WO2023044740A1 - 机箱、储能系统及数据系统 - Google Patents

机箱、储能系统及数据系统 Download PDF

Info

Publication number
WO2023044740A1
WO2023044740A1 PCT/CN2021/120271 CN2021120271W WO2023044740A1 WO 2023044740 A1 WO2023044740 A1 WO 2023044740A1 CN 2021120271 W CN2021120271 W CN 2021120271W WO 2023044740 A1 WO2023044740 A1 WO 2023044740A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
electrical device
air
tuyere
Prior art date
Application number
PCT/CN2021/120271
Other languages
English (en)
French (fr)
Inventor
邹恒龙
宋金良
周岿
袁智
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202180050569.7A priority Critical patent/CN116171418A/zh
Priority to PCT/CN2021/120271 priority patent/WO2023044740A1/zh
Publication of WO2023044740A1 publication Critical patent/WO2023044740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of chassis, in particular to a chassis, an energy storage system and a data system.
  • Air conditioners are widely used in life and industry to exchange heat indoors. In industry, for example, they are used in energy storage containers. Energy storage containers are important equipment for photovoltaic energy storage. There are many batteries in energy storage containers. With the increase of battery stack capacity and magnification, how to efficiently control the temperature rise of the battery is the key to the temperature control of the chassis system. The low cost of the whole machine temperature control system is also the core competitiveness of the product.
  • the integrated air conditioner is generally installed on both sides of the chassis, and the cooling air is sent by the air conditioner to cool the battery. This kind of temperature control structure design, because the distance between the electrical device of the chassis and the air conditioner is different, and the electrical device farther away from the air conditioner is caused by insufficient air supply from the air conditioner.
  • the heat dissipation is poor, so the temperature of the battery core rises and the battery life is poor.
  • the path of the internal circulation air duct of the air conditioner is long, and the wind resistance is large, resulting in low energy efficiency of temperature control.
  • This application provides a chassis with better heat dissipation effect.
  • the present application provides a case, the case includes a case shell, an electrical device, and a heat control device, the electrical device is located in a housing cavity in the case case, the electrical device includes a fan, a first air outlet and the second air outlet, the fan is used to accelerate the flow velocity of the airflow between the first air outlet and the second air outlet;
  • the heat control device includes a first heat exchanger, a second heat exchanger and a heat exchanger working fluid, the first heat exchanger and the second heat exchanger are communicated through pipelines, the heat exchange working fluid is located in the first heat exchanger and the second heat exchanger and can be The flow between the first heat exchange tube and the second heat exchange tube, and the first heat exchanger and the second heat exchanger realize the heat circulation inside and outside the tank shell through the heat cycle of the heat exchange working medium.
  • heat exchange the first heat exchanger is located in the housing cavity and adjacent to the first tuyere.
  • the fan is a structural component belonging to the electrical device, and is used to dissipate heat from the components in the internal space of the electrical device.
  • the electrical device includes electrical components.
  • the electrical component is the main heat source for the electrical device to generate heat.
  • the fan in the electrical device is used to dissipate heat from the electrical component.
  • the fan can blow gas to flow on the surface of the electrical component. To dissipate heat from the battery.
  • the fan of the electrical device itself is used to realize the air circulation between the internal space of the electrical device and the storage cavity, without additional fans, saving cost and space in the storage cavity, and placing the first heat exchanger adjacent to the first air outlet of the electrical device It is set so that the first heat exchanger can exchange heat with the electrical device in time, improve the heat exchange effect of the electrical device, and improve the heat exchange efficiency of the heat control device with the electrical device.
  • the chassis is an energy storage container
  • the electrical device is a battery module
  • the electrical component is a battery cell.
  • the battery module generates a lot of heat when it is working, and the fan is used for the battery cell to dissipate heat.
  • the chassis may be a data center, and the data center may be a small data center, such as a cabinet, or a large data center, such as a data center.
  • the electrical device is a server
  • the electrical components are electronic components in the server
  • the server generates a lot of heat during operation
  • the fan is used to cool the electronic components in the server.
  • Device heat dissipation In other implementation manners, the chassis may also be other devices that require heat exchange.
  • the flow velocity of the airflow between the first tuyere and the second tuyere includes the flow velocity from the first tuyere, through the inner space of the electrical device to the second tuyere, or from the first tuyere, through the storage cavity to the second tuyere.
  • Speed where the speed of the airflow in the space inside the electrical device increases, the speed of the airflow in the storage cavity outside the electrical device also increases.
  • the driving air circulates between the first air outlet, the inner space of the electrical device, the second air outlet and the storage chamber.
  • the first air outlet, the inner space of the electrical device, the second air outlet and the storage chamber form an air circulation channel.
  • the fan drives the air to flow from the first air outlet to the internal space of the electrical device, and then flows into the storage cavity from the second air outlet, and the fan then sucks the air in the storage cavity and delivers the air to the first air outlet, In this way, an air circulation channel is formed.
  • the first air outlet is an air inlet of the electrical device
  • the second air outlet is an air outlet of the electrical device.
  • the first air outlet is an air outlet of the electrical device
  • the second air outlet is an air inlet of the electrical device.
  • the fan drives the air to flow from the second air port to the internal space of the electrical device, then flows from the internal space of the electrical device to the first air port and flows out from the first air port to the storage cavity, and the fan then sucks the air in the storage cavity, so that the air flows from the second air port to the storage cavity.
  • the air outlet enters the inner space of the electrical device, thereby forming an air circulation channel.
  • the airflow circulation channel is formed by the fan of the electrical device itself, and no additional fan is required, which can save costs, and does not need to occupy other positions in the storage cavity, saving the internal space of the storage cavity.
  • the first heat exchanger and the second heat exchanger are components capable of conducting heat, and may be air-liquid heat exchangers.
  • the heat exchange working medium can change from the first state to the second state when it absorbs enough heat, and can change from the second state to the first state when it releases heat, so as to realize the thermal cycle, for example, when the heat exchange working medium is absorbing It changes from liquid to gas when there is enough heat, and from gas to liquid when it releases enough heat.
  • the heat exchange medium is refrigerant, such as water, ethylene glycol, acetone, methanol, etc.
  • the heat generated by the operation of the electrical device passes through the airflow circulation channel to heat up the air in the storage cavity, and the first heat exchanger located in the storage cavity absorbs the heat of the air in the storage cavity, And transfer the heat to the heat exchange working medium in the first heat exchanger.
  • the heat exchange working medium heats up and vaporizes into gas
  • the gas heat exchange working medium flows into the second heat exchanger, wherein the second heat exchanger uses It is used to transfer the heat of the gas heat exchange working medium to the outside of the box shell, so as to realize the internal-to-outside heat exchange process of transferring the heat inside the box shell to the outside of the box shell.
  • the temperature inside the electrical device is too low to reach the normal operating temperature of the electrical device, and the electrical device needs to be heated so that Electrical installations are functioning normally.
  • the second heat exchanger heats up the heat exchange working fluid in the second heat exchanger, and the heated heat exchange working medium flows into the first heat exchanger, and passes through the first heat exchanger The heat is transferred to the air in the storage cavity, and the heated air in the storage cavity heats the electrical device through the airflow circulation channel, so as to realize the outside-in heat exchange process of transferring the heat from the outside of the box shell to the inside of the box shell.
  • the inside-to-outside heat exchange process and the outside-to-inside heat exchange process are realized by the first heat exchanger and the second heat exchanger through the thermal cycle of the heat-exchange working medium.
  • the first heat exchanger is located in the storage cavity, and is used to realize the heat exchange between the air in the storage cavity and the heat exchange medium in the first heat exchanger, and the heat exchange medium can flow from the first heat exchanger to the second heat exchange medium.
  • the installation position of the second heat exchanger can be set arbitrarily, as long as the heat exchange between the heat-exchanging working medium in the second heat exchanger and the outside of the tank shell can be realized.
  • the case includes a top cover and a bottom plate oppositely arranged along a first direction, and the second heat exchanger is located in the top cover of the case, wherein the first direction is the height direction of the case. In some embodiments, the second heat exchanger is located on the side of the tank.
  • the first heat exchanger is arranged adjacent to the first air outlet, so that the flowing air entering the internal space of the electrical device from the first air outlet will pass through the first heat exchanger, or the flowing air in the internal space of the electrical device will pass through the first air outlet. After being discharged from the air outlet, it will pass through the first heat exchanger, so that the air in the inner space of the electrical device can exchange heat with the first heat exchanger in time, thereby improving the heat exchange efficiency of the electrical device.
  • the electrical device when it is necessary to dissipate heat and cool down the electrical device, assuming that the first air outlet is an air inlet, the electrical device works to generate heat, and the fan works to drive the cold air cooled by the first heat exchanger to quickly enter the inner space of the electrical device from the first air outlet. , cooling the electrical device in time, reducing the transmission distance of cold air from the first heat exchanger to the inner space of the electrical device, reducing cold loss, and improving the cooling effect on the electrical device.
  • the electrical device is a heat source that generates heat
  • the first heat exchanger is a cold source for cooling the electrical device.
  • the heat source (electrical device) and the cold source (the first heat exchanger) are arranged adjacent to each other, which has better heat exchange effect to improve the heat dissipation efficiency of electrical devices.
  • the fan is the fan of the electrical device itself, and is generally installed inside the electrical device or in the first air outlet and the second air outlet of the electrical device, that is to say, the distance between the fan and the first air outlet is relatively short, and the wind flowing through the first air outlet
  • the flow rate and velocity are the largest, and when the air with the larger flow rate and velocity passes through the first heat exchanger, the amount of air exchanged with the first heat exchanger per unit time is larger, thereby improving the heat exchange efficiency. If the fan is placed away from the electrical device, the air volume driven by the fan will be dispersed in the accommodation cavity, and both the air volume and the wind speed reaching the first heat exchanger will be reduced, so that the heat exchange efficiency of the first heat exchanger will be reduced.
  • the first heat exchanger may include first heat exchange tubes.
  • the first heat exchanger may include a first heat exchange tube and a heat conduction sheet, the first heat exchange tube passes through the heat conduction sheet, and the heat conduction sheet is used to increase the contact area of air for heat exchange.
  • the first heat exchanger can also be other structural components, for example, when the first heat exchanger is used for cooling air, the first heat exchanger can be an evaporator.
  • the electrical device includes a bin housing and electrical components located in the bin housing, the bin housing includes the first air port and the second air port, so The fan is located in at least one of the following locations: the first air outlet, the second air outlet and the inner space of the bin housing.
  • the bin housing refers to a housing for accommodating electrical components, wherein the electrical components in the bin housing are the electrical components of the electrical device.
  • the bin housing and the electrical components located in the bin housing constitute an electrical bin.
  • the electrical device is a battery module, and the bin housing is a housing for accommodating battery cells.
  • the electrical device is a server, and the bin housing is a housing for accommodating electronic components.
  • the electrical device is a battery module, and the compartment housing and the battery cells therein form a battery compartment.
  • the first tuyere and the second tuyere are disposed opposite to each other along a second direction, the second direction intersects the first direction, the first tuyere is an air inlet, and the second The air outlet is the air outlet, and the fan is located at the first air outlet, so that the air having heat exchange with the first heat exchanger is directly blown into the inner space of the bin shell from the first air outlet, and exchanges heat with the electrical components to improve heat exchange. efficiency.
  • the first air outlet is an air outlet
  • the second air outlet is an air inlet
  • the air coming out of the inner space of the bin housing directly exchanges heat with the first heat exchanger after coming out of the first air outlet.
  • the fan can also be located in the inner space of the bin housing, which is the inner space of the electrical device, and the fan can be located in any position of the bin housing, depending on the arrangement of the electrical components. Set up the fan so that the layout of the fan and electrical components is reasonable to ensure the amount of ventilation and the number of electrical components.
  • the fan can be located at the second air outlet. In one embodiment, there are two fans, and the two fans are respectively located in the first air port and the second air port.
  • the fan being located at the first tuyere includes that the fan is fixed on the side of the first tuyere facing the inner space of the bin housing, or the fan is fixed on the side of the first tuyere away from the inner space of the bin housing, or the Said fan is fixed on the bin casing around the first tuyere.
  • the location of the fan at the second air outlet includes that the fan is fixed on the side of the second air outlet facing the inner space of the bin housing, or the fan is fixed on the side of the second air outlet away from the inner space of the bin housing, or the fan It is fixed on the bin shell around the second tuyere.
  • the electrical device includes a plurality of fans, and the plurality of fans are respectively located at the first air outlet and the second air outlet. In one embodiment, the plurality of fans are respectively located at the first air outlet and in the inner space of the bin housing. In one embodiment, the plurality of fans are respectively located at the second air outlet and in the inner space of the bin housing. In one embodiment, the plurality of fans are respectively located at the first tuyere, the second tuyere, and the inner space of the bin housing. Multiple fans are arranged in such a way that the air flow speed is increased.
  • the fan drives the air cooled by the first heat exchanger to flow from the first tuyere to the inner space of the compartment housing to cool down the electrical components and heat up the air.
  • the heated air then flows from the second air outlet to the storage cavity, and through the air circulation channel, the air returns to the first air outlet to be cooled by the first heat exchanger, and the cooled air enters the inner space of the bin shell again, which can effectively lift the Cooling efficiency of electrical components inside the bin housing.
  • the thermal control device can be used to heat the electrical compartment, and the specific heating process is similar to that described above, which will not be repeated here.
  • the case includes a first side door, the first air port faces the first side door, the first heat exchanger is located between the first side door and the first air port, and be fixed on the inner surface of the first side door facing the electrical device. Installing the first heat exchanger on the first side door facilitates the maintenance of the first heat exchanger and the electrical device, and the first heat exchanger can be maintained only by opening the first side door.
  • the first heat exchanger can also fix the outside of the electrical device.
  • the box casing includes a first side door, the first side door is located on one side of the electrical device along the second direction, and the first air port and the second air port are oppositely arranged along the second direction , the first side door is arranged closer to the second air outlet than the first air outlet, and the first heat exchanger is fixed on the outside of the electrical device.
  • a plurality of first heat exchangers may be provided on other sides of the electrical device to improve the heat exchange effect on the electrical device.
  • the electrical device includes a plurality of bin shells arranged in a stack, and in each of the bin shells, the first heat exchanger is provided outside the first tuyere, and At least a part of the first heat exchanger is opposite to the first tuyere.
  • the case further includes a top cover and a bottom plate oppositely arranged along a first direction, the electrical device is located in the area between the top cover and the bottom plate, and the stacking direction of the multiple bin cases is the first direction.
  • the first heat exchanger extends along the first direction, so that there is a part of the first heat exchanger at the first tuyere of each bin shell, which can dissipate heat for each electrical bin, and the heat dissipation is more uniform.
  • the first direction is the height direction of the case
  • the second direction is the width direction of the case.
  • a part of the first heat exchanger is provided at the first tuyeres of each bin housing.
  • the heat exchange working medium in the first heat exchanger is liquid, and the liquid Absorbed heat becomes gas, and the difference in heat absorbed by the liquid heat exchange working medium at any position in the first heat exchanger is small when it changes from liquid to gas.
  • more liquid heat-exchange working fluid can be set in the first heat exchanger, so that the liquid heat-exchange medium can flow to any part of the first heat exchanger, or at least enable the liquid heat-exchange
  • the thermal working medium can flow into the part of the first heat exchanger adjacent to the first tuyere of each bin shell, so that the heat absorption effect of the part of the first heat exchanger adjacent to the first tuyere of each bin shell is equivalent, and then It can improve the uniformity of heat dissipation for each electrical compartment in the electrical device.
  • the electrical device includes an electrical bracket, and a plurality of the electrical compartments are arranged on the electrical bracket. In some embodiments, multiple electrical compartments can be directly stacked along the first direction.
  • the electrical device includes a device housing and electrical components located in the device housing, the device housing includes the first air outlet and the second air outlet, and the fan is located at the following position At least one of: the first air outlet, the inner space of the device housing or the second air outlet.
  • the electrical device is a battery module, and the battery module includes the module casing and the battery cells inside the module casing, and the battery cells are directly placed on the module casing.
  • the module housing includes the first air outlet and the second air outlet, and the fan is located at least one of the following positions: the first air outlet, the inner space of the device housing or The second air outlet.
  • first tuyere and the second tuyere are respectively arranged on the casing of the device casing which is oppositely arranged along the second direction.
  • the fixing method of the fan and the device housing includes buckles, screws, etc., and the specific method is not limited.
  • the electrical device when the electrical device includes a plurality of electrical components arranged along the first direction, the plurality of electrical components can be arranged along the first direction by brackets or stacked, and placed on both sides of the device casing along the second direction.
  • a plurality of first air outlets, a plurality of second air outlets, and a plurality of fans are arranged on the housing on the side, so that each electrical component has first air outlets and second air outlets on both sides along the second direction, and has fans that can face Electrical parts blow out.
  • the chassis includes a plurality of electrical devices arranged in a row
  • the heat control device includes a plurality of the first heat exchangers
  • each electrical device in the plurality of electrical devices There is one said first heat exchanger at the position of the first tuyere.
  • the direction in which the plurality of electrical devices are arranged is a third direction, and the third direction intersects with the second direction and the first direction respectively.
  • the first direction is the height direction of the case
  • the second direction is the width direction of the case
  • the third direction is the length direction of the case.
  • the electrical device has multiple electrical compartments.
  • each electrical compartment in each electrical device Part of the first heat exchanger is installed at the first air outlet, which can improve the heat dissipation effect of each electrical compartment and improve the uniformity of heat dissipation for all electrical devices.
  • the number of electrical devices arranged in the third direction is not limited, and when there are a large number of electrical devices, it still has better heat dissipation uniformity. When the first heat exchanger is used to heat multiple electrical devices, it has better heating uniformity.
  • the thermal control device may include one second heat exchanger, or multiple second heat exchangers.
  • the second heat exchanger communicates with the plurality of first heat exchangers, and is used for exchanging heat with the heat-exchanging working medium in the plurality of first heat exchangers.
  • the second heat exchangers can be respectively communicated with multiple first heat exchangers to exchange heat for the heat-exchanging working fluids in the multiple first heat exchangers respectively. Need to set.
  • the chassis includes a plurality of electrical devices arranged along the second direction, and one of the first heat exchangers is disposed outside each of the electrical devices.
