CN104754924B - 液冷装置和辅助散热装置结合的服务器散热系统 - Google Patents
液冷装置和辅助散热装置结合的服务器散热系统 Download PDFInfo
- Publication number
- CN104754924B CN104754924B CN201510144650.8A CN201510144650A CN104754924B CN 104754924 B CN104754924 B CN 104754924B CN 201510144650 A CN201510144650 A CN 201510144650A CN 104754924 B CN104754924 B CN 104754924B
- Authority
- CN
- China
- Prior art keywords
- heat
- liquid cooling
- cooling
- water
- server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 734
- 239000007788 liquid Substances 0.000 title claims abstract description 533
- 230000017525 heat dissipation Effects 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 374
- 239000000498 cooling water Substances 0.000 claims description 114
- 239000012530 fluid Substances 0.000 claims description 97
- 239000003507 refrigerant Substances 0.000 claims description 83
- 230000005540 biological transmission Effects 0.000 claims description 8
- 230000035695 Efflux Effects 0.000 claims description 6
- 238000005265 energy consumption Methods 0.000 abstract description 8
- 235000019628 coolness Nutrition 0.000 description 647
- 230000001105 regulatory Effects 0.000 description 32
- 238000009434 installation Methods 0.000 description 23
- 238000004378 air conditioning Methods 0.000 description 21
- 238000005057 refrigeration Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 238000007710 freezing Methods 0.000 description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000004411 aluminium Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 101700022029 GBLP Proteins 0.000 description 1
- 229920002456 HOTAIR Polymers 0.000 description 1
- 241001347978 Major minor Species 0.000 description 1
- 210000003660 Reticulum Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000002427 irreversible Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000737 periodic Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001131 transforming Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20536—Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
- H05K7/20627—Liquid coolant without phase change
- H05K7/20636—Liquid coolant without phase change within sub-racks for removing heat from electronic boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20309—Evaporators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20318—Condensers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20327—Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20536—Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
- H05K7/20663—Liquid coolant with phase change, e.g. heat pipes
- H05K7/20681—Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20718—Forced ventilation of a gaseous coolant
- H05K7/20736—Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20763—Liquid cooling without phase change
- H05K7/20772—Liquid cooling without phase change within server blades for removing heat from heat source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20763—Liquid cooling without phase change
