped to a first value, displaying the rear view image through the first display, the first display is installed on the B-pillar On , the first value indicates that the vehicle is stopped, and the rear view image is collected by the first camera.
  • control method further includes acquiring first information, the first information indicating the distance between the vehicle and the vehicle behind; determining a safe distance range for passengers when leaving the vehicle according to the rear view image and the first information; and Instruct passengers to leave the vehicle safely when the safe distance range is met.
  • control method further includes: displaying a rearview image through the second display, and the rearview image is collected by the first camera.
  • control method further includes adjusting the rotation angle of the first camera according to the rotation angle control information.
  • the first camera when the pan-tilt bracket is folded in the direction of the front fender, the first camera is folded into the concave position of the shrapnel of the front fender; Pops out of the recessed position when unfolded in the daughterboard.
  • an embodiment of the present application provides a driving assistance control system, which includes the electronic rearview mirror system described in the first aspect or any possible implementation manner of the first aspect.
  • the electronic rearview mirror system includes a control unit, two camera pan-tilt modules, two first displays and one second display.
  • a camera pan-tilt module is installed on the left front fender of the vehicle, and another camera pan-tilt module is installed on the right front fender of the vehicle; a first display is installed on the left B-pillar of the vehicle, Another first display is mounted on the vehicle's right B-pillar.
  • an embodiment of the present application provides a vehicle, which includes the electronic rearview mirror system described in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the electronic rearview mirror system includes a control unit, two camera pan-tilt modules, two first displays and one second display.
  • a camera pan-tilt module is installed on the left front fender of the vehicle, and another camera pan-tilt module is installed on the right front fender of the vehicle; a first display is installed on the left B-pillar of the vehicle, Another first display is mounted on the vehicle's right B-pillar.
  • a fifth aspect of the present application provides a driving assistance device, which may include: a memory for storing computer-readable instructions; and may also include a processor coupled to the memory for executing the computer-readable instructions in the memory to perform the following steps: The method described in the second aspect or any possible implementation manner of the second aspect.
  • the sixth aspect of the present application provides a computer-readable storage medium.
  • the computer device executes the method described in the second aspect or any possible implementation manner of the second aspect.
  • a seventh aspect of the present application provides a computer program product, which, when run on a computer, enables the computer to execute the method described in the second aspect or any possible implementation manner of the second aspect.
  • the eighth aspect of the present application provides a system-on-a-chip, which may include a processor, configured to support the vehicle or driving assistance equipment to implement the method described in the second aspect or any possible implementation manner of the second aspect. the functions involved.
  • the camera pan/tilt module is installed on the front fender of the vehicle.
  • the first stepping motor retracts the pan/tilt bracket in the direction of the front fender It can be folded to realize the storage and hiding of the camera gimbal module, reduce driving wind resistance and avoid being damaged by bumps.
  • the first stepper motor deploys the pan-tilt support from the front fender according to the second control signal, and then starts the first camera to collect rear-view images in time.
  • Figure 1 is a schematic diagram of installing a camera module in a related scheme
  • FIG. 2A is a schematic diagram of a vehicle system provided in an embodiment of the present application.
  • Fig. 2B is a schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • FIG. 3A is a schematic diagram of installation of the camera pan-tilt module provided by the embodiment of the present application.
  • Fig. 3B is a schematic structural diagram of the camera pan-tilt module provided by the embodiment of the present application.
  • FIG. 3C is a schematic diagram of the pan-tilt bracket provided by the embodiment of the present application.
  • FIG. 4A is a schematic diagram of the camera pan-tilt module being retracted
  • Fig. 4B is a schematic diagram of unfolding the camera pan-tilt module
  • FIG. 5A is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • FIG. 5B is another schematic structural view of the camera pan-tilt module provided by the present application.
  • FIG. 5C is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • FIG. 5D is another schematic structural view of the camera pan-tilt module provided by the present application.
  • Fig. 6 is a schematic diagram of the angle of view corresponding to the rear view image collected by the rotated first camera
  • FIG. 7 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • FIG. 8 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • FIG. 9 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • FIG. 10 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • FIG. 11 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • Fig. 12A is a schematic diagram of the control method provided in the embodiment of the present application.
  • FIG. 12B is another schematic diagram of the control method provided in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of the hardware structure of the driving assistance device provided by the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a driving assistance device provided by an embodiment of the present application.
  • the embodiment of the present application provides an electronic rearview mirror system and control method, which not only realizes the storage and concealment of the camera pan/tilt module, reduces driving wind resistance and avoids being damaged by bumps, but also can adaptively expand the stored camera pan/tilt
  • the module enables the first camera to collect rear view images in time.
  • FIG. 1 is a schematic diagram of installing a camera module in a related solution. As shown in Figure 1, replace the original left glass rearview mirror and right glass rearview mirror with the camera module, and install it in the position of the original left glass rearview mirror and right glass rearview mirror. Alternatively, the camera module is fixedly installed on the car door.
  • the external camera module is easily damaged by bumps, and the maintenance cost on the customer side is high. Or, in high-speed driving scenarios, the external camera module also has wind resistance.
  • FIG. 2A is a schematic diagram of a vehicle system provided by an embodiment of the present application.
  • the vehicle system includes a central gateway, and also includes a powertrain system, a body electronic system, a vehicle safety system, an entertainment information system, and a driver assistance control system.
  • the driving assistance control system may further include a lane departure warning system (lane departure warning system, LDSW), an adaptive cruise control (adaptive cruise control, ACC) system, an automatic parking system, and the electronic rearview mirror system 10 .
  • lane departure warning system lane departure warning system
  • ACC adaptive cruise control
  • the mentioned electronic rearview mirror system 10 can be applied in vehicles, which can effectively realize the storage and concealment of the camera module, avoid being damaged by bumps, and reduce driving wind resistance; or, timely unfold the stored camera module, so that The first camera collects rear view images in time.
  • the aforementioned vehicles may be smart cars, bridge cars, trucks, buses, construction vehicles, diesel vehicles, etc., which are not specifically limited in this embodiment of the present application.
  • FIG. 2B is a schematic structural diagram of an electronic rearview mirror system provided by an embodiment of the present application.
  • the electronic rearview mirror system 10 may include a camera pan/tilt module 101 and a control unit 102 .
  • the camera pan-tilt module 101 includes a pan-tilt bracket 1011 , a first camera 1012 and a first stepping motor 1013 .
  • the above-mentioned control unit 102 is configured to generate the first control signal or the second control signal, and send the first control signal or the second control signal to the first stepper motor 1013 .
  • the first stepper motor 1013 is used to fold the pan-tilt bracket 1011 in the direction of the front fender 20 according to the first control signal, or deploy the pan-tilt bracket 1011 from the front fender 20 according to the second control signal .
  • FIG. 3B shows a schematic structural diagram of the camera pan-tilt module 101 provided by the embodiment of the present application. It can be seen from FIG. 3B that the first camera 1012 is installed on the pan-tilt bracket 1011 , and the pan-tilt bracket 1011 is connected to the front fender 20 of the vehicle through a first stepping motor 1013 . It should be noted that the pan-tilt bracket 1011 shown in FIG. 3A and FIG.
  • pan-tilt bracket 1011 is not limited to the rectangular structure shown in FIG. 3A or FIG. 3B .
  • the structure of the pan-tilt bracket 1011 may be similar to the shape of an airfoil, which can be understood with reference to FIG. 3C .
  • the control unit 102 can generate a first control signal and send the first control signal to the first stepping motor 1013 .
  • the first stepper motor 1013 can fold the pan-tilt support 1011 in the direction of the front fender 20 according to the first control signal, thereby avoiding the entire camera pan-tilt Module 101 is damaged.
  • FIG. 4A shows a schematic diagram of retracting the camera pan-tilt module 101 . It can be seen from FIG. 4A that after the pan/tilt bracket 1011 is retracted toward the front fender 20, the entire camera pan/tilt module 101 is close to the vehicle body, so as to prevent the first camera 1012 used for collecting rear-view images from being bumped and damaged. And so on.
  • the control unit 102 can also generate a second control signal, and send the second control signal to the first stepping motor 1013.
  • the first stepper motor 1013 can deploy the pan-tilt bracket 1011 from the front fender 20 according to the second control signal.
  • the first camera 1012 is also driven to unfold from the front fender 20 so that the first camera 1012 collects rear view images.
  • FIG. 4B shows a schematic diagram of unfolding the camera pan-tilt module 101 . It can be seen from FIG. 4B that after the pan-tilt bracket 1011 is unfolded from the front fender 20, the entire camera pan-tilt module 101 is also unfolded from the front fender 20, which is beneficial for the first camera 1012 to collect rear-view images.
  • the electronic rearview mirror system 10 described above in FIG. 2B includes a camera pan/tilt module 101 , which can be understood as including two camera pan/tilt modules 101 .
  • one camera pan-tilt module 101 is installed on the left front fender 20 of the vehicle, and the other camera pan-tilt module 101 is installed on the right front fender 20 of the vehicle.
  • the specific installation method can refer to the aforementioned Figure 3A for understanding.
  • the control unit 102 sends the first control signal or the second control signal to the first stepping motor 1013, which can also be understood as the control unit 102 sending the first control signal in the camera pan-tilt module 101 installed on the left front fender 20.
  • the stepping motor 1013 sends, and sends to the first stepping motor 1013 in the camera pan-tilt module 101 installed on the right front fender 20 .
  • the above FIG. 2B only takes one camera pan-tilt module 101 as an example for illustration.
  • the first camera 1012 in the camera pan-tilt module 101 installed on the left front fender 20 is mainly used to collect the left rear view image
  • the camera pan-tilt installed on the right front fender 20 The first camera 1012 in the module 101 is mainly used to collect right side rear view images.
  • the first camera 1012 described above in FIG. 2B may be a camera for collecting a left rear view image, or may be a camera for collecting a right rear view image, which is not specifically limited here.
  • the first stepper motor 1013 provided in this application is all connected to the control unit 102 .
  • the driving interface can be connected to the coil winding of the stepping motor to provide driving power for the stepping motor. Therefore, the first stepper motor 1013 can be connected with the control unit 102 through a drive interface.
  • the control unit 102 described above may be an electronic control unit (electronic control unit, ECU), which is not specifically limited here.
  • the front fender 20 may include elastic pieces 201 .
  • the shrapnel 201 is pushed into the inside of the front fender 20 to make room for the first camera 1012, so that the first camera 1012 can be folded into the front fender 20.
  • the recessed position of the shrapnel 201 of the front fender 20 Not only the whole first camera head 1012 is completely accommodated in the recessed position, but also the surface of the pan-tilt bracket 1011 is flush with the plane of the vehicle body, which is more beautiful.
  • the first camera 1012 can also pop out from the recessed position, and at this time, the shrapnel 201 can fill the recessed position, so that there is no recess in the plane of the vehicle body, ensuring good aerodynamic shape.
  • the unfolded camera pan-tilt module 101 will be damaged to varying degrees.
  • the control unit 102 can send the first control signal or the second control signal to the first stepper motor 1013 in different scenarios. The following will mainly describe the scenarios of low-speed driving and high-speed driving:
  • FIG. 5A is another schematic structural diagram of the electronic rearview mirror system provided by the embodiment of the present application.
  • the camera pan/tilt module 101 may further include: a first ultrasonic sensor 1014 connected to the control unit 102 .
  • the first ultrasonic sensor 1014 is used to detect the first distance.
  • the control unit 102 is configured to send a first control signal to the first stepper motor 1013 when the first distance is less than or equal to the preset distance.
  • FIG. 5B is a schematic structural diagram of another camera pan-tilt module provided by the present application. It can be seen from FIG. 5B that the first ultrasonic sensor 1014 is installed on the pan-tilt support 1011 . The distance between the first obstacle and the pan/tilt bracket 1011 , that is, the first distance, can be directly detected by the first ultrasonic sensor 1014 .
  • a local interconnect network (LIN) interface can be used as a data channel connecting the ultrasonic sensor and the control unit 102, and can be used to transmit obstacle distance information detected by the ultrasonic sensor. Therefore, the first ultrasonic sensor 1014 can inform the control unit 102 of the first distance through the LIN interface.
  • the control unit 102 judges the first distance and the preset distance, and sends the first control to the first stepper motor 1013 when it is judged that the first distance is less than or equal to the preset distance. Signal. For example, if the preset distance is 0.5 meters and the detected first distance is 0.3 meters, the control unit 102 can determine that 0.3 meters is less than 0.5 meters, and send the first control signal to the first stepper motor 1013.
  • the preset distance can be understood as the distance when the camera pan-tilt module 101 in the unfolded state easily touches an obstacle.
  • the above-mentioned first distance is the distance between the first obstacle and the pan-tilt bracket 1011 .
  • the first obstacle can be understood as an obstacle in the first direction and/or the second direction of the pan/tilt support 1011 , and the first direction is opposite to the second direction.
  • the first direction can be understood as the front position of the pan-tilt bracket 1011
  • the second direction can be understood as the rear position of the pan-tilt bracket 1011 .
  • the direction of the vehicle head can be understood as the front.
  • the first direction can also be understood as the rear position of the pan-tilt bracket 1011
  • the second direction can also be understood as the front position of the pan-tilt bracket 1011 , which is not limited here.
  • the first ultrasonic sensor 1014 can be understood as being composed of two ultrasonic sub-sensors. Wherein, one ultrasonic sub-sensor can be used to collect the distance between the first obstacle in the first direction and the pan-tilt support 1011, and the other ultrasonic sub-sensor can be used to collect the distance between the first obstacle and the pan-tilt support 1011 in the second direction. The distance between the gimbal brackets 1011.
  • the ultrasonic sub-sensor A can detect the distance between the first obstacle in the first direction and the pan/tilt bracket 1011
  • the ultrasonic sub-sensor B can detect the first obstacle in the second direction The distance between the object and the pan-tilt support 1011.
  • the first control signal can be understood with reference to the foregoing content in FIG. 2B , which will not be repeated here.
  • the first distance is greater than the preset distance, it can be reflected that the camera pan/tilt module 101 can safely pass through the first obstacle without being bumped by the first obstacle.
  • FIG. 5C is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • the camera pan/tilt module 101 may also include: a second ultrasonic sensor 1015, a second ultrasonic sensor 1015 and a control unit 102 connections.