  • the first heat exchanger can be adapted and increased according to the number or distribution position of the electrical devices, and the distributed layout of multiple first heat exchangers can dissipate heat for each electrical device and improve the heat dissipation effect.
  • two electrical devices are arranged along the second direction, and the first air outlets of the two electrical devices arranged along the second direction are respectively adjacent to the first side door and the second side door on both sides.
  • two electrical devices are arranged along the second direction, and the first air outlets of the two electrical devices arranged along the second direction are respectively away from the first side door and the second side door on both sides.
  • more than two electrical devices are arranged along the second direction, and at this time, the first heat exchanger of the electrical device located between the electrical devices can be fixed on the electrical device.
  • the thermal control device further includes a flow guide housing, and the flow guide housing and the first heat exchanger are located on the same side of the electrical device along the second direction, The flow guide housing and the first heat exchanger extend along a first direction, the second direction intersects the first direction, the first heat exchanger is located in the flow guide housing, and the The guide housing is provided with a third tuyere and a fourth tuyere.
  • the third tuyere is arranged closer to the first tuyere, and the third tuyere and the first tuyere are used for
  • the fourth air port is used for connecting the inner space of the air guiding housing and the electrical device, and the fourth air port is used for communicating the inner space of the air guiding housing and the accommodating chamber.
  • the third air outlet and the fourth air outlet are located in the air circulation channel, when the first air outlet is the air outlet of the electrical device, and the second air outlet is the air inlet of the electrical device, the third air outlet is the air inlet of the diversion shell, and the fourth air outlet is the air inlet of the electric device.
  • the tuyere is the air outlet of the diversion shell. The wind from the first tuyere passes through the third tuyere and enters the inner space of the diversion shell, and is cooled by the first heat exchanger. Staying makes the wind contact with the first heat exchanger for a longer period of time, and then the heat exchange can be fully performed.
  • the central axis of the third tuyere overlaps with the first tuyere, so that wind can flow more smoothly between the first tuyere and the third tuyere.
  • the flow guide housing includes a first side plate, a second side plate, a third side plate and a fourth side plate, wherein the first side plate and the second side plate are oppositely arranged along the second direction, The third side plate and the fourth side plate are arranged opposite to each other along the third direction, and the first side plate, the third side plate, the second side plate and the fourth side plate are sequentially connected to form a guide housing, wherein the first side plate is adjacent to The first air port is set, the third air port is set on the first side plate, and the fourth air port is provided on the third side plate and the fourth side plate. The fourth air port on the plate and the fourth side plate is discharged.
  • the case further includes a top cover and a bottom plate oppositely arranged along the first direction, and the flow guide housing is located between the top cover and the bottom plate.
  • the guide housing includes the third air port and the fourth air port, and the maximum vertical distance between the edge of the third air port and the bottom plate is greater than that between the edge of the fourth air port and the bottom plate and less than or equal to the maximum vertical distance between the edge of the fourth air outlet and the bottom plate.
  • the air can be made to circulate from the third air port to the fourth air port, or from the fourth air port to the third air port, so as to increase the circulation speed of the air while ensuring sufficient heat exchange.
  • the first direction is a direction perpendicular to the bottom plate.
  • the maximum vertical distance between the edge of the fourth tuyere and the bottom plate is greater than the minimum vertical distance between the edge of the third tuyere and the bottom plate, and is less than or equal to the third
  • the maximum vertical distance between the edge of the tuyere and the bottom plate, the first direction is the direction perpendicular to the bottom plate.
  • the vertical distances between the upper and lower edges of the third tuyere and the fourth tuyere and the bottom plate are respectively equal, specifically, the maximum distance between the edge of the third tuyere and the bottom plate is The vertical distance is equal to the maximum vertical distance between the edge of the fourth air port and the bottom plate, and the minimum vertical distance between the edge of the third air port and the bottom plate is equal to the edge of the fourth air port and the bottom plate The minimum vertical distance between.
  • the shape of the third tuyere and the fourth tuyere is a rectangle, and the length direction of the rectangle is the same as the first direction. In one embodiment, the shapes of the third tuyere and the fourth tuyere are square. In one embodiment, the shapes of the third tuyere and the fourth tuyere are oval or the like. In one embodiment, when there are two or more fourth air outlets, the maximum vertical distance between the upper edge of each fourth air outlet and the bottom plate may be the same or different, and each fourth air outlet The minimum vertical distances between the lower edge of the tuyere and the bottom plate may be the same or different, and the shape of each fourth tuyere may be the same or different.
  • the guide housing is provided with a plurality of third air ports, and each of the third air ports is connected to a first air port of one of the bin housings.
  • the tuyeres are arranged opposite to each other, and at least one of the fourth tuyeres and one of the third tuyeres satisfy the above-mentioned vertical distance relationship.
  • the air guide shell is provided with a third air port and a fourth air port corresponding to each bin shell.
  • a water receiving tray and a water pump are provided at the bottom of the diversion housing, the water receiving tray is used to collect water droplets condensed from the first heat exchanger, and the water in the water receiving tray is drained by the water pump. Drain the case.
  • the case further includes a top cover and a bottom plate oppositely arranged along the first direction, the electrical device is located on the bottom plate, a receiving space is provided in the top cover, and the second The heat exchanger is located in the containing space.
  • the second heat exchanger is arranged in the top cover to save space.
  • the second heat exchanger can also be arranged in the side shell of the tank shell or outside the tank shell.
  • the inlet and outlet of the first heat exchanger are located at one end of the first heat exchanger adjacent to the top cover.
  • the first heat exchanger may include a plurality of "S" loop sections between the inlet and the outlet or a "U” shaped loop section between the inlet and the outlet.
  • multiple “S"-shaped loops are equivalent to having multiple "U”-shaped loops mentioned above, and can also improve the first heat exchanger to the upper and lower sides of the electrical device. part of the uniformity of heat dissipation.
  • the pipeline further includes a first communication pipe and a second communication pipe, and the first communication pipe is connected between the inlet of the first heat exchanger and the outlet of the second heat exchanger. between the outlets, and communicate with the first heat exchanger and the second heat exchanger respectively, and the second communication pipe is connected between the outlet of the first heat exchanger and the second heat exchanger between the inlets and communicate with the first heat exchanger and the second heat exchanger respectively.
  • the first heat exchanger is arranged on the first side door
  • the first side door can be opened smoothly through the first communication pipe and the second communication pipe.
  • the first communication pipe and the second communication pipe are communication pipes with elastic expansion and contraction capabilities, or the first communication pipe and the second communication pipe have a certain length, so that the first side door can be opened more smoothly.
  • the second heat exchanger includes a second heat exchange tube, a compressor, an expansion valve, a heat exchange component, and an external fan, and the compressor, heat exchange component, and expansion valve are sequentially connected to the first heat exchange Between the inlet of the heat exchanger and the outlet of the first heat exchanger, there is a part of the second heat exchange tube between the compressor and the heat exchange component, the heat exchange component and the expansion valve have a part of the second heat exchange tube, the compressor, the heat exchange component
  • the expansion valve is in communication with the second heat exchange tube, and the heat exchange working fluid flows in the second heat exchange tube, the compressor, the expansion valve and the heat exchange components.
  • the fan of the external unit is used to drive the external circulation between the inner space of the top cover and the outside of the box.
  • the top cover includes an air inlet and an air outlet. The air outlet discharges the top cover to realize the external circulation between the inner space of the top cover and the outside of the box.
  • the condenser When the heat exchange component is a condenser, the condenser is used to cool the heat exchange working fluid in the second heat exchange tube, and when the heat control device cools down the electrical device, the heat exchange working medium in the first heat exchanger It is a low-pressure and low-temperature liquid.
  • the low-temperature and low-pressure liquid has a lower boiling point and can absorb heat quickly.
  • the fan in the electrical device drives the internal hot air to flow from the first air outlet to the surface of the first heat exchanger.
  • the low-pressure and low-temperature liquid The heat exchange working medium absorbs the heat of the hot air and becomes a low-pressure and low-temperature gas heat-exchange working medium.
  • the low-pressure and low-temperature gas heat-exchange working medium flows from the outlet of the first heat exchanger into the second heat exchange tube, and then flows into the compressor , the compressor converts the low-pressure and low-temperature gas heat-exchange working medium into a high-temperature and high-pressure gas heat-exchange working medium, and the high-temperature and high-pressure gas heat-exchange working medium passes through part of the second heat-exchange tube into the heat-exchange component (condenser),
  • the high-temperature and high-pressure gas heat-exchange working medium can refer to the gas with a temperature and pressure higher than that of the outside air.
  • an external fan can be used to drive the outside air to the high-temperature and high-pressure gas heat-exchange working medium in the heat exchange component (condenser).
  • the high-temperature and high-pressure gas heat-exchange working medium is cooled by the heat-exchange component (condenser) to form a medium-temperature and high-pressure liquid heat-exchange working medium, and the medium-temperature and high-pressure liquid heat-exchange working medium enters the expansion valve through part of the second heat exchange tube.
  • a low-temperature and low-pressure liquid heat-exchange working medium is formed through the expansion valve, and the low-temperature and low-pressure liquid heat-exchange working medium flows into the first heat exchanger to continue cooling the electrical device.
  • the second heat exchanger is used to exchange heat with the heat exchange working medium in the first heat exchanger, so that the heat exchange working medium forms a heat cycle in the first heat exchanger and the second heat exchanger.
  • the second heat exchanger has a compressor and an expansion valve, which can reduce the temperature drop of the heat exchange working medium.
  • the heat exchange medium with a lower temperature passes through the first heat exchanger and the air circulation channel
  • the temperature of the electrical device can be lower than the temperature outside the case, thereby improving the cooling effect on the electrical device.
  • the second heat exchanger in one embodiment can also be used to make the temperature of the electrical device higher than the temperature outside the casing, thereby improving the effect of heating the electrical device.
  • the second heat exchanger may also include other components, such as an air filter and the like.
  • the second heat exchanger can also be composed of other structures, as long as it can realize the heat exchange of the heat exchange working medium in the first heat exchanger.
  • the present application also provides an energy storage system
  • the energy storage system includes a power generation component and the chassis as described in any one of the above, the chassis is an energy storage container, the power generation component is used to generate electric energy and The electrical energy is stored in the chassis.
  • the power generation components include but are not limited to solar power generation devices, wind power generation devices or hydroelectric power generation devices.
  • the present application further provides a data system, the data system includes a power supply component and the chassis as described in any one of the above, the chassis is a data center or a cabinet, and the power supply component is used to provide the chassis with electrical energy.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a chassis provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a chassis provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a chassis provided by an embodiment of the present application.
  • Fig. 4a is a schematic structural diagram of a chassis provided by an embodiment of the present application.
  • Fig. 4b is a schematic structural diagram of a chassis provided in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the structure of an integrated air conditioner for heat dissipation of an electrical device
  • Fig. 6 is a structural schematic diagram of the heat dissipation of the electrical device using a split air conditioner
  • Fig. 7 is a schematic structural diagram of a chassis provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a chassis provided in an embodiment of the present application.
  • Fig. 9a is a schematic structural diagram of a chassis provided in an embodiment of the present application.
  • Fig. 9b is a schematic structural diagram of an electrical device in a chassis provided by an embodiment of the present application.
  • Fig. 9c is a schematic structural diagram of an electrical device in a case provided by an embodiment of the present application.
  • Fig. 9d is a schematic structural diagram of an electrical device in a case provided by an embodiment of the present application.
  • Fig. 9e is a schematic structural diagram of an electrical device in a chassis provided by an embodiment of the present application.
  • Fig. 9f is a schematic structural diagram of an electrical device in a chassis provided by an embodiment of the present application.
  • Fig. 9g is a schematic structural diagram of an electrical device in a case provided by an embodiment of the present application.
  • Fig. 9h is a schematic structural diagram of an electrical device in a case provided by an embodiment of the present application.
  • Fig. 9i is a schematic structural diagram of an electrical device in a case provided by an embodiment of the present application.
  • Fig. 9j is a schematic structural diagram of an electrical device in a case provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chassis provided in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the structure of an integrated air conditioner for heat dissipation of an electrical device
  • Fig. 12 is a schematic structural diagram of an electrical device of a chassis provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electrical device of a chassis provided in an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a chassis provided in an embodiment of the present application.
  • Fig. 15 is a structural schematic diagram of the heat dissipation of an electrical device by an integrated air conditioner
  • Fig. 16 is a schematic structural diagram of a chassis provided in an embodiment of the present application.
  • Fig. 17a is a schematic structural diagram of a chassis provided in an embodiment of the present application.
  • Fig. 17b is a schematic diagram of the position of the guide case and the bottom plate in the case provided by an embodiment of the present application;
  • Fig. 17c is a schematic diagram of the position of the deflector casing and the bottom plate in the case provided by an embodiment of the present application after being deployed;
  • Fig. 17d is a schematic diagram of the position of the guide case and the bottom plate in the case provided by an embodiment of the present application;
  • Fig. 17e is a schematic diagram of the position of the deflector casing and the bottom plate in the case provided by an embodiment of the present application after being deployed;
  • Fig. 17f is a schematic diagram of the position of the deflector casing and the bottom plate in the case provided by an embodiment of the present application after being deployed;
  • Fig. 17g is a schematic diagram of the position of the deflector casing and the bottom plate in the case provided by an embodiment of the present application after being deployed;
  • Fig. 17h is a schematic diagram of the positions of the deflector casing and the bottom plate in the case provided by an embodiment of the present application after being deployed;
  • Fig. 17i is a schematic diagram of the location of the deflector casing and the bottom plate in the chassis provided by an embodiment of the present application;
  • Fig. 17j is a schematic diagram of the position of the deflector casing and the bottom plate in the chassis provided by an embodiment of the present application;
  • Fig. 17k is a schematic diagram of the positions of the guide case and the electrical device in the case provided by an embodiment of the present application;
  • Fig. 18 is a schematic structural diagram of a chassis provided by an embodiment of the present application.
  • Fig. 19 is a schematic structural view of the first heat exchanger and the electrical device part in the chassis provided by an embodiment of the present application;
  • Fig. 20 is a schematic structural diagram of an energy storage system provided in an embodiment of the present application.
  • Fig. 21 is a schematic structural diagram of a data system provided by an embodiment of the present application.
  • first, second, etc. are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, unless otherwise specified, "plurality" means two or more.
  • orientation terms such as “upper” and “lower” are defined relative to the schematic placement orientation of the structures in the drawings. It should be understood that these directional terms are relative concepts, and they are used relative to The description and clarification of , which may vary accordingly to changes in the orientation in which the structure is placed.
  • Heat loss is the loss of heat to the outside world.
  • Cold Loss is the heat absorbed towards the outside world.
  • Thermal cycle means that in a thermodynamic process, the system returns to the initial state after going through a series of processes from the initial state, that is, the final state of the system coincides with the initial state.
  • Air-liquid heat exchanger a device for exchanging heat between air and refrigerant.
  • Compressor It is a driven fluid machine that raises low-pressure gas to high-pressure gas, and is the heart of the refrigeration system. It inhales low-temperature and low-pressure refrigerant gas from the suction pipe, drives the piston to compress it through the operation of the motor, and discharges high-temperature and high-pressure refrigerant gas to the exhaust pipe to provide power for the refrigeration cycle.
  • Expansion valve The medium-temperature and high-pressure liquid refrigerant is throttled into low-temperature and low-pressure wet steam, and then the refrigerant absorbs heat in the evaporator to achieve the cooling effect.
  • an embodiment of the present application provides a case 10, the case 10 includes a case shell 100, an electrical device 200 and a thermal control device 300, the electrical device 200 is located in a housing chamber 400 in the case case 100, and the electrical device 200 includes The fan 210 , the first air port 220 and the second air port 230 (as shown in FIG. 2 ).
  • the fan 210 is used to accelerate the flow speed of the air between the first air port 220 and the second air port 230 .
  • the fan 210 is a structural component belonging to the electrical device 200, and is used to dissipate heat from the components in the internal space 201 of the electrical device 200.
  • the electrical device 200 includes an electrical component 202. In the case 10, when the electrical device 200 is working, The electrical component 202 is the main heat source for the electrical device 200 to generate heat.
  • the fan 210 in the electrical device 200 is used to dissipate heat from the electrical component 202 .
  • the chassis 10 is an energy storage container 10
  • the electrical device 200 is a battery module 200
  • the electrical component 202 is a battery cell 202
  • the battery module 200 generates a lot of heat during operation
  • the fan 210 is used for the battery cell 202 for heat dissipation.
  • the chassis 10 may be a data center, and the data center may be a small data center, such as a cabinet, or a large data center, such as a data room.
  • the electrical device 200 is a server
  • the electrical components 202 are electronic components in the server
  • the server generates a lot of heat during operation
  • the fan 210 is used to dissipate heat from the electronic components in the server .
  • the chassis 10 may also be other devices that require heat exchange.
  • the flow velocity of the airflow between the first tuyere 220 and the second tuyere 230 includes the flow velocity from the first tuyere 220 through the inner space 201 of the electrical device 200 to the second tuyere 230 , or from the first tuyere 220 through the accommodating cavity 400
  • the flow velocity to the second tuyere 230 where the air flow velocity in the inner space 201 of the electrical device 200 is increased, the air flow velocity in the receiving cavity 400 outside the electrical device 200 is also increased.
  • the driving air Q circulates between the first air outlet 220, the internal space 201 of the electrical device 200, the second air outlet 230, and the accommodation cavity 400, and the first air outlet 220, the interior of the electrical device 200
  • the space 201 , the second air outlet 230 and the receiving chamber 400 form an air circulation channel 20
  • the fan 210 is located in the air circulation channel 20 .
  • the fan 210 drives the air Q to flow from the first air outlet 220 to the inner space 201 of the electrical device 200, and then flows from the second air outlet 230 into the storage chamber 400, and the fan 210 is sucked into the storage chamber 400 again.
  • FIG. 2 only shows a schematic flow diagram of the air Q flowing on one side of the electrical device 200 in the storage cavity 400 . In actual scenarios, the air Q can flow in the storage cavity 400 around the electrical device 200 .
  • the first air outlet 220 is the air outlet of the electrical device 200
  • the second air outlet 230 is the air inlet of the electrical device 200.
  • the fan 210 drives the air Q to flow from the second air outlet 230 to the electrical device. 200 internal space 201, then flows from the internal space 201 of the electrical device 200 to the first tuyere 220 and flows out from the first tuyere 220 into the storage cavity 400, and the fan 210 sucks the air Q of the storage cavity 400 again, so that the air Q flows from the second
  • the tuyere 230 enters the inner space 201 of the electrical device 200 to form the air circulation channel 20 .