- H05K7/20781—Liquid cooling without phase change within cabinets for removing heat from server blades
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20763—Liquid cooling without phase change
- H05K7/2079—Liquid cooling without phase change within rooms for removing heat from cabinets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Abstract
本发明公开了一种液冷装置和辅助散热装置结合的服务器散热系统,包括液冷服务器机柜,所述液冷服务器机柜包括机柜柜体和设置于机柜柜体内的多个液冷服务器,其设有液冷装置对液冷服务器进行直接的液冷散热,还设有辅助散热装置进行辅助散热。本发明高密度制冷、换热效率高、能耗低、可解决局部热点、占地面积小、可靠性高、噪音小、寿命长。
Description
技术领域
本发明涉及服务器机柜散热系统,尤其涉及一种液冷装置和辅助散热装置结合的服务器散热系统。
背景技术
随着IDC互联网数据中心机房高密度机柜的不断增加,设备的集成度越来越高,处理能力也逐渐增高,但设备的功率消耗也随之增大,导致机柜内设备的发热量越多。据统计,目前国内大型IDC机房内机柜服务器发热量大,且基本为全年8760h运行,对于不采用新风的机房而言,全年均需供冷,导致空调系统能耗巨大,其空调能耗约占数据机房整体能耗的40%~50%。
传统数据机房送风方式有底板风道送风、冷热通道隔离送风和全房间制冷送风等方式,该模式已不满足现代化机房高密度机柜的制冷需求,出现了局部过热、耗电量大、机房空调能耗过高、噪音大等问题。同时机房精密空调需反复加湿、除湿运转或配套专用除湿机进行机房空气湿度、露点控制,以确保设备内部不发生凝露,导致机房空调系统制冷效率降低、能耗增大。如果机房的散热问题解决不好,就会严重威胁机房设备的安全运行。因此如何在满足设备使用要求的情况下,有效降低机房内空调系统的能耗是空调行业和数据机房运营行业面临的一个重要问题。
从节能角度考虑,目前有直接采用将室外空气引入室内为机房降温的方案,其优点是制冷效率高、初投资低、能耗低,但缺点是引入室外冷空气后,使得室内空气洁净度、湿度难以保证,带来了安全隐患,后期运行维护量较大。另外也有采用气气蜂窝式换热器,将热管热空气与室外冷空气间接换热,从而降低机房内温度;其优点是在利用室外冷源时不引入室外的空气,不影响机房内的空气的洁净度和湿度,缺点是初投资相对较高,换热器结构比较复杂,容易堵塞,需要定期清洗,维护工作量大。
而且随着服务器技术的发展,大功率、高发热密度的服务器应用越来越多,而且是不可逆转的发展趋势,目前部分行业用户的单个机柜的最大运行功率已经达到10~15kW左右,但由于空气冷却方式散热效率的局限,使得大功率服务器的应用也难以突破15kW/机柜以上。
液冷散热是近年发展起来的最高效、最先进的散热方案,其原理是将液态换热介质直接通入具有液冷功能的服务器内部,把主要发热元件--芯片(CPU)产生的热量带走(占整个服务器发热量的70~80%),采用液冷散热方案,理论上甚至可以使得单位机柜功率突破50kW/以上。但目前这种散热方案仅存在于高校实验室和极少数企业内部小范围研究,而未能形成实用化推广应用,很重要的原因之一,是因为这种采用液冷散热的服务器,其机柜需要内置液冷水分配系统,这就需要对液冷服务器机柜进行专门的定制设计,而机柜生产厂家一般是标准化生产,现阶段也没有掌握液冷水分配系统设计的关键技术,无法为液冷服务器用户配套提供内置液冷水分配系统的机柜产品,特别是旧机房的升级改造,如果想改为液冷散热方案,要对全部服务器机柜都进行替换为内置液冷水分配系统的机柜,无论是改造工程量和成本都非常高昂,极大地局限了液冷散热技术的发展普及。另外,液冷散热系统只能带走70~80%的服务器发热量,但仍然有20~30%的热量需要辅助制冷装置承担,对于液冷服务器这种单机柜功率高达50kW以上的高密度应用,每个机柜需要辅助制冷装置处理10~15kW以上的热量(总功率的20~30%),如果辅助制冷装置仍然采用传统的风冷散热方式,极易出现机柜的局部热点问题,影响服务器的元件寿命,这也是高密度液冷服务器推广应用所不能忽视的问题。
申请号为201010261284.1专利名称为《服务器机柜及其液冷散热系统》的中国专利公开了一种服务器机柜,包括外壳、设于所述外壳内的服务器及液冷散热系统,所述外壳内设有靠近所述服务器的导热板,所述液冷散热系统包括设于所述外壳外的致冷器及将所述导热板与致冷器热连接的管路,所述服务器工作时产生的热量于所述外壳内形成热流,所述热流在导热板处冷却,所述管路延伸出所述外壳外,并分别与所述致冷器的相对两端相连通,以将所述导热板从服务器吸收的热量传递至致冷器处进行热交换。该专利虽然也是采用液冷散热,但服务器的热量并不能完全被液冷散热系统带走,故会有局部热点、寿命短等问题。
申请号为201210545675.5专利名称为《一种服务器机柜冷却系统》的中国专利公开了一种服务器机柜冷却系统,包括置于服务器机柜内部的液冷箱、服务器机柜内水冷散热器、柜内空气散热器、第一储液箱以及室外外冷系统,液冷箱包括集成在一个箱内的翅片式换热器、板式换热器及第一水泵,板式换热器热水侧、第一水泵、第一储液箱及服务器机柜内水冷散热器通过管道连接成第一循环回路,外冷系统、柜内空气散热器、翅片式换热器及板式换热器冷水侧通过管道连接成第二循环回路。该专利采用第二循环回路带走第一循环回路的热量,但第一循环回路的散热器是对整个服务器机柜内部空气进行导热,并无直接针对服务器发热体芯片进行导热,这导致该专利散热效率低、效果差,另外,第一循环回路设有第一水泵,第一水泵运行时发热较多,需要专门设置换热器来传递第一水泵运行积聚的热量,这无疑给系统造成负担,从而进一步地降低系统的散热效率。
申请号为201410511550.X的中国专利《一种热管二次冷媒环路服务器机柜散热系统的控制方法》公开了一种热管二次冷媒环路服务器机柜散热系统的控制方法,系统包括机房单元、冷媒供回水单元和控制系统,所述冷媒供回水单元包括冷却单元和循环动力单元,所述循环动力单元通过机房供水干管/机房回水干管与机房单元连接,循环动力单元通过室外出气连接管/室外回液连接管与冷却单元连接;所述冷却单元和循环动力单元都与控制系统连接。所述机房单元包括机柜、一个以上的散热风扇、多个服务器、多个热管散热器和多个热管散热器换热装置,所述散热风扇、服务器、热管散热器和热管散热器换热装置都设置在机柜内,热管散热器紧密的贴合在服务器上,热管散热器换热装置与热管散热器连接,所述热管散热器换热装置通过供水支管与机房供水干管连接,热管散热器换热装置通过回水支管与机房回水干管连接。该专利的热管散热器仅仅只是贴合在服务器上,并未对其最主要的发热器件进行最直接的散热,此外,该系统是通过中间换热器进行两个环路的热交换,这也势必导致传热效率相对直接换热要低。此外,该专利只考虑了服务器主要发热元件(CPU)的散热方案,但没有考虑其他发热元件的散热(内存硬盘等),所以该专利所提的散热方案其实并不够完善的。