  • the second ultrasonic sensor 1015 is used to detect the second distance after the pan/tilt bracket 1011 is retracted in the direction of the front fender 20;
  • the control unit 102 is used to determine that the camera pan/tilt module 101 has avoided When opening the first obstacle, send the second control signal to the first stepping motor 1013.
  • the second distance can be understood as the vertical distance between the first obstacle and the plane of the vehicle body of the front fender 20 .
  • the overall camera pan-tilt module 101 is close to the vehicle body plane, and the first ultrasonic sensor 1014 for collecting the first distance is in a non-working state . Therefore, after the pan-tilt bracket 1011 is retracted toward the front fender 20 (see FIG. 4A for details), the second distance can be detected by the second ultrasonic sensor 1015 installed on the pan-tilt bracket 1011 .
  • the control unit 102 when judging that the camera pan/tilt module 101 has successfully avoided the first obstacle according to the second distance, it can move toward the first stepping motor.
  • 1013 Send a second control signal.
  • the pan-tilt support 1011 is re-deployed from the front fender 20, so that the first camera 1012 can collect the rear view image, so that the driver can timely Find out about the vehicles behind you.
  • the described second control signal can be understood with reference to the aforementioned content in FIG. 2B , and details are not repeated here.
  • the second ultrasonic sensor 1015 is installed on the pan-tilt bracket 1011, and after the pan-tilt bracket 1011 is folded in the direction of the front fender 20, the second ultrasonic sensor 1015 faces the outside of the vehicle body, as shown in FIG. 5D for details. , shows a schematic structural diagram of another camera pan-tilt module.
  • the second ultrasonic sensor 1015 may also inform the control unit 102 of the second distance through the aforementioned LIN interface.
  • control unit 102 is further configured to: acquire the vehicle attitude information of the vehicle and/or the driver's facial feature information ; process the vehicle attitude information and/or the facial feature information of the driver to obtain the corner control information of the first camera 1012; control the rotation of the first camera 1012 according to the corner control information to obtain Make the first camera 1012 capture a first image whose first field of view meets the target range.
  • the vehicle posture information may include, but not limited to, steering wheel angle information, angle information of a deflection angle from the initial straight driving direction, etc., which is not limited here.
  • the described angle information of the deflection angle with the initial straight travel direction can be understood as the deflection angle angle information when the initial travel direction is straight travel and turns into a left turn, right turn or U-turn travel direction.
  • a synchronous serial bus (inter-integrated circuit, I2C) interface may serve as a data communication interface connecting the control unit 102 and a micro electro mechanical system (micro electro mechanical system, MEMS) 3-axis acceleration sensor.
  • the attitude information of the vehicle can be sent to the control unit 102 through the I2C interface.
  • the driver's facial feature information may include but not limited to the driver's eyebrow positioning information and/or the driver's eyeball positioning information, etc., which are not limited here.
  • the control unit 102 After acquiring the vehicle posture information and/or the driver's facial feature information, the control unit 102 obtains the corner control information of the first camera 1012 by processing the vehicle posture information and/or the driver's facial feature information.
  • the rotation angle control information of a camera 1012 may reflect the angle at which the first camera 1012 can rotate. Then, the control unit 102 controls the rotation of the first camera 1012 according to the rotation angle control information, so that the rotated first camera 1012 can collect a rear view image with a larger field of view, that is, a rear view image with a first field of view meeting the target range can be collected.
  • first image It should be noted that the described first image is a rear view image captured by the rotated first camera 1012 at the first viewing angle.
  • control unit 102 processes the vehicle attitude information and/or the driver's facial feature information to obtain the angle control information of the first camera 1012, which can actually be understood as being controlled by the control unit 102.
  • the system-on-chip (SOC) runs artificial intelligence (AI) algorithms, vision processing algorithms, etc. to process vehicle attitude information and/or driver's facial feature information.
  • AI artificial intelligence
  • FIG. 6 is a schematic diagram of the angle of view corresponding to the rear view image captured by the first camera after rotation. It can be seen from Fig. 6 that the driving direction of the driver's current driving vehicle is going straight, and now it is necessary to change the driving direction from going straight to turning left to pass through the traffic light intersection. If the first camera 1012 can collect a rearview image with an angle of view of 30° when it is not turned, and the control unit 102 processes the vehicle posture information and/or the driver's facial feature information, the first camera can obtain After the rotation angle control information of 1012, the first camera 1012 can be controlled to rotate 60°, that is, the first field of view angle is 60°.
  • the original unrotated first camera 1012 which can only collect rear-view images with a field of view of 30°, it can flexibly expand the field of view to 60°, so that the rotated first camera 1012 can collect the rear view image.
  • the rear-view image with a field angle of 60° realizes the expansion of the blind spot field of view. It should be noted that the above-mentioned 30° and 60° are only descriptions of an example, and are not limited in practical applications.
  • FIG. 7 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • the camera pan/tilt module 101 may also include: a second stepping motor 1016, the first camera 1012 passes through the second step
  • the feed motor 1016 is installed on the platform support 1011.
  • the second stepper motor 1016 is used for receiving the rotation angle control information sent by the control unit 102, and adjusting the rotation angle of the first camera 1012 according to the rotation angle control information.
  • the rotation angle control information can reflect the angle that the first camera 1012 can rotate, and the first camera 1012 is installed on the pan-tilt bracket 1011 by the second stepping motor 1016, not only the first camera 1012 can be adjusted by the second stepping motor 1016
  • the rotation angle of the camera 1012 can also provide a stable support for the first camera 1012 when the first camera 1012 is rotated.
  • FIG. 8 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • the electronic rearview mirror system 10 may also include: a first display 103, the first display 103 is installed on the B-pillar of the vehicle Above, the first display 103 is connected to the control unit 102 . Wherein, the control unit 102 is used to obtain the parking information of the vehicle, and send the rear view image to the first display 103 when the vehicle's driving speed is determined to drop to a first value according to the parking information, and the first value indicates that the vehicle stops running.
  • the first display 103 is used to display rear view images.
  • the current display is for the convenience of the driver to watch the rear view image in real time so as to make a driving strategy.
  • the passengers in the rear can't easily learn about situations such as the vehicles coming from behind from the display that the current driver watches, thus causing the passengers to have potential safety hazards when they get off the bus. Therefore, in order to make it easier for the passengers in the rear to watch the vehicles coming from behind in real time, another display (ie the aforementioned first display 103) can also be used to display the rear view images collected by the first camera 1012 for the passengers in the rear in real time.
  • the control unit 102 determines according to the parking information that the driving speed of the vehicle drops to the first value (for example: the driving speed drops to 0), it indicates that the passengers in the rear row may need to Get out of the vehicle.
  • the control unit 102 sends the rear view image obtained from the first camera 1012 to the first display 103, and the first display 103 displays the rear view image to the rear passengers for viewing, so that the rear passengers can view the rear in real time. Wait for the car to arrive.
  • a digital visual interface (digital visual interface, DVI) is a video interface standard protocol, which can be used to carry image data transmitted from the control unit 102 . Therefore, the control unit 102 can send the rearview image to the first display 103 through the DVI interface.
  • the installation of the first display 103 on the B-pillar of the vehicle can be understood as being installed on the B-pillar and facing the rear passengers.
  • the parking information of the vehicle may include, but not limited to, curbside parking, parking in a parking lot, etc., which are not limited here.
  • the rear view image may be the first image captured by the first camera 1012 at the first viewing angle after rotation, or the image captured by the first camera 1012 before the rotation, which will not be described here.
  • control unit 102 may be further configured to acquire first information, where the first information indicates the distance between the vehicle and the vehicle behind. Then, the control unit 102 determines a safe distance range when the passenger leaves the vehicle according to the rear view image and the first information, and instructs the passenger to leave the vehicle when the safe distance range is satisfied.
  • the rear millimeter-wave radar installed on the vehicle can collect the first information and send the first information to the control unit 102 .
  • the control unit 102 can, after determining the safe distance range, indicate that the passenger can safely get off the bus when the safe distance range is satisfied.
  • the control unit 102 may send a signal to the in-vehicle audio, and the in-vehicle audio informs the passenger that they can leave the vehicle within a safe distance.
  • the control unit 102 can also send prompt information to the first display 103, and the first display 103 displays the prompt information, and after viewing the prompt information from the first display 103, the passenger can also leave the vehicle within a safe distance .
  • FIG. 5A and FIG. 5B mainly describe the scheme of folding or unfolding the pan-tilt bracket 1011 in the scene of low-speed driving.
  • the solution of folding or unfolding the pan-tilt support 1011 will be described below from the scene of high-speed driving.
  • control unit 102 can also be used to acquire the driving speed of the vehicle, and send a first control signal to the first stepper motor 1013 when the driving speed is greater than or equal to a preset speed.
  • the control unit 102 may determine whether the driving speed of the vehicle is greater than or equal to a preset speed after acquiring the driving speed of the vehicle. If the driving speed is greater than or equal to the preset speed, it means that the camera gimbal module 101 is more likely to be affected by wind resistance at this driving speed. At this time, the control unit 102 may send a first control signal to the first stepper motor 1013 when the driving speed is greater than or equal to a preset speed.
  • the driving speed is 75km/h and the preset speed is 60km/h, it is obvious that 75km/h>60km/h, at this time the first control signal can be sent to the first stepper motor 1013 .
  • 75km/h and 60km/h are taken as examples for illustration, and this application does not make specific limitations.
  • a controller area network (controller area network, CAN) interface can be used as a data channel connecting the vehicle control system and the control unit 102, so after the vehicle control system acquires the driving speed of the vehicle, it can The interface informs the control unit 102 of the driving speed of the vehicle.
  • the first control signal can be understood with reference to the content described in FIG. 2B above, and details are not described here.
  • control unit 102 may also be configured to acquire the turn signal indication information of the vehicle, and send the second control signal to the first stepper motor 1013 according to the turn signal indication information.
  • the control unit 102 needs to send the second control signal to the first stepping motor 1013 according to the turn signal indication information of the vehicle after acquiring the turn signal indication information of the vehicle. Further, the first stepper motor 1013 can deploy the pan-tilt support 1011 from the front fender 20 based on the second control signal.
  • the driver wishes to drive in the left passing lane and overtake the vehicle in front, at this time the driver turns on the left turn signal.
  • the control unit 102 can acquire the indication information of the left turn signal, and inform the first stepper motor 1013 of the second control signal.
  • the first stepper motor 1013 controls the pan-tilt support 1011 to unfold from the front fender 20
  • the first camera 1012 in working condition can collect left rear view images, and also can collect right rear view images.
  • the indicator information of the turn signal includes but not limited to the indicator information of the left turn signal, the indicator information of the right turn signal, etc., which are not limited here.
  • the second control signal can be understood with reference to the content described in FIG. 2B , which will not be repeated here.
  • FIG. 9 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • the electronic rearview mirror system 10 may also include: a second camera 104 connected to the control unit 102 .
  • the second camera 104 is used to collect images of the driver's driving behavior.
  • the control unit 102 is further configured to send a second control signal to the first stepper motor 1013 according to the driver's driving behavior image.
  • the second camera 104 can be installed inside the vehicle, facing the driver, and is mainly used to collect images of the driver's driving behavior, such as: the driver's overall facial steering information, the driver's eyebrow positioning information and/or Eye positioning information, etc.
  • the driver's overall facial steering information such as: the driver's overall facial steering information, the driver's eyebrow positioning information and/or Eye positioning information, etc.
  • the image information of the driver's overall face turning to the left can be collected by the second camera 104 , and the image information of the overall face turning to the left can be sent to the control unit 102 .
  • the control unit 102 may send a second control signal to the first stepping motor 1013 according to the image information of the leftward rotation, so that the first stepping motor 1013 deploys the pan-tilt bracket 1011 from the front fender 20 .
  • the camera serial interface (camera serial interface, CSI) interface protocol is an interface protocol defined in the mobile industry processor interface (mobile industry processor interface, MIPI) protocol, which can connect the camera and the control unit 102 to transmit the camera The captured image. Therefore, the second camera 104 can send the driver's behavior image to the control unit 102 through the CSI-2 interface.
  • control unit 102 may also send the second control signal to the first stepper motor 1013 according to the driver's driving behavior image and the indicator information of the turn signal.
  • FIG. 10 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • the electronic rearview mirror system 10 may further include: a second display 105 connected to the control unit 102 .
  • the control unit 102 is further configured to send a rear view image to the second display 105 , and the rear view image is captured by the first camera 1012 .
  • the second display 105 is used to display rear view images.
  • the second display 105 is installed between the A-pillar and the windshield of the vehicle, and is used to display the rear view image collected by the first camera 1012, so that the driver can watch the rear view image in real time, satisfying the driver's requirements for the rear view.
  • the described rear view image may be the first image captured by the first camera 1012 at the first viewing angle after rotation, or it may be the first image captured by the first camera 1012 at the second viewing angle before the rotation image, which is not described here.
  • the second display 105 may also be called a combined head up display system (combiner head up display, C_HUD).
  • HDMI high definition multimedia interface
  • FIG. 11 is another schematic diagram of the structure of the electronic rearview mirror system provided by the embodiment of the present application.
  • the camera pan/tilt module 101 further includes a housing 1017 .
  • the shell 1017 is used to cover the first camera 1012 to reduce wind resistance experienced by the first camera 1012 and maintain a good aerodynamic shape.
  • the camera pan-tilt module includes a first camera, a pan-tilt bracket and a first stepping motor, and the pan-tilt bracket is connected to the front fender through the first stepping motor. Therefore, when the first camera is susceptible to bump damage or is affected by wind resistance, the first control signal can be generated, so that the first control signal can be used to control the pan-tilt support to be retracted towards the front fender of the vehicle, and then also Put away the first camera.
  • a second control signal can also be generated, so that the pan-tilt bracket can be controlled from The front fender of the vehicle is deployed so that the first camera can capture rear-view images.
  • first control signal and the second control signal can also be understood with reference to the content described in the aforementioned FIG. 2B-FIG. 11 , which will not be repeated here.