  • the airflow circulation channel 20 is formed by the fan 210 of the electrical device 200 itself, and no additional fan is required, which can save costs, and does not need to occupy other positions in the storage cavity 400 , saving the internal space of the storage cavity 400 .
  • the heat control device 300 includes a first heat exchanger 310, a second heat exchanger 320 and a heat exchange medium 330 (as shown in FIG.
  • the heat exchange medium 330 is located in the first heat exchanger 310 and the second heat exchanger 320 and can flow between the first heat exchange tube 310 and the second heat exchange tube 320, the first heat exchanger 310 and the second heat exchanger 320
  • the second heat exchanger 320 realizes the heat exchange inside and outside the casing 100 through the heat cycle of the heat exchange working medium 330
  • the first heat exchanger 310 is located in the storage cavity 400 and adjacent to the first tuyere 220 .
  • the first heat exchanger 310 and the second heat exchanger 320 are components capable of conducting heat, and may be air-liquid heat exchangers.
  • the heat exchange working medium 330 can change from the first state to the second state when it absorbs enough heat, and can change from the second state to the first state when it releases heat, so as to realize a thermal cycle.
  • the heat exchange working medium 330 It changes from liquid to gas when it absorbs enough heat, and changes from gas to liquid when it releases enough heat.
  • the heat exchange working medium 330 is a refrigerant, such as water, ethylene glycol, acetone, methanol, etc.
  • the heat generated by the operation of the electrical device 200 passes through the airflow circulation channel 20 to heat up the air in the storage chamber 400, and the first heat exchanger 310 located in the storage chamber 400 absorbs and stores the heat.
  • the heat exchange working medium 330 absorbs the heat, heats up and vaporizes into gas, and the gas heat exchange working medium 330 flows to the second Among the heat exchangers 320, the second heat exchanger 320 is used to transfer the heat of the gas heat exchange working medium 330 to the outside of the casing 100, so as to transfer the heat inside the casing 100 to the outside of the casing 100. External heat exchange process.
  • the temperature inside the electrical device 200 when the temperature inside the electrical device 200 needs to be raised, for example, when the chassis 10 is located in an extremely cold area, the temperature inside the electrical device 200 is relatively low and cannot reach the normal operating temperature of the electrical device 200, and the electrical device 200 needs to be heated. The temperature is raised so that the electrical device 200 can work normally.
  • the second heat exchanger 320 heats the heat exchange working medium 330 in the second heat exchanger 320 to raise the temperature, and the heated heat exchange working medium 330 flows into the first heat exchanger 310 and passes through the first heat exchanger 310
  • the heat of the heat exchange working medium 330 is transferred to the air in the housing chamber 400, and the heated air in the housing chamber 400 heats the electrical device 200 through the airflow circulation channel 20, so as to transfer the heat outside the housing 100 to the housing 100 Internal outside-to-inside heat exchange process.
  • the inside-to-outside heat exchange process and the outside-to-inside heat exchange process are realized by the first heat exchanger 310 and the second heat exchanger 320 through the heat cycle of the heat exchange working medium 330 .
  • the first heat exchanger 310 is located in the storage cavity 400, and is used to realize the heat exchange between the air in the storage cavity 400 and the heat exchange working medium 330 in the first heat exchanger 310, and the heat exchange working medium 330 can be transferred from the first heat exchanger 310 flows into the second heat exchanger 320 , and the installation position of the second heat exchanger 320 can be set arbitrarily as long as the heat exchange between the heat exchange working medium 330 in the second heat exchanger 320 and the outside of the tank shell 100 can be realized.
  • the case 100 includes a top cover 130 and a bottom plate 140 oppositely arranged along a first direction Y, and the second heat exchanger 320 is located in the top cover 130 of the case 100 , wherein the first direction Y Y is the height direction of the chassis 10 .
  • the second heat exchanger 320 is located on the side of the tank 100 .
  • the first heat exchanger 310 is arranged adjacent to the first air outlet 220 (as shown in FIG. 310, or the flowing air Q in the internal space 201 of the electrical device 200 will pass through the first heat exchanger 310 after being discharged from the first air outlet 220, so that the air Q in the internal space 201 of the electrical device 200 can be exchanged with the first heat exchanger 310 in time. Heat exchange occurs in the heater 310 to improve heat exchange efficiency with respect to the electrical device 200 .
  • the electrical device 200 when the electrical device 200 needs to be radiated and cooled, if the first air outlet 220 is an air inlet, the electrical device 200 works to generate heat, and the fan 210 works to drive the cold air Q cooled by the first heat exchanger 310 to quickly flow from the first The tuyere 220 enters the inner space 201 of the electrical device 200 to cool down the electrical device 200 in a timely manner, reducing the transmission distance of the cold air Q from the first heat exchanger 310 to the inner space 201 of the electrical device 200, reducing cooling loss, and improving the temperature of the electrical device 200. cooling effect.
  • the electrical device 200 is a heat source for generating heat
  • the first heat exchanger 310 is a cold source for cooling the electrical device 200
  • the heat source (the electrical device 200) and the cold source (the first heat exchanger 310) are arranged adjacent to each other.
  • a better heat exchange effect is used to improve the heat dissipation efficiency of the electrical device 200 .
  • the first heat exchanger 310 will first cool the components or air near the first heat exchanger 310, and the first heat exchanger Cooled components or air in the vicinity of the cooler 310 exchange heat with other components or remote air, causing cooling loss in the process.
  • part of the cold air exchanges heat with the inner wall of the casing 100 to cool the casing 100, and the cooled casing 100 passes through the outer wall of the casing 100 to exchange heat with the outside air, that is to say, a part of the cold air is used for cooling the outside air, causing cold loss, which in turn reduces the cooling efficiency of the thermal control device 300 for the electrical device 200 .
  • the first heat exchanger 310 is arranged adjacent to the first tuyere 220, so that the first heat exchanger 310 can cool the wind passing through the first tuyere 220 to the greatest extent, and reduce cooling loss.
  • the first tuyere 220 is an air inlet
  • the wind cooled by the first heat exchanger 310 enters the inner space of the electrical device 200 from the first tuyere 220 in time to cool down the components inside the electrical device 200 .
  • the hot air in the inner space of the electrical device 200 is cooled in time by the first heat exchanger 310 after passing through the first air outlet 220 driven by the fan 210, and the cooled cold air passes through the air circulation channel 20 enters the inner space 201 of the electrical device 200 again from the second tuyere 230, and cools the components in the inner space 201 of the electrical device 200 to improve the cooling effect of the electrical device 200 and also improve the cooling of the electrical device 200 by the thermal control device 300 efficiency.
  • the first heat exchanger 310 will first heat the components or air near the first heat exchanger 310, and the first heat exchanger The heated components or air near the heater 310 exchange heat with other components or remote air far away, causing heat loss in the process.
  • part of the hot air exchanges heat with the inner wall of the casing 100 to heat the casing 100
  • the heated casing 100 also exchanges heat with the outside air through the outer wall, that is to say, part of the hot air is used to heat the outside air, causing heat loss.
  • the heating efficiency of the heat control device 300 to the electrical device 200 is reduced.
  • the first heat exchanger 310 is arranged adjacent to the first tuyere 220, so that the first heat exchanger 310 can heat the wind passing through the first tuyere 220 to the greatest extent, reducing heat loss.
  • the first tuyere 220 is an air inlet
  • the wind heated by the first heat exchanger 310 enters the inner space of the electrical device 200 from the first tuyere 220 in time, and heats up the components inside the electrical device 200 .
  • the cold air in the inner space of the electrical device 200 is driven by the fan 210 to pass through the first air outlet 220 and then heated by the first heat exchanger 310 in time, and the heated hot air passes through the air circulation channel 20 re-enters the internal space 201 of the electrical device 200 from the second tuyeres 230 to heat the components in the internal space 201 of the electrical device 200 to improve the heating effect of the electrical device 200 and also improve the heating of the electrical device 200 by the heat control device 300 efficiency.
  • the fan 210 is the fan of the electrical device 200 itself, and is generally arranged inside the electrical device 200 or in the first tuyere 220 and the second tuyere 230 of the electrical device 200, that is to say, the distance between the fan 210 and the first tuyere 200 is relatively short,
  • the flow rate and velocity of the wind flowing through the first tuyeres 200 are the largest.
  • the amount of air exchanged with the first heat exchanger 310 per unit time is relatively large. Improve heat exchange efficiency.
  • the air volume driven by the fan 210 will be dispersed in the housing cavity 400, and the air volume and wind speed reaching the first heat exchanger 310 will all be reduced, so that the heat exchange of the first heat exchanger 310 will be reduced. Reduced efficiency.
  • the integrated air conditioner 30 refers to an integrated structure of the air conditioner internal unit and the air conditioner external unit, and the integrated air conditioner 30 is larger in size , the internal size of the case 10 will be increased, and the heat dissipation effect on the electrical device 200 will be poor.
  • the integrated air conditioner 30 includes an air conditioner housing 31 and an air conditioner fan 32 located in the air conditioner housing 31 , an evaporator 33 and an air conditioner external unit assembly 36 , and the air conditioner housing 31 includes an air outlet 34 and an air inlet 35 . There is a certain distance between the air outlet 34 and the air inlet 35.
  • the air outlet 34 and the air inlet 35 on the general air-conditioning housing 31 are respectively located at the upper and lower ends of the air-conditioning housing 31.
  • the evaporator 33 is used to The temperature of the air inside 31 is cooled, and the cooled air is discharged from the air outlet 34 into the storage cavity 400 , and the air conditioner external unit 36 is used to transfer the heat of the evaporator 33 to the outside of the casing 100 .
  • the integrated air conditioner 30 is used to cool the electrical device 200
  • the cold air cooled by the evaporator 33 flows from the air outlet 34 into the storage cavity 400, and the cold air between the air outlet 34 and the electrical device 200 has a cooling loss.
  • the electrical device 200 is dissipated.
  • the evaporator 33 used to cool the hot air is located inside the air conditioner housing 31, and the air path between the evaporator 33 and the electrical device 200 is far away.
  • the electrical device 200 The hot air generated by internal heating cannot be cooled near the first air outlet 220 of the electrical device 200 , the hot air needs to go through a long path to reach the evaporator 33 , and the heat of the hot air will be transferred to other spaces of the storage chamber 400 , the air volume of the hot air reaching the evaporator 33 is reduced, the heat dissipation efficiency of the evaporator 33 to the electrical device 200 is reduced, and the heat dissipation efficiency is lower than that of the first heat exchanger when the first heat exchanger 310 is arranged adjacent to the first tuyere 22 in this application. 310 to the heat dissipation efficiency of the electrical device 200 .
  • an air conditioner inner unit 40 is arranged inside the cabinet 10
  • an air conditioner outer unit 50 is arranged outside the cabinet 10
  • the air conditioner inner unit 40 blows cold air to the storage chamber 400 and the electrical device 200 to cool down
  • the air-conditioning internal unit 40 includes an air-conditioning housing 41 and an air-conditioning fan 42 and an evaporator 43 located in the air-conditioning housing 41.
  • the size of the air-conditioning internal unit 40 is also relatively large, which will increase the internal size of the chassis 10 .
  • the air conditioner housing 41 includes an air outlet 44 and an air inlet 45 .
  • the distance between the evaporator 43 and the electrical device 200 is relatively long, which also has a certain cooling loss, and the heat dissipation effect on the electrical device 200 is poor.
  • fans need to be provided inside the air conditioner, which increases the cost, but no additional fans are required in this application.
  • the fan 210 of the electrical device 200 itself is used to realize the air circulation between the internal space 201 of the electrical device 200 and the storage chamber 400, without additional fans, saving cost and space in the storage chamber 400, and the first heat exchanger 310 Adjacent to the first tuyere 220 of the electrical device 200, and enabling the first heat exchanger 310 to exchange heat with the electrical device 200 in a timely manner, improve the heat exchange effect of the electrical device 200, and enhance the heat control device 300 to the electrical device 200 heat exchange efficiency.
  • the first heat exchanger 310 may include a first heat exchange tube 301 .
  • the first heat exchanger 310 may include a first heat exchange tube 301 and a heat conduction sheet 302 (as shown in FIG. 4a ), the first heat exchange tube 301 passes through the heat conduction sheet 302, and the heat conduction sheet 302 is used to increase air for heat exchange the contact area.
  • the first heat exchanger 310 can also be other structural components, for example, when the first heat exchanger 310 is used for cooling air, the first heat exchanger 310 can be an evaporator.
  • the electrical device 200 includes a bin housing 241 and electrical components 202 located in the bin housing 241.
  • the bin housing 241 includes the first air outlet 220 and the The fan 210 is located in at least one of the following locations: the first tuyere 220 , the second tuyere 230 and the inner space of the bin housing 241 .
  • the bin housing 241 refers to a housing for accommodating electrical components 202 , wherein the electrical components 202 in the bin housing 241 are the electrical components 202 of the electrical device 200 .
  • the bin housing 241 and the electrical components 202 located in the bin housing 241 constitute an electrical bin 240 .
  • the bin case 241 is a case for accommodating battery cells; when the electrical device 200 is a server, the bin case 241 is a case for accommodating electronic components.
  • the electrical device 200 is a battery module, and the compartment housing 241 and the battery cells 202 therein form a battery compartment.
  • the first tuyere 220 and the second tuyere 230 are arranged opposite to each other along the second direction X (as shown in FIG.
  • the second air outlet 230 is an air outlet
  • the fan 210 is located at the first air outlet 220 (as shown in FIG. 4 a ), so that the air that exchanges heat with the first heat exchanger 310 is directly blown into the inner space of the bin housing 241 from the first air outlet 220 201, and perform heat exchange with the electrical component 202 to improve heat exchange efficiency.
  • the first air outlet 220 is an air outlet
  • the second air outlet 230 is an air inlet
  • the air coming out of the inner space 201 of the bin housing 241 directly exchanges heat with the first heat exchanger 310 after coming out of the first air outlet 220 .
  • the fan 210 can also be located in the inner space of the bin housing 241 (as shown in FIG. 7 ), the inner space of the bin housing 241 is the inner space 201 of the electrical device 200, and the fan 210 can be located The position, specifically, the fan 210 can be set according to the arrangement of the electrical components 202, so that the fans 210 and the electrical components 202 are arranged reasonably, and the ventilation rate and the number of the electrical components 202 are ensured.
  • the fan 210 may be located at the second air outlet 230 (as shown in FIG. 8 ). In one embodiment, there are two fans 210, and the two fans 210 are respectively located in the first air outlet 220 and the second air outlet 230 (as shown in FIG. 9a ).
  • the fan 210 located at the first tuyere 220 includes the fan 310 fixed on the side of the first tuyere 220 facing the inner space of the bin housing 241 (as shown in FIG. 9 b ), or the fan 210 fixed on the first tuyere 220 away from the bin housing. 241 on one side of the inner space (as shown in FIG. 9c ), or the fan 210 is fixed on the bin housing 241 around the first tuyere 220 (as shown in FIG. 9d ).
  • the fan 210 located at the second tuyere 230 includes that the fan 310 is fixed on the side of the second tuyere 230 facing the inner space of the bin housing 241 (as shown in FIG. One side (as shown in FIG. 9f ), or the fan 210 is fixed on the bin housing 241 around the second tuyere 230 (as shown in FIG. 9g ).
  • the electrical device 200 includes a plurality of fans 210, and the plurality of fans 210 are respectively located at the first air outlet 220 and the second air outlet 230 (as shown in FIG. 9a ). In one embodiment, a plurality of fans 210 are respectively located at the first air outlet 220 and in the inner space 201 of the bin housing 241 (as shown in FIG. 9h ). In one embodiment, a plurality of fans 210 are respectively located at the second air outlet 230 and in the inner space 201 of the bin housing 241 (as shown in FIG. 9i ).
  • a plurality of fans 210 are respectively located at the first air outlet 220 , the second air outlet 230 and the inner space 201 of the bin housing 241 (as shown in FIG. 9j ).
  • the arrangement of multiple fans 210 can increase the speed of air flow.
  • the fan 210 drives the air Q cooled by the first heat exchanger 310 to flow from the first air outlet 220 to the compartment housing 241.
  • the air Q is heated up, and the heated air Q then flows from the second air outlet 230 into the storage cavity 400, passes through the airflow circulation channel 20, and the air Q returns to the first air outlet 220 again to be discharged by the first air outlet 220.
  • a heat exchanger 310 cools down, and the cooled air Q enters the inner space of the bin housing 241 again, which can effectively improve the cooling efficiency of the electrical components 202 inside the bin housing 241 .
  • the thermal control device 300 can be used to heat the electrical compartment 240 , and the specific heating process is similar to the heating process described above, which will not be repeated here.
  • the case 100 includes a first side door 110 (as shown in FIG. 4 a ), the first air port 220 faces the first side door 110 , and the first heat exchanger 310 is located between the first side door 110 and the first air port 220 , and is fixed on the inner surface of the first side door 110 facing the electrical device 220 .
  • Installing the first heat exchanger 310 on the first side door 110 facilitates the maintenance of the first heat exchanger 310 and the electrical device 200 , and the first heat exchanger 310 can be maintained only by opening the first side door 110 .
  • the first heat exchanger 310 can also fix the outside of the electrical device 200 (as shown in FIG. 4b ).
  • the box case 100 includes a first side door 110, the first side door 110 is located on one side of the electrical device 200 along the second direction X, the first tuyere 220 and the second tuyere 230 are arranged opposite to each other along the second direction X, compared with the first The air outlet 220 , the first side door 110 is disposed closer to the second air outlet 230 , and the first heat exchanger 310 is fixed on the outside of the electrical device 200 .
  • multiple first heat exchangers 310 are provided on other sides of the electrical device 200 to improve the heat exchange effect on the electrical device 200 .
  • the electrical device 200 includes a plurality of bin housings 241 stacked, and in each bin housing 241 , there is a first heat exchanger 310 on the outside of the first tuyere 220 , and at least a part of the first heat exchanger 310 is opposite to the first tuyere 220 .
  • the case 100 further includes a top cover 130 and a bottom plate 140 oppositely arranged along the first direction Y, the electrical device 200 is located in the area between the top cover 130 and the bottom plate 140, and a plurality of bin shells 241 are stacked.
  • the direction of is the first direction Y.
  • the first heat exchanger 310 extends along the first direction Y, so that the first air outlet 220 of each bin housing 241 has a part of the first heat exchanger 310 , which can dissipate heat for each electrical bin 240 , and the heat dissipation is more uniform.
  • the first direction Y is the height direction of the case shell 100
  • the second direction X is the width direction of the case case 100 .
  • the air outlet of the integrated air conditioner 30 is generally located at a high place, and the cold air Q coming out from the air outlet 34 of the integrated air conditioner 30 After flowing into the storage chamber 400, the flow of the cold air Q gradually decreases from top to bottom, and the temperature of the cold air Q gradually increases from top to bottom, which makes the cold air Q affect the electrical compartment 240 on the top of the electrical device 200 and the electrical device 200
  • the heat dissipation effect in the electrical compartment 240 at the bottom is inconsistent, and the heat dissipation effect of the electrical compartment 240 from the top of the electrical device 200 to the bottom of the electrical device 200 gradually becomes worse, and the heat dissipation is uneven.
  • a part of the first heat exchanger 310 is provided at the first tuyere 220 of each bin housing 241.
  • the working medium 330 is a liquid, and the liquid absorbs heat and turns into a gas.
  • the difference in the heat absorbed by the liquid heat exchange working medium 330 at any position in the first heat exchanger 310 is small when changing from liquid to gas.
  • More liquid heat exchange working medium 330 can be set in the first heat exchanger 310, so that the liquid heat exchange working medium 330 can flow to any part of the first heat exchanger 310, or at least enable the liquid heat exchange work
  • the substance 330 can flow into the part of the first heat exchanger 310 adjacent to the first tuyere 220 of each bin shell 240, so that the suction of the part of the first heat exchanger 310 adjacent to the first tuyere 220 of each bin shell 241
  • the heat effect is equivalent, and the uniformity of heat dissipation for each electrical compartment 240 in the electrical device 200 can be improved.
  • the electrical device 200 includes an electrical bracket 250 (as shown in FIG. 12 ), and a plurality of electrical compartments 240 are arranged on the electrical bracket 250, wherein the structure of the electrical bracket 250 is not limited to the structure shown in FIG. for other structures. In some implementations, multiple electrical compartments 240 can be directly stacked along the first direction Y.
  • the electrical device 200 includes a device housing 260 and electrical components 202 located in the device housing 260, the device housing 260 includes a first air outlet 220 and a second air outlet 230, and the fan 210 is located below At least one of the above locations: the first air outlet 220 , the inner space of the device casing 260 or the second air outlet 230 .