发明内容
本发明的目的在于克服现有技术的不足,提供一种具有制冷效率高效果好,不会出现局部热点问题且无需对机柜进行改造的液冷装置和辅助散热装置结合的服务器散热系统。
本发明的上述目的通过如下技术方案予以实现:
一种液冷装置和辅助散热装置结合的服务器散热系统,包括液冷服务器机柜,所述液冷服务器机柜包括机柜柜体和设置机于柜柜体内的多个液冷服务器,设有液冷装置对液冷服务器进行直接的液冷散热,还设有辅助散热装置对液冷服务器进行辅助散热。本发明通过采用液冷散热技术进行主制冷,主辅配合制冷,一方面制冷效率高效果好,不会出现局部热点问题,另一方面,本发明提供的方案无需对机柜进行改造,这给液冷散热提供了普及使用的可能性。
一种方案,所述液冷装置包括液冷散热器、分配器、集流器和一次换热介质,所述液冷散热器用于对服务器芯片进行散热,所述分配器通过多根进液连接支管与液冷散热器连接,液冷散热器再通过多根出液连接支管与所述集流器连接,所述一次换热介质通过分配器和进液连接支管进入液冷散热器,再通过出液连接支管流出液冷散热器并由集流器汇集。一次换热介质由分配器通过进液连接支管进入液冷散热器,再通过出液连接支管进入集流器形成循环将液冷服务器的热量带走。
进一步地,所述的液冷装置外置安装在机柜柜体上。采用固定式或活动式安装,优选固定式安装。
所述一次换热介质为自来水、纯净水、有机溶液、无机溶液或氟利昂。优选采用纯净水。所述进液连接支管和出液连接支管为硬态管或软态管。优选软态管。
所述液冷散热器设于服务器芯片附近,或直接与服务器芯片接触。
所述辅助散热装置为门式冷水换热装置,所述门式冷水换热装置包括冷水换热器、连接管路以及二次换热介质,所述冷水换热器设置在液冷服务器机柜或液冷装置上,并通过连接管路装载二次换热介质。具体地,所述冷水换热器安装在机柜柜体的前门侧或背门侧,优选安装在背门侧;可以采用全铝微通道换热器或铜管套铝翅片换热器,优选铜管套铝翅片换热器。此外,所述冷水换热器可以轴转打开,冷水换热器的进水连接管和出水连接管均采用软态管。
进一步地,所述门式冷水换热装置还包括风机,所述风机安装在冷水换热器的出风侧。所述风机可以采用离心式、轴流式、混流式,优选轴流式风机。
更进一步地,所述门式冷水换热装置还包括冷水机和水泵,所述冷水机和水泵设于机房外,并通过连接管路与冷水换热器连接。
所述冷水机通过水泵将二次换热介质送至冷水换热器,再由冷水换热器流回冷水机形成循环带走部分热量。所述二次换热介质为水或防冻溶液。
本系统运行时,液冷服务器中的液冷服务器芯片的发热量占据总发热量约80%,这部分热量由液冷散热器吸收,并通过流经液冷散热器的、温度约35~45℃的一次换热介质带走,使得液冷服务器芯片的内部温度保持在60~70℃的正常运行状态。每个液冷服务器内部的液冷散热器的一次换热介质的流量分配和汇集,均由液冷装置完成:温度约35~45℃的一次换热介质从供液总管道流入分配器后,通过进液连接支管进入液冷散热器,吸收液冷服务器芯片的热量后,变成40~50℃温度状态、通过出液连接支管进入集流器、流回集液总管道。
液冷服务器中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或门式冷水换热装置的风机产生的空气流带走,流经门式冷水换热装置的冷水换热器后,空气流的热量被15~20℃的二次换热介质吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。冷水换热器内部的12~15℃的二次换热介质吸收热量后温度升高至17~20℃,在水泵循环动力作用下流入冷水机重新冷却为12~15℃的低温工质后,流回冷水换热器,如此循环。
一种方案,所述液冷装置包括液冷散热器、分配器、集流器和一次换热介质,所述液冷散热器用于对服务器芯片进行散热,所述分配器通过多根进液连接支管与液冷散热器连接,液冷散热器再通过多根出液连接支管与所述集流器连接,所述一次换热介质通过分配器和进液连接支管进入液冷散热器,再通过出液连接支管流出液冷散热器并由集流器汇集。一次换热介质由分配器通过进液连接支管进入液冷散热器,再通过出液连接支管进入集流器形成循环将液冷服务器的主要热量带走。
进一步地,所述的液冷装置外置安装在机柜柜体上,可以采用固定式或活动式安装,优选固定式安装。
所述一次换热介质为自来水、纯净水、有机溶液、无机溶液或氟利昂,优选采用纯净水。
所述液冷散热器设于服务器芯片附近,或直接与服务器芯片接触。
所述辅助散热装置为自然冷却冷水装置,所述自然冷却冷水装置包括设在液冷装置上的冷水换热器、水泵、电动调节水阀、水环自然冷却换热装置、冷水机、连接管路及二次换热介质,所述冷水机与冷水换热器通过连接管路连接形成环路,并通过连接管路装载二次换热介质。二次换热介质由冷水机通过进水连接管进入门式冷水换热器,吸收热量后在水泵的循环动力作用下流入水环自然冷却冷水装置和冷水机形成循环。所述二次换热介质为水或防冻溶液。
进一步地,所述的水环自然冷却换热装置包括轴流风机和自然冷却换热盘管,所述自然冷却换热盘管串联或并联在连接管路上。
具体地,一种情况,连接管路包括进水连接管和出水连接管,所述水泵、电动调节水阀、水环自然冷却换热装置依次串联设于出水连接管上,所述的水环自然冷却换热装置包括轴流风机和自然冷却换热盘管,所述自然冷却换热盘管串联在出水连接管上。另一种情况,所述的水环自然冷却换热装置包括轴流风机和自然冷却换热盘管,所述自然冷却换热盘管一端与电动调节水阀相连另一端与出水连接管连接并联在冷水机两端。所述电动调节水阀设在所述水环自然冷却换热装置的出水口处。两个方案相比之下,优选采用串联连接,可以获得更长的自然冷却运行时间和更显著的节能效果。
更进一步地,所述门式冷水换热装置还包括风机,所述风机安装在冷水换热器的出风侧。
所述的自然冷却冷水装置的门式冷水换热器安装在机柜柜体的前门侧或背门侧,优选安装在背门侧;所述的自然冷却冷水装置的门式冷水换热器可以轴转打开,门式冷水换热器的进水连接管和出水连接管均采用软态管。
所述的自然冷却冷水装置的电动调节水阀采用二通阀或者三通阀,优选三通阀。
所述的水环自然冷却换热装置串联在连接管道上时,所述服务器散热系统的运行方法如下:
01)当环境温度为20℃以上时,冷水机开启,水环自然冷却换热装置停止运行,电动调节水阀的旁通开度为0%、二次换热介质不流经水环自然冷却换热装置,轴流风机也处于停止状态,二次换热介质的所有冷量均由冷水机提供;