  • the method of generating the first control signal may be as follows, that is, the control method further includes: detecting a first distance, the first distance being the distance between the first obstacle and the pan/tilt bracket, and the second An obstacle is an obstacle in a first direction and/or a second direction of the pan/tilt bracket, and the first direction is opposite to the second direction; when the first distance is less than or equal to a preset distance, a first control signal is generated.
  • the control method further includes: detecting a first distance, the first distance being the distance between the first obstacle and the pan/tilt bracket, and the second An obstacle is an obstacle in a first direction and/or a second direction of the pan/tilt bracket, and the first direction is opposite to the second direction; when the first distance is less than or equal to a preset distance, a first control signal is generated.
  • the method of generating the second control signal may be as follows, that is, the control method further includes: after the pan/tilt support is retracted toward the front fender, detecting the second distance, the second The distance is the vertical distance between the first obstacle and the plane of the vehicle body of the front fender; when it is determined based on the second distance that the camera pan-tilt module has avoided the first obstacle, a second control signal is generated.
  • the control method further includes: after the pan/tilt support is retracted toward the front fender, detecting the second distance, the second The distance is the vertical distance between the first obstacle and the plane of the vehicle body of the front fender; when it is determined based on the second distance that the camera pan-tilt module has avoided the first obstacle, a second control signal is generated.
  • the manner of generating the first control signal may be as follows: acquiring the driving speed of the vehicle; and generating the first control signal when the driving speed is greater than or equal to a preset speed.
  • the manner of generating the second control signal may be as follows, that is, acquiring the turn signal indication information of the vehicle; and generating the second control signal based on the turn signal indication information.
  • the manner of generating the second control signal may be as follows: collecting the driver's driving behavior image; and generating the second control signal according to the driver's driving behavior image. Specifically, it can be understood with reference to the content described in FIG. 9 , and details are not described here.
  • the first control signal can be used to control the pan-tilt bracket to retract toward the front fender of the vehicle, and then also retract the first camera. rise.
  • the second control signal can also be used to control the pan-tilt bracket to move from the front wing of the vehicle Deployed in the panel, so that the first camera can collect rear view images.
  • control method may further include: acquiring the vehicle attitude information of the vehicle and/or the driver's facial feature information; processing the vehicle attitude information and/or the driver's facial feature information to obtain Rotation angle control information of the first camera; controlling rotation of the first camera according to the rotation angle control information, so that the first camera captures a first image whose first field of view meets the target range.
  • control method may further include: acquiring the parking information of the vehicle; when it is determined according to the parking information that the driving speed of the vehicle has dropped to a first value, displaying the rear view image through the first display, and the first display Installed on the B-pillar, the first value indicates that the vehicle is stopped, and the rear view image is collected by the first camera.
  • control method may further include: acquiring first information, the first information indicating the distance between the vehicle and the vehicle behind; determining a safe distance for passengers to leave the vehicle according to the rear view image and the first information range; instruct passengers to leave the vehicle according to the safe distance range.
  • control method may further include: displaying a rear view image through the second display, and the rear view image is collected by the first camera.
  • the control method may further include: displaying a rear view image through the second display, and the rear view image is collected by the first camera.
  • control method may further include: adjusting the rotation angle of the first camera according to the rotation angle control information. Specifically, it can be understood with reference to the content described in FIG. 7 above, and details are not described here.
  • the first camera when the first camera is folded in the direction of the front fender, the first camera is folded into the concave position of the shrapnel of the front fender; Pops out of the recessed position when deployed from the front fenders.
  • the first camera when the first camera is folded in the direction of the front fender, the first camera is folded into the concave position of the shrapnel of the front fender; Pops out of the recessed position when deployed from the front fenders.
  • control method provided in this embodiment can be understood specifically with reference to part of the content of the electronic rearview mirror system described in the optional examples in Fig. 2B-Fig. 11, and will not be described in detail here.
  • the camera pan/tilt module is installed on the front fender of the vehicle.
  • the first stepping motor retracts the pan/tilt bracket in the direction of the front fender It can be folded to realize the storage and hiding of the camera gimbal module, reduce driving wind resistance and avoid being damaged by bumps.
  • the first stepper motor deploys the pan-tilt support from the front fender according to the second control signal, so that the first camera can collect rear-view images in time.
  • FIG. 12B is another schematic diagram of the control method provided in the embodiment of the present application.
  • the control unit judges whether the driving speed of the vehicle is greater than or equal to a preset speed (for example, 60 km/h).
  • a preset speed for example, 60 km/h.
  • the operation shown in (1) below can be performed.
  • the operation shown in (2) below can be performed. details as follows:
  • the first stepper motor executes the second control signal sent by the control unit to unfold the camera pan-tilt module. At this time, the control unit projects the rear view image collected by the first camera to the second display.
  • the described second control signal can be understood with reference to the aforementioned content of FIG. 2B , and details are not repeated here.
  • the first stepper motor executes the first control signal sent by the control unit to retract the pan-tilt bracket and continuously monitor the demand.
  • the described first control signal can be understood with reference to the aforementioned content of FIG. 2B , and details are not repeated here.
  • the first ultrasonic sensor detects whether the first distance is less than or equal to the preset distance (for example, 30cm).
  • the first stepper motor executes the second control signal sent by the control unit to unfold the pan-tilt support. At this time, the control unit projects the rear view image collected by the first camera to the second display.
  • the first stepping motor executes the first control signal sent by the control unit to retract the pan-tilt support. Then, detect whether the second distance is greater than the known distance (for example, 10cm) by the second ultrasonic sensor, and when the second distance is greater than the known distance, the first stepping motor executes the second control signal sent by the control unit to unfold the pan-tilt stand. At this time, the control unit projects the rear view image collected by the first camera to the second display. On the contrary, when the second distance is less than or equal to the known distance, the first stepper motor executes the first control signal sent by the control unit to retract the pan-tilt support.
  • the described second distance can be understood with reference to the aforementioned content in FIG. 5C , and will not be repeated here.
  • FIG. 12B can be understood with reference to part of the content described in the foregoing FIGS. 2B-11 , and details are not repeated here.
  • the above-mentioned control unit and each device in the camera pan/tilt module can be realized by one physical device, or jointly realized by multiple physical devices, or a logical functional unit in one physical device.
  • This embodiment of the present application does not specifically limit it.
  • FIG. 13 is a schematic diagram of the hardware structure of the driving assistance device provided by the embodiment of the present application.
  • the driving assistance device may include an electronic control unit (electronic control unit, ECU), a first display, a second display, a camera pan/tilt module, and a second camera.
  • ECU electronic control unit
  • the aforementioned ECU may include a system-on-chip (SOC) and a microcontroller unit (MCU).
  • SOC is mainly used to execute the AI algorithm described in the embodiment of this application, process the sensor data obtained by each interface, and output the required data through the external communication interface.
  • the SOC includes an image signal processing (image signal processing, ISP) module, a central processing unit (central processing unit, CPU), a graphics processing unit (graphics processing unit, GPU), and a visual processing module.
  • the CPU, GPU, and visual processing modules run software algorithms for various processing of video data, including but not limited to image compression, AI algorithms, and logical judgments.
  • the MCU can be connected to the SOC through the serial peripheral interface (serial peripheral interface, SPI), universal asynchronous receiver/transmitter interface (universal asynchronous receiver/transmitter, UART), synchronous serial bus (Inter-Integrated Circuit, I2C) interface, It is used for the transmission of key control signals.
  • SPI serial peripheral interface
  • UART universal asynchronous receiver/transmitter
  • I2C synchronous serial bus
  • MCU can read data from sensors (for example: first ultrasonic sensor, second ultrasonic sensor and/or micro electro mechanical system (MEMS) 3-axis acceleration sensor, etc., run control logic, and combine
  • the execution command received by the SOC outputs the execution command to control the first stepping motor or the second stepping motor for execution.
  • MEMS micro electro mechanical system
  • the first display is connected to the SOC through a digital visual interface (DVI).
  • the DVI interface is a video interface standard designed to transmit uncompressed digitized video.
  • the DVI interface carries the image data transmitted to the first display.
  • the second display is connected to the SOC through a DVI interface or a high definition multimedia interface (high definition multimedia interface, HDMI).
  • HDMI interface is a fully digital video and sound sending interface, which can send uncompressed audio and video signals.
  • the HDMI interface carries the image data transmitted to the second display.
  • the radio detection and ranging radar can also be connected to the CPU in the SOC through a 1Gb LAN interface to transmit data such as the distance between the vehicle detected by the millimeter-wave radar and the rear vehicle, and the outline.
  • the described RADAR may also be referred to as millimeter wave radar.
  • the above-mentioned camera pan-tilt module includes a first stepping motor, a second stepping motor, a first ultrasonic sensor, a second ultrasonic sensor and a first camera. It should be noted that there may be two camera gimbal modules, which are respectively installed on the left front fender and the right front fender of the vehicle.
  • the first stepper motor and the second stepper motor are connected to the stepper motor driver through the drive interface, and the MCU can be connected to the stepper motor driver through the SPI interface, so that the MCU can be controlled through a general-purpose input and output interface (general-purpose input /output control, GPIO control) protocol carries a control signal (such as the first control signal or the second control signal) to the stepper motor driver, and the stepper motor driver converts the control signal to control the first stepper motor or the second stepper motor Two analog signals for stepper motors.
  • GPIO control general-purpose input /output control
  • the first ultrasonic sensor and the second ultrasonic sensor can be connected to the MCU through a local interconnect network (local interconnect network, LIN) interface port physical layer (physical, PHY) interface. And, the first ultrasonic sensor can perceive the distance (for example, the first distance) of the obstacle before and after the first camera, and transmit the distance to the MCU through the LIN PHY interface and the LIN protocol. Similarly, the second ultrasonic sensor can perceive the distance (for example, the second distance) of the first camera relative to the obstacle outside the vehicle body, and transmit the distance to the MCU through the LIN PHY interface.
  • local interconnect network local interconnect network, LIN
  • PHY physical layer
  • the first camera can collect rear view images, and can be connected to the CPU through a deserializer integrated circuit chip (integrated circuit, IC) interface, and transmit the video signal of the first camera to the CPU through the CSI-2 protocol.
  • the second camera can collect information such as the driver's behavior image, and connect to the CPU through the deserializer IC interface, and transmit the video signal of the second camera to the CPU through the CSI-2 protocol.
  • controller area network controller area network, CAN
  • the MEMS 3-axis acceleration sensor can be connected to the MCU through the I2C interface.
  • the MEMS 3-axis acceleration sensor is mainly used to sense the attitude of the vehicle relative to the direction of travel, and output the attitude data to the MCU, or transmit the attitude data to the SOC through the MCU.
  • the driving assistance control device may further include a memory, for example: Norflah, a solid state disk (solid state disk, SSD) and/or a low power memory (low power double data rate, LPDDR), etc., but not limited thereto.
  • the memory may exist independently, or the memory may be integrated with the above-mentioned SOC and other processors. Wherein, the memory is used to store computer-executed instructions for executing the solution of the present application, and the execution is controlled by processors such as SOC and MCU. Processors such as SOC and MCU are used to execute computer-executed instructions stored in the memory, so as to realize the control method described in FIG. 12A or FIG. 12B above in this application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one function in the unit.
  • the above-mentioned integrated functional units can be implemented in the form of hardware or in the form of software functional units.
  • FIG. 14 shows a schematic structural diagram of a driving assistance device.
  • an embodiment of the driving assistance device of the present application may include a generating module 1401 and a processing module 1402 .
  • the generating module 1401 is used for generating the first control signal or the second control signal.
  • the processing module 1402 is configured to fold the pan-tilt support toward the front fender of the vehicle according to the first control signal, or unfold the pan-tilt support from the front fender according to the second control signal.
  • the processing module 1402 is also used to detect the first distance, the first distance is the distance between the first obstacle and the pan-tilt support, and the first obstacle is the distance between the first direction and the pan-tilt support. /or an obstacle in the second direction, the first direction is opposite to the second direction.
  • the generating module 1401 is configured to generate a first control signal when the first distance is less than or equal to a preset distance.
  • the processing module 1402 is further configured to detect a second distance after the pan/tilt support is retracted in the direction of the front fender, and the second distance is between the first obstacle and the plane of the vehicle body of the front fender the vertical distance between them.
  • the generating module 1401 is further configured to generate a second control signal when it is determined based on the second distance that the camera pan/tilt module has avoided the first obstacle.
  • the driving assistance system further includes an acquisition module.
  • the obtaining module is used to obtain the driving speed of the vehicle.
  • the generating module 1401 is used for generating a first control signal when the driving speed is greater than or equal to a preset speed.
  • the obtaining module is used to obtain the indicator information of the turn signal of the vehicle.
  • the generating module 1401 is configured to generate a second control signal based on the indicator information of the turn signal.
  • the acquisition module is used to acquire driving behavior images of the driver.
  • the generating module 1401 is used for generating a second control signal according to the driver's driving behavior image.
  • the obtaining module is also used to obtain vehicle attitude information of the vehicle and/or facial feature information of the driver.
  • the processing module 1402 processes the vehicle posture information and/or the driver's facial feature information to obtain the rotation angle control information of the first camera, and controls the rotation of the first camera according to the rotation angle control information, so that the first camera captures the first view.
  • the acquisition module is also used to acquire parking information of the vehicle.
  • the processing module 1402 is configured to display a rear view image through the first display when it is determined according to the parking information that the vehicle's driving speed has dropped to a first value.
  • the first display is installed on the B-pillar. The first value indicates that the vehicle is stopped, and the rear view image Captured by the first camera.
  • the acquiring module is further configured to acquire first information, where the first information indicates the distance between the vehicle and the vehicle behind.
  • the processing module 1402 is configured to determine a safe distance range for the passenger when leaving the vehicle according to the rear view image and the first information, and instruct the passenger to leave the vehicle according to the safe distance range.
  • the processing module 1402 is further configured to display a rearview image through the second display, and the rearview image is collected by the first camera.
  • the processing module 1402 is further configured to adjust the rotation angle of the first camera according to the rotation angle control information.
  • the first camera when the pan-tilt bracket is folded in the direction of the front fender, the first camera is folded into the concave position of the shrapnel of the front fender; Pops out of the recessed position when unfolded in the daughterboard.
  • the driving assistance device is presented in the form of dividing each functional unit in an integrated manner.