  • the battery module 200 When the electrical device 200 is a battery module 200, the battery module 200 includes a module casing 260 and an electric cell 202 located in the module casing 260, and the electric cell 202 is directly arranged in the module casing 260, and the module
  • the housing 260 includes a first air outlet 220 and a second air outlet 230 , and the fan 210 is located at least one of the following locations: the first air outlet 220 , the inner space of the device housing 260 or the second air outlet 230 .
  • first tuyeres 220 and the second tuyeres 230 are respectively arranged on the casings of the device casing 260 which are oppositely arranged along the second direction X.
  • the fixing methods of the fan 210 and the device housing 260 include buckles, screws, etc., and the specific methods are not limited.
  • the electrical device 200 includes a plurality of electrical components 202 arranged along the first direction Y (as shown in FIG.
  • the plurality of electrical components 202 can be arranged along the first direction Y by brackets or stacked, and placed in the device case
  • a plurality of first air outlets 220, a plurality of second air outlets 230, and a plurality of fans 210 are arranged on the housings on both sides of the body 260 along the second direction X, so that each electrical component 202 has a second air outlet on both sides of the second direction X.
  • the first air port 220 and the second air port 230 , as well as the fan 210 can directly blow air toward the electrical component 202 .
  • the chassis 10 includes a plurality of electrical devices 200 arranged in a row
  • the thermal control device 300 includes a plurality of first heat exchangers 310
  • each of the plurality of electrical devices 200 is electrically There is a first heat exchanger 310 at the position of the first tuyere 220 of the device 200 .
  • the direction in which the plurality of electrical devices 200 are arranged is a third direction Z
  • the third direction Z intersects the second direction X and the first direction Y respectively.
  • the first direction Y is the height direction of the case shell 100
  • the second direction X is the width direction of the case case 100
  • the third direction Z is the length direction of the case case 100 .
  • the electrical device 200 has multiple electrical compartments 240 (as shown in FIG. 10 ).
  • the first heat exchanger 310 is used for multiple electrical
  • a part of the first heat exchanger 310 is provided at the first air outlet 220 of each electrical compartment 240 in each electrical device 200, which can improve the heat dissipation effect of each electrical compartment 240, and improve the heat dissipation effect of all electrical compartments 240.
  • the heat dissipation uniformity of the electrical device 200 .
  • the number of electrical devices 200 arranged in the third direction Z is not limited, and when there are a large number of electrical devices 200 , it still has better heat dissipation uniformity.
  • the first heat exchanger 310 is used to heat a plurality of electrical devices 200, it has better heating uniformity.
  • the air outlet of the integrated air conditioner 30 is generally located at one end of the casing 100, which makes the electrical device far away from the integrated air conditioner 30
  • the heat dissipation effect of the 200 is worse than that of the electrical device 200 close to the integrated air conditioner 30, and the overall heat dissipation uniformity is poor.
  • the heat dissipation uniformity is to be improved, multiple integrated air conditioners 30 need to be installed at multiple positions in the box shell 100 , resulting in increased costs, and occupying more space in the box shell 100, and if multiple integrated air conditioners 30 are installed on the first side door 110, the first side door 110 has a high risk of load bearing and is easily damaged, making the maintenance cost of the first side door 110 high.
  • This application adopts the method that the first heat exchanger 310 is adjacent to the first tuyere 220, which is low in cost and saves space.
  • the heater 310 can improve the heat transfer uniformity of all the electrical devices 200 .
  • the thermal control device 300 may include one second heat exchanger 320 , or multiple second heat exchangers 320 .
  • the second heat exchanger 320 communicates with the plurality of first heat exchangers 310, and is used to perform heat exchange on the heat exchange working medium 330 in the plurality of first heat exchangers 310 .
  • the second heat exchangers 320 can communicate with multiple first heat exchangers 310 respectively, and perform heat exchange on the heat exchange working medium 330 in the multiple first heat exchangers 310 respectively. , which can be set according to actual needs.
  • the chassis 10 includes a plurality of electrical devices 200 arranged along the second direction X, and a first heat exchanger 310 is disposed on the outside of each electrical device 200 .
  • the first heat exchanger 310 can be adapted and increased according to the number or distribution position of the electrical device 200 , and the distributed layout of multiple first heat exchangers can dissipate heat for each electrical device 200 and improve the heat dissipation effect.
  • two electrical devices 200 are arranged along the second direction X, respectively denoted as an electrical device 200a and an electrical device 200b.
  • Two side doors 120 wherein the electrical device 200a is arranged adjacent to the first side door 110, the electrical device 200b is arranged adjacent to the second side door 120, and a first heat exchanger 310a is fixed on the inner surface of the first side door 110 adjacent to the electrical device 200a, compared to The second air outlet 230, the first air outlet 220 of the electrical device 200a is disposed closer to the first side door 110, and the first heat exchanger 310a performs heat exchange on the electrical device 200a.
  • a first heat exchanger 310b is fixed on the inner surface of the second side door 120 adjacent to the electrical device 200b.
  • the first air port 220 of the electrical device 200b is arranged closer to the second side door 120, and the first heat exchanger The device 310b performs heat exchange on the electrical device 200b, that is to say, the first tuyere 220 of the two electrical devices 200 arranged along the second direction X is adjacent to the first side door 110 and the second side door 120 on both sides respectively.
  • two electrical devices 200 are arranged along the second direction X, respectively marked as an electrical device 200c and an electrical device 200d.
  • the side door 120 wherein the electrical device 200c is disposed adjacent to the first side door 110, and the electrical device 200d is disposed adjacent to the second side door 120.
  • a first heat exchanger 310c is fixed on the surface of the electrical device 200c away from the first side door 110, and the first air outlet 220 of the electrical device 200c is farther away from the first side door 110 than the second air outlet 230 and is adjacent to the first heat exchanger 310c , the first heat exchanger 310c performs heat exchange on the electrical device 200c, the first heat exchanger 310d is fixed on the surface of the electrical device 200d away from the second side door 120, the first air port 220 of the electrical device 200d is compared with the second air port 230 is disposed away from the second side door 120, and the first heat exchanger 310d performs heat exchange on the electrical device 200d. That is to say, the first air outlets 220 of the two electrical devices 200 are arranged along the second direction X and are respectively away from the first side door 110 and the second side door 120 on both sides.
  • more than two electrical devices 200 are arranged along the second direction X, at this time, the first heat exchanger 310 of the electrical device 200 located between the electrical device 200a and the electrical device 200b can be fixed on the electrical device 200.
  • the heat control device 300 further includes a flow guide housing 340 (as shown in FIG. 17 a ), and the flow guide housing 340 and the first heat exchanger 310 are located at On the same side, the flow guide shell 340 and the first heat exchanger 310 extend along the first direction Y (as shown in FIG. 1 ), the second direction X intersects the first direction Y, and the first heat exchanger 310 is located in the flow guide shell Inside the body 340, a third tuyere 341 and a fourth tuyere 342 are provided on the guide housing 340. Compared with the fourth tuyere 342 (as shown in FIG.
  • the third air port 341 and the first air port 220 are used to communicate with the inner space of the air guide housing 340 and the inner space of the electrical device 200
  • the fourth air port 342 is used to communicate with the inner space of the air guide housing 240 and the receiving cavity 400 .
  • the third air port 341 and the fourth air port 342 are located in the air circulation channel 20, when the first air port 220 is the air outlet of the electrical device 200, and the second air port 230 is the air inlet of the electrical device 200, the third air port 341 is a guide The air inlet of the housing 340, the fourth air outlet 342 is the air outlet of the air guide housing 340, the wind from the first air outlet 220 enters the inner space of the air guide housing 340 through the third air outlet 341, and is absorbed by the first heat exchange The heat exchanger 310 is cooled, and the flow guide housing 340 allows the wind to stay in its receiving hole for a short time, so that the wind can contact the first heat exchanger 310 for a longer time, and then the heat exchange can be fully performed.
  • the central axis of the third tuyere 341 overlaps with the first tuyere 220 , so that wind can flow more smoothly between the first tuyere 220 and the third tuyere 341 .
  • the flow guide housing 340 includes a first side plate 343, a second side plate 344, a third side plate 345 and a fourth side plate 346 (as shown in FIG. 17a), wherein the first side plate 343 and the fourth side plate 346
  • the second side plate 344 is oppositely arranged along the second direction X
  • the third side plate 345 and the fourth side plate 346 are oppositely arranged along the third direction Z
  • the fourth side plate 346 is sequentially connected to form the guide housing 340, wherein the first side plate 343 is arranged adjacent to the first air port 220, the third air port 341 is arranged on the first side plate 343, and the third side plate 345 and the fourth
  • the side panels 346 are provided with fourth air outlets 342 , and the wind coming in from the third air outlet 341 can be divided into two paths and discharged from the fourth air outlets 342 on the third side panel 345 and the fourth side panel 346 respectively.
  • the box case 100 further includes a top cover 130 and a bottom plate 140 (as shown in FIG. 1 ) oppositely arranged along the first direction Y, and the flow guide housing 340 is located between the top cover 130 and the bottom plate 140 .
  • FIG. 17b and FIG. 17c is a schematic diagram of the expansion of the guide housing 340 in FIG.
  • the maximum vertical distance h1 is greater than the minimum vertical distance h2 between the edge of the fourth tuyere 342 and the bottom plate 140 , and less than or equal to the maximum vertical distance h3 between the edge of the fourth tuyere 342 and the bottom plate 140 .
  • the air can be circulated from the third air port 341 to the fourth air port 342 , or from the fourth air port 342 to the third air port 341 , so as to increase the circulation speed of the air while ensuring sufficient heat exchange.
  • the first direction Y is a direction perpendicular to the bottom plate 140.
  • FIG. 17e is a schematic diagram of the expansion of the flow guide housing 340 in FIG. 17d .
  • the maximum vertical distance h3 between the edge of the fourth air port 342 and the bottom plate 140 is greater than the minimum vertical distance h4 between the edge of the third air port 341 and the bottom plate 140, and is smaller than or equal to the edge of the third air port 341
  • the maximum vertical distance h1 between the base plate 140 and the first direction Y is a direction perpendicular to the base plate 140 .
  • the vertical distances between the upper and lower edges of the third air port 341 and the fourth air port 342 and the bottom plate 140 are respectively equal (as shown in FIG. 17f ), specifically, the distance between the edge of the third air port 341 and the bottom plate 140
  • the maximum vertical distance h1 is equal to the maximum vertical distance h3 between the edge of the fourth air port 342 and the bottom plate 140
  • the minimum vertical distance h4 between the edge of the third air port 341 and the bottom plate 140 is equal to the distance between the edge of the fourth air port 342 and the bottom plate 140.
  • the shape of the third tuyere 341 and the fourth tuyere 342 is a rectangle, and the length direction of the rectangle is the same as the first direction Y (as shown in FIG. 17h ). In one embodiment, the shapes of the third tuyere 341 and the fourth tuyere 342 are square (as shown in FIG. 17i ). In one embodiment, the shapes of the third tuyere 341 and the fourth tuyere 342 are oval (as shown in FIG. 17j ) and the like.
  • each fourth air outlet 342 when there are two or more fourth air outlets 342, the maximum vertical distance between the upper edge of each fourth air outlet 342 and the bottom plate 140 may be the same or different, and the lower edge of each fourth air outlet 342 The minimum vertical distance from the bottom plate 140 may be the same or different, and the shape of each fourth air port 342 may be the same or different.
  • the guide housing 340 is provided with a plurality of third air ports 341, and each third air port 341 is connected to one bin case.
  • the first tuyere 220 of the body 241 is disposed opposite to each other, and at least one fourth tuyere 342 and one of the third tuyere 341 satisfy the above vertical distance relationship.
  • the flow guide housing 340 is provided with a third air outlet 341 and a fourth air outlet 342 corresponding to each bin housing 241 .
  • a water receiving tray and a water pump are provided at the bottom of the flow guide housing 340, the water receiving tray is used to collect water droplets condensed from the first heat exchanger 310, and the water in the water receiving tray is drained by the water pump. The case 100 is discharged.
  • the case 100 further includes a top cover 130 and a bottom plate 140 oppositely disposed along the first direction Y, the electrical device 200 is located on the bottom plate 140 , and the top cover 130 is provided with The receiving space 131 , the second heat exchanger 320 is located in the receiving space 131 .
  • the second heat exchanger 320 is disposed in the top cover 130 to save space.
  • there are a plurality of fixed pillars 142 on the bottom plate 140 there are slide rails 141 on the fixed pillars 142 , and the electrical device 200 is located on the slide rails 141 .
  • the second heat exchanger 320 may also be disposed in the side shell of the tank case 100 or outside the tank case 100 .
  • the inlet 311 and the outlet 312 of the first heat exchanger 310 are located at one end of the first heat exchanger 310 adjacent to the top cover 130 . Between the inlet 311 and the outlet 312 of the first heat exchanger 310 may include multiple "S" loop sections or between the inlet 311 and the outlet 312 a "U"-shaped loop section.
  • the "U" shaped first heat exchanger 310 includes a liquid inlet section 313 and a liquid outlet section 314 (as shown in Figure 19), the inlet of the liquid inlet section 313 is the inlet 311 of the first heat exchanger 310, and the liquid inlet section 313
  • the outlet 315 of the outlet section 314 communicates with the inlet 316 of the liquid outlet section 314, and the outlet of the liquid outlet section 314 is the outlet 312 of the first heat exchanger 310, wherein the outlet 315 of the liquid inlet section 313 and the inlet 316 of the liquid outlet section 314 are located at "U ”-shaped loop, when the thermal control device 300 is used to dissipate heat from the electrical device 200, the cooled liquid heat exchange working medium 330 flows from the second heat exchanger 320 into the first heat exchanger 310, and the liquid heat exchange The working medium 330 enters from
  • the liquid heat exchange working medium 330 adjacent to the inlet 311 of the liquid inlet section 313 has more liquid content, and the liquid heat exchange working medium adjacent to the outlet 315 of the liquid inlet section 313 is relatively less, that is to say The heat dissipation effect of the inlet 311 of the liquid section 313 is better than that of the outlet 315 of the liquid inlet section 313; for the liquid outlet section 314, the liquid heat exchange working medium 330 adjacent to the inlet 316 of the liquid outlet section 314 has more liquid content, and the adjacent liquid outlet The content of the liquid heat exchange working medium 330 at the outlet 312 of the section 314 is less, that is to say, the inlet 316 of the outlet section 314 has a better heat dissipation effect than the outlet 312 of the outlet section 314, while the inlet 316 of the outlet section 314 and the inlet The outlet 315 of the section 313 is adjacent to each other, and the outlet 312 of the liquid outlet section 314 is adjacent to the inlet 3
  • the multiple “S"-shaped loops are equivalent to having multiple “U”-shaped loops described above, and the first heat exchanger 310 can also be upgraded.
  • the pipeline 303 also includes a first communication pipe 350 and a second communication pipe 360 , the first communication pipe 350 is connected between the inlet of the first heat exchanger 310 and the second heat exchanger 310 between the outlets of the heat exchanger 320, and communicate with the first heat exchanger 310 and the second heat exchanger 320 respectively, and the second communication pipe 320 is connected between the outlet of the first heat exchanger 310 and the inlet of the second heat exchanger 320 between them and communicate with the first heat exchanger 310 and the second heat exchanger 320 respectively.
  • the first heat exchanger 310 is arranged on the first side door 110 , the first side door 110 can be opened smoothly through the first communication pipe 350 and the second communication pipe 360 .
  • the first communication pipe 350 and the second communication pipe 360 are communication pipes with elastic expansion and contraction capabilities, or the first communication pipe 350 and the second communication pipe 360 have a certain length, so that the first side door 110 can be opened more smoothly. open.
  • the second heat exchanger 320 includes a second heat exchange tube 321, a compressor 322, an expansion valve 323, a heat exchange component 324, and an external fan 325.
  • the compressor 322, heat exchange The component 324 and the expansion valve 323 are sequentially connected between the inlet 311 of the first heat exchanger 310 and the outlet 312 of the first heat exchanger 310, and there is a part of the second heat exchange tube 321 between the compressor 322 and the heat exchange component 324,
  • the heat exchange component 324 and the expansion valve 323 have a part of the second heat exchange tube 321, the compressor 322, the heat exchange component 324 and the expansion valve 323 communicate with the second heat exchange tube 321, and the heat exchange working medium 330 is in the second heat exchange tube 321 , the compressor 322 , the expansion valve 323 and the heat exchange component 324 flow.
  • the external fan 325 is used to drive the external circulation between the inner space of the top cover 130 and the outside of the box body 100.
  • the top cover 130 includes an air inlet 136 and an air outlet 137. After exchanging heat, the heat exchange component 324 discharges the top cover 130 from the air outlet 137 to realize the external circulation between the inner space of the top cover 130 and the outside of the box body 100 .
  • the heat exchange component 324 is a condenser
  • the condenser is used to cool the heat exchange working medium 330 in the second heat exchange tube 321.
  • the heat exchange medium 330 in the first heat exchanger 310 is a low-pressure and low-temperature liquid.
  • the low-temperature and low-pressure liquid has a relatively low boiling point and can absorb heat quickly.
  • the fan 210 in the electrical device 200 drives the internal hot air Q from the second A tuyere 220 flows to the surface of the first heat exchanger 310, and the low-pressure and low-temperature liquid heat-exchange working medium 330 absorbs the heat of the hot air Q to become a low-pressure and low-temperature gas heat-exchange working medium 330, and the low-pressure and low-temperature gas heat-exchange working medium 330 Flow from the outlet 312 of the first heat exchanger 310 into the second heat exchange tube 321, and then flow into the compressor 322, the compressor 322 converts the low-pressure and low-temperature gas heat-exchange working medium 330 into a high-temperature and high-pressure gas heat-exchange working medium 330, the high-temperature and high-pressure gas heat-exchange working medium 330 is passed into the heat-exchange component (condenser) 324 through part of the second heat-exchange tube 321.
  • the high-temperature and high-pressure gas heat-exchange working medium 330 may refer to a temperature higher than that of the outside air
  • the external fan 325 can be used to drive the outside air to cool down the high-temperature and high-pressure gas heat-exchange working medium 330 in the heat-exchange component (condenser) 324, and the high-temperature and high-pressure gas heat-exchange working medium 330 is exchanged
  • the thermal component (condenser) 324 cools down to form a medium-temperature and high-pressure liquid heat-exchange working medium 330, and the medium-temperature and high-pressure liquid heat-exchange working medium 330 enters the expansion valve 323 through part of the second heat-exchange tube 321, and passes through the expansion valve 323 to form a low-temperature and low-pressure
  • the low-temperature and low-pressure liquid heat-exchange working medium 330 flows into the first heat exchanger 310 to continue cooling the electrical device 200 .
  • the second heat exchanger 320 uses the second heat exchanger 320 to perform heat exchange on the heat exchange working medium 330 in the first heat exchanger 310, so that the heat exchange working medium 330 forms a heat cycle in the first heat exchanger 310 and the second heat exchanger 320
  • the second heat exchanger 320 has a compressor 322 and an expansion valve 323, which can reduce the temperature drop of the heat exchange working medium 330.
  • the heat exchange working medium 330 with a lower temperature passes through the first heat exchanger
  • the 310 exchanges heat with the wind in the air circulation channel 20 to cool the electrical device 200
  • the temperature of the electrical device 200 can be lower than the temperature outside the housing 10 , thereby improving the cooling effect on the electrical device 200 .
  • the second heat exchanger 320 in this embodiment can also be used to make the temperature of the electrical device 200 higher than the temperature outside the casing 10, thereby increasing the temperature of the electrical device 200 Effect.
  • the second heat exchanger 320 may also include other components, such as an air filter, etc., and is not limited to the structural components described in FIG. 18 .
  • the second heat exchanger 320 can also be composed of other structures, as long as it can realize heat exchange for the heat exchange working medium 330 in the first heat exchanger 310 .
  • an embodiment of the present application also provides an energy storage system 60
  • the energy storage system 60 includes a power generation component 61 and a chassis 10 as described in any one of the above embodiments
  • the chassis 10 is an energy storage container
  • the power generation component 31 is used to generate electrical energy and store the electrical energy in the chassis 10 .
  • the power generation component 61 includes but not limited to a solar power generation device, a wind power generation device or a hydroelectric power generation device.
  • an embodiment of the present application also provides a data system 70, the data system includes a power supply component 71 and a chassis 10 as described in any one of the above embodiments, the chassis 10 is a data center or a cabinet, and the power supply component 71 is used So as to provide electric energy for the chassis 71 .