02)当环境温度为0~20℃时,冷水机和水环自然冷却换热装置均开启运行,电动调节水阀的旁通开度为100%、所有的二次换热介质先流经水环自然冷却换热装置,利用轴流风机和和自然冷却换热盘管的强制对流换热对二次换热介质进行散热预冷,二次换热介质再进一步流经冷水机进行补偿制冷达到所需的温度;
03)当环境温度为0℃以下时,冷水机停止运行,水环自然冷却换热装置开启运行,电动调节水阀的旁通开度先保持为100%、所有的二次换热介质流经水环自然冷却换热装置,并通过调节轴流风机的转速来调节自然冷却产生的冷量;所述轴流风机的调节如下:当二次换热介质出口温度达到8℃以下时,减小轴流风机的转速,使得二次换热介质出口温度上升;当二次换热介质出口温度达到12℃以上时,则增大轴流风机的转速,使得二次换热介质出口温度下降;当二次换热介质出口温度在8~12℃之间,则轴流风机的转速保持不变;通过轴流风机调节二次换热介质出口温度在适当的范围内,8~12℃之间为最优;
04)当环境温度极低、轴流风机已处于最低转速下、自然冷却产生的冷量仍然偏大即二次换热介质出口温度为12℃以下时,则保持轴流风机在最低转速下稳定运行,并通过调节电动调节水阀的旁通开度来控制自然冷却产生的冷量,所述电动调节水阀的调节如下:当二次换热介质出口温度达到8℃以下时,减小电动调节水阀的旁通开度,使得二次换热介质出口温度上升;当二次换热介质出口温度达到12℃以上时,则开始增大电动调节水阀的旁通开度,使得二次换热介质出口温度下降;当二次换热介质出口温度在8~12℃之间,则电动调节水阀的旁通开度保持不变。通过电动调节水阀调节二次换热介质出口温度在适当的范围内,8~12℃之间为最优。
所述的水环自然冷却换热装置并联在连接管道上时,所述服务器散热系统的运行方法如下:
11)当环境温度为0℃以上时,冷水机开启,水环自然冷却换热装置停止运行,电动调节水阀的旁通开度为0%、二次换热介质不流经水环自然冷却换热装置,轴流风机也处于停止状态,二次换热介质的所有冷量均由冷水机提供;
12)当环境温度为0℃以下时,冷水机停止运行,水环自然冷却换热装置开启运行,电动调节水阀的旁通开度先保持为100%、所有的二次换热介质流经水环自然冷却换热装置,并通过调节轴流风机的转速来调节自然冷却产生的冷量;所述轴流风机的调节如下:当二次换热介质出口温度达到8℃以下时,减小轴流风机的转速,使得二次换热介质出口温度上升;当二次换热介质出口温度达到12℃以上时,则增大轴流风机的转速,使得二次换热介质出口温度下降;当二次换热介质出口温度在8~12℃之间,则轴流风机的转速保持不变;通过轴流风机调节二次换热介质出口温度在适当的范围内,8~12℃之间为最优;
13)当环境温度极低、轴流风机已处于最低转速下、自然冷却产生的冷量仍然偏大即二次换热介质出口温度为12℃以下时,则保持轴流风机在最低转速下稳定运行,并通过调节电动调节水阀的旁通开度来控制自然冷却产生的冷量,所述电动调节水阀的调节如下:当二次换热介质出口温度达到8℃以下时,减小电动调节水阀的旁通开度,使得二次换热介质出口温度上升;当二次换热介质出口温度达到12℃以上时,则开始增大电动调节水阀的旁通开度,使得二次换热介质出口温度下降;当二次换热介质出口温度在8~12℃之间,则电动调节水阀的旁通开度保持不变。通过电动调节水阀调节二次换热介质出口温度在适当的范围内,8~12℃之间为最优。
一种方案,所述液冷装置包括液冷散热器、分配器、集流器和液冷换热介质,所述液冷散热器用于对服务器芯片进行散热,所述分配器通过多根进液连接支管与液冷散热器连接,液冷散热器再通过多根出液连接支管与所述集流器连接,所述液冷换热介质通过分配器和进液连接支管进入液冷散热器,再通过出液连接支管流出液冷散热器并由集流器汇集。液冷换热介质由分配器通过进液连接支管进入液冷散热器,再通过出液连接支管进入集流器形成循环将液冷服务器的主要热量带走。所述液冷换热介质为自来水、纯净水、有机溶液、无机溶液或氟利昂。优选采用纯净水。
进一步地,所述液冷散热器设于服务器芯片附近,或直接与服务器芯片接触。
所述辅助散热装置为热管空调,所述热管空调为风冷自然冷却热管空调,所述风冷自然冷却热管空调包括蒸发器、冷凝器、风冷自然冷却换热装置、电动调节冷媒阀、冷水机、连接管路及内、外循环换热介质,所述蒸发器与冷凝器通过连接管路连接形成内环路,并通过内环路的连接管路装载内循环换热介质,所述冷水机与冷凝器通过连接管路连接形成外环路,并通过外环路的连接管路装载外循环换热介质。所述蒸发器内部的液态内循环换热介质吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管流入冷凝器,热量被水泵提供的低温的外循环换热介质带走,冷凝为液态工质后,沿连接液管流回蒸发器形成循环。所述内循环换热介质为氟利昂,优选采用环保和运行压力低的R134a氟利昂;所述外循环换热介质为水或防冻溶液,在最低气温会低于零度的地区,优选乙二醇溶液等防冻溶液。
进一步地,所述风冷自然冷却热管空调还包括风机和水泵,所述风机设于蒸发器出风侧,所述水泵设于冷凝器与冷水机之间。
更进一步地,所述的水环自然冷却换热装置包括轴流风机和自然冷却换热盘管,所述自然冷却换热盘管串联或并联在内环路的连接管路上。
具体地,一种情况,内环路的连接管路包括连接气管和连接液管,所述蒸发器与冷凝器通过连接气管和连接液管分别连接形成内环路,所述连接气管上设有风冷自然冷却换热装置和电动调节冷媒阀,所述电动调节冷媒阀设于风冷自然冷却换热装置的进口或出口管路上,优选安装在的出口管路上。
另一种情况,内环路的连接管路包括连接气管和连接液管,所述蒸发器与冷凝器通过连接气管和连接液管分别连接形成内环路,所述风冷自然冷却换热装置一端设于连接气管上,另一端设于连接液管上,所述电动调节冷媒阀设于风冷自然冷却换热装置的进口或出口管路上,优选安装在的出口管路上。
优选采用第一种情况,可以获得更长的自然冷却运行时间和更显著的节能效果。
所述的液冷装置外置安装在机柜柜体上,采用固定式或活动式安装,优选固定式安装。
所述的液冷装置的进液连接支管和进液连接支管,可以采用硬态管或软态管,优选软态管。所述的风冷自然冷却热管空调的蒸发器安装在机柜柜体的前门侧或背门侧,优选安装在背门侧;所述蒸发器可以轴转打开,蒸发器的气管连接管和液管连接管均采用软态管。
所述的风冷自然冷却热管空调的电动调节冷媒阀采用二通阀或者三通阀,优选三通阀。
所述的水环自然冷却换热装置串联在内环路的连接管路上时,所述服务器散热系统的运行方法如下:
11)当环境温度为20℃以上时,冷水机开启,风冷自然冷却换热装置停止运行,电动调节冷媒阀的旁通开度为0%、内循环换热介质不流经风冷自然冷却换热装置,轴流风机也处于停止状态,内循环换热介质冷凝所需的冷量全部由冷凝器和冷水机通过二次换热提供;