  • the "functional unit” here may refer to an application-specific integrated circuit (ASIC), a processor and memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions device.
  • ASIC application-specific integrated circuit
  • the driving assistance device may take the form shown in FIG. 13 .
  • the processor 1301 in FIG. 13 may call the computer-executed instructions stored in the memory 1302, so that the driving assistance device executes the control method in FIG. 12A, FIG. 12B or any possible implementation manner.
  • the functions/implementation process of the generation unit 1401 and the processing unit 1402 in FIG. 14 can be implemented by mobilizing the computer execution instructions stored in the memory 1302 by the processor 1301 in FIG. 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)

Abstract

一种电子后视镜系统,包括摄像头云台模组(101)和控制单元(102)。摄像头云台模组(101)安装在车辆的前翼子板(20)上,摄像头云台模组(101)包括云台支架(1011)、第一摄像头(1012)和第一步进电机(1013)。第一摄像头(1012)安装在云台支架(1011)上,云台支架(1011)通过第一步进电机(1013)与前翼子板(20)连接。第一步进电机(1013)与控制单元(102)连接。控制单元(102)生成第一控制信号或第二控制信号,并向第一步进电机(1013)发送第一控制信号或第二控制信号。第一步进电机(1013)根据第一控制信号将云台支架(1011)向前翼子板(20)的方向收折起,或者根据第二控制信号将云台支架(1011)从前翼子板(20)中展开。还公开了一种驾驶辅助控制系统、一种车辆、一种控制方法、一种驾驶辅助设备、一种计算机可读存储介质和一种包含指令的计算机程序产品。此电子后视镜系统不仅实现摄像头云台模组的收纳隐藏,避免被磕碰损坏,而且也自适应地展开已收纳的摄像头云台模组,使第一摄像头及时地采集后视图像。

Description

一种电子后视镜系统和控制方法 技术领域
本申请涉及汽车电子控制技术领域,具体涉及一种电子后视镜系统和控制方法。
背景技术
随着汽车工业从机械化向电子化转型,车辆上常用的玻璃后视镜逐步被替代,电子后视镜系统逐步出现在概念车和量产的乘用车上。目前的电子后视镜系统结构如下所述:左后视摄像头和右后视摄像头替代玻璃后视镜采集后视图像,并通过驾驶座舱的显示器实时显示从后视镜视角观察到的视野。通过电子后视镜,选用较大视场角(field of view,FOV)的摄像头,使得驾驶员可以获得相比玻璃后视镜更加广阔的视野。
在相关方案中,普遍借用了原始后视镜的安装平台来安装电子后视镜系统的摄像头模组。即将摄像头模组固定安装在左侧玻璃后视镜和右侧玻璃后视镜的位置,代替原有的左侧玻璃后视镜和右侧玻璃后视镜;或者直接将摄像头模组固定安装在车门上。
然而,在车辆低速行驶过程中,如果驾驶员不注意,现有方案的后视摄像头模组容易被磕碰损坏,客户侧维护费用高。或者,在高速行驶场景中,外置的摄像头模组也存在风阻。
发明内容
本申请实施例提供了一种电子后视镜系统和控制方法,不仅实现摄像头云台模组的收纳隐藏,降低行车风阻且避免被磕碰损坏,而且也可以自适应地打开已收纳的摄像头云台模组,及时通过第一摄像头采集后视图像。
第一方面,本申请提供了一种电子后视镜系统,该电子后视镜系统应用于车辆。电子后视镜系统包括摄像头云台模组和控制单元。其中,摄像头云台模组安装在车辆的前翼子板上,该摄像头云台模组包括云台支架、第一摄像头和第一步进电机。第一摄像头安装在云台支架上,云台支架通过第一步进电机与前翼子板连接。第一步进电机与控制单元连接。控制单元用于生成第一控制信号或第二控制信号,并向第一步进电机发送第一控制信号或第二控制信号。第一步进电机用于根据第一控制信号将云台支架向前翼子板的方向收折起,或者,根据第二控制信号将云台支架从前翼子板中展开。通过上述方式,第一步进电机根据第一控制信号将云台支架向前翼子板的方向收折起,实现摄像头云台模组的收纳隐藏,降低行车风阻且避免被磕碰损坏。或者,第一步进电机根据第二控制信号将云台支架从前翼子板中展开,随即启动第一摄像头,及时地采集后视图像。
在一些可能的实施方式中,摄像头云台模组还包括第一超声波传感器。第一超声波传感器与控制单元连接。第一超声波传感器,用于检测第一距离,第一距离为第一障碍物与云台支架之间的距离,第一障碍物为在云台支架的第一方向和/或第二方向上的障碍物,第一方向和第二方向相对。控制单元用于在第一距离小于或等于预设距离时,向第一步进电机发送第一控制信号。通过上述方式,通过检测障碍物与云台支架之间的距离来判断是否需要向第一步进电机发送第一控制信号,能够适用于低速驾驶的场景中,避免摄像头云台 模组被磕碰损坏。
在另一些可能的实施方式中,摄像头云台模组还包括第二超声波传感器。第二超声波传感器与控制单元连接。第二超声波传感器,用于当云台支架向前翼子板的方向收起后,检测第二距离,第二距离为第一障碍物和前翼子板的车身平面之间的垂直距离。当基于第二距离确定摄像头云台模组已避开第一障碍物时,控制单元用于向第一步进电机发送第二控制信号。
在另一些可能的实施方式中,控制单元还用于获取车辆的行驶速度,并在行驶速度大于或等于预设速度时,向第一步进电机发送第一控制信号。通过上述方式,通过行驶速度来判断是否需要向第一步进电机发送第一控制信号,能够适用于高速驾驶的场景中,收起摄像头云台模组,降低风阻。
在另一些可能的实施方式中,控制单元还用于获取车辆的转向灯指示信息,并根据转向灯指示信息,向第一步进电机发送第二控制信号。通过上述方式,通过所获取的转向灯指示信息向第一步进电机发送第二控制信号,能够适用于高速场景根据需要展开摄像头云台模组。
在另一些可能的实施方式中,电子后视镜系统还包括第二摄像头,第二摄像头与控制单元连接。其中,第二摄像头用于采集驾驶员的驾驶行为图像。控制单元还用于根据驾驶员的驾驶行为图像向第一步进电机发送第二控制信号。
在另一些可能的实施方式中,控制单元用于获取车辆的车辆姿态信息和/或驾驶员的面部特征信息,并对车辆姿态信息和/或驾驶员的面部特征信息进行处理,以得到第一摄像头的转角控制信息。然后,控制单元还根据转角控制信息控制第一摄像头转动,以使第一摄像头采集到第一视场角满足目标范围的第一图像。通过控制第一摄像头转动,使得转动后的第一摄像头能够在更大的视场角中采集第一图像,不仅扩大了盲区视野范围,而且也可以进一步使驾驶员驾驶车辆时不剐蹭到障碍物,利于行车安全。
在另一些可能的实施方式中,电子后视镜系统包括第一显示器,第一显示器安装在车辆的B柱上,第一显示器与控制单元连接。控制单元用于获取车辆的停车信息,并根据停车信息确定车辆的行驶速度下降至第一值时,判断已车辆已停止行驶,将后视图像发送至第一显示器,第一值指示车辆停止行驶,后视图像由第一摄像头采集得到。第一显示器,用于显示后视图像。通过第一显示器将从第一摄像头中获取到的后视图像显示给后排乘客观看,便于后排乘客实时查看后方来车等情况。
在另一些可能的实施方式中,控制单元还用于获取第一信息,第一信息指示车辆与后方车辆之间的距离。然后控制单元还根据后视图像和第一信息确定乘客离开车辆时的安全距离范围,并在满足安全距离范围时,指示乘客离开车辆。
在另一些可能的实施方式中,电子后视镜系统还包括第二显示器,第二显示器与控制单元连接。控制单元,还用于向第二显示器发送后视图像,后视图像由第一摄像头采集得到。第二显示器,用于显示后视图像。通过第二显示器显示第一摄像头采集到的后视图像,使得驾驶员能够实时观看后视图像,满足驾驶员对于后视镜的需求。
在另一些可能的实施方式中,摄像头云台模组还包括第二步进电机,第一摄像头通过 第二步进电机安装在云台支架上。第二步进电机用于接收控制单元发送的转角控制信息,并根据转角控制信息调整第一摄像头的转动角度。通过第二步进电机将第一摄像头安装在云台支架上,不仅可以通过第二步进电机调整第一摄像头的转动角度,而且还可以在转动第一摄像头时,为第一摄像头提供稳定的支撑。
在另一些可能的实施方式中,第一摄像头在云台支架向前翼子板的方向收折起时,收折入前翼子板的弹片的凹陷位置;或者,第一摄像头在云台支架从前翼子板中展开时,从凹陷位置弹出。通过上述方式,在第一摄像头在云台支架向前翼子板的方向收折起时,该第一摄像头可以收折入该前翼子板的弹片的凹陷位置。不仅使得整体的第一摄像头完全地容纳在该凹陷位置中,而且也使得云台支架的表面与车身平面齐平,较为美观。或者,在展开时,该弹片可以填充该凹陷位置,使得车身平面没有凹陷,保证良好的气动外形。
在另一些可能的实施方式中,摄像头云台模组还包括外壳,外壳用于覆盖第一摄像头,保证良好的气动外形。
第二方面,本申请实施例提供一种控制方法,该控制方法应用于电子后视镜系统,该电子后视镜系统应用于车辆。其中,电子后视镜系统包括摄像头云台模组和控制单元,摄像头云台模组安装在车辆的前翼子板上,该摄像头云台模组可以包括云台支架、第一摄像头和第一步进电机。第一摄像头安装在云台支架上,云台支架通过第一步进电机与前翼子板连接。第一步进电机与控制单元连接。在该控制方法中,生成第一控制信号或第二控制信号,并根据第一控制信号将云台支架向车辆的前翼子板的方向收折起,或者,根据第二控制信号将云台支架从前翼子板中展开。
在一些可能的示例中,该控制方法还包括检测第一距离,第一距离为第一障碍物与云台支架之间的距离,第一障碍物为在云台支架的第一方向和/或第二方向上的障碍物,第一方向和第二方向相对;在第一距离小于或等于预设距离时,生成第一控制信号。
在一些可能的示例中,该控制方法还包括在云台支架向前翼子板的方向收起后,检测第二距离,第二距离为第一障碍物和前翼子板的车身平面之间的垂直距离;基于第二距离确定摄像头云台模组已避开第一障碍物时,生成第二控制信号。
在一些可能的示例中,该控制方法还包括获取车辆的行驶速度;在行驶速度大于或等于预设速度时,生成第一控制信号。
在一些可能的示例中,该控制方法还包括获取车辆的转向灯指示信息;基于转向灯指示信息,生成第二控制信号。
在一些可能的示例中,该控制方法还包括采集驾驶员的驾驶行为图像;根据驾驶员的驾驶行为图像生成第二控制信号。
在一些可能的示例中,该控制方法还包括获取车辆的车辆姿态信息和/或驾驶员的面部特征信息;对车辆姿态信息和/或驾驶员的面部特征信息进行处理,以得到第一摄像头的转角控制信息;根据转角控制信息控制第一摄像头转动,以使第一摄像头采集到第一视场角满足目标范围的第一图像。
在一些可能的示例中,该控制方法还包括获取车辆的停车信息;在根据停车信息确定车辆的行驶速度下降至第一值时,通过第一显示器显示后视图像,第一显示器安装在B柱 上,第一值指示车辆停止行驶,后视图像由第一摄像头采集得到。
在一些可能的示例中,该控制方法还包括获取第一信息,第一信息指示车辆与后方车辆之间的距离;根据后视图像和第一信息确定乘客离开车辆时的安全距离范围;并在满足安全距离范围时,指示乘客安全地离开车辆。
在一些可能的示例中,该控制方法还包括:通过第二显示器显示后视图像,后视图像由第一摄像头采集得到。
在一些可能的示例中,该控制方法还包括根据转角控制信息调整第一摄像头的转动角度。
在一些可能的示例中,第一摄像头在云台支架向前翼子板的方向收折起时,收折入前翼子板的弹片的凹陷位置;或者,第一摄像头在云台支架从前翼子板中展开时,从凹陷位置弹出。
第三方面,本申请实施例提供了一种驾驶辅助控制系统,该驾驶辅助控制系统包括前述第一方面或第一方面任意一种可能的实施方式中所描述的电子后视镜系统。其中,该电子后视镜系统包括控制单元、两个摄像头云台模组、两个第一显示器和一个第二显示器。一个摄像头云台模组安装在车辆的左侧前翼子板上,另一个摄像头云台模组安装车辆的右侧前翼子板上;一个第一显示器安装在车辆的左侧B柱上,另一个第一显示器安装在车辆的右侧B柱上。
第四方面,本申请实施例提供了一种车辆,该车辆包括前述第一方面或第一方面任意一种可能的实施方式中所描述的电子后视镜系统。其中,该电子后视镜系统包括控制单元、两个摄像头云台模组、两个第一显示器和一个第二显示器。一个摄像头云台模组安装在车辆的左侧前翼子板上,另一个摄像头云台模组安装车辆的右侧前翼子板上;一个第一显示器安装在车辆的左侧B柱上,另一个第一显示器安装在车辆的右侧B柱上。
本申请第五方面提供一种驾驶辅助设备,可以包括:存储器,用于存储计算机可读指令;还可以包括,与存储器耦合的处理器,用于执行存储器中的计算机可读指令从而执行如第二方面或第二方面任意一种可能的实施方式中所描述的方法。
本申请第六方面提供一种计算机可读存储介质,当指令在计算机装置上运行时,使得计算机装置执行如第二方面或第二方面任意一种可能的实施方式中所描述的方法。
本申请第七方面提供一种计算机程序产品,当在计算机上运行时,使得计算机可以执行如第二方面或第二方面任意一种可能的实施方式中所描述的方法。
本申请第八方面提供一种芯片系统,该芯片系统可以包括处理器,用于支持车辆或者驾驶辅助设备实现上述第二方面或第二方面任意一种可能的实施方式中所描述的方法中所涉及的功能。
本申请实施例提供的技术方案中,摄像头云台模组安装在车辆的前翼子板上,一方面,第一步进电机根据第一控制信号将云台支架向前翼子板的方向收折起,实现摄像头云台模组的收纳隐藏,降低行车风阻且避免被磕碰损坏。另一方面,第一步进电机根据第二控制信号将云台支架从前翼子板中展开,随即启动第一摄像头,及时地采集后视图像。
附图说明
图1为相关方案中安装摄像头模组的示意图;
图2A为本申请实施例提供的一种整车系统的示意图;
图2B为本申请实施例提供的电子后视镜系统的架一种构示意图;