Abstract

本申请提供一种机箱、储能系统及数据系统,机箱包括箱壳、电气装置和热量控制装置,电气装置位于箱壳内的收容腔中,电气装置包括风扇、第一风口和第二风口,风扇用于加快气流在第一风口和第二风口之间的流动速度;热量控制装置包括内部连通的第一换热器和第二换热器,以及位于第一换热器和第二换热器中并能够在第一换热管和第二换热管之间流动的换热工质,第一换热器和第二换热器通过换热工质的热循环实现箱壳内外的热交换,第一换热器位于收容腔中且邻近第一风口。本申请提供的机箱的散热效果较佳,成本低。

Description

机箱、储能系统及数据系统 技术领域
本申请涉及机箱技术领域,特别涉及一种机箱、储能系统及数据系统。
背景技术
空调广泛应用在生活和工业中,用于对室内进行换热,在工业方面例如应用在储能集装箱中,储能集装箱是光伏储能的重要设备,储能集装箱中具有较多的电池,随着电池堆叠容量及倍率提升,如何高效的控制电池温升是机箱系统温控的关键,整机温控系统的低成本也是产品核心竞争力。目前一般将一体式空调安装于机箱两侧,通过空调送冷风对电池进行降温,这种温控架构设计,由于机箱电气装置距离空调远近不同,距离空调较远的电气装置由于空调送风不足导致散热较差,从而电芯温升高电池寿命差,对于整个温控系统,空调内循环风道路径长,风阻较大导致温控能效较低。
发明内容
本申请提供散热效果较佳的机箱。
第一方面,本申请提供一种机箱,所述机箱包括箱壳、电气装置和热量控制装置,所述电气装置位于所述箱壳内的收容腔中,所述电气装置包括风扇、第一风口和第二风口,所述风扇用于加快气流在所述第一风口和所述第二风口之间的流动速度;所述热量控制装置包括第一换热器、第二换热器和换热工质,所述第一换热器和所述第二换热器之间通过管道连通,所述换热工质位于所述第一换热器和所述第二换热器中并能够在所述第一换热管和所述第二换热管之间流动,所述第一换热器和所述第二换热器通过所述换热工质的热循环实现所述箱壳内外的热交换,所述第一换热器位于所述收容腔中且邻近所述第一风口。
其中风扇是属于电气装置的结构部件,用于对电气装置内部空间中的部件进行散热。
其中,电气装置包括电气部件,在机箱中,电气装置工作时,电气部件是电气装置产生热量的主要热源,电气装置中的风扇用于对电气部件散热,风扇能够吹动气体在电气部件表面流动以对电芯散热。
本申请中利用电气装置本身的风扇实现电气装置内部空间与收容腔之间的空气流通,无需额外设置风扇,节约成本和节约收容腔空间,并且将第一换热器邻近电气装置的第一风口设置,且使得第一换热器能够及时地对电气装置进行热交换,提升对电气装置的热交换效果,以及提升热量控制装置对电气装置的热交换效率。
在一实施方式中,所述机箱为储能集装箱,所述电气装置为电池模组,所述电气部件为电芯,电池模组在工作时会产生大量的热量,风扇用于电芯进行散热。在一些实施方式中,所述机箱可以为数据中心,所述数据中心可以为小型的数据中心,例如机柜,也可以为大型的数据中心,例如数据机房。在一些实施方式中,当所述机箱为机柜时,所述电气装置为服务器,所述电气部件为服务器中的电子元器件,服务器在工作时产生大量热量,风扇用于对服务器中的电子元器件散热。在其他实施方式中,机箱还可以为其他需要进行热交换的设备。
其中,气流在第一风口和第二风口之间的流动速度包括从第一风口、经过电气装置内部 空间到第二风口的流动速度,或者从第一风口、经过收容腔到第二风口的流通速度,其中电气装置内部空间气流流动速度通加快会使得电气装置外部的收容腔内的气流流通速度也加快。
当风扇工作时,驱动空气在第一风口、电气装置内部空间、第二风口和收容腔之间循环流动,第一风口、电气装置内部空间、第二风口和收容腔构成气流循环通道,风扇位于气流循环通道内。在其中一种实施方式中,风扇驱动空气从第一风口流动至电气装置内部空间,再从第二风口流动至收容腔中,风扇再吸入收容腔的空气并将该空气输送至第一风口,以此形成气流循环通道。在一实施方式中,第一风口为电气装置的进风口,第二风口为电气装置的出风口。
在一实施方式中,所述第一风口为所述电气装置的出风口,所述第二风口为所述电气装置的进风口。风扇驱动空气从第二风口流动至电气装置内部空间,再从电气装置内部空间流动至第一风口中并从第一风口流出至收容腔中,风扇再吸入收容腔的空气,使得空气从第二风口进入电气装置内部空间,以此形成气流循环通道。在本申请中通过电气装置自身的风扇形成气流循环通道,无需额外设置风扇,可节约成本,且无需占用收容腔中的其他位置,节约收容腔内部空间。
其中,第一换热器和第二换热器为能够传导热量的部件,可为风液换热器。换热工质在吸收足够热量时能够从第一状态变为第二状态,在放出热量时能够从第二状态变为第一状态,以此实现热循环,例如,当换热工质在吸收足够热量时从液体变为气体,在放出足够热量时从气体变为液体,其中,换热工质为冷媒,例如水、乙二醇、丙酮、甲醇等。
在一实施方式中,当电气装置内部需要降温时,电气装置工作产生的热量通过气流循环通道使得收容腔中的空气升温,位于收容腔中的第一换热器吸收收容腔中空气的热量,并将热量传递给第一换热器中的换热工质,换热工质吸收热量后升温汽化变成气体,气体换热工质流动至第二换热器中,其中第二换热器用于将气体换热工质的热量传递至箱壳外部,以此实现将箱壳内部的热量传递至箱壳外部的内到外热交换过程。
在一实施方式中,当电气装置内部需要升温时,例如机箱位于极冷的地区时,电气装置内部的温度较低,不能达到电气装置正常工作的温度时,需要对电气装置进行升温,以使电气装置能正常工作。第二换热器对第二换热器中的换热工质进行加热升温,升温后的换热工质流动至第一换热器中,并通过第一换热器将换热工质的热量传递至收容腔中的空气,收容腔中升温的空气通过气流循环通道对电气装置加热,以此实现将箱壳外部的热量传递至箱壳内部的外到内热交换过程。
其中,内到外热交换过程和外到内热交换过程是第一换热器和第二换热器借由换热工质的热循环来实现。其中第一换热器位于收容腔中,用于实现收容腔内空气与第一换热器中换热工质的热交换,换热工质能够从第一换热器流动至第二换热器中,第二换热器的安装位置可任意设置,只要能够实现第二换热器中换热工质与箱壳外部的热交换即可。所述箱壳包括沿第一方向相对设置的顶部盖体和底板,所述第二换热器位于箱壳的顶部盖体中,其中所述第一方向为所述机箱的高度方向。在一些实施方式中,所述第二换热器位于箱壳的侧面。
在本申请中,将第一换热器邻近第一风口设置,使得从第一风口进入电气装置内部空间的流动空气会从第一换热器经过,或者电气装置内部空间的流动空气从第一风口排出后会从第一热换热器经过,以使电气装置内部空间的空气能够及时地与第一换热器发生热交换,提升对电气装置的热交换效率。例如当需要对电气装置进行散热降温时,假使第一风口为进风口,电气装置工作产生热量,风扇工作,驱动被第一换热器冷却的冷空气快速的从第一风口 进入电气装置内部空间,及时地对电气装置冷却降温,减少冷空气从第一换热器到电气装置内部空间的输送距离,减少冷损失,提升对电气装置的降温效果。其中,电气装置为产生热量的热源,第一换热器是对电气装置制冷的冷源,将热源(电气装置)和冷源(第一换热器)相邻设置,具有较好的热交换效果,以提升对电气装置的散热效率。
其中,风扇为电气装置自身的风扇,一般设置在电气装置内部或者电气装置的第一风口和第二风口中,也就是说风扇离第一风口的距离较近,流经第一风口的风的流量和流速最大,当该流量和流速较大的风经过第一换热器时,单位时间内与第一换热器进行热交换的风量较大,提升热交换效率。如果将风扇远离电气装置设置,风扇驱动的风的风量在收容腔中分散,到达第一换热器上的风量和风速均会降低,使得第一换热器的换热效率降低。
在一实施方式中,所述第一换热器可包括第一换热管。在一实施方式中,所述第一换热器可包括第一换热管和导热片,第一换热管穿过导热片中,导热片用于增加空气进行热交换的接触面积。第一换热器还可以为其他结构部件,例如当第一换热器用于冷却空气时,第一换热器可为蒸发器。
在一种可能的实现方式中,所述电气装置包括仓壳体和位于所述仓壳体中的电气部件,所述仓壳体包括所述的第一风口和所述的第二风口,所述风扇位于下述位置中的至少一处:所述第一风口、所述第二风口和所述仓壳体内部空间。
其中所述仓壳体是指用于收容电气部件的壳体,其中仓壳体中的电气部件即为电气装置的电气部件。仓壳体和位于仓壳体中的电气部件构成电气仓。在一实施方式中,所述电气装置为电池模组,所述仓壳体为用于收容电芯的壳体。在一实施方式中,所述电气装置为服务器,所述仓壳体为用于收容电子元器件的壳体。在一实施方式中,所述电气装置为电池模组,所述仓壳体和位于其中的电芯构成电池仓。
在一实施方式中,所述第一风口和所述第二风口沿第二方向相对设置,所述第二方向与所述第一方向相交,所述第一风口为进风口,所述第二风口为出风口,所述风扇位于第一风口处,使得与第一换热器发生热交换的空气从第一风口直接吹进仓壳体内部空间,而与电气部件进行热交换,提升热交换效率。在一些实施方式中,所述第一风口为出风口,所述第二风口为进风口,仓壳体内部空间出来的空气从第一风口出来后直接与第一换热器发生热交换。
在一实施方式中,所述风扇也可以位于仓壳体内部空间,仓壳体内部空间即为电气装置内部空间,风扇可位于仓壳体的任意位置,具体可根据电气部件的排布方式来设置风扇,以使风扇和电气部件合理布局,保证通风量和电气部件的数量。在一实施方式中,风扇可位于第二风口处。在一实施方式中,风扇为两个,两个风扇分别位于第一风口和第二风口中。
其中,所述风扇位于第一风口处包括所述风扇固定在第一风口朝向仓壳体内部空间的一侧,或者所述风扇固定在第一风口远离仓壳体内部空间的一侧,或者所述风扇固定在第一风口周围的仓壳体上。所述风扇位于第二风口处包括所述风扇固定在第二风口朝向仓壳体内部空间的一侧,或者所述风扇固定在第二风口远离仓壳体内部空间的一侧,或者所述风扇固定在第二风口周围的仓壳体上。
在一实施方式中,所述电气装置包括多个风扇,所述多个风扇分别位于所述第一风口处和所述第二风口处。在一实施方式中,所述多个风扇分别位于所述第一风口处和所述仓壳体的内部空间中。在一实施方式中,所述多个风扇分别位于所述第二风口处和所述仓壳体的内部空间中。在一实施方式中,所述多个风扇分别位于所述第一风口处、所述第二风口处和所述仓壳体的内部空间中。多个风扇的设置方式可提升空气流动速度。
在一实施方式中,热量控制装置用于对电气仓降温时,风扇驱动被第一换热器冷却的空 气从第一风口流动至仓壳体内部空间,对电气部件进行冷却降温,空气升温,升温后的空气再从第二风口流动至收容腔中,通过气流循环通道,空气再次回到第一风口被第一换热器冷却,冷却后的空气再次进入仓壳体内部空间,可有效提升对仓壳体内部的电气部件的冷却效率。
在一些实施方式中,热量控制装置可用于对电气仓加热,具体加热过程与前文所述的加热过程相类似,在此不再赘述。
在一实施方式中,所述箱壳包括第一侧门,所述第一风口朝向所述第一侧门,所述第一换热器位于所述第一侧门与所述第一风口之间,且被固定在所述第一侧门朝向所述电气装置的内表面上。将第一换热器安装在第一侧门上,便于对第一换热器和电气装置维修,只需要打开第一侧门就可以维修对第一换热器进行维修。
在一实施方式中,所述第一换热器还可以固定电气装置的外侧。其中,所述箱壳包括第一侧门,所述第一侧门位于所述电气装置沿所述第二方向的一侧,所述第一风口和所述第二风口沿所述第二方向相对设置,相较于所述第一风口,所述第一侧门更邻近所述第二风口设置,所述第一换热器固定在所述电气装置的外侧。
在一些实施方式中,还在可电气装置的其他侧面设置多个第一换热器,以提升对电气装置的换热效果。
在一种可能的实现方式中,所述电气装置包括堆叠设置的多个仓壳体,在每一个所述仓壳体中,所述第一风口的外侧具有所述第一换热器,且所述第一换热器的至少一部分与所述第一风口相对。在一实施方式中,箱壳还包括沿第一方向相对设置的顶部盖体和底板,电气装置位于顶部盖体和底板之间的区域,多个仓壳体堆叠的方向为第一方向。第一换热器沿第一方向延伸,使得每一个仓壳体的第一风口处均具有部分第一换热器,可以对每一个电气仓进行散热,散热更均匀。在一实施方式中,第一方向为箱壳的高度方向,第二方向为箱壳的宽度方向。
在一实施方式中,在每一个仓壳体的第一风口处均设有一部分第一换热器,当对电气装置降温时,在第一换热器中的换热工质是液体,液体吸收热量变为气体,第一换热器中任一位置处的液体换热工质从液体变为气体所吸收的热量差别较小。在一实施方式中,可在第一换热器中设置较多的液体换热工质,以使液体换热工质能够流通到第一换热器中的任意部分,或者至少能使液体换热工质能够流通到每一个仓壳体的第一风口邻近的部分第一换热器中,使得每一个仓壳体的第一风口邻近的部分第一换热器的吸热效果相当,进而可以提升对电气装置中的每一个电气仓散热均匀性。
在一实施方式中,所述电气装置包括电气支架,多个所述电气仓设置在所述电气支架上。在一些实施方式中,可直接将多个电气仓沿第一方向堆叠设置。
在一些实施方式中,所述电气装置包括装置壳体和位于所述装置壳体内的电气部件,所述装置壳体包括所述第一风口和所述第二风口,所述风扇位于下述位置中的至少一处:所述第一风口、所述装置壳体内部空间或者所述第二风口。在一实施方式中,所述电气装置为电池模组,所述电池模组包括所述模组壳体和位于所述模组壳体内的电芯,将所述电芯直接设置在所述模组壳体内,所述模组壳体包括所述第一风口和所述第二风口,所述风扇位于下述位置中的至少一处:所述第一风口、所述装置壳体内部空间或者所述第二风口。
其中所述第一风口和所述第二风口分别设置在所述装置壳体沿所述第二方向相对设置的壳体上。其中风扇与装置壳体的固定方式包括卡扣、螺钉等,具体方式不限。在一实施方式中,当电气装置包括沿第一方向排列的多个电气部件时,可通过支架或者堆叠的方式将多个 电气部件沿第一方向排列,并在装置壳体沿第二方向两侧的壳体上设置多个第一风口、多个第二风口以及多个风扇,使得每一个电气部件沿第二方向的两侧分别具有第一风口和第二风口,以及具有风扇可正对电气部件吹风。
在一种可能的实现方式中,所述机箱包括排列设置的多个电气装置,所述热量控制装置包括多个所述第一换热器,所述多个电气装置中的每一个电气装置的第一风口的位置处具有一个所述第一换热器。其中,多个电气装置排列的方向为第三方向,第三方向分别与第二方向、第一方向相交。一实施方式中,所述第一方向为箱壳的高度方向,所述第二方向为箱壳的宽度方向,所述第三方向为箱壳的长度方向。
在一实施方式中,所述电气装置具有多个,所述电气装置具有多个电气仓,当第一换热器用于对多个电气装置降温时,将每一个电气装置中的每一个电气仓的第一风口处设有部分第一换热器,可提升对每一个电气仓的散热效果,且提升对所有电气装置的散热均匀性。在一实施方式中,在第三方向排列的电气装置的数量不限,当电气装置数量很多个时,仍然具有较好的散热均匀性。当第一换热器用于对多个电气装置加热时,具有较好的加热均匀性。
在一实施方式中,当具有多个第一换热器时,热量控制装置可包括一个第二换热器,或者多个第二换热器。当只有一个第二换热器时,该第二换热器与多个第一换热器连通,用于对多个第一换热器中的换热工质进行热交换。当具有多个第二换热器,第二换热器可分别与多个第一换热器连通,分别对多个第一换热器中的换热工质进行热交换,具体可根据实际需要来设置。
在一些实施方式中,所述机箱包括沿所述第二方向排列的多个电气装置,在每一个所述电气装置的外侧设有一个所述第一换热器。其中,第一换热器可以根据电气装置的个数或者分布位置来适配增加,多个第一换热器分布式布局,可对每个电气装置进行散热,提升散热效果。
在一实施方式中,沿所述第二方向排列设有两个电气装置,沿所述第二方向排列设有两个电气装置的第一风口分别邻近两侧的第一侧门和第二侧门。
在一实施方式中,沿所述第二方向排列设有两个电气装置,沿所述第二方向排列设有两个电气装置的第一风口分别远离两侧的第一侧门和第二侧门。
在一些实施方式中,沿所述第二方向排列设有两个以上的电气装置,此时可将位于电气装置和电气装置之间的电气装置的第一换热器固定在电气装置上。
在一种可能的实现方式中,所述热量控制装置还包括导流壳体,所述导流壳体和所述第一换热器位于所述电气装置沿所述第二方向的同一侧,所述导流壳体和所述第一换热器沿第一方向延伸,所述第二方向与所述第一方向相交,所述第一换热器位于所述导流壳体内,所述导流壳体上设有第三风口和第四风口,相较于所述第四风口,所述第三风口更邻近所述第一风口设置,所述第三风口和所述第一风口用于连通所述导流壳体的内部空间和所述电气装置的内部空间,所述第四风口用于连通所述导流壳体的内部空间和所述收容腔。
其中第三风口和第四风口位于气流循环通道内,当第一风口为电气装置的出风口,第二风口为电气装置的进风口时,第三风口为导流壳体的进风口,第四风口为导流壳体的出风口,从第一风口出来的风穿过第三风口进入到导流壳体内部空间,被第一换热器冷却,导流壳体使得风在其收容孔短暂停留,使得风与第一换热器接触时间更长,进而可充分进行热交换。
在一实施方式中,所述第三风口与所述第一风口的中心轴线重叠,使得风在第一风口和第三风口之间流通更顺畅。
在一实施方式中,所述导流壳体包括第一侧板、第二侧板、第三侧板和第四侧板,其中 第一侧板和第二侧板沿第二方向相对设置,第三侧板和第四侧板沿第三方向相对设置,第一侧板、第三侧板、第二侧板和第四侧板依次连接围成导流壳体,其中第一侧板邻近第一风口设置,第三风口设置在第一侧板上,在第三侧板和第四侧板上均设有第四风口,从第三风口进来的风可分两路分别从第三侧板和第四侧板上的第四风口排出。
在一实施方式中,所述箱壳还包括沿所述第一方向相对设置的顶部盖体和底板,所述导流壳体位于所述顶部盖体和所述底板之间。所述导流壳体包括所述第三风口与所述第四风口,所述第三风口的边缘与所述底板之间的最大垂直距离大于所述第四风口的边缘与所述底板之间的最小垂直距离,且小于或者等于所述第四风口的边缘与所述底板之间的最大垂直距离。可使得风能够从第三风口流通至第四风口,或者从第四风口流通至第三风口,在保证充分热交换的情况下提升空气的流通速度。其中,第一方向为垂直于底板的方向。
在一实施方式中,所述第四风口的边缘与所述底板之间的最大垂直距离大于所述第三风口的边缘与所述底板之间的最小垂直距离,且小于或者等于所述第三风口的边缘与所述底板之间的最大垂直距离,第一方向为垂直于底板的方向。
在一实施方式中,所述第三风口和所述第四风口的上下边缘与所述底板之间的垂直距离分别相等,具体的,所述第三风口的边缘与所述底板之间的最大垂直距离等于所述第四风口的边缘与所述底板之间的最大垂直距离,所述第三风口的边缘与所述底板之间的最小垂直距离等于所述第四风口的边缘与所述底板之间的最小垂直距离。
在一实施方式中,所述第四风口为两个。在一实施方式中,所述第四风口为三个。
在一实施方式中,所述第三风口和所述第四风口的形状为矩形,且矩形的长度方向与第一方向相同。在一实施方式中,所述第三风口和所述第四风口的形状为方形。在一实施方式中,所述第三风口和所述第四风口的形状为椭圆形等。在一实施方式中,当所述第四风口为两个及两个以上时,每个所述第四风口的上边缘与所述底板的最大垂直距离可相同或者不同,每个所述第四风口的下边缘与所述底板的最小垂直距离可相同或者不同,每个第四风口的形状可相同或者不相同。
在一实施方式中,当所述电气装置包括多个仓壳体时,所述导流壳体设有多个第三风口,每个所述第三风口与一个所述仓壳体的第一风口相对设置,至少一个所述第四风口与其中一个所述第三风口满足上述垂直距离关系。在一实施方式中,导流壳体对应每一个仓壳体设有一个第三风口和一个第四风口。
在一实施方式中,在所述导流壳体的底部设有接水盘和水泵,接水盘用于收集从第一换热器上冷凝的水滴,并通过水泵将接水盘中的水排出箱壳。
在一种可能的实现方式中,所述箱壳还包括沿第一方向相对设置的顶部盖体和底板,所述电气装置位于底板上,所述顶部盖体内设有收容空间,所述第二换热器位于收容空间内。将第二换热器设置在顶部盖体中,节约空间。其中,底板上具有多个固定支柱,在固定支柱上具有滑轨,电气装置位于滑轨上。当电气装置具有多个时,第一换热器和第二换热器具有多个,多个第二换热器集中设置在顶部盖体中,以节约机箱的尺寸。在其他实施方式中,还可将第二换热器设置在箱壳的侧壳体中或者设置在箱壳的外部。
在一实施方式中,所述第一换热器的入口和出口位于第一换热器邻近顶部盖体的一端。第一换热器的入口和出口之间可包括多个“S”回路部分或者入口和出口之间为“U”形回路部分。
当入口和出口之间为“U”形回路,可提升对电气装置的换热均匀性。
当入口和出口之间为多个“S”形回路时,多个“S”形回路相当于具有多个前面所述的 “U”形回路,也可以提升第一换热器对电气装置上下部分的散热均匀性。
在一种可能的实现方式中,所述管道还包括第一连通管和第二连通管,所述第一连通管连接在所述第一换热器的入口和所述第二换热器的出口之间,且分别与所述第一换热器和所述第二换热器连通,所述第二连通管连接在所述第一换热器的出口和所述第二换热器的入口之间,且分别与所述第一换热器和所述第二换热器连通。当第一换热器设置在第一侧门上时,通过第一连通管和第二连通管,可使得第一侧门能够顺利地打开。在一实施方式中,第一连通管和第二连通管为具有弹性伸缩能力的连通管,或者第一连通管和第二连通管具有一定长度,使得第一侧门能够更顺利地打开。
在一实施方式中,所述第二换热器包括第二换热管、压缩机、膨胀阀、换热部件和外机风扇,压缩机、换热部件和膨胀阀依次连接在第一换热器的入口和第一换热器的出口之间,压缩机和换热部件之间具有部分第二换热管,换热部件和膨胀阀具有部分第二换热管,压缩机、换热部件和膨胀阀与第二换热管连通,换热工质在第二换热管、压缩机、膨胀阀和换热部件中流动。外机风扇用于驱动顶部盖体内部空间与箱体外部的外循环,顶部盖体包括进风口和出风口,外机风扇驱动外部空气从进风口进入后,与换热部件换热后,从出风口排出顶部盖体,以实现顶部盖体内部空间与箱体外部的外循环。
当换热部件为冷凝器时,冷凝器用于对第二换热管中的换热工质进行冷却,当热量控制装置对电气装置进行降温冷却时,第一换热器中的换热工质为低压低温的液体,低温低压的液体具有较低的沸点,能够较快的吸收热量,电气装置中的风扇驱动内部热空气从第一风口流动至第一换热器的表面,低压低温的液体换热工质吸收热风空气的热量变为低压低温的气体换热工质,低压低温的气体换热工质从第一换热器的出口流动第二换热管中,再流动至压缩机中,压缩机将低压低温的气体换热工质转变为高温高压的气体换热工质,高温高压的气体换热工质再通过部分第二换热管通入换热部件(冷凝器)中,高温高压的气体换热工质可以是指高于外界空气的温度和压力的气体,此时可采用外机风扇驱动外界空气对换热部件(冷凝器)中的高温高压的气体换热工质进行降温,高温高压的气体换热工质被换热部件(冷凝器)降温形成中温高压的液体换热工质,中温高压的液体换热工质再通过部分第二换热管进入膨胀阀,并通过膨胀阀形成低温低压的液体换热工质,低温低压的液体换热工质再流动至第一换热器中,继续对电气装置冷却降温。
采用第二换热器对第一换热器中的换热工质进行热交换,使得换热工质在第一换热器和第二换热器中形成热循环。在一实施方式中,第二换热器具有压缩机和膨胀阀,可使得换热工质的温度降低较低,当温度较低的换热工质通过第一换热器与气流循环通道中的风进行热交换来冷却电气装置时,可以使得电气装置的温度低于箱壳外部的温度,从而提升对电气装置的冷却效果。当采用热量控制装置对电气装置升温,采用一实施方式中的第二换热器,也可以使得电气装置的温度高于箱壳外部的温度,从而提升对电气装置的升温效果。
在其他实施方式中,第二换热器还可以包括其他部件,例如空气过滤器等。第二换热器还可以为其他结构组成,只要能实现对第一换热器中的换热工质进行换热即可。
第二方面,本申请还提供一种储能系统,所述储能系统包括发电组件和如上任一项所述的机箱,所述机箱为储能集装箱,所述发电组件用于产生电能并将所述电能存储在所述机箱中。其中发电组件包括但不限于太阳能发电装置、风能发电装置或者水力发电装置。
第三方面,本申请还提供一种数据系统,所述数据系统包括供电组件和如上任一项所述的机箱,所述机箱为数据中心或者机柜,所述供电组件用于为所述机箱提供电能。
附图说明
图1是本申请一实施方式提供的机箱的立体结构示意图;