12)当环境温度为0~20℃时,冷水机和风冷自然冷却换热装置均开启运行,电动调节冷媒阀的旁通开度为100%、所有的内循环换热介质先流经风冷自然冷却换热装置,利用轴流风机和和自然冷却换热盘管的强制对流换热对内循环换热介质进行散热预冷,内循环换热介质再进一步流经冷凝器,剩余冷凝热量由冷水机和水泵提供的低温外循环换热介质带走;
13)当环境温度为0℃以下时,冷水机停止运行,风冷自然冷却换热装置开启运行,电动调节冷媒阀的旁通开度先保持为100%、所有的内循环换热介质流经风冷自然冷却换热装置,并通过调节轴流风机的转速来调节自然冷却产生的冷量;所述轴流风机的调节如下:当内循环换热介质出口温度达到8℃以下时,减小轴流风机的转速,使得内循环换热介质出口温度上升;当内循环换热介质出口温度达到12℃以上时,则增大轴流风机的转速,使得内循环换热介质出口温度下降;当内循环换热介质出口温度在8~12℃之间,则轴流风机的转速保持不变;通过轴流风机调节内循环换热介质出口温度在适当的范围内,8~12℃之间为最优;
14)当环境温度极低、轴流风机已处于最低转速下、自然冷却产生的冷量仍然偏大即内循环换热介质出口温度为12℃以下时,则保持轴流风机在最低转速下稳定运行,并通过调节电动调节冷媒阀的旁通开度来控制自然冷却产生的冷量,所述电动调节冷媒阀的调节如下:当内循环换热介质出口温度达到8℃以下时,减小电动调节冷媒阀的旁通开度,使得内循环换热介质出口温度上升;当内循环换热介质出口温度达到12℃以上时,则开始增大电动调节冷媒阀的旁通开度,使得内循环换热介质出口温度上升;当内循环换热介质出口温度在8~12℃之间,则电动调节冷媒阀的旁通开度保持不变。通过电动调节冷媒阀调节内循环换热介质出口温度在适当的范围内,8~12℃之间为最优。
所述的水环自然冷却换热装置并联在内环路的连接管路上时,所述服务器散热系统的运行方法如下:
21)当环境温度为0℃以上时,冷水机开启,风冷自然冷却换热装置停止运行,电动调节冷媒阀的旁通开度为0%、内循环换热介质不流经风冷自然冷却换热装置,轴流风机也处于停止状态,内循环换热介质冷凝所需的冷量,全部由冷凝器和冷水机通过二次换热提供;
22)当环境温度为0℃以下时,冷水机停止运行,风冷自然冷却换热装置开启运行,电动调节冷媒阀的旁通开度先保持为100%、所有的内循环换热介质流经风冷自然冷却换热装置,并通过调节轴流风机的转速来调节自然冷却产生的冷量;所述轴流风机的调节如下:当内循环换热介质出口温度达到8℃以下时,减小轴流风机的转速,使得内循环换热介质出口温度上升;当内循环换热介质出口温度达到12℃以上时,则增大轴流风机的转速,使得内循环换热介质出口温度下降;当内循环换热介质出口温度在8~12℃之间,则轴流风机的转速保持不变;通过轴流风机调节内循环换热介质出口温度在适当的范围内,8~12℃之间为最优;
23)当环境温度极低、轴流风机已处于最低转速下、自然冷却产生的冷量仍然偏大即内循环换热介质出口温度为12℃以下时,则保持轴流风机在最低转速下稳定运行,并通过调节电动调节冷媒阀的旁通开度来控制自然冷却产生的冷量,所述电动调节冷媒阀的调节如下:当内循环换热介质出口温度达到8℃以下时,减小电动调节冷媒阀的旁通开度,使得内循环换热介质出口温度上升;当内循环换热介质出口温度达到12℃以上时,则开始增大电动调节冷媒阀的旁通开度,使得内循环换热介质出口温度下降;当内循环换热介质出口温度在8~12℃之间,则电动调节冷媒阀的旁通开度保持不变。通过电动调节冷媒阀调节内循环换热介质出口温度在适当的范围内,8~12℃之间为最优。
一种方案,所述液冷装置包括液冷散热器、分配器、集流器和一次换热介质,所述液冷散热器用于对服务器芯片进行散热,所述分配器通过多根进液连接支管与液冷散热器连接,液冷散热器再通过多根出液连接支管与所述集流器连接,所述一次换热介质通过分配器和进液连接支管进入液冷散热器,再通过出液连接支管流出液冷散热器并由集流器汇集。一次换热介质由分配器通过进液连接支管进入液冷散热器,再通过出液连接支管进入集流器形成循环将液冷服务器的主要热量带走。所述一次换热介质为自来水、纯净水、有机溶液、无机溶液或氟利昂,优选纯净水。
进一步地,所述的液冷装置外置安装在机柜柜体上,采用固定式或活动式安装,优选固定式安装。所述液冷散热器设于服务器芯片附近,或直接与服务器芯片接触。
所述辅助散热装置为热管空调,所述热管空调为门式热管空调,所述门式热管空调包括蒸发器、冷凝器、连接管道及二次换热介质,所述蒸发器与冷凝器通过连接管路连接形成环路,并通过连接管路装载二次换热介质。
进一步地,所述门式热管空调还包括冷水机和水泵,所述冷水机和水泵设于机房外,并通过连接管路与冷凝器连接。二次换热介质由冷水机通过进连接液管进入蒸发器,吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管流入冷凝器冷凝为液态工质后,沿连接液管流回蒸发器形成循环。所述二次换热介质为氟利昂,优选采用环保和运行压力低的R134a氟利昂。
更进一步地,所述门式热管空调还包括风机,所述风机安装在蒸发器的出风侧。
所述的液冷装置的进液连接支管和出液连接支管采用硬态管或软态管,优选软态管,蒸发器的连接管路均采用软态管。
所述风机采用离心式、轴流式或混流式风机,优选轴流式风机;所述的蒸发器采用全铝微通道换热器或铜管套铝翅片换热器,优选全铝微通道换热器;所述蒸发器优选安装在背门侧,可以轴转打开;所述冷凝器采用板式换热器、壳管式换热器或套管式换热器,优选采用板式换热器;所述冷水机采用风冷冷水机、水冷冷水机或蒸发式冷凝冷水机,优选采用板式换热器。
本门式热管空调和液冷装置结合的服务器机柜散热系统运行时,液冷服务器中的液冷服务器芯片的发热量占据总发热量约80%,这部分热量由液冷散热器吸收,并通过流经液冷散热器的、温度约35~45℃的一次换热介质带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器的一次换热介质的流量分配和汇集,均由液冷装置完成:温度约35~45℃的一次换热介质从供液总管道流入分配器后,通过进液连接支管进入液冷散热器,吸收液冷服务器芯片的热量后,变成40~50℃温度状态、通过出液连接支管进入集流器、流回集液总管道。
液冷服务器中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或门式热管空调的风机产生的空气流带走,流经门式热管空调的蒸发器后,空气流的热量被15~20℃的二次换热介质吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。蒸发器内部的液态的二次换热介质吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管流入冷凝器,热量被冷水机和水泵提供的低温冷冻水带走,冷凝为液态工质后,沿连接液管流回蒸发器,如此循环。