图3A为本申请实施例提供的摄像头云台模组的一种安装示意图;
图3B为本申请实施例提供的摄像头云台模组的一个结构示意图;
图3C为本申请实施例提供的云台支架的示意图;
图4A为收起摄像头云台模组的示意图;
图4B为展开摄像头云台模组的示意图;
图5A为本申请实施例提供的电子后视镜系统的另一种架构示意图;
图5B为本申请提供的摄像头云台模组的另一种结构示意图;
图5C为本申请实施例提供的电子后视镜系统的另一种架构示意图;
图5D为本申请提供的摄像头云台模组的另一种结构示意图;
图6为转动后的第一摄像头采集后视图像时所对应视场角的示意图;
图7为本申请实施例提供的电子后视镜系统的另一种架构示意图;
图8为本申请实施例提供的电子后视镜系统的另一种架构示意图;
图9为本申请实施例提供的电子后视镜系统的另一种架构示意图;
图10为本申请实施例提供的电子后视镜系统的另一种架构示意图;
图11为本申请实施例提供的电子后视镜系统的另一种架构示意图;
图12A为本申请实施例中提供的控制方法的一个示意图;
图12B为本申请实施例中提供的控制方法的另一种示意图;
图13为本申请实施例提供的驾驶辅助设备的硬件结构示意图;
图14为本申请实施例提供的驾驶辅助设备的结构示意图。
具体实施方式
本申请实施例提供了一种电子后视镜系统和控制方法,不仅实现摄像头云台模组的收纳隐藏,降低行车风阻且避免被磕碰损坏,而且也可以自适应地展开已收纳的摄像头云台模组,使得第一摄像头及时地采集后视图像。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着汽车工业从机械化向电子化转型,电子后视镜系统逐步替代车辆上常用的玻璃后视镜,为驾驶员提供相比玻璃后视镜更加广阔的后视视野。然而,在相关方案中,普遍借用了原始后视镜的安装平台来安装电子后视镜系统的摄像头模组。图1为相关方案中安装摄像头模组的示意图。如图1所示,将摄像头模组替换原有的左侧玻璃后视镜和右侧玻璃后视镜,并安装在原有的左侧玻璃后视镜和右侧玻璃后视镜的位置。或者,将摄像头模组固定安装在车门上。但是在采用安装在左侧和右侧玻璃后视镜位置的摄像头模组、或者安装在车门上的摄像头摸着采集后视图像过程中,在车辆低速行驶的情形下,如果驾驶员不注意,外置的摄像头模组容易被磕碰损坏,客户侧维护费用高。或者,在高速行驶场景中,外置的摄像头模组也存在风阻。
因此,为了解决外置的摄像头模组在使用过程中易被磕碰,以及容易受到行驶风险的影响,本申请提供了一种电子后视镜系统10。图2A为本申请实施例提供的一种整车系统的示意图。如图2A所示,整车系统包括中央网关,以及还包括动力总成系统、车身电子系统、车辆安全系统、娱乐信息系统以及驾驶辅助控制系统。其中,该驾驶辅助控制系统又可以包括指车道偏离预警系统(lane departure warning system,LDSW)、自适应巡航控制(adaptive cruise control,ACC)系统、自动泊车系统,以及该电子后视镜系统10。所提及的电子后视镜系统10可以应用在车辆中,可有效地实现摄像头模组的收纳隐藏,避免被磕碰损坏,以及降低行车风阻;或者,适时地展开已收纳的摄像头模组,使得第一摄像头及时地采集后视图像。上述的车辆可以为智能汽车、桥车、卡车、公共汽车、施工车辆、柴油车等,本申请实施例中不做特别的限定。
图2B为本申请实施例提供的电子后视镜系统的一种架构示意图。
如图2B所示,本申请实施例提供的电子后视镜系统10可以包括摄像头云台模组101和控制单元102。该摄像头云台模组101包括云台支架1011、第一摄像头1012和第一步进电机1013。其中,上述的控制单元102,用于生成第一控制信号或第二控制信号,并向第一步进电机1013发送第一控制信号或第二控制信号。第一步进电机1013,用于根据第一控制信号将云台支架1011向前翼子板20的方向收折起,或者,根据第二控制信号将云台支架1011从前翼子板20中展开。
需说明,该摄像头云台模组101安装在车辆的前翼子板20中,能够降低机械振动和冲击带来的风险,具体可以参照图3A示出了摄像头云台模组101的安装示意图进行理解。另外,图3B示出了本申请实施例提供的摄像头云台模组101的一个结构示意图。从图3B可以看出,第一摄像头1012安装在云台支架1011上,该云台支架1011通过第一步进电机1013和车辆的前翼子板20连接。需说明,图3A和图3B中所示出的云台支架1011仅仅是一个示意图,在实际应用中,该云台支架1011的结构并不限于图3A或图3B所示的矩形结构。譬如,该云台支架1011的结构可以与机翼形状类似,具体参照图3C进行理解。
在该示例中,由于驾驶员无法时刻注意该摄像头云台模组101是否被较近距离的障碍物剐蹭,损坏摄像头云台模组101;或者在高速行车的过程中,风阻存在。因此,为了在行车过程中,避免摄像头云台模组101被磕碰损坏等,该控制单元102可以生成第一控制信号,并发送该第一控制信号至第一步进电机1013。这样,第一步进电机1013在接收到该第一控 制信号后,可以根据该第一控制信号将该云台支架1011向前翼子板20的方向收折起,从而避免了整个摄像头云台模组101被损坏。另外,由于第一摄像头1012安装在该云台支架1011上,因此在第一步进电机1013根据该第一控制信号将该云台支架1011向前翼子板20的方向收折起的时候,也能够驱动该第一摄像头1012往前翼子板20的方向收折。图4A示出了收起摄像头云台模组101的示意图。从图4A可以看出,将云台支架1011向前翼子板20的方向收起后,使得整个摄像头云台模组101贴近车身,避免用于采集后视图像的第一摄像头1012被磕碰损坏等现象发生。
另外,在摄像头云台模组101被收折的情况下,若驾驶员希望能够通过该摄像头云台模组101中的第一摄像头1012采集后视图像,那么该控制单元102还可以生成第二控制信号,并向该第一步进电机1013发送该第二控制信号。这样,第一步进电机1013能够根据该第二控制信号将该云台支架1011从前翼子板20中展开。进一步地,驱动该第一摄像头1012也从前翼子板20中展开,以便于第一摄像头1012采集后视图像。图4B示出了展开摄像头云台模组101的示意图。从图4B可以看出,将云台支架1011从前翼子板20中展开以后,使得整个摄像头云台模组101也从前翼子板20中展开,利于第一摄像头1012能够采集后视图像。
需说明,上述图2B所描述的电子后视镜系统10包括摄像头云台模组101,可以理解成包括两个摄像头云台模组101。其中,一个摄像头云台模组101安装在车辆的左侧前翼子板20上,另一个摄像头云台模组101安装在车辆的右侧前翼子板20上,具体安装的方式可以参照前述图3A进行理解。控制单元102向第一步进电机1013发送第一控制信号或第二控制信号,也可以理解成控制单元102向安装在左侧前翼子板20上的摄像头云台模组101中的第一步进电机1013发送,以及向安装在右侧前翼子板20上的摄像头云台模组101中的第一步进电机1013发送。上述图2B仅以一个摄像头云台模组101为例进行说明。
此外,安装在左侧前翼子板20上的摄像头云台模组101中的第一摄像头1012主要用于采集左侧后视图像,而安装在右侧前翼子板20上的摄像头云台模组101中的第一摄像头1012主要用于采集右侧后视图像。上述图2B所描述的第一摄像头1012可以为用于采集左侧后视图像的摄像头,也可以为用于采集右侧后视图像的摄像头,此处不做具体限定。
值得注意的是,本申请提供的第一步进电机1013均与控制单元102连接。示例性地,驱动接口可以连接步进电机的线圈绕组,为步进电机提供驱动电能。因此,第一步进电机1013可以通过驱动接口与控制单元102连接。上述所描述的控制单元102可以是电子控制单元(electronic control unit,ECU),此处不做具体限定说明。
在一些可选的示例中,前翼子板20可以包括弹片201。在云台支架1011向前翼子板20的方向收折起时,弹片201被顶入前翼子板20内部,给第一摄像头1012腾出空间,使得该第一摄像头1012可以收折入该前翼子板20的弹片201的凹陷位置。不仅使得整体的第一摄像头1012完全地容纳在该凹陷位置中,而且也使得云台支架1011的表面与车身平面齐平,较为美观。同样地,在云台支架1011从前翼子板20中展开时,该第一摄像头1012也可以从凹陷位置中弹出,此时弹片201可以填充该凹陷位置,使得车身平面没有凹陷,保证良好的气动外形。
需说明,由于在不同的行驶场景中,未收折起的摄像头云台模组101会遭到不同程度的 损坏。例如,在低速行驶的场景中,常常会因为驾驶员无法时刻注意到距离较近的障碍物对于该摄像头云台模组101的磕碰。或者,在高速行驶的场景中,风阻存在。因此,该控制单元102可以在不同的场景中,向第一步进电机1013发送第一控制信号或者第二控制信号。下面将主要从低速行驶的场景和高速行驶的场景中分别描述:
(一)低速行驶的场景
图5A为本申请实施例提供的电子后视镜系统的另一种架构示意图。
如图5A所示,在前述图2B提供的电子后视镜系统10的基础上,该摄像头云台模组101还可以包括:第一超声波传感器1014,该第一超声波传感器1014与控制单元102连接。其中,第一超声波传感器1014用于检测第一距离。控制单元102用于在第一距离小于或等于预设距离时,向第一步进电机1013发送第一控制信号。
在该示例中,由于车辆在行驶过程中,障碍物可能出现在云台支架1011的前方位置和/或后方位置上,外置的摄像头云台模组101因而可能会触碰到位于前方位置和/或后方位置上的障碍物,从而造成损坏。图5B为本申请提供的另一种摄像头云台模组的结构示意图。从图5B可以看出,第一超声波传感器1014安装在云台支架1011上。通过第一超声波传感器1014可以直接探测到第一障碍物与云台支架1011之间的距离,即第一距离。这样,在第一超声波传感器1014探测得到第一距离后,将该第一距离告知控制单元102。示例性地,局域互联网络(local interconnect network,LIN)接口可以作为连接超声波传感器和控制单元102之间的数据通道,能够用来传输该超声波传感器探测到的障碍物距离信息。因此,第一超声波传感器1014可以通过LIN接口将第一距离告知控制单元102。控制单元102在接收到第一距离后,将该第一距离与预设距离进行判断,并在判断出第一距离小于或等于预设距离时,向第一步进电机1013发送该第一控制信号。举例来说,若预设距离为0.5米,而探测到的第一距离为0.3米,此时控制单元102可以确定出0.3米小于0.5米,并将第一控制信号发送至第一步进电机1013。
需说明,预设距离可以理解成处于展开状态的摄像头云台模组101易触碰到障碍物时的距离。上述的第一距离为第一障碍物与云台支架1011之间的距离。第一障碍物可以理解成在该云台支架1011的第一方向和/或第二方向上的障碍物,第一方向和第二方向相对。示例性地,以云台支架1011为参照物,第一方向可以理解成该云台支架1011的前方位置,第二方向可以理解成该云台支架1011的后方位置。此外,可以将车头方向理解为前方。或者,第一方向也可以理解成云台支架1011的后方位置,第二方向也可以理解成云台支架1011的前方位置,此处不做限定说明。
另外,第一超声波传感器1014可以理解成由两个超声波子传感器组成。其中,一个超声波子传感器可以用来采集第一方向上的第一障碍物与云台支架1011之间之间的距离,另一个超声波子传感器可以用来采集第二方向上的第一障碍物与云台支架1011之间之间的距离。举例来说,以第一方向为云台支架1011的前方位置,第二方向为云台支架1011的后方位置为例,并且以车辆行驶方向为正前方,将超声波子传感器A安装在云台支架1011朝向该正前方的前端位置,以及将超声波子传感器B安装在云台支架1011的后端位置。这样,通过超声波子传感器A可以探测到该位于第一方向上的第一障碍物与云台支架1011之间的距离, 以及通过超声波子传感器B可以探测到该位于第二方向上的第一障碍物与云台支架1011之间的距离。
另外,第一控制信号可以参照前述图2B中的内容进行理解,此处不做赘述。在第一距离大于预设距离时,可以反映出该摄像头云台模组101可以安全地通过该第一障碍物,不被第一障碍物磕碰。
图5C为本申请实施例提供的电子后视镜系统的另一种架构示意图。
如图5C所示,在前述图5A或图5B提供的电子后视镜系统10的基础上,该摄像头云台模组101还可以包括:第二超声波传感器1015,第二超声波传感器1015与控制单元102连接。其中,第二超声波传感器1015用于在云台支架1011向前翼子板20的方向收起后,检测第二距离;控制单元102用于在根据第二距离确定摄像头云台模组101已避开第一障碍物时,向第一步进电机1013发送第二控制信号。
在该示例中,第二距离可以理解成第一障碍物和前翼子板20的车身平面之间的垂直距离。在云台支架1011向前翼子板20的方向收起后,整体的摄像头云台模组101贴近于车辆的车身平面,并且用于采集第一距离的第一超声波传感器1014处于不工作的状态。因此,在云台支架1011向前翼子板20的方向收起后(具体参见前述图4A),可以通过安装在云台支架1011上的第二超声波传感器1015探测第二距离。这样,控制单元102在接收到第二超声波传感器1015发送的第二距离后,在根据第二距离判断出摄像头云台模组101已顺利避开第一障碍物时,可以向第一步进电机1013发送第二控制信号。进一步地,第一步进电机1013在接收到该第二控制信号后,重新将云台支架1011从前翼子板20中展开,使得第一摄像头1012可以采集后视图像,以便于驾驶员可以及时了解后方车辆等情况。所描述的第二控制信号可以参照前述图2B的内容进行理解,此处不做赘述。
需说明,该第二超声波传感器1015安装在云台支架1011上,并且在云台支架1011向前翼子板20的方向收折后,该第二超声波传感器1015朝向车身外部,具体可以参见图5D,示出了另一种摄像头云台模组的结构示意图。另外,第二超声波传感器1015也可以通过前述所描述的LIN接口将第二距离告知控制单元102。
在另一些示例中,在上述图2B-图5D所描述的电子后视镜系统10的基础上,控制单元102还用于:获取所述车辆的车辆姿态信息和/或驾驶员的面部特征信息;对所述车辆姿态信息和/或所述驾驶员的面部特征信息进行处理,以得到所述第一摄像头1012的转角控制信息;根据所述转角控制信息控制所述第一摄像头1012转动,以使所述第一摄像头1012采集到第一视场角满足目标范围的第一图像。