图2是本申请一实施方式提供的机箱的结构示意图;
图3是本申请一实施方式提供的机箱的结构示意图;
图4a是本申请一实施方式提供的机箱的结构示意图;
图4b是本申请一实施方式提供的机箱的结构示意图;
图5是采用一体式空调对电气装置散热的结构示意图;
图6是采用分体式空调对电气装置散热的结构示意图;
图7是本申请一实施方式提供的机箱的结构示意图;
图8是本申请一实施方式提供的机箱的结构示意图;
图9a是本申请一实施方式提供的机箱的结构示意图;
图9b是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9c是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9d是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9e是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9f是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9g是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9h是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9i是本申请一实施方式提供的机箱中电气装置的结构示意图;
图9j是本申请一实施方式提供的机箱中电气装置的结构示意图;
图10是本申请一实施方式提供的机箱的结构示意图;
图11是采用一体式空调对电气装置散热的结构示意图;
图12是本申请一实施方式提供的机箱的电气装置的结构示意图;
图13是本申请一实施方式提供的机箱的电气装置的结构示意图;
图14是本申请一实施方式提供的机箱的结构示意图;
图15是采用一体式空调对电气装置散热的结构示意图;
图16是本申请一实施方式提供的机箱的结构示意图;
图17a是本申请一实施方式提供的机箱的结构示意图;
图17b是本申请一实施方式提供的机箱中导流壳体与底板的位置示意图;
图17c是本申请一实施方式提供的机箱中导流壳体展开后与底板的位置示意图;
图17d是本申请一实施方式提供的机箱中导流壳体与底板的位置示意图;
图17e是本申请一实施方式提供的机箱中导流壳体展开后与底板的位置示意图;
图17f是本申请一实施方式提供的机箱中导流壳体展开后与底板的位置示意图;
图17g是本申请一实施方式提供的机箱中导流壳体展开后与底板的位置示意图;
图17h是本申请一实施方式提供的机箱中导流壳体展开后与底板的位置示意图;
图17i是本申请一实施方式提供的机箱中导流壳体展开后与底板的位置示意图;
图17j是本申请一实施方式提供的机箱中导流壳体展开后与底板的位置示意图;
图17k是本申请一实施方式提供的机箱中导流壳体与电气装置的位置示意图;
图18是本申请一实施方式提供的机箱的结构示意图;
图19是本申请一实施方式提供的机箱中第一换热器和电气装置部分的结构示意图;
图20是本申请一实施方式提供的储能系统的结构示意图;
图21是本申请一实施方式提供的数据系统的结构示意图。
具体实施方式
本文中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本文中,“上”、“下”等方位术语是相对于附图中的结构示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据结构所放置的方位的变化而相应地发生变化。
为方便理解,下面先对本申请实施例所涉及的有关技术术语进行解释和描述。
热损失:热损失是指向外界散失的热量。
冷损失:冷损失是指向外界吸收的热量。
热循环:热循环是指在一个热力学过程中,系统从初始状态出发经历了一系列过程之后又回到初始状态,即系统的终态与初态重合。
风液换热器:一种空气与冷媒工质换热的装置。
压缩机:是一种将低压气体提升为高压气体的从动的流体机械,是制冷系统的心脏。它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力。
膨胀阀:使中温高压的液体制冷剂通过其节流成为低温低压的湿蒸汽,然后制冷剂在蒸发器中吸收热量达到制冷效果。
请参阅图1,本申请一实施方式提供一种机箱10,机箱10包括箱壳100、电气装置200和热量控制装置300,电气装置200位于箱壳100内的收容腔400中,电气装置200包括风扇210、第一风口220和第二风口230(如图2所示),风扇210用于加快气流在第一风口220和第二风口230之间的流动速度。其中风扇210是属于电气装置200的结构部件,用于对电气装置200内部空间201中的部件进行散热,在本申请中电气装置200包括电气部件202,在机箱10中,电气装置200工作时,电气部件202是电气装置200产生热量的主要热源,电气装置200中的风扇210用于对电气部件202散热,风扇210能够吹动气体在电气部件202表面流动以对电芯202散热。
在本实施方式中,机箱10为储能集装箱10,电气装置200为电池模组200,电气部件202为电芯202,电池模组200在工作时会产生大量的热量,风扇210用于电芯202进行散热。在一些实施方式中,机箱10可以为数据中心,数据中心可以为小型的数据中心,例如机柜,也可以为大型的数据中心,例如数据机房。在一些实施方式中,当机箱10为机柜时,电气装置200为服务器,电气部件202为服务器中的电子元器件,服务器在工作时产生大量热量,风扇210用于对服务器中的电子元器件散热。在其他实施方式中,机箱10还可以为其他需要进行热交换的设备。
气流在第一风口220和第二风口230之间的流动速度包括从第一风口220、经过电气装置200内部空间201到第二风口230的流动速度,或者从第一风口220、经过收容腔400到第二风口230的流通速度,其中电气装置200内部空间201气流流动速度通加快会使得电气装置200外部的收容腔400内的气流流通速度也加快。
如图2所示,当风扇210工作时,驱动空气Q在第一风口220、电气装置200内部空间201、第二风口230和收容腔400之间循环流动,第一风口220、电气装置200内部空间201、第二风口230和收容腔400构成气流循环通道20,风扇210位于气流循环通道20内。具体的,在其中一种实施方式中,风扇210驱动空气Q从第一风口220流动至电气装置200内部空间201,再从第二风口230流动至收容腔400中,风扇210再吸入收容腔400的空气Q并将该空气Q输送至第一风口220,以此形成气流循环通道20。在本实施方式中,第一风口220为电气装置200的进风口,第二风口230为电气装置200的出风口。其中,图2在收容腔400内仅示出了空气Q在电气装置200的一侧的流动示意图,在实际场景中,空气Q可在围绕电气装置200周围的收容腔400中流动。
在其他实施方式中,第一风口220为电气装置200的出风口,第二风口230为电气装置200的进风口,如图3所示,风扇210驱动空气Q从第二风口230流动至电气装置200内部空间201,再从电气装置200内部空间201流动至第一风口220中并从第一风口220流出至收容腔400中,风扇210再吸入收容腔400的空气Q,使得空气Q从第二风口230进入电气装置200内部空间201,以此形成气流循环通道20。在本申请中通过电气装置200自身的风扇210形成气流循环通道20,无需额外设置风扇,可节约成本,且无需占用收容腔400中的其他位置,节约收容腔400内部空间。
热量控制装置300包括第一换热器310、第二换热器320和换热工质330(如图4a所示),第一换热器310和第二换热器320之间通过管道303连通,换热工质330位于第一换热器310和第二换热器320中并能够在第一换热管310和第二换热管320之间流动,第一换热器310和第二换热器320通过换热工质330的热循环实现箱壳100内外的热交换,第一换热器310位于收容腔400中且邻近第一风口220。
其中,第一换热器310和第二换热器320为能够传导热量的部件,可为风液换热器。换热工质330在吸收足够热量时能够从第一状态变为第二状态,在放出热量时能够从第二状态变为第一状态,以此实现热循环,例如,当换热工质330在吸收足够热量时从液体变为气体,在放出足够热量时从气体变为液体,其中,换热工质330为冷媒,例如水、乙二醇、丙酮、甲醇等。
在一实施方式中,当电气装置200内部需要降温时,电气装置200工作产生的热量通过气流循环通道20使得收容腔400中的空气升温,位于收容腔400中的第一换热器310吸收收容腔400中空气的热量,并将热量传递给第一换热器310中的换热工质330,换热工质330吸收热量后升温汽化变成气体,气体换热工质330流动至第二换热器320中,其中第二换热器320用于将气体换热工质330的热量传递至箱壳100外部,以此实现将箱壳100内部的热量传递至箱壳100外部的内到外热交换过程。
在一实施方式中,当电气装置200内部需要升温时,例如机箱10位于极冷的地区时,电气装置200内部的温度较低,不能达到电气装置200正常工作的温度时,需要对电气装置200进行升温,以使电气装置200能正常工作。第二换热器320对第二换热器320中的换热工质330进行加热升温,升温后的换热工质330流动至第一换热器310中,并通过第一换热器310将换热工质330的热量传递至收容腔400中的空气,收容腔400中升温的空气通过气流循环通道20对电气装置200加热,以此实现将箱壳100外部的热量传递至箱壳100内部的外到内热交换过程。
其中,内到外热交换过程和外到内热交换过程是第一换热器310和第二换热器320借由换热工质330的热循环来实现。其中第一换热器310位于收容腔400中,用于实现收容腔400 内空气与第一换热器310中换热工质330的热交换,换热工质330能够从第一换热器310流动至第二换热器320中,第二换热器320的安装位置可任意设置,只要能够实现第二换热器320中换热工质330与箱壳100外部的热交换即可。在图4a所示的方式中,箱壳100包括沿第一方向Y相对设置的顶部盖体130和底板140,第二换热器320位于箱壳100的顶部盖体130中,其中第一方向Y为机箱10的高度方向。在一些实施方式中,第二换热器320位于箱壳100的侧面。
在本申请中,将第一换热器310邻近第一风口220设置(如图4a所示),使得从第一风口220进入电气装置200内部空间201的流动空气Q会从第一换热器310经过,或者电气装置200内部空间201的流动空气Q从第一风口220排出后会从第一热换热器310经过,以使电气装置200内部空间201的空气Q能够及时地与第一换热器310发生热交换,提升对电气装置200的热交换效率。例如当需要对电气装置200进行散热降温时,假使第一风口220为进风口,电气装置200工作产生热量,风扇210工作,驱动被第一换热器310冷却的冷空气Q快速的从第一风口220进入电气装置200内部空间201,及时地对电气装置200冷却降温,减少冷空气Q从第一换热器310到电气装置200内部空间201的输送距离,减少冷损失,提升对电气装置200的降温效果。其中,电气装置200为产生热量的热源,第一换热器310是对电气装置200制冷的冷源,将热源(电气装置200)和冷源(第一换热器310)相邻设置,具有较好的热交换效果,以提升对电气装置200的散热效率。
如果将第一换热器310远离第一风口220设置,需要对电气装置200降温时,第一换热器310会先对第一换热器310附近的部件或者空气进行冷却,第一换热器310附近被冷却的部件或者空气与远处其他部件或远处空气进行热交换,在这一过程中会造成冷损失。例如部分冷空气与箱壳100内壁热交换以冷却箱壳100,而冷却的箱壳100通过箱壳100外壁与外界空气会发生热交换,也就是说一部分冷空气用于冷却外界空气,造成冷损失,进而使得热量控制装置300冷却电气装置200的效率降低。而本申请中,将第一换热器310邻近第一风口220设置,使得第一换热器310最大限度的对从经过第一风口220的风进行冷却,减少冷损失。当第一风口220为进风口时,被第一换热器310冷却的风及时地从第一风口220进入电气装置200内部空间,对电气装置200内部的部件进行冷却降温。当第一风口220为出风口时,电气装置200内部空间的热空气在风扇210的驱动下经过第一风口220后被第一换热器310及时地冷却,冷却后的冷空气通过气流循环通道20从第二风口230再次进入电气装置200内部空间201,对电气装置200内部空间201中的部件进行冷却,提升对电气装置200的冷却效果,同时也提升热量控制装置300对电气装置200的冷却效率。
如果将第一换热器310远离第一风口220设置,需要对电气装置200加热时,第一换热器310会先对第一换热器310附近的部件或者空气进行加热,第一换热器310附近被加热的部件或者空气与远处其他部件或远处空气进行热交换,在这一过程中会造成热损失。例如部分热空气与箱壳100内壁热交换以加热箱壳100,而加热的箱壳100通过外壁与外部空气也会发生热交换,也就是说一部分热空气用于加热外部空气,造成热损失,进而使得热量控制装置300加热电气装置200的效率降低。而本申请中,将第一换热器310邻近第一风口220设置,使得第一换热器310最大限度的对从经过第一风口220的风进行加热,减少热损失。当第一风口220为进风口时,被第一换热器310加热的风及时地从第一风口220进入电气装置200内部空间,对电气装置200内部的部件进行加热升温。当第一风口220为出风口时,电气装置200内部空间的冷空气在风扇210的驱动下经过第一风口220后被第一换热器310及时地加热,加热后的热空气通过气流循环通道20从第二风口230再次进入电气装置200内 部空间201,对电气装置200内部空间201中的部件进行加热,提升对电气装置200的加热效果,同时也提升热量控制装置300对电气装置200的加热效率。
其中,风扇210为电气装置200自身的风扇,一般设置在电气装置200内部或者电气装置200的第一风口220和第二风口230中,也就是说风扇210离第一风口200的距离较近,流经第一风口200的风的流量和流速最大,当该流量和流速较大的风经过第一换热器310时,单位时间内与第一换热器310进行热交换的风量较大,提升热交换效率。如果将风扇210远离电气装置200设置,风扇210驱动的风的风量在收容腔400中分散,到达第一换热器310上的风量和风速均会降低,使得第一换热器310的换热效率降低。
请参阅图5,当在机箱10的内部设置一体式空调30来对电气装置200降温时,一体式空调30是指空调内机和空调外机为一体式结构,一体式空调30的尺寸较大,会增加机箱10的内部尺寸,并且对电气装置200的散热效果较差。
如图5所示,一体式空调30包括空调壳体31以及位于空调壳体31中的空调风扇32、蒸发器33以及空调外机组件36,空调壳体31包括出风口34和进风口35,出风口34和进风口35之间具有一定距离,一般的空调壳体31上的出风口34和分进风口35别位于空调壳体31的上下两端,蒸发器33用于对进入空调壳体31内的空气降温,降温后的冷空气从出风口34排出至收容腔400内,空调外机组件36用于将蒸发器33的热量传递至箱壳100外界。当采用一体式空调30对电气装置200进行冷却降温时,蒸发器33冷却的冷空气从出风口34流动至收容腔400中,在出风口34和电气装置200之间的冷空气具有冷损失,然后再对电气装置200散热,在这种散热方式中,用于冷却热空气的蒸发器33位于空调壳体31内部,蒸发器33与电气装置200之间的风路距离较远,电气装置200内部发热产生的热空气不能在电气装置200的第一风口220的附近被冷却,该热空气需要经过一段较长的路径才能达到蒸发器33,热空气的热量会传递至收容腔400的其他空间,到达蒸发器33上的热空气的风量降低,蒸发器33对电气装置200的散热效率降低,散热效率低于本申请将第一换热器310邻近第一风口22设置时第一换热器310对电气装置200的散热效率。
请参阅图6,当采用分体式空调来对电气装置200降温时,在机箱10的内部设置空调内机40,在机箱10的外部设置空调外机50,空调内机40吹出冷空气对收容腔400和电气装置200降温,其中空调内机40包括空调壳体41以及位于空调壳体41中的空调风扇42、蒸发器43,空调内机40的尺寸也较大,会增加机箱10的内部尺寸。其中空调壳体41包括出风口44和进风口45,本实施方式中蒸发器43与电气装置200之间距离较远,同样具有一定的冷损失,对电气装置200的散热效果较差。并且在图5和图6所示的两种方式中,空调内部均需要设置风扇,增加成本,而本申请中无需额外设置风扇。
本申请中利用电气装置200本身的风扇210实现电气装置200内部空间201与收容腔400之间的空气流通,无需额外设置风扇,节约成本和节约收容腔400空间,并且将第一换热器310邻近电气装置200的第一风口220设置,且使得第一换热器310能够及时地对电气装置200进行热交换,提升对电气装置200的热交换效果,以及提升热量控制装置300对电气装置200的热交换效率。
其中第一换热器310可包括第一换热管301。或者第一换热器310可包括第一换热管301和导热片302(如图4a所示),第一换热管301穿过导热片302中,导热片302用于增加空气进行热交换的接触面积。第一换热器310还可以为其他结构部件,例如当第一换热器310用于冷却空气时,第一换热器310可为蒸发器。
请继续参阅图4a,在一种可能的实现方式中,电气装置200包括仓壳体241和位于仓壳 体241中的电气部件202,仓壳体241包括所述的第一风口220和所述的第二风口230,风扇210位于下述位置中的至少一处:第一风口220、第二风口230和仓壳体241内部空间。
其中仓壳体241是指用于收容电气部件202的壳体,其中仓壳体241中的电气部件202即为电气装置200的电气部件202。仓壳体241和位于仓壳体241中的电气部件202构成电气仓240。当电气装置200为电池模组时,仓壳体241为用于收容电芯的壳体,当电气装置200为服务器时,仓壳体241为用于收容电子元器件的壳体。在本实施方式中,电气装置200为电池模组,仓壳体241和位于其中的电芯202构成电池仓。
在本实施方式中,第一风口220和第二风口230沿第二方向X相对设置(如图4a所示),第二方向X与第一方向Y相交,第一风口220为进风口,第二风口230为出风口,风扇210位于第一风口220处(如图4a所示),使得与第一换热器310发生热交换的空气从第一风口220直接吹进仓壳体241内部空间201,而与电气部件202进行热交换,提升热交换效率。在一些实施方式中,第一风口220为出风口,第二风口230为进风口,仓壳体241内部空间201出来的空气从第一风口220出来后直接与第一换热器310发生热交换。
在一实施方式中,风扇210也可以位于仓壳体241内部空间(如图7所示),仓壳体241内部空间即为电气装置200内部空间201,风扇210可位于仓壳体241的任意位置,具体可根据电气部件202的排布方式来设置风扇210,以使风扇210和电气部件202合理布局,保证通风量和电气部件202的数量。在一实施方式中,风扇210可位于第二风口230处(如图8所示)。在一实施方式中,风扇210为两个,两个风扇210分别位于第一风口220和第二风口230中(如图9a所示)。
其中,风扇210位于第一风口220处包括风扇310固定在第一风口220朝向仓壳体241内部空间的一侧(如图9b所示),或者风扇210固定在第一风口220远离仓壳体241内部空间的一侧(如图9c),或者风扇210固定在第一风口220周围的仓壳体241上(图9d所示)。风扇210位于第二风口230处包括风扇310固定在第二风口230朝向仓壳体241内部空间的一侧(如图9e),或者风扇210固定在第二风口230远离仓壳体241内部空间的一侧(如图9f所示),或者风扇210固定在第二风口230周围的仓壳体241上(如图9g所示)。
在一实施方式中,电气装置200包括多个风扇210,多个风扇210分别位于第一风口220处和第二风口230处(如图9a所示)。在一实施方式中,多个风扇210分别位于第一风口220处和仓壳体241的内部空间201中(如图9h所示)。在一实施方式中,多个风扇210分别位于第二风口230处和仓壳体241的内部空间201中(如图9i所示)。在一实施方式中,多个风扇210分别位于第一风口220处、第二风口230处和仓壳体241的内部空间201中(如图9j所示)。多个风扇210的设置方式可提升空气流动速度。
请继续参阅图4a,在本实施方式中,热量控制装置300用于对电气仓240降温时,风扇210驱动被第一换热器310冷却的空气Q从第一风口220流动至仓壳体241内部空间,对电气部件202进行冷却降温,空气Q升温,升温后的空气Q再从第二风口230流动至收容腔400中,通过气流循环通道20,空气Q再次回到第一风口220被第一换热器310冷却,冷却后的空气Q再次进入仓壳体241内部空间,可有效提升对仓壳体241内部的电气部件202的冷却效率。
在一些实施方式中,热量控制装置300可用于对电气仓240加热,具体加热过程与前文所述的加热过程相类似,在此不再赘述。
在本实施方式中,箱壳100包括第一侧门110(如图4a所示),第一风口220朝向第一侧门110,第一换热器310位于第一侧门110与第一风口220之间,且被固定在第一侧门110 朝向电气装置220的内表面上。将第一换热器310安装在第一侧门110上,便于对第一换热器310和电气装置200维修,只需要打开第一侧门110就可以维修对第一换热器310进行维修。
在其他实施方式中,第一换热器310还可以固定电气装置200的外侧(如图4b所示)。其中,箱壳100包括第一侧门110,第一侧门110位于电气装置200沿第二方向X的一侧,第一风口220和第二风口230沿第二方向X相对设置,相较于第一风口220,第一侧门110更邻近第二风口230设置,第一换热器310固定在电气装置200的外侧。
在一些实施方式中,还在可电气装置200的其他侧面设置多个第一换热器310,以提升对电气装置200的换热效果。
请参阅图10,在一种可能的实现方式中,电气装置200包括堆叠设置的多个仓壳体241,在每一个仓壳体241中,第一风口220的外侧具有第一换热器310,且第一换热器310的至少一部分与第一风口220相对。在本实施方式中,箱壳100还包括沿第一方向Y相对设置的顶部盖体130和底板140,电气装置200位于顶部盖体130和底板140之间的区域,多个仓壳体241堆叠的方向为第一方向Y。第一换热器310沿第一方向Y延伸,使得每一个仓壳体241的第一风口220处均具有部分第一换热器310,可以对每一个电气仓240进行散热,散热更均匀。在本实施方式中,第一方向Y为箱壳100的高度方向,第二方向X为箱壳100的宽度方向。
当采用一体式空调30对本实施方式中的电气装置200进行散热时(如图11所示),一体式空调30出风口一般位于高处,从一体式空调30的出风口34出来的冷空气Q流动到收容腔400后,冷空气Q的流量从上至下逐渐减少,冷空气Q的温度从上至下逐渐升高,这使得冷空气Q对电气装置200顶部的电气仓240以及电气装置200底部的电气仓240中的散热效果不一致,从电气装置200顶部到电气装置200底部的电气仓240的散热效果逐渐变差,散热不均匀。
而在本实施方式中,在每一个仓壳体241的第一风口220处均设有一部分第一换热器310,当对电气装置200降温时,在第一换热器310中的换热工质330是液体,液体吸收热量变为气体,第一换热器310中任一位置处的液体换热工质330从液体变为气体所吸收的热量差别较小,在本实施方式中,可在第一换热器310中设置较多的液体换热工质330,以使液体换热工质330能够流通到第一换热器310中的任意部分,或者至少能使液体换热工质330能够流通到每一个仓壳体240的第一风口220邻近的部分第一换热器310中,使得每一个仓壳体241的第一风口220邻近的部分第一换热器310的吸热效果相当,进而可以提升对电气装置200中的每一个电气仓240散热均匀性。