一种方案,所述液冷装置包括液冷散热器、分配器、集流器和液冷换热介质,所述液冷散热器用于对服务器芯片进行散热,所述分配器通过多根进液连接支管与液冷散热器连接,液冷散热器再通过多根出液连接支管与所述集流器连接,所述液冷换热介质通过分配器和进液连接支管进入液冷散热器,再通过出液连接支管流出液冷散热器并由集流器汇集。液冷换热介质由分配器通过进液连接支管进入液冷散热器,再通过出液连接支管进入集流器形成循环将液冷服务器的主要热量带走。所述液冷换热介质为自来水、纯净水、有机溶液、无机溶液或氟利昂,优选采用纯净水。
所述液冷散热器设于服务器芯片附近,或直接与服务器芯片接触。
所述辅助散热装置为热管空调,所述热管空调为水环自然冷却热管空调,所述水环自然冷却热管空调包括蒸发器、水环自然冷却换热装置、电动调节冷媒阀、冷凝器、冷水机、连接管路及内、外循环换热介质,所述蒸发器与冷凝器通过连接管路连接形成内环路,并通过内环路的连接管路装载内循环换热介质,所述冷水机与冷凝器通过连接管路连接形成外环路,并通过外环路的连接管路装载外循环换热介质。
进一步地,所述水环自然冷却热管空调还包括风机和水泵,所述风机设于蒸发器出风侧,所述水泵设于冷凝器与冷水机之间。
更进一步地,所述的水环自然冷却换热装置包括轴流风机和自然冷却换热盘管,所述自然冷却换热盘管串联或并联在外环路的连接管路上,所述电动调节冷媒阀设于水环自然冷却换热装置进口或出口管路上。
具体地,一种情况,内环路的连接管路包括连接气管和连接液管,所述蒸发器与冷凝器通过连接气管和连接液管分别连接形成内环路,外环路的连接管路包括进液管和出液管,所述冷凝器与冷水机通过进液管和出液管分别连接形成外环路,所述水环自然冷却换热装置串联在进液管上,所述电动调节冷媒阀设于风冷自然冷却换热装置的进口或出口管路上,优选安装在的出口管路上。
另一种情况,内环路的连接管路包括连接气管和连接液管,所述蒸发器与冷凝器通过连接气管和连接液管分别连接形成内环路,外环路的连接管路包括进液管和出液管,所述冷凝器与冷水机通过进液管和出液管分别连接形成外环路,所述水环自然冷却换热装置一端接在进液管上,另一端接在出液管上,所述电动调节冷媒阀设于风冷自然冷却换热装置的进口或出口管路上,优选安装在的出口管路上。
优选采用第一种情况,可以获得更长的自然冷却运行时间和更显著的节能效果。
所述蒸发器内部的液态内循环换热介质吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管流入冷凝器,热量被水泵提供的低温的外循环换热介质带走,冷凝为液态工质后,沿连接液管流回蒸发器形成循环。所述内循环换热介质为氟利昂,优选采用环保和运行压力低的R134a氟利昂;所述外循环换热介质为水或防冻溶液,在最低气温会低于零度的地区,优选乙二醇溶液等防冻溶液。
所述的液冷装置外置安装在机柜柜体上,采用固定式或活动式安装,优选固定式安装。
所述的液冷装置的进液连接支管和进液连接支管,可以采用硬态管或软态管,优选软态管。所述的风冷自然冷却热管空调的蒸发器安装在机柜柜体的前门侧或背门侧,优选安装在背门侧;所述蒸发器可以轴转打开,蒸发器的气管连接管和液管连接管均采用软态管。
所述的风冷自然冷却热管空调的电动调节冷媒阀采用二通阀或者三通阀,优选三通阀。
所述的水环自然冷却换热装置串联在外环路的连接管路上时,所述服务器散热系统的运行方法如下:
31)当环境温度为20℃以上时,冷水机开启,水环自然冷却换热装置停止运行,电动调节水阀的旁通开度为0%、外循环换热介质不流经水环自然冷却换热装置,轴流风机也处于停止状态,外循环换热介质的所有冷量均由冷水机提供;
32)当环境温度为0~20℃时,冷水机和水环自然冷却换热装置均开启运行,电动调节水阀的旁通开度为100%、所有的外循环换热介质先流经水环自然冷却换热装置,利用轴流风机和和自然冷却换热盘管的强制对流换热对外循环换热介质进行散热预冷,外循环换热介质再进一步流经冷水机进行补偿制冷达到所需的温度;
33)当环境温度为0℃以下时,水机停止运行,水环自然冷却换热装置开启运行,电动调节水阀的旁通开度先保持为100%、所有的外循环换热介质流经水环自然冷却换热装置,并通过调节轴流风机的转速来调节自然冷却产生的冷量;所述轴流风机的调节如下:当外循环换热介质出口温度达到8℃以下时,减小轴流风机的转速,使得外循环换热介质出口温度上升;当外循环换热介质出口温度达到12℃以上时,则增大轴流风机的转速,使得外循环换热介质出口温度下降;当外循环换热介质出口温度在8~12℃之间,则轴流风机的转速保持不变;通过轴流风机调节外循环换热介质出口温度在适当的范围内,8~12℃之间为最优;
34)当环境温度极低、轴流风机已处于最低转速下、自然冷却产生的冷量仍然偏大即外循环换热介质出口温度为12℃以下时,则保持轴流风机在最低转速下稳定运行,并通过调节电动调节冷媒阀的旁通开度来控制自然冷却产生的冷量,所述电动调节冷媒阀的调节如下:当外循环换热介质出口温度达到8℃以下时,减小电动调节冷媒阀的旁通开度,使得外循环换热介质出口温度上升;当外循环换热介质出口温度达到12℃以上时,则开始增大电动调节冷媒阀的旁通开度,使得外循环换热介质出口温度下降;当外循环换热介质出口温度在8~12℃之间,则电动调节冷媒阀的旁通开度保持不变。通过电动调节冷媒阀调节外循环换热介质出口温度在适当的范围内,8~12℃之间为最优。
所述的水环自然冷却换热装置并联在外环路的连接管路上时,所述服务器散热系统的运行方法如下:
41)当环境温度为0℃以上时,冷水机开启,水环自然冷却换热装置停止运行,电动调节水阀的旁通开度为0%、外循环换热介质不流经水环自然冷却换热装置,轴流风机也处于停止状态,外循环换热介质的所有冷量均由冷水机提供;
42)当环境温度为0℃以下时,冷水机停止运行,水环自然冷却换热装置开启运行,电动调节水阀的旁通开度先保持为100%、所有的外循环换热介质流经水环自然冷却换热装置,并通过调节轴流风机的转速来调节自然冷却产生的冷量;所述轴流风机的调节如下:当外循环换热介质出口温度达到8℃以下时,减小轴流风机的转速,使得外循环换热介质出口温度上升;当外循环换热介质出口温度达到12℃以上时,则增大轴流风机的转速,使得外循环换热介质出口温度下降;当外循环换热介质出口温度在8~12℃之间,则轴流风机的转速保持不变;通过轴流风机调节外循环换热介质出口温度在适当的范围内,8~12℃之间为最优;
43)当环境温度极低、轴流风机已处于最低转速下、自然冷却产生的冷量仍然偏大即外循环换热介质出口温度为12℃以下时,则保持轴流风机在最低转速下稳定运行,并通过调节电动调节冷媒阀的旁通开度来控制自然冷却产生的冷量,所述电动调节冷媒阀的调节如下:当外循环换热介质出口温度达到8℃以下时,减小电动调节冷媒阀的旁通开度,使得外循环换热介质出口温度上升;当外循环换热介质出口温度达到12℃以上时,则开始增大电动调节冷媒阀的旁通开度,使得外循环换热介质出口温度下降;当外循环换热介质出口温度在8~12℃之间,则电动调节冷媒阀的旁通开度保持不变。通过电动调节冷媒阀调节外循环换热介质出口温度在适当的范围内,8~12℃之间为最优;