在该示例中,车辆姿态信息可以包括但不限于方向盘转角信息、与初始直行行驶方向的偏转角的角度信息等,此处不做限定。所描述的与初始直行行驶方向的偏转角的角度信息,可以理解成从初始的行驶方向为直行,转变成左转、右转或者掉头等行驶方向时的偏转角的角度信息。示例性地,同步串行总线(inter-integrated circuit,I2C)接口可以作为连接控制单元102和微电机系统(micro electro mechanical system,MEMS)3轴加速度传感器之间的数据通信接口。因此,在通过MEMS3轴加速度传感器采集到该车辆的姿态信息后,可以通过该I2C接口将车辆姿态信息发送至控制单元102。另外,驾驶员的 面部特征信息可以包括但不限于驾驶员的眉心定位信息和/或驾驶员的眼球定位信息等,此处不做限定。
控制单元102在获取到车辆姿态信息和/或驾驶员的面部特征信息后,通过对车辆姿态信息和/或驾驶员的面部特征信息进行处理,得到该第一摄像头1012的转角控制信息,该第一摄像头1012的转角控制信息可以反映出第一摄像头1012可以转动的角度。然后,控制单元102再根据转角控制信息控制第一摄像头1012转动,使得转动后的第一摄像头1012能够采集到更大视场角的后视图像,即采集到第一视场角满足目标范围的第一图像。需说明,所描述的第一图像为转动后的第一摄像头1012在第一视场角采集到的后视图像。示例性地,前述所提及的控制单元102对车辆姿态信息和/或驾驶员的面部特征信息进行处理,得到该第一摄像头1012的转角控制信息,实际上可以理解成由该控制单元102中的系统级芯片(system on chip,SOC)运行人工智能(artificial intelligence,AI)算法、视觉处理算法等对车辆姿态信息和/或驾驶员的面部特征信息进行处理。
举例来说,图6为转动后的第一摄像头采集后视图像时所对应视场角的示意图。从图6可以看出,驾驶员当前驾驶车辆的行驶方向为直行,现在需要从直行转变成左转的行驶方向通过红绿灯路口。若第一摄像头1012在未转动时能够采集到视场角为30°的后视图像,而在控制单元102通过对车辆姿态信息和/或驾驶员的面部特征信息进行处理,得到该第一摄像头1012的转角控制信息后,能够控制第一摄像头1012转动60°,即第一视场角为60°。相较于原始未转动的、只能采集视场角为30°的后视图像的第一摄像头1012,能够灵活地将视场角扩大至60°,使得转动后的第一摄像头1012能够采集视场角为60°的后视图像,实现了扩大盲区视野范围。需说明,上述所提及的30°、60°仅仅是一个示例的描述,在实际应用中不作此限定。
图7为本申请实施例提供的电子后视镜系统的另一种架构示意图。
如图7所示,在前述所描述的任意一种电子后视镜系统10的基础上,该摄像头云台模组101还可以包括:第二步进电机1016,第一摄像头1012通过第二步进电机1016安装在云台支架1011上。其中,第二步进电机1016用于接收控制单元102发送的转角控制信息,并根据转角控制信息调整第一摄像头1012的转动角度。需说明,转角控制信息可以反映出第一摄像头1012可以转动的角度,通过第二步进电机1016将第一摄像头1012安装在云台支架1011上,不仅可以通过第二步进电机1016调整第一摄像头1012的转动角度,而且还可以在转动第一摄像头1012时,为第一摄像头1012提供稳定的支撑。
图8为本申请实施例提供的电子后视镜系统的另一种架构示意图。
如图8所示,在前述所描述的任意一种电子后视镜系统10的基础上,该电子后视镜系统10还可以包括:第一显示器103,第一显示器103安装在车辆的B柱上,第一显示器103与控制单元102连接。其中,控制单元102用于获取车辆的停车信息,并根据停车信息确定车辆的行驶速度下降至第一值时,将后视图像发送至第一显示器103,第一值指示车辆停止行驶。第一显示器103用于显示后视图像。
在该示例中,由于当前的显示器是为了便于驾驶员实时地观看到后视图像,以便作出行车策略。但是,后排乘客却无法便捷地从当前驾驶员观看的显示器中了解到后方来车等 情况,从而造成乘客在下车时存在安全隐患。因此,为了便于后排乘客实时地观看到后方来车等情况,还可以通过另一个显示器(即前述的第一显示器103)为后排乘客实时地显示第一摄像头1012采集到的后视图像。具体地,由于第一值可以指示车辆已停止行驶,在控制单元102根据停车信息确定车辆的行驶速度降至第一值(例如:行驶速度下降至0)时,预示着后排的乘客可能需要从车辆上离开。这时候,控制单元102将从第一摄像头1012中获取到的后视图像发送至第一显示器103,由该第一显示器103将后视图像显示给后排乘客观看,便于后排乘客实时查看后方来车等情况。示例性地,数据视频接口(digital visual interface,DVI)是一种视频接口标准协议,能够用来承载控制单元102传输来的图像数据。因此,控制单元102可以通过该DVI接口将后视图像发送至第一显示器103。
需说明,第一显示器103安装在车辆的B柱上可以理解成安装在B柱上、且朝向后排乘客。车辆的停车信息可以包括但不限于路边靠边停车、停车场停车等,此处不做限定。此外,后视图像可以是转动后的第一摄像头1012在第一视场角采集到的第一图像,也可以是未转动之前该第一摄像头1012采集到的图像,此处不做说明。
在另一些示例中,在上述图8所描述的实施例的基础上,该控制单元102还可以用于获取第一信息,第一信息指示车辆与后方车辆之间的距离。然后,控制单元102根据后视图像和第一信息确定乘客离开车辆时的安全距离范围,并在满足该安全距离范围时,指示乘客离开车辆。
在该示例中,安装在车辆上的车后毫米波雷达可以采集第一信息,并将该第一信息发送至控制单元102。这样,控制单元102能够在确定出安全距离范围后,满足该安全距离范围时,指示乘客可以安全地下车。示例性地,控制单元102可以向车内音响发送信号,由车内音响告知乘客可以在安全距离范围内可以离开车辆。和/或,控制单元102也可以向第一显示器103发送提示信息,由该第一显示器103显示提示信息,乘客从第一显示器103观看到该提示信息后,也可以在安全距离范围内离开车辆。
上述图5A和图5B主要描述了在低速行驶的场景中,收折起或者展开云台支架1011的方案。下面将从高速行驶的场景中,描述收折起或者展开云台支架1011的方案。
(二)高速行驶的场景
在一些可能的示例中,该控制单元102还可以用于获取车辆的行驶速度,并在行驶速度大于或等于预设速度时,向第一步进电机1013发送第一控制信号。
该示例中,在上述图2B所描述的实施例的基础上,如果车辆的行驶速度过快,风阻存在也很容易影响处于展开状态的摄像头云台模组101。因此,控制单元102可以在获取到车辆的行驶速度后,判断该行驶速度是否大于或等于预设速度。若行驶速度大于或等于预设速度,说明摄像头云台模组101在该行驶速度下较容易受到风阻影响。此时,控制单元102可以在行驶速度大于或等于预设速度时,向第一步进电机1013发送第一控制信号。举例来说,若行驶速度为75km/h,而预设速度为60km/h,很明显75km/h>60km/h,此时可以向第一步进电机1013发送第一控制信号。此处仅以75km/h、60km/h为例进行说明,本申请不做具体限定。
示例性地,控制器局域网络(controller area network,CAN)接口可以作为连接整 车控制系统和控制单元102之间的数据通道,因此在整车控制系统获取到车辆的行驶速度后,可以通过CAN接口将车辆的行驶速度告知控制单元102。另外,第一控制信号可以参照前述图2B所描述的内容进行理解,此处不做赘述。
在另一些可能的示例中,控制单元102还可以用于获取车辆的转向灯指示信息,并根据转向灯指示信息向第一步进电机1013发送第二控制信号。
在该示例中,如果第一步进电机1013在根据第一控制信号将云台支架1011向前翼子板20的方向收折起后,驾驶员仍然希望能够通过摄像头云台模组101中的第一摄像头1012采集后视图像,以便在转弯、变道、掉头等场景中根据后视图像作出行车决策。此时,控制单元102需要在获取到车辆的转向灯指示信息后,根据转向灯指示信息向第一步进电机1013发送第二控制信号。进一步地,第一步进电机1013可以基于第二控制信号将云台支架1011从前翼子板20中展开。举例来说,驾驶员希望在左侧的超车道中行驶并超越前方车辆,此时驾驶员开启左转向灯。控制单元102可以获取到向左的转向灯指示信息,并将第二控制信号告知第一步进电机1013。第一步进电机1013控制云台支架1011从前翼子板20中展开后,处于工作状态的第一摄像头1012可以采集左侧后视图像,也可以采集右侧后视图像。
需说明,转向灯指示信息包括但不限于左转向灯指示信息、右转向灯指示信息等,此处不做限定说明。此外,第二控制信号可以参照前述图2B所描述的内容进行理解,此处不做赘述。
图9为本申请实施例提供的电子后视镜系统的另一种架构示意图。
如图9所示,在前述所描述的任意一种电子后视镜系统10的基础上,该电子后视镜系统10还可以包括:第二摄像头104,该第二摄像头104与控制单元102连接。其中,第二摄像头104用于采集驾驶员的驾驶行为图像。控制单元102还用于根据驾驶员的驾驶行为图像向第一步进电机1013发送第二控制信号。
该示例中,第二摄像头104可以安装在车辆内部,并朝向驾驶员,主要用来采集该驾驶员的驾驶行为图像,例如:驾驶员整体的面部转向信息、驾驶员的眉心定位信息和/或眼球定位信息等。举例来说,当驾驶员的整体面部往左转动的时候,可以认为该驾驶员有向左变道的行车趋势。这时候,通过第二摄像头104可以采集到该驾驶员的整体面部往左转动的图像信息,并将该整体面部往左转动的图像信息发送至控制单元102。该控制单元102可以根据该往左转动的图像信息,将第二控制信号告知第一步进电机1013,使得第一步进电机1013将云台支架1011从前翼子板20中展开。示例性地,摄像头串行接口(camera serial interface,CSI)接口协议是移动产业处理器接口(mobile industry processor interface,MIPI)协议中定义的接口协议,可以连接摄像头和控制单元102,用来传输摄像头采集到的图像。因此,第二摄像头104可以通过CSI-2接口将驾驶员行为图像发送至控制单元102。
需说明,在另一些示例中,控制单元102也可以根据驾驶员的驾驶行为图像和转向灯指示信息,向第一步进电机1013发送第二控制信号。
图10为本申请实施例提供的电子后视镜系统的另一种架构示意图。
如图10所示,在前述任意一种可能的电子后视镜系统10的基础上,该电子后视镜系统10还可以包括:第二显示器105,第二显示器105与控制单元102连接。其中,控制单元102 还用于向第二显示器105发送后视图像,后视图像由第一摄像头1012采集得到。第二显示器105用于显示后视图像。
该示例中,第二显示器105安装在车辆的A柱与挡风玻璃之间,用于显示第一摄像头1012采集到的后视图像,使得驾驶员能够实时观看后视图像,满足驾驶员对于后视镜的需求。需说明,所描述的后视图像可以是转动后的第一摄像头1012在第一视场角采集到的第一图像,也可以是未转动之前该第一摄像头1012在第二视场角采集到的图像,此处不做说明。此外,在一些示例中,第二显示器105也可以称为组合平视显示系统(combiner head up display,C_HUD)。并且高清多媒体接口(high definition multimedia iterface,HDMI)是一种全数字化视频和声音发送接口,能够用来承载控制单元102传输来的图像数据,并向C_HUD显示器传输图像数据。因此,控制单元102可以通过该HDMI接口将后视图像发送至第二显示器105。
图11为本申请实施例提供的电子后视镜系统的另一种架构示意图。
如图11所示,在前述任意一种可能的电子后视镜系统10的基础上,摄像头云台模组101还包括外壳1017。该外壳1017用于覆盖第一摄像头1012,降低第一摄像头1012所经受的风阻,保持良好的气动外形。
上述主要从功能模块的角度对本申请实施例提供的电子后视镜系统进行了详细的描述。基于前述图2B-图11中提供的电子后视镜系统,请参阅图12A,为本申请实施例中提供的控制方法的一种示意图,该控制方法可以应用于图2B-图11中所描述的电子后视镜系统,如图12A所示,该控制方法可以包括:
1201、生成第一控制信号或第二控制信号。
该示例中,由于摄像头云台模组包括第一摄像头、云台支架和第一步进电机,并且云台支架通过第一步进电机与前翼子板连接。因而在第一摄像头易受到磕碰损坏或者因受到风阻的影响时,可以生成第一控制信号,使得能够通过第一控制信号来控制云台支架向车辆的前翼子板的方向收起,进而也将第一摄像头收起。同样地,在将云台支架往前翼子板的方向收起后,若对第一摄像头有需求的时候,也可以生成第二控制信号,使得能够通过第二控制信号来控制云台支架从车辆的前翼子板中展开,使得该第一摄像头能够采集后视图像。需说明,第一控制信号、第二控制信号也可以参照前述图2B-图11中所描述的内容进行理解,此处不做赘述。
在一些可能的实施方式中,生成第一控制信号的方式可以通过如下方式,即该控制方法还包括:检测第一距离,第一距离为第一障碍物与云台支架之间的距离,第一障碍物为在云台支架的第一方向和/或第二方向上的障碍物,第一方向和第二方向相对;在第一距离小于或等于预设距离时,生成第一控制信号。具体可以参照前述图5A和图5B所描述的内容进行理解,此处不做赘述。
在另一些可能的实施方式中,生成第二控制信号的方式可以通过如下方式,即该控制方法还包括:在云台支架向前翼子板的方向收起后,检测第二距离,第二距离为第一障碍物和前翼子板的车身平面之间的垂直距离;基于第二距离确定摄像头云台模组已避开第一障碍物时,生成第二控制信号。具体可以参照前述图5C和图5D所描述的内容进行理解, 此处不做赘述。
在另一些可能的示例中,生成第一控制信号的方式可以通过如下方式,即获取车辆的行驶速度;在行驶速度大于或等于预设速度时,生成第一控制信号。
在另一些可能的示例中,生成第二控制信号的方式可以通过如下方式,即获取车辆的转向灯指示信息;基于转向灯指示信息,生成第二控制信号。
在另一些可能的示例中,生成第二控制信号的方式可以通过如下方式,即采集驾驶员的驾驶行为图像;根据驾驶员的驾驶行为图像生成第二控制信号。具体可以参照前述图9所描述的内容进行理解,此处不做赘述。
1202、根据第一控制信号将云台支架向车辆的前翼子板的方向收折起,或者,根据第二控制信号将云台支架从前翼子板中展开。
该示例中,在第一摄像头易受到磕碰损坏或者因受到风阻的影响时,能够通过第一控制信号来控制云台支架向车辆的前翼子板的方向收起,进而也将第一摄像头收起。或者,在将云台支架往前翼子板的方向收起后,在对第一摄像头采集后视图像有需求的时候,也能够通过第二控制信号来控制云台支架从车辆的前翼子板中展开,使得该第一摄像头能够采集后视图像。具体可以参照前述图4A和图4B所描述的内容进行理解,此处不做赘述。