在一实施方式中,电气装置200包括电气支架250(如图12所示),多个电气仓240设置在电气支架250上,其中电气支架250的结构不限于图12所示的结构,还可以为其他结构。在一些实施方式中,可直接将多个电气仓240沿第一方向Y堆叠设置。
请参阅图13,在一些实施方式中,电气装置200包括装置壳体260和位于装置壳体260内的电气部件202,装置壳体260包括第一风口220和第二风口230,风扇210位于下述位置中的至少一处:第一风口220、装置壳体260内部空间或者第二风口230。当电气装置200为电池模组200时,电池模组200包括模组壳体260和位于模组壳体260内的电芯202,将电芯202直接设置在模组壳体260内,模组壳体260包括第一风口220和第二风口230,风扇210位于下述位置中的至少一处:第一风口220、装置壳体260内部空间或者第二风口230。
其中第一风口220和第二风口230分别设置在装置壳体260沿第二方向X相对设置的壳 体上。其中风扇210与装置壳体260的固定方式包括卡扣、螺钉等,具体方式不限。当电气装置200包括沿第一方向Y排列的多个电气部件202时(如图13所示),可通过支架或者堆叠的方式将多个电气部件202沿第一方向Y排列,并在装置壳体260沿第二方向X两侧的壳体上设置多个第一风口220、多个第二风口230以及多个风扇210,使得每一个电气部件202沿第二方向X的两侧分别具有第一风口220和第二风口230,以及具有风扇210可正对电气部件202吹风。
请参阅图14,在一种可能的实现方式中,机箱10包括排列设置的多个电气装置200,热量控制装置300包括多个第一换热器310,多个电气装置200中的每一个电气装置200的第一风口220的位置处具有一个第一换热器310。其中,多个电气装置200排列的方向为第三方向Z,第三方向Z分别与第二方向X、第一方向Y相交。本实施方式中,第一方向Y为箱壳100的高度方向,第二方向X为箱壳100的宽度方向,第三方向Z为箱壳100的长度方向。
在本实施方式中,电气装置200具有多个(如图14所示),电气装置200具有多个电气仓240(如图10所示),当第一换热器310用于对多个电气装置200降温时,将每一个电气装置200中的每一个电气仓240的第一风口220处设有部分第一换热器310,可提升对每一个电气仓240的散热效果,且提升对所有电气装置200的散热均匀性。在本实施方式中,在第三方向Z排列的电气装置200的数量不限,当电气装置200数量很多个时,仍然具有较好的散热均匀性。当第一换热器310用于对多个电气装置200加热时,具有较好的加热均匀性。
而当采用一体式空调30对本实施方式中的电气装置200进行散热时(如图15所示),一体式空调30出风口一般位于箱壳100的一端,这使得远离一体式空调30的电气装置200的散热效果差于靠近一体式空调30的电气装置200的散热效果,整体散热均匀性较差,如果要提升散热均匀性,需要在箱壳100内的多个位置设置多个一体式空调30,造成成本升高,而且占据箱壳100更多空间,并且如果将多个一体式空调30安装在第一侧门110上时,第一侧门110承重风险大易损坏,使得第一侧门110维修成本高。本申请采用第一换热器310邻近第一风口220的方式成本低,且节约空间,当对多个电气装置200升温时,本申请中在邻近第一风口220的位置设有部分第一换热器310,可提升对所有电气装置200的换热均匀性。
当具有多个第一换热器310时,热量控制装置300可包括一个第二换热器320,或者多个第二换热器320。当只有一个第二换热器320时,该第二换热器320与多个第一换热器310连通,用于对多个第一换热器310中的换热工质330进行热交换。当具有多个第二换热器320,第二换热器320可分别与多个第一换热器310连通,分别对多个第一换热器310中的换热工质330进行热交换,具体可根据实际需要来设置。
在一些实施方式中,机箱10包括沿第二方向X排列的多个电气装置200,在每一个电气装置200的外侧设有一个第一换热器310。其中,第一换热器310可以根据电气装置200的个数或者分布位置来适配增加,多个第一换热器分布式布局,可对每个电气装置200进行散热,提升散热效果。
请继续参阅14,在一实施方式中,沿第二方向X排列设有两个电气装置200,分别记为电气装置200a和电气装置200b,箱壳100还包括与第一侧门110相对设置的第二侧门120,其中电气装置200a邻近第一侧门110设置,电气装置200b邻近第二侧门120设置,在第一侧门110邻近电气装置200a的内表面上固定有第一换热器310a,相较于第二风口230,电气装置200a的第一风口220更邻近第一侧门110设置,第一换热器310a对电气装置200a进行热交换。在第二侧门120邻近电气装置200b的内表面上固定有第一换热器310b,相较于第二风口230,电气装置200b的第一风口220更邻近第二侧门120设置,第一换热器310b对 电气装置200b进行热交换,也就是说沿第二方向X排列设有两个电气装置200的第一风口220分别邻近两侧的第一侧门110和第二侧门120。
请参阅图16,在一实施方式中,沿第二方向X排列设有两个电气装置200,分别记为电气装置200c和电气装置200d,箱壳100包括与第一侧门110相对设置的第二侧门120,其中电气装置200c邻近第一侧门110设置,电气装置200d邻近第二侧门设置120。在电气装置200c远离第一侧门110的表面上固定有第一换热器310c,电气装置200c的第一风口220相较于第二风口230远离第一侧门110设置且邻近第一换热器310c,第一换热器310c对电气装置200c进行热交换,在电气装置200d远离第二侧门120的表面上固定有第一换热器310d,电气装置200d的第一风口220相较于第二风口230远离第二侧门120设置,第一换热器310d对电气装置200d进行热交换。也就是说沿第二方向X排列设有两个电气装置200的第一风口220分别远离两侧的第一侧门110和第二侧门120。
在一些实施方式中,沿第二方向X排列设有两个以上的电气装置200,此时可将位于电气装置200a和电气装置200b之间的电气装置200的第一换热器310固定在电气装置200上。
在一种可能的实现方式中,热量控制装置300还包括导流壳体340(如图17a所示),导流壳体340和第一换热器310位于电气装置200沿第二方向X的同一侧,导流壳体340和第一换热器310沿第一方向Y延伸(如图1所示),第二方向X与第一方向Y相交,第一换热器310位于导流壳体340内,导流壳体340上设有第三风口341和第四风口342,相较于第四风口342(如图17a所示),第三风口341更邻近第一风口220设置,第三风口341和第一风口220用于连通导流壳体340的内部空间和电气装置200的内部空间,第四风口342用于连通导流壳体240的内部空间和收容腔400。
其中第三风口341和第四风口342位于气流循环通道20内,当第一风口220为电气装置200的出风口,第二风口230为电气装置200的进风口时,第三风口341为导流壳体340的进风口,第四风口342为导流壳体340的出风口,从第一风口220出来的风穿过第三风口341进入到导流壳体340内部空间,被第一换热器310冷却,导流壳体340使得风在其收容孔短暂停留,使得风与第一换热器310接触时间更长,进而可充分进行热交换。
在一实施方式中,第三风口341与第一风口220的中心轴线重叠,使得风在第一风口220和第三风口341之间流通更顺畅。
在一实施方式中,导流壳体340包括第一侧板343、第二侧板344、第三侧板345和第四侧板346(如图17a所示),其中第一侧板343和第二侧板344沿第二方向X相对设置,第三侧板345和第四侧板346沿第三方向Z相对设置,第一侧板343、第三侧板345、第二侧板344和第四侧板346依次连接围成导流壳体340,其中第一侧板343邻近第一风口220设置,第三风口341设置在第一侧板343上,在第三侧板345和第四侧板346上均设有第四风口342,从第三风口341进来的风可分两路分别从第三侧板345和第四侧板346上的第四风口342排出。
在一实施方式中,箱壳100还包括沿第一方向Y相对设置的顶部盖体130和底板140(如图1所示),导流壳体340位于顶部盖体130和底板140之间。请参阅图17b和图17c,图17c是图17b中导流壳体340的展开示意图,导流壳体340包括第三风口341与第四风口342,第三风口341的边缘与底板140之间的最大垂直距离h1大于第四风口342的边缘与底板140之间的最小垂直距离h2,且小于或者等于第四风口342的边缘与底板140之间的最大垂直距离h3。可使得风能够从第三风口341流通至第四风口342,或者从第四风口342流通至第三风口341,在保证充分热交换的情况下提升空气的流通速度。其中,第一方向Y为垂直于底 板140的方向。
请参阅图17d和图17e,图17e是图17d中导流壳体340的展开示意图。在一实施方式中,第四风口342的边缘与底板140之间的最大垂直距离h3大于第三风口341的边缘与底板140之间的最小垂直距离h4,且小于或者等于第三风口341的边缘与底板140之间的最大垂直距离h1,第一方向Y为垂直于底板140的方向。
在一实施方式中,第三风口341和第四风口342的上下边缘与底板140之间的垂直距离分别相等(如图17f所示),具体的,第三风口341的边缘与底板140之间的最大垂直距离h1等于第四风口342的边缘与底板140之间的最大垂直距离h3,第三风口341的边缘与底板140之间的最小垂直距离h4等于第四风口342的边缘与底板140之间的最小垂直距离h2。
在一实施方式中,第四风口342为两个(如图17a所示),在一实施方式中,第四风口342为三个(如图17g所示)。
在一实施方式中,第三风口341和第四风口342的形状为矩形,且矩形的长度方向与第一方向Y相同(如图17h所示)。在一实施方式中,第三风口341和第四风口342的形状为方形(如图17i所示)。在一实施方式中,第三风口341和第四风口342的形状为椭圆形(如图17j所示)等。在一实施方式中,当第四风口342为两个及两个以上时,每个第四风口342的上边缘与底板140的最大垂直距离可相同或者不同,每个第四风口342的下边缘与底板140的最小垂直距离可相同或者不同,每个第四风口342的形状可相同或者不相同。
在一实施方式中,当电气装置200包括多个仓壳体241时(如图17k所示),导流壳体340设有多个第三风口341,每个第三风口341与一个仓壳体241的第一风口220相对设置,至少一个第四风口342与其中一个第三风口341满足上述垂直距离关系。在本实施方式中,导流壳体340对应每一个仓壳体241设有一个第三风口341和一个第四风口342。
在一实施方式中,在导流壳体340的底部设有接水盘和水泵,接水盘用于收集从第一换热器310上冷凝的水滴,并通过水泵将接水盘中的水排出箱壳100。
请参阅图18,在一种可能的实现方式中,箱壳100还包括沿第一方向Y相对设置的顶部盖体130和底板140,电气装置200位于底板140上,顶部盖体130内设有收容空间131,第二换热器320位于收容空间131内。将第二换热器320设置在顶部盖体130中,节约空间。其中,底板140上具有多个固定支柱142,在固定支柱142上具有滑轨141,电气装置200位于滑轨141上。当电气装置200具有多个时,第一换热器310和第二换热器320具有多个,多个第二换热器320集中设置在顶部盖体130中,以节约机箱10的尺寸。在其他实施方式中,还可将第二换热器320设置在箱壳100的侧壳体中或者设置在箱壳100的外部。
在一实施方式中,第一换热器310的入口311和出口312位于第一换热器310邻近顶部盖体130的一端。第一换热器310的入口311和出口312之间可包括多个“S”回路部分或者入口311和出口312之间为“U”形回路部分。
当入口311和出口312之间为“U”形回路,可提升对电气装置200的换热均匀性。“U”形第一换热器310包括进液段313和出液段314(如图19所示),进液段313的入口即为第一换热器310的入口311,进液段313的出口315与出液段314的入口316连通,出液段314的出口即为第一换热器310的出口312,其中进液段313的出口315与出液段314的入口316位于“U”形回路的底端,当热量控制装置300用于对电气装置200散热时,被冷却的液体换热工质330从第二换热器320中流入第一换热器310中,液体换热工质330从入口311进入。对于进液段313部分:邻近进液段313入口311部分的液体换热工质330的液体含量较多,邻近进液段313出口315部分的液体换热工质相对较少,也就是说进液段313入口311 部分比进液段313出口315部分的散热效果更好;对于出液段314部分,邻近出液段314入口316的液体换热工质330的液体含量较多,邻近出液段314出口312的液体换热工质330的含量较少,也就是说出液段314入口316部分比出液段314出口312部分散热效果更好,而出液段314入口316部分和进液段313出口315部分相邻近,出液段314出口312部分和进液段313入口311部分相邻近,使得进液段313和出液段314两端相互补偿,进而使得整个第一换热器310对电气装置200上下部分的散热效果更均匀。
当入口311和出口312之间为多个“S”形回路时,多个“S”形回路相当于具有多个前面所述的“U”形回路,也可以提升第一换热器310对电气装置200上下部分的散热均匀性。
请继续参阅图10,在一种可能的实现方式中,管道303还包括第一连通管350和第二连通管360,第一连通管350连接在第一换热器310的入口和第二换热器320的出口之间,且分别与第一换热器310和第二换热器320连通,第二连通管320连接在第一换热器310的出口和第二换热器320的入口之间,且分别与第一换热器310和第二换热器320连通。当第一换热器310设置在第一侧门110上时,通过第一连通管350和第二连通管360,可使得第一侧门110能够顺利地打开。在一实施方式中,第一连通管350和第二连通管360为具有弹性伸缩能力的连通管,或者第一连通管350和第二连通管360具有一定长度,使得第一侧门110能够更顺利地打开。
请继续参阅图18,在一实施方式中,第二换热器320包括第二换热管321、压缩机322、膨胀阀323、换热部件324和外机风扇325,压缩机322、换热部件324和膨胀阀323依次连接在第一换热器310的入口311和第一换热器310的出口312之间,压缩机322和换热部件324之间具有部分第二换热管321,换热部件324和膨胀阀323具有部分第二换热管321,压缩机322、换热部件324和膨胀阀323与第二换热管321连通,换热工质330在第二换热管321、压缩机322、膨胀阀323和换热部件324中流动。外机风扇325用于驱动顶部盖体130内部空间与箱体100外部的外循环,顶部盖体130包括进风口136和出风口137,外机风扇325驱动外部空气从进风口136进入后,与换热部件324换热后,从出风口137排出顶部盖体130,以实现顶部盖体130内部空间与箱体100外部的外循环。
请继续参阅图18,当换热部件324为冷凝器时,冷凝器用于对第二换热管321中的换热工质330进行冷却,当热量控制装置300对电气装置200进行降温冷却时,第一换热器310中的换热工质330为低压低温的液体,低温低压的液体具有较低的沸点,能够较快的吸收热量,电气装置200中的风扇210驱动内部热空气Q从第一风口220流动至第一换热器310的表面,低压低温的液体换热工质330吸收热风空气Q的热量变为低压低温的气体换热工质330,低压低温的气体换热工质330从第一换热器310的出口312流动第二换热管321中,再流动至压缩机322中,压缩机322将低压低温的气体换热工质330转变为高温高压的气体换热工质330,高温高压的气体换热工质330再通过部分第二换热管321通入换热部件(冷凝器)324中,高温高压的气体换热工质330可以是指高于外界空气的温度和压力的气体,此时可采用外机风扇325驱动外界空气对换热部件(冷凝器)324中的高温高压的气体换热工质330进行降温,高温高压的气体换热工质330被换热部件(冷凝器)324降温形成中温高压的液体换热工质330,中温高压的液体换热工质330再通过部分第二换热管321进入膨胀阀323,并通过膨胀阀323形成低温低压的液体换热工质330,低温低压的液体换热工质330再流动至第一换热器310中,继续对电气装置200冷却降温。
采用第二换热器320对第一换热器310中的换热工质330进行热交换,使得换热工质330在第一换热器310和第二换热器320中形成热循环,在本实施方式中,第二换热器320具有 压缩机322和膨胀阀323,可使得换热工质330的温度降低较低,当温度较低的换热工质330通过第一换热器310与气流循环通道20中的风进行热交换来冷却电气装置200时,可以使得电气装置200的温度低于箱壳10外部的温度,从而提升对电气装置200的冷却效果。当采用热量控制装置300对电气装置200升温,采用本实施方式中的第二换热器320,也可以使得电气装置200的温度高于箱壳10外部的温度,从而提升对电气装置200的升温效果。
在其他实施方式中,第二换热器320还可以包括其他部件,例如空气过滤器等,不限于图18所述的结构部件。第二换热器320还可以为其他结构组成,只要能实现对第一换热器310中的换热工质330进行换热即可。
请参阅图20,本申请一实施方式还提供一种储能系统60,储能系统60包括发电组件61和如上任一项实施方式中所述的机箱10,机箱10为储能集装箱,发电组件31用于产生电能并将电能存储在机箱10中。其中发电组件61包括但不限于太阳能发电装置、风能发电装置或者水力发电装置。
请参阅图21,本申请一实施方式还提供一种数据系统70,数据系统包括供电组件71和如上任一项实施方式中所述的机箱10,机箱10为数据中心或者机柜,供电组件71用于为机箱71提供电能。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种机箱,其特征在于,所述机箱包括箱壳、电气装置和热量控制装置,所述电气装置位于所述箱壳内的收容腔中,所述电气装置包括风扇、第一风口和第二风口,所述风扇用于加快气流在所述第一风口和所述第二风口之间的流动速度;
    所述热量控制装置包括第一换热器、第二换热器和换热工质,所述第一换热器和所述第二换热器之间通过管道连通,所述换热工质位于所述第一换热器和所述第二换热器中并能够在所述第一换热管和所述第二换热管之间流动,所述第一换热器和所述第二换热器通过所述换热工质的热循环实现所述箱壳内外的热交换,所述第一换热器位于所述收容腔中且邻近所述第一风口。
  2. 根据权利要求1所述的机箱,其特征在于,所述第一风口、所述电气装置的内部空间、所述第二风口和所述收容腔构成气流循环通道,所述风扇位于所述气流循环通道内。
  3. 根据权利要求1所述的机箱,其特征在于,所述电气装置包括仓壳体和位于仓壳体中的电气部件,所述仓壳体包括所述第一风口和所述第二风口,所述风扇位于下述位置中的至少一处:所述第一风口、所述第二风口和所述仓壳体的内部空间。
  4. 根据权利要求3所述的机箱,其特征在于,所述电气装置包括堆叠设置的多个所述仓壳体,在每一个所述仓壳体中,所述第一风口的外侧具有所述第一换热器,且所述第一换热器的至少一部分与所述第一风口相对。
  5. 根据权利要求4所述的机箱,其特征在于,所述箱壳还包括沿第一方向相对设置的顶部盖体和底板,所述电气装置位于所述顶部盖体和所述底板之间的区域,所述多个仓壳体堆叠的方向为所述第一方向。
  6. 根据权利要求5所述的机箱,其特征在于,所述顶部盖体内设有收容空间,所述第二换热器位于所述收容空间内。
  7. 根据权利要求1-6任一项所述的机箱,其特征在于,所述箱壳包括第一侧门,所述第一风口朝向所述第一侧门,所述第一换热器位于所述第一侧门与所述第一风口之间,且被固定在所述第一侧门朝向所述电气装置的内表面上。
  8. 根据权利要求1-6任一项所述的机箱,其特征在于,所述箱壳包括第一侧门,所述第一侧门位于所述电气装置沿第二方向的一侧,所述第一风口和所述第二风口沿所述第二方向相对设置,相较于所述第一风口,所述第一侧门更邻近所述第二风口设置,所述第一换热器固定在所述电气装置的外侧。
  9. 根据权利要求1-8任一项所述的机箱,其特征在于,所述管道还包括第一连通管和第二连通管,所述第一连通管连接在所述第一换热器的入口和所述第二换热器的出口之间,且分别与所述第一换热器和所述第二换热器连通,所述第二连通管连接在所述第一换热器的出口和所述第二换热器的入口之间,且分别与所述第一换热器和所述第二换热器连通。
  10. 根据权利要求1-9任一项所述的机箱,其特征在于,所述机箱包括排列设置的多个电气装置,所述热量控制装置包括多个第一换热器,所述多个电气装置中的每一个电气装置的所述第一风口的位置处具有一个所述第一换热器。
  11. 根据权利要求10所述的机箱,其特征在于,所述箱壳还包括沿第一方向相对设置的顶部盖体和底板,所述电气装置位于所述顶部盖体和所述底板之间的区域,所述多个电气装置排列的方向与所述第一方向相交。
  12. 根据权利要求1-11任一项所述的机箱,其特征在于,所述热量控制装置还包括导流壳体,所述导流壳体和所述第一换热器位于所述电气装置沿第二方向的同一侧,所述导流壳体 和所述第一换热器沿第一方向延伸,所述第二方向与所述第一方向相交,所述第一换热器位于所述导流壳体内,所述导流壳体上设有第三风口和第四风口,相较于所述第四风口,所述第三风口更邻近所述第一风口且朝向所述第一风口,所述第三风口和所述第一风口用于连通所述导流壳体的内部空间和所述电气装置的内部空间,所述第四风口用于连通所述导流壳体的内部空间和所述收容腔。
  13. 根据权利要求12所述的机箱,其特征在于,所述箱壳还包括沿第一方向相对设置的顶部盖体和底板,所述导流壳体位于所述顶部盖体和所述底板之间,所述导流壳体包括所述第三风口与所述第四风口,所述第三风口的边缘与所述底板之间的最大垂直距离大于所述第四风口的边缘与所述底板之间的最小垂直距离,且小于或者等于所述第四风口的边缘与所述底板之间的最大垂直距离;或者
    所述第四风口的边缘与所述底板之间的最大垂直距离大于所述第三风口的边缘与所述底板之间的最小垂直距离,且小于或者等于所述第三风口的边缘与所述底板之间的最大垂直距离,所述第一方向为垂直于所述底板的方向。
  14. 根据权利要求1-13任一项所述的机箱,其特征在于,所述机箱为储能集装箱、机柜或者数据中心。
  15. 根据权利要求1-13任一项所述的机箱,其特征在于,所述电气装置为电池模组或者服务器。
  16. 一种储能系统,其特征在于,所述储能系统包括发电组件和如权利要求1-15任一项所述的机箱,所述机箱为储能集装箱,所述发电组件用于产生电能并将所述电能存储在所述机箱中。
  17. 一种数据系统,其特征在于,所述数据系统包括供电组件和如权利要求1-15任一项所述的机箱,所述机箱为数据中心或者机柜,所述供电组件用于为所述机箱提供电能。
PCT/CN2021/120271 2021-09-24 2021-09-24 机箱、储能系统及数据系统 WO2023044740A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180050569.7A CN116171418A (zh) 2021-09-24 2021-09-24 机箱、储能系统及数据系统
PCT/CN2021/120271 WO2023044740A1 (zh) 2021-09-24 2021-09-24 机箱、储能系统及数据系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120271 WO2023044740A1 (zh) 2021-09-24 2021-09-24 机箱、储能系统及数据系统