一种方案,所述液冷装置包括内循环系统和外循环系统,所述内循环系统包括设于服务器内部的液导热管、中间换热器、内循环进液管和内循环出液管,所述中间换热器通过内循环进液管和内循环出液管与液导热管连接形成环路,所述内循环进液管上还设有压补液装置和第一循环液泵;所述外循环系统为由冷液塔、液箱、第二循环液泵、中间换热器依次连接形成的环路,所述内、外循环系统通过中间换热器实现热量的传递。更进一步地,内循环系统和外循环系统内外环路均采用水作为制冷剂。
所述液导热管为热管部件,一端直接与服务器芯片接触传热,另一端接入内循环系统进行热交换。所述多个液导热管并联接入内循环系统。所述的服务器液导热管内部充注制冷剂,常温常压下为气体,一端直接与服务器芯片接触传热,另一端与内循环系统液体载冷剂进行热交换,由于服务器内安装了各种电子元器件,为防止循环系统液体泄漏流到电子元器件,服务器机柜内设置防液隔板,对各个服务器液导热管的两端进行防护隔离。运行时,通过内循环环路中的载冷剂循环流动,进行自然对流换热,将服务器芯片产生的热量不断散放到环境中。服务器芯片和外部液冷装置之间采用热管换热部件进行间接冷却,可避免液体直接进入服务器内部,降低因液系统泄漏造成服务器损坏的几率。
运行时,所述内循环系统将服务器芯片传递给液导热管的热量带走,所述外循环系统吸收的热量由外循环系统带走。
更进一步,所述辅助散热装置为一个以上的风冷型列间空调,并与服务器机柜并列安装。所述多个服务器并排安装于服务器机柜,相邻的服务器机柜相对安装形成相间的冷通道和热通道,所述风冷型列间空调从冷通道送风再由热通道回风。所述的列间空调冷却空气,再由低温空气带走服务器的剩余热量;所述的风冷列间空调的加热、加湿功能可以调节机房的湿度。
所述第一或第二循环液泵为变频液泵或定频液泵。所述第一或第二循环液泵提供动力驱动管路中的流体流动。所述中间换热器为板式换热器。
与现有技术相比,本发明的有益效果如下:
(1)实现服务器机柜和液冷水分配分配装置的分离设计,机柜无需非标定制,在标准机柜柜体上独立安装一个具有水分配系统的液冷装置即可使之具备为液冷服务器提供液冷换热介质的分配和汇集功能,有利于液冷散热技术的实用化推广。
(2)采用液冷散热技术进行主制冷,实现超高密度制冷和超高节能运行,只需提供35~45℃的换热工质(如纯净水)即可完成,无需压缩机制冷等任何机械制冷装置或系统。
(3)进行辅助制冷,完全干工况运行、无冷凝水产生、避免除湿加湿的损耗,送风距离短、实现风机的高效运行,甚至可以无风机运行(通过服务器自身风机进行散热),并有效解决服务器机柜局部过热和存在热点的问题。
(4)应用自然冷却技术,充分利用过渡季节和冬季的自然冷源对辅助散热系统提供冷量,节能效果非常显著。
(5)整个系统设计简单,投资低,几乎不占据任何机房空间,提升机房占地利用率。
(6)系统在机房内部无需动力装置、运行无噪音、安全环保,实现数据机房高效节能、安全可靠运行的目的。
附图说明
图1为实施例1的结构和原理示意图;
其中,1、机柜柜体;2、液冷服务器;3、液冷服务器芯片;4、液冷散热器;5、集流器;6、分配器;7、进液连接支管;8、冷水换热器;9、风机;13、水泵;14、冷水机;15、一次换热介质;16、二次换热介质;17、出液连接支管;Ⅰ、液冷服务器机柜;Ⅱ、液冷装置;Ⅲ、门式冷水换热装置。
图2为实施例2的结构和原理示意图;
其中,1.机柜柜体;2.液冷服务器;3.液冷服务器芯片;4.液冷散热器;5、集流器;6、分配器;7.进液连接支管;8.冷水换热器;9.风机;11.出水连接管;12.进水连接管;13.水泵;14.冷水机;15.一次换热介质;16.二次换热介质;17.出液连接支管;18.水环自然冷却换热装置;19.轴流风机;20.自然冷却换热盘管;21.电动调节水阀;Ⅰ.液冷服务器机柜;Ⅱ.液冷装置;Ⅶ.自然冷却冷水装置。
图3为实施例3的结构和原理示意图;
其中,1.机柜柜体;2.液冷服务器;3.液冷服务器芯片;4.液冷散热器;5、集流器;6、分配器;7.进液连接支管;8.冷水换热器;9.风机;11.出水连接管;12.进水连接管;13.水泵;14.冷水机;15.液冷换热介质;16.二次换热介质;17.出液连接支管;18.水环自然冷却换热装置;19.轴流风机;20.自然冷却换热盘管;21.电动调节水阀;Ⅰ.液冷服务器机柜;Ⅱ.液冷装置;Ⅶ.自然冷却冷水装置。
图4为实施例4的结构和原理示意图;
其中,1.机柜柜体;2.液冷服务器;3.液冷服务器芯片;4.液冷散热器;5、集流器;6、分配器;7.进液连接支管;9.风机;10.冷凝器;13.水泵;14.冷水机;15.一次换热介质;16.二次换热介质;17.出液连接支管;25.蒸发器;26.连接液管;27.连接气管;Ⅰ.液冷服务器机柜;Ⅱ.液冷装置;Ⅳ.门式热管空调。
图5为实施例5的结构和原理示意图;
其中,1.机柜柜体;2.液冷服务器;3.液冷服务器芯片;4.液冷散热器;5、集流器;6、分配器;7.进液连接支管;9.风机;10.冷凝器;13.水泵;14.冷水机;17.出液连接支管;18.风冷自然冷却换热装置;19.轴流风机;20.自然冷却换热盘管;21.电动调节冷媒阀;22.外循环换热介质;23.液冷换热介质;24.内循环换热介质;25.蒸发器;26连接液管;27.连接气管;Ⅰ.液冷服务器机柜;Ⅱ.液冷装置;Ⅴ.风冷自然冷却热管空调。
图6为实施例6的结构和原理示意图;
其中,1.机柜柜体;2.液冷服务器;3.液冷服务器芯片;4.液冷散热器;5.集流器;6.分配器;7.进液连接支管;9.风机;10.冷凝器;13.水泵;14.冷水机;15.液冷换热介质;17.出液连接支管;18.风冷自然冷却换热装置;19.轴流风机;20.自然冷却换热盘管;21.电动调节冷媒阀;22.外循环换热介质;23.液冷换热介质;24.内循环换热介质;25.蒸发器;26连接液管;27.连接气管;Ⅰ.液冷服务器机柜;Ⅱ.液冷装置;Ⅴ.风冷自然冷却热管空调。
图7实施例7的结构和原理示意图;
其中,1.机柜柜体;2.液冷服务器;3.液冷服务器芯片;4.液冷散热器;5、集流器;6、分配器;7.进液连接支管;9.风机;10.冷凝器;13.水泵;14.冷水机;17.出液连接支管;19.轴流风机;20.自然冷却换热盘管;21.电动调节水阀;22.外循环换热介质;23.液冷换热介质;24.内循环换热介质;25.蒸发器;26连接液管;27.连接气管;28、进液管;29、出液管;30.水环自然冷却换热装置;Ⅰ.液冷服务器机柜;Ⅱ.液冷装置;Ⅵ.水环自然冷却热管空调。
图8为实施例8的结构和原理示意图;
其中,,1.机柜柜体;2.液冷服务器;3.液冷服务器芯片;4.液冷散热器;5、集流器;6、分配器;7.进液连接支管;9.风机;10.冷凝器;13.水泵;14.冷水机;17.出液连接支管;19.轴流风机;20.自然冷却换热盘管;21.电动调节水阀;22.外循环换热介质;23.液冷换热介质;24.内循环换热介质;25.蒸发器;26.连接液管;27.连接气管;28、进液管;29、出液管;30.水环自然冷却换热装置;Ⅰ.液冷服务器机柜;Ⅱ.液冷装置;Ⅵ.水环自然冷却热管空调。