在另一些可能的实施方式中,该控制方法还可以包括:获取车辆的车辆姿态信息和/或驾驶员的面部特征信息;对车辆姿态信息和/或驾驶员的面部特征信息进行处理,以得到第一摄像头的转角控制信息;根据转角控制信息控制第一摄像头转动,以使第一摄像头采集到第一视场角满足目标范围的第一图像。具体可以参照前述图6所描述的内容进行理解,此处不做赘述。
在另一些可能的实施方式中,该控制方法还可以包括:获取车辆的停车信息;在根据停车信息确定车辆的行驶速度下降至第一值时,通过第一显示器显示后视图像,第一显示器安装在B柱上,第一值指示车辆停止行驶,后视图像由第一摄像头采集得到。具体可以参照前述图8所描述的内容进行理解,此处不做赘述。
在另一些可能的实施方式中,该控制方法还可以包括:获取第一信息,第一信息指示车辆与后方车辆之间的距离;根据后视图像和第一信息确定乘客离开车辆时的安全距离范围;根据安全距离范围指示乘客离开车辆。具体可以参照前述图8所描述的内容进行理解,此处不做赘述。
在另一些可能的实施方式中,该控制方法还可以包括:通过第二显示器显示后视图像,后视图像由第一摄像头采集得到。具体可以参照前述图10所描述的内容进行理解,此处不做赘述。
在另一些可能的实施方式中,该控制方法还可以包括:根据转角控制信息调整第一摄像头的转动角度。具体可以参照前述图7所描述的内容进行理解,此处不做赘述。
在另一些可能的实施方式中,第一摄像头在云台支架向前翼子板的方向收折起时,收折入前翼子板的弹片的凹陷位置;或者,第一摄像头在云台支架从前翼子板中展开时,从凹陷位置弹出。具体可以参照前述图2B所描述的内容进行理解,此处不做赘述。
可以理解的是,本实施例提供的控制方法具体可以参照前述图2B-图11中的可选示例所 描述的电子后视镜系统的部分内容进行理解,此处将不做赘述说明。
本申请实施例提供的技术方案中,摄像头云台模组安装在车辆的前翼子板上,一方面,第一步进电机根据第一控制信号将云台支架向前翼子板的方向收折起,实现摄像头云台模组的收纳隐藏,降低行车风阻且避免被磕碰损坏。另一方面,第一步进电机根据第二控制信号将云台支架从前翼子板中展开,使得第一摄像头及时地采集后视图像。
具体地,图12B为本申请实施例中提供的控制方法的另一种示意图。如图12B所示,首先,控制单元先判断车辆的行驶速度是否大于或等于预设速度(例如60km/h)。在行驶速度大于或等于预设速度时,可以执行如下(1)所示的操作。在行驶速度小于预设速度时,可以执行如下(2)所示的操作。具体如下:
(1)当行驶速度大于或等于预设速度时,检测转向灯是否已开启或是否识别到驾驶员需要观看后视镜,并在转向灯已开启或识别到驾驶员需要观看后视镜时,第一步进电机执行控制单元发送的第二控制信号,展开摄像头云台模组。此时,控制单元将第一摄像头采集到的后视图像投屏到第二显示器。所描述的第二控制信号可以参照前述图2B的内容理解,此处不做赘述。
否则,在转向灯未开启或未识别到驾驶员需要观看后视镜时,第一步进电机执行控制单元发送的第一控制信号,收折云台支架,并持续监控需求。所描述的第一控制信号可以参照前述图2B的内容理解,此处不做赘述。
(2)、当行驶速度小于预设速度时,可以分为3种情况描述,具体如下:
情况①:当行驶速度小于预设速度时,第一超声波传感器探测第一距离是否小于或等于预设距离(例如30cm)。当第一距离大于预设距离时,第一步进电机执行控制单元发送的第二控制信号,展开云台支架。此时,控制单元将第一摄像头采集到的后视图像投屏到第二显示器。需说明,所描述的第一距离可以参照前述图5A的内容理解,此处不做赘述。
反之,当第一距离小于或等于预设距离时,第一步进电机执行控制单元发送的第一控制信号,收折云台支架。然后,由第二超声波传感器探测第二距离是否大于已知距离(例如10cm),并在第二距离大于已知距离时,第一步进电机执行控制单元发送的第二控制信号,展开云台支架。此时,控制单元将第一摄像头采集到的后视图像投屏到第二显示器。反之,在第二距离小于或等于已知距离时,第一步进电机执行控制单元发送的第一控制信号,收折云台支架。所描述的第二距离可以参照前述图5C的内容理解,此处不做赘述。
情况②:当行驶速度小于预设速度时,将车辆姿态信息和/或驾驶员的面部特征信息作为控制单元的输入,由该控制单元执行AI算法,判断所需视野,并输出控制第二步进电机转动的转角控制信息,并判断转角控制信息是否变更。并在该转角控制信息发生变更时,第二步进电机基于该转角控制信息调整转动角度。反之,该转角控制信息未变更时,重新检测车辆姿态信息和/或驾驶员的面部特征信息等操作。
情况③:当行驶速度小于预设速度时,控制单元判断行驶速度是否下降至第一值。当行驶速度下降至第一值时,控制单元将后视图像发送至第一显示器,并判断后车来车距离是否大于安全距离。当后车来车距离大于安全距离时,指示乘客开车门并离开车辆。反之,当后车来车距离小于或等于安全距离时,重新执行后车来车距离是否大于安全距离的判断 操作。此外,当控制单元判断行驶速度未下降至第一值时,重新执行判断行驶速度是否下降至第一值的操作。
需说明,图12B所描述的内容可以参照前述图2B-图11中所描述的部分内容进行理解,此处不做赘述。
上述主要从硬件以及方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述图2B-图11中的控制单元、以及摄像头云台模组中各个器件的功能也可以基于计算机软件的形式来实现,专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
从实体装置角度来描述,上述控制单元、以及摄像头云台模组中各个器件可以由一个实体装置实现,也可以由多个实体装置共同实现,还可以是一个实体装置内的一个逻辑功能单元,本申请实施例对此不作具体限定。
例如,上述控制单元、以及摄像头云台模组中各个器件可以由图13中的驾驶辅助设备来实现。图13所示为本申请实施例提供的驾驶辅助设备的硬件结构示意图。该驾驶辅助设备可以包括电子控制单元(electronic control unit,ECU)、第一显示器、第二显示器、摄像头云台模组以及第二摄像头。
上述的ECU可以包括系统级芯片(system on chip,SOC)以及微控制单元(microcontroller unit,MCU)。SOC主要用于执行本申请实施例中所描述的AI算法、处理各个接口获取回来的传感器数据,并通过对外通讯接口输出所需的数据。该SOC包括图像信号处理(image signal processing,ISP)模块、中央处理器(central processing unit,CPU)、图形处理器(graphics processing unit,GPU)以及视觉处理模块等。其中,CPU、GPU以及视觉处理模块,运行软件算法,用于对视频数据的各类处理,包括不限于图像压缩、AI算法、逻辑判断等。另外,通过串行外设接口(serial peripheral interface,SPI)、通用异步收发接口(universal asynchronous receiver/transmitter,UART)、同步串行总线(Inter-Integrated Circuit,I2C)接口可以将MCU与SOC连接,用于关键的控制信号的传输。MCU作为控制器,能够从传感器(例如:第一超声波传感器、第二超声波传感器和/或微电机系统(micro electro mechanical system,MEMS)3轴加速度传感器等读取数据,运行控制逻辑,同时结合从SOC接收到的执行命令,输出执行命令控制第一步进电机或者第二步进电机进行执行。
第一显示器与SOC通过数字视频接口(digital visual interface,DVI)连接。该DVI接口是一种视频接口标准,设计的目的是用来传输未经压缩的数字化视频。在本申请中该DVI接口承载向该第一显示器传输的图像数据。第二显示器通过DVI接口或者高清多媒体接口(high definition multimedia interface,HDMI)与SOC连接。其中,HDMI接口是一种全数字化视频和声音发送接口,可以发送未压缩的音频及视频信号。在本申请中该HDMI接口承载向第二显示器传输的图像数据。此外,还可以通过1Gb LAN接口将无线电探测和测距雷达(radio detection and ranging,RADAR)与SOC中的CPU连接,传输毫米波雷达探测到的车辆与后方车辆之间的距离,轮廓等数据。所描述的RADAR也可以称为毫米波雷达。
上述的摄像头云台模组包括第一步进电机、第二步进电机、第一超声波传感器、第二超声波传感器以及第一摄像头。需说明,摄像头云台模组可以有两个,分别安装在车辆的左侧前翼子板和右侧前翼子板上。第一步进电机和第二步进电机通过驱动接口与步进电机驱动器连接,而MCU可以通过SPI接口与步进电机驱动器连接,使得MCU可以通过通用型之输入输出接口控制(general-purpose input/output control,GPIO control)协议承载控制信号(例如第一控制信号或第二控制信号)传输至步进电机驱动器,由该步进电机驱动器将该控制信号转换为控制第一步进电机或第二步进电机的模拟信号。这样,第一步进电机获取到控制信号后,执行控制命令,控制该摄像头云台模组中的云台支架的收纳和展开。第二步进电机获取到控制信号后,也执行控制命令,调整转轴的转向,控制第一摄像头的转向。
第一超声波传感器和第二超声波传感器可以通过局域互联网络(local interconnect network,LIN)接口端口物理层(physical,PHY)接口与MCU连接。并且,第一超声波传感器能够感知到第一摄像头前后障碍物的距离(例如第一距离),并通过该LIN PHY接口,以及LIN协议将该距离传输至MCU。类似的,第二超声波传感器能够感知到第一摄像头相对于车身外侧的障碍物的距离(例如第二距离),并通过该LIN PHY接口将该距离传输至MCU。
第一摄像头可以采集后视图像,并可以通过解串器集成电路芯片(integrated circuit,IC)接口与CPU连接,并通过CSI-2协议传输该第一摄像头的视频信号至CPU。类似地,第二摄像头可以采集到驾驶员的行为图像等信息,并通过解串器IC接口与CPU连接,并通过CSI-2协议传输该第二摄像头的视频信号至CPU。
此外,控制器局域网络(controller area network,CAN)PHY接口作为MCU与车载CAN总线的IC接口。MEMS3轴加速度传感器通过I2C接口可以与MCU连接。在本申请中,该MEMS3轴加速度传感器主要用于感知车辆相对行进方向的姿态,并输出姿态数据给MCU,或者通过MCU将该姿态数据传输至SOC。
在该驾驶辅助控制设备中,还可以进一步包括存储器,例如:Norflah、固态硬盘(solid state disk,SSD)和/或低功耗内存(low power double data rate,LPDDR)等,但不限于此。存储器可以是独立存在,存储器也可以和上述的SOC等处理器集成在一起。其中,存储器用于存储执行本申请方案的计算机执行指令,并由SOC、MCU等处理器来控制执行。SOC、MCU等处理器用于执行存储器中存储的计算机执行指令,从而实现本申请上述图12A或图12B中所描述的控制方法。
一种可能的实现方式,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
从功能单元的角度,本申请可以根据上述方法实施例对驾驶辅助设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个功能单元中。上述集成的功能单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
比如,以采用集成的方式划分各个功能单元的情况下,图14示出了一种驾驶辅助设备 的结构示意图。如图14所示,本申请驾驶辅助设备的一个实施例可以包括生成模块1401和处理模块1402。
其中,生成模块1401用于生成第一控制信号或第二控制信号。处理模块1402用于根据第一控制信号将云台支架向车辆的前翼子板的方向收折起,或者,根据第二控制信号将云台支架从前翼子板中展开。
在一些可能的示例中,该处理模块1402还用于检测第一距离,第一距离为第一障碍物与云台支架之间的距离,第一障碍物为在云台支架的第一方向和/或第二方向上的障碍物,第一方向和第二方向相对。生成模块1401用于在第一距离小于或等于预设距离时,生成第一控制信号。
在一些可能的示例中,处理模块1402还用于在云台支架向前翼子板的方向收起后,检测第二距离,第二距离为第一障碍物和前翼子板的车身平面之间的垂直距离。生成模块1401还用于基于第二距离确定摄像头云台模组已避开第一障碍物时,生成第二控制信号。
在一些可能的示例中,该驾驶辅助系统还包括获取模块。获取模块用于获取车辆的行驶速度。生成模块1401用于在行驶速度大于或等于预设速度时,生成第一控制信号。
在一些可能的示例中,获取模块用于获取车辆的转向灯指示信息。生成模块1401用于基于转向灯指示信息,生成第二控制信号。
在一些可能的示例中,获取模块用于采集驾驶员的驾驶行为图像。生成模块1401用于根据驾驶员的驾驶行为图像生成第二控制信号。
在一些可能的示例中,该获取模块还用于获取车辆的车辆姿态信息和/或驾驶员的面部特征信息。处理模块1402对车辆姿态信息和/或驾驶员的面部特征信息进行处理,以得到第一摄像头的转角控制信息,并根据转角控制信息控制第一摄像头转动,以使第一摄像头采集到第一视场角满足目标范围的第一图像。
在一些可能的示例中,该获取模块还用于获取车辆的停车信息。处理模块1402用于在根据停车信息确定车辆的行驶速度下降至第一值时,通过第一显示器显示后视图像,第一显示器安装在B柱上,第一值指示车辆停止行驶,后视图像由第一摄像头采集得到。
在一些可能的示例中,该获取模块还用于获取第一信息,第一信息指示车辆与后方车辆之间的距离。处理模块1402用于根据后视图像和第一信息确定乘客离开车辆时的安全距离范围,并根据安全距离范围指示乘客离开车辆。
在一些可能的示例中,处理模块1402还用于通过第二显示器显示后视图像,后视图像由第一摄像头采集得到。
在一些可能的示例中,该处理模块1402还用于根据转角控制信息调整第一摄像头的转动角度。
在一些可能的示例中,第一摄像头在云台支架向前翼子板的方向收折起时,收折入前翼子板的弹片的凹陷位置;或者,第一摄像头在云台支架从前翼子板中展开时,从凹陷位置弹出。