Publications (1)

Publication Number Publication Date
WO2023044740A1 true WO2023044740A1 (zh) 2023-03-30

Family

ID=85719845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120271 WO2023044740A1 (zh) 2021-09-24 2021-09-24 机箱、储能系统及数据系统

Country Status (2)

Country Link
CN (1) CN116171418A (zh)
WO (1) WO2023044740A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117835677A (zh) * 2024-03-04 2024-04-05 山西中云智谷数据科技有限责任公司 一种服务器设备的散热系统
CN117835677B (zh) * 2024-03-04 2024-05-10 山西中云智谷数据科技有限责任公司 一种服务器设备的散热系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717033A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种机箱,及温控设备
CN204795998U (zh) * 2015-04-08 2015-11-18 艾默生网络能源有限公司 具有热交换系统的机柜
CN105658033A (zh) * 2016-01-26 2016-06-08 华为技术有限公司 具有热交换的装置
US20170280593A1 (en) * 2016-03-24 2017-09-28 Denso International America, Inc. Rackmount Cooling System
CN109788725A (zh) * 2019-03-20 2019-05-21 浪潮商用机器有限公司 机柜
CN208985100U (zh) * 2018-07-20 2019-06-14 广州全唐科技股份有限公司 防尘式服务器电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717033A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种机箱,及温控设备
CN204795998U (zh) * 2015-04-08 2015-11-18 艾默生网络能源有限公司 具有热交换系统的机柜
CN105658033A (zh) * 2016-01-26 2016-06-08 华为技术有限公司 具有热交换的装置
US20170280593A1 (en) * 2016-03-24 2017-09-28 Denso International America, Inc. Rackmount Cooling System
CN208985100U (zh) * 2018-07-20 2019-06-14 广州全唐科技股份有限公司 防尘式服务器电源
CN109788725A (zh) * 2019-03-20 2019-05-21 浪潮商用机器有限公司 机柜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117835677A (zh) * 2024-03-04 2024-04-05 山西中云智谷数据科技有限责任公司 一种服务器设备的散热系统
CN117835677B (zh) * 2024-03-04 2024-05-10 山西中云智谷数据科技有限责任公司 一种服务器设备的散热系统

Also Published As

Publication number Publication date
CN116171418A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN104754924B (zh) 液冷装置和辅助散热装置结合的服务器散热系统
CN205678782U (zh) 节能型三维热管机柜空调器
CN107166601B (zh) 一种水循环冷热双控一体机
CN111988973A (zh) 气冷散热设备和冷却系统
WO2023226977A1 (zh) 换热设备及换热系统
CN206148575U (zh) 动力电池包温控系统及电动汽车
WO2023044740A1 (zh) 机箱、储能系统及数据系统
CN205678774U (zh) 高能效三维热管机柜空调器
CN218514733U (zh) 空调装置
CN217236132U (zh) 变频空调系统
CN106937517B (zh) 一种用于机架服务器芯片的散热装置
CN102927647B (zh) 一种基站空调
CN214545219U (zh) 电控箱及冷水机组
CN211551916U (zh) 一种水冷空调
CN116096028A (zh) 双排机柜式数据中心及制冷系统
CN203550095U (zh) 一种背板型热管空调
CN109910542B (zh) 一种车辆及车辆热管理系统
CN218379665U (zh) 空调装置
CN218820756U (zh) 一种带热水模块的空气调节系统及基站
CN218163401U (zh) 结合露点间接蒸发蓄冷的数据中心用空调系统
CN220728364U (zh) 控温机构、空调外机及空调器
CN216924603U (zh) 蓄热空调系统
CN212132964U (zh) 空调系统及集装箱机房
CN217685493U (zh) 空调室外机及空调器
CN219040577U (zh) 一种分体式电池热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021957874

Country of ref document: EP

Effective date: 20240308