本申请实施例中,驾驶辅助设备以采用集成的方式划分各个功能单元的形式来呈现。这里的“功能单元”可以指特定应用集成电路(application-specific integrated circuit, ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到驾驶辅助设备可以采用图13所示的形式。
比如,图13的处理器1301可以通过调用存储器1302中存储的计算机执行指令,使得驾驶辅助设备执行图12A、图12B或任意一种可能实现方式的控制方法。具体的,图14中的生成单元1401、处理单元1402的功能/实现过程可以通过图13中的处理器1301调动存储器1302中存储的计算机执行指令来实现。
以上实施例仅用于说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种电子后视镜系统,所述电子后视镜系统应用于车辆,其特征在于,所述电子后视镜系统包括:摄像头云台模组和控制单元;所述摄像头云台模组安装在所述车辆的前翼子板上;所述摄像头云台模组包括云台支架、第一摄像头和第一步进电机,所述第一摄像头安装在所述云台支架上,所述云台支架通过所述第一步进电机与所述前翼子板连接;所述第一步进电机与所述控制单元连接;
    所述控制单元,用于生成第一控制信号或第二控制信号,并向所述第一步进电机发送所述第一控制信号或所述第二控制信号;
    所述第一步进电机,用于根据所述第一控制信号将所述云台支架向所述前翼子板的方向收折起,或者,根据所述第二控制信号将所述云台支架从所述前翼子板中展开。
  2. 根据权利要求1所述的电子后视镜系统,其特征在于,所述摄像头云台模组还包括第一超声波传感器;所述第一超声波传感器与所述控制单元连接;
    所述第一超声波传感器,用于检测第一距离,所述第一距离为第一障碍物与所述云台支架之间的距离,所述第一障碍物为在所述云台支架的第一方向和/或第二方向上的障碍物,所述第一方向和所述第二方向相对;
    所述控制单元,用于在所述第一距离小于或等于预设距离时,向所述第一步进电机发送第一控制信号。
  3. 根据权利要求2所述的电子后视镜系统,其特征在于,所述摄像头云台模组还包括第二超声波传感器;所述第二超声波传感器与所述控制单元连接;
    所述第二超声波传感器,用于在所述云台支架向所述前翼子板的方向收起后,检测第二距离,所述第二距离为所述第一障碍物和所述前翼子板的车身平面之间的垂直距离;
    所述控制单元,用于在基于所述第二距离确定所述摄像头云台模组已避开所述第一障碍物时,向所述第一步进电机发送所述第二控制信号。
  4. 根据权利要求1所述的电子后视镜系统,其特征在于,所述控制单元还用于:
    获取所述车辆的行驶速度;
    在所述行驶速度大于或等于预设速度时,向所述第一步进电机发送所述第一控制信号。
  5. 根据权利要求4所述的电子后视镜系统,其特征在于,所述控制单元还用于:
    获取所述车辆的转向灯指示信息;
    基于所述转向灯指示信息,向所述第一步进电机发送所述第二控制信号。
  6. 根据权利要求4所述的电子后视镜系统,其特征在于,所述电子后视镜系统还包括第二摄像头,所述第二摄像头与所述控制单元连接;
    所述第二摄像头,用于采集驾驶员的驾驶行为图像;
    所述控制单元,还用于根据所述驾驶员的驾驶行为图像向所述第一步进电机发送所述第二控制信号。
  7. 根据权利要求1-3中任一项所述的电子后视镜系统,其特征在于,所述控制单元用于:
    获取所述车辆的车辆姿态信息和/或驾驶员的面部特征信息;
    对所述车辆姿态信息和/或所述驾驶员的面部特征信息进行处理,以得到所述第一摄像头的转角控制信息;
    根据所述转角控制信息控制所述第一摄像头转动,以使所述第一摄像头采集到第一视场角满足目标范围的第一图像。
  8. 根据权利要求7所述的电子后视镜系统,其特征在于,所述电子后视镜系统包括第一显示器,所述第一显示器安装在所述车辆的B柱上,所述第一显示器与所述控制单元连接;所述控制单元用于:
    获取所述车辆的停车信息;
    在根据所述停车信息确定所述车辆的行驶速度下降至第一值时,将后视图像发送至所述第一显示器,所述第一值指示所述车辆停止行驶,所述后视图像由所述第一摄像头采集得到;
    所述第一显示器,用于显示所述后视图像。
  9. 根据权利要求8所述的电子后视镜系统,其特征在于,所述控制单元还用于:
    获取第一信息,所述第一信息指示所述车辆与后方车辆之间的距离;
    根据所述后视图像和所述第一信息确定乘客离开所述车辆时的安全距离范围;
    根据所述安全距离范围指示所述乘客离开所述车辆。
  10. 根据权利要求1-7中任一项所述的电子后视镜系统,其特征在于,所述电子后视镜系统还包括第二显示器,所述第二显示器与所述控制单元连接;
    所述控制单元,还用于向所述第二显示器发送后视图像,所述后视图像由所述第一摄像头采集得到;
    所述第二显示器,用于显示所述后视图像。
  11. 根据权利要求7-10中任一项所述的电子后视镜系统,其特征在于,所述摄像头云台模组还包括第二步进电机,所述第一摄像头通过所述第二步进电机安装在所述云台支架上;
    所述第二步进电机,用于:
    接收所述控制单元发送的所述转角控制信息;
    根据所述转角控制信息调整所述第一摄像头的转动角度。
  12. 根据权利要求1-11中任一项所述的电子后视镜系统,其特征在于,所述第一摄像头在所述云台支架向所述前翼子板的方向收折起时,收折入所述前翼子板的弹片的凹陷位置;或者,所述第一摄像头在所述云台支架从所述前翼子板中展开时,从所述凹陷位置弹出。
  13. 根据权利要求1-12中任一项所述的电子后视镜系统,其特征在于,所述摄像头云台模组还包括外壳,所述外壳用于覆盖所述第一摄像头。
  14. 一种驾驶辅助控制系统,其特征在于,所述驾驶辅助控制系统包括如权利要求1-13中任一项所述的电子后视镜系统,所述电子后视镜系统包括控制单元、两个摄像头云台模组、两个第一显示器和一个第二显示器,其中,一个摄像头云台模组安装在车辆的左侧前翼子板上,另一个摄像头云台模组安装所述车辆的右侧前翼子板上;一个第一显示器安装 在所述车辆的左侧B柱上,另一个第一显示器安装在所述车辆的右侧B柱上。
  15. 一种车辆,其特征在于,所述车辆安装有如权利要求1-13中任一项所述的电子后视镜系统,所述电子后视镜系统包括控制单元、两个摄像头云台模组、两个第一显示器和一个第二显示器其中,一个摄像头云台模组安装在所述车辆的左侧前翼子板上,另一个摄像头云台模组安装所述车辆的右侧前翼子板上;一个第一显示器安装在所述车辆的左侧B柱上,另一个第一显示器安装在所述车辆的右侧B柱上。
  16. 一种控制方法,其特征在于,所述控制方法应用于电子后视镜系统,所述电子后视镜系统应用于车辆;所述控制方法包括:
    生成第一控制信号或第二控制信号;
    根据所述第一控制信号将云台支架向所述车辆的前翼子板的方向收折起,或者,根据所述第二控制信号将所述云台支架从所述前翼子板中展开。
  17. 一种驾驶辅助设备,其特征在于,包括:
    存储器,用于存储计算机可读指令;
    还包括,与所述存储器耦合的处理器,用于执行所述存储器中的计算机可读指令从而执行如权利要求16所述的控制方法。
  18. 一种计算机可读存储介质,其特征在于,当指令在计算机上运行时,使得所述计算机执行如权利要求16所述的控制方法。
  19. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机上运行时,使得计算机执行如权利要求16所述的控制方法。
PCT/CN2021/120637 2021-09-26 2021-09-26 一种电子后视镜系统和控制方法 WO2023044853A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/120637 WO2023044853A1 (zh) 2021-09-26 2021-09-26 一种电子后视镜系统和控制方法
CN202180011604.4A CN116194335A (zh) 2021-09-26 2021-09-26 一种电子后视镜系统和控制方法
KR1020247009538A KR20240049594A (ko) 2021-09-26 2021-09-26 전자 후방 미러 시스템 및 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120637 WO2023044853A1 (zh) 2021-09-26 2021-09-26 一种电子后视镜系统和控制方法

Publications (1)

Publication Number Publication Date
WO2023044853A1 true WO2023044853A1 (zh) 2023-03-30

Family

ID=85719856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120637 WO2023044853A1 (zh) 2021-09-26 2021-09-26 一种电子后视镜系统和控制方法

Country Status (3)

Country Link
KR (1) KR20240049594A (zh)
CN (1) CN116194335A (zh)
WO (1) WO2023044853A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891811A (zh) * 2017-03-15 2017-06-27 黄建平 一种汽车显示系统
CN208119051U (zh) * 2018-04-04 2018-11-20 北京车和家信息技术有限公司 车辆
CN210707158U (zh) * 2019-09-02 2020-06-09 湖北景瑞天恒生物科技有限公司 一种可伸缩光学电子倒车镜
DE102019206587A1 (de) * 2019-05-08 2020-11-12 Audi Ag Verfahren zur Einstellung einer Position und/oder einer Orientierung eines Spiegels oder einer Kamera in einem Kraftfahrzeug
CN112793511A (zh) * 2019-11-14 2021-05-14 上海欧菲智能车联科技有限公司 电子后视镜和汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891811A (zh) * 2017-03-15 2017-06-27 黄建平 一种汽车显示系统
CN208119051U (zh) * 2018-04-04 2018-11-20 北京车和家信息技术有限公司 车辆
DE102019206587A1 (de) * 2019-05-08 2020-11-12 Audi Ag Verfahren zur Einstellung einer Position und/oder einer Orientierung eines Spiegels oder einer Kamera in einem Kraftfahrzeug
CN210707158U (zh) * 2019-09-02 2020-06-09 湖北景瑞天恒生物科技有限公司 一种可伸缩光学电子倒车镜
CN112793511A (zh) * 2019-11-14 2021-05-14 上海欧菲智能车联科技有限公司 电子后视镜和汽车

Also Published As

Publication number Publication date
KR20240049594A (ko) 2024-04-16
CN116194335A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US8947219B2 (en) Warning system with heads up display
KR101949438B1 (ko) 차량용 디스플레이 장치 및 이를 포함하는 차량
KR101741433B1 (ko) 운전자 보조 장치 및 그 제어방법
JP3327255B2 (ja) 安全運転支援システム
JPWO2017212927A1 (ja) 撮像制御装置および方法、並びに車両
JP6649914B2 (ja) 画像表示装置
CN208306493U (zh) 一种用于车辆驾驶辅助的视觉扩展系统
CN109532672A (zh) 汽车及后视方法
CN212305474U (zh) 一种大型车辆全景影像拼接系统及汽车
WO2022178720A1 (zh) 辅助驾驶方法、停机槽、芯片、电子设备及存储介质
JP2017111739A (ja) 運転支援装置、運転支援方法
WO2023044853A1 (zh) 一种电子后视镜系统和控制方法
CN203872281U (zh) 一种宽视野前视系统
CN111488055A (zh) 一种车用扩增实境眼镜辅助装置
CN107640111B (zh) 基于百核微处理器控制的汽车视觉图像处理系统及方法
CN212890115U (zh) 车载以太网的车用电子镜系统
US20120086798A1 (en) System and method for automatic dynamic guidelines
CN213138627U (zh) 一种汽车全景环视系统
CN111836005A (zh) 一种车载3d全景环视的行车路线显示系统
KR20150074753A (ko) 차량 운전 보조 장치 및 이를 구비한 차량
CN110562138A (zh) 基于车辆智能座舱的360环视装置、车辆智能座舱及车辆
CN218228833U (zh) 车载显示装置及车辆
CN112208438B (zh) 行车辅助影像产生方法及系统
JP2019180074A (ja) 運転支援システム、画像処理装置及び画像処理方法
CN218768138U (zh) 片上系统及智能行车系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247009538

Country of ref document: KR

Kind code of ref document: A