图9为实施例9、10液冷系统示意图;
图10为实施例9的俯视图;
图11为实施例10的俯视图;其中,000、液冷装置;001、内循环出液管;002、第一循环液泵;003、定压补液装置;004、板式换热器;005、第二循环液泵;006、液箱;007、冷液塔;008、风冷列间空调;009、内循环进液管;100、服务器机柜;110、机柜隔板;101、液导热管;111、服务器。
具体实施方式
下面结合说明书附图和具体实施例对本发明作出进一步地详细阐述,但实施例并不对本发明做任何形式的限定。
实施例1
实施例1
如图1所示,一种门式冷水换热装置和液冷装置结合的服务器机柜散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ,门式冷水换热装置Ⅲ。所述的液冷服务器机柜Ⅰ包括机柜柜体1和液冷服务器2,液冷服务器2内部有液冷服务器芯片3和液冷散热器4。所述液冷装置Ⅱ包括分配器6、集流器5和连接支管7。所述门式冷水换热装置Ⅲ包括冷水换热器8、风机9、水泵13和冷水机14。所述液冷装置Ⅱ的分配器6和集流器5分别通过进液连接支管7和进液连接支管17与液冷服务器2连接,所述门式冷水换热装置Ⅲ的冷水换热器8安装在液冷装置Ⅱ上。
所述的液冷装置Ⅱ外置安装在机柜柜体1上,可以采用固定式或活动式安装,优选固定式安装。
所述的液冷装置Ⅱ的连接支管7,可以采用硬态管或软态管,优选软态管,进液连接支管7和进液连接支管17的两端分别与液冷服务器、分配器6和集流器5密封连接。
所述的门式冷水换热装置Ⅲ的冷水换热器8可以安装在机柜柜体1的前门侧或背门侧,优选安装在背门侧;门式冷水换热装置Ⅲ的冷水换热器8可以轴转打开,冷水换热器8的进水连接管和出水连接管均采用软态管。
所述的门式冷水换热装置Ⅲ的风机9安装在冷水换热器8的出风侧,风机9可以采用离心式、轴流式、混流式,优选轴流式风机;所述的冷水机14,可采用风冷冷水机、水冷冷水机或蒸发式冷凝冷水机,优选风冷冷水机。
所述的液冷装置Ⅱ和液冷服务器2的一次换热介质15,可以采用自来水、纯净水、有机溶液、无机溶液、氟利昂,优选采用纯净水。
所述的门式冷水换热装置Ⅲ的二次换热介质16为12℃以上的高温冷水。
所述的门式冷水换热装置Ⅲ的冷水换热器8,可以采用全铝微通道换热器或铜管套铝翅片换热器,优选铜管套铝翅片换热器。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的一次换热介质15带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的一次换热介质15的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的一次换热介质15从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或门式冷水换热装置Ⅲ的风机9产生的空气流带走,流经门式冷水换热装置Ⅲ的冷水换热器8后,空气流的热量被15~20℃的二次换热介质16吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。冷水换热器8内部的12~15℃的二次换热介质16吸收热量后温度升高至17~20℃,在水泵13循环动力作用下流入冷水机14重新冷却为12~15℃的低温工质后,流回冷水换热器8,如此循环。
实施例2
如图2,一种液冷装置和辅助散热装置结合的服务器散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ和自然冷却冷水装置Ⅶ。所述液冷服务器机柜Ⅰ包括机柜柜体1和设置机于柜柜体内的多个液冷服务器2,所述液冷服务器2设有液冷服务器芯片3,所述液冷装置Ⅱ包括液冷散热器4、分配器6和集流器5,所述分配器6和集流器5分别通过多根进液连接支管7和出液连接支管17与设置于液冷服务器内的液冷散热器4一一连接,所述液冷散热器4与液冷服务器芯片3接触或设于芯片3附近;所述自然冷却冷水装置Ⅶ包括设在液冷装置上的门式冷水换热器8、安装在冷水换热器8出风侧的风机9、进水连接管、出水连接管、水泵13、电动调节水阀21、水环自然冷却换热装置18和冷水机14,所述冷水机14与冷水换热器8通过进水连接管11和出水连接管12分别连接形成环路,所述水泵13、电动调节水阀21、水环自然冷却换热装置18依次串联设于出水连接管12上,所述的水环自然冷却换热装置18包括轴流风机19和自然冷却换热盘管20,所述自然冷却换热盘管20串联在出水连接管11上。所述冷水换热器8为门式冷水换热器。
所述的液冷装置Ⅱ外置安装在机柜柜体1上,可以采用固定式或活动式安装,优选固定式安装。所述自然冷却冷水装置Ⅶ的门式冷水换热器8安装在液冷装置Ⅱ上。
所述的液冷装置Ⅱ的进液连接支管7,可以采用硬态管或软态管,优选软态管,
所述的自然冷却冷水装置Ⅶ的门式冷水换热器8可以安装在机柜柜体1的前门侧或背门侧,优选安装在背门侧;自然冷却冷水装置Ⅶ的门式冷水换热器8可以轴转打开,门式冷水换热器8的进水连接管11和出水连接管12均采用软态管。
所述的自然冷却冷水装置Ⅶ的电动调节水阀21可以采用二通阀或者三通阀,优选三通阀。电动调节水阀21的安装位置可以在水环自然冷却换热装置18的进口或者出口管路上,优选安装在出口管路上。
所述的液冷装置Ⅱ和液冷服务器2的一次换热介质15,可以采用自来水、纯净水、有机溶液、无机溶液、氟利昂,优选采用纯净水。
所述的自然冷却冷水装置Ⅶ的二次换热介质16为水或防冻溶液。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的液冷换热介质15带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的液冷换热介质15的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的液冷换热介质15从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或自然冷却冷水装置Ⅶ的风机9产生的空气流带走,流经自然冷却冷水装置Ⅶ的门式冷水换热器8后,空气流的热量被15~20℃的二次换热介质16吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。
在自然冷却冷水装置Ⅶ的循环,门式冷水换热器8内部的二次换热介质16吸收热量后温度由12~15℃升高至17~20℃,在水泵13的循环动力作用下流入冷水机14和水环自然冷却冷水装置18,重新冷却为12~17℃后,流回门式冷水换热器8,如此循环。
在自然冷却冷水装置Ⅶ的外循环,根据环境温度的不同,有三种运行模式:
1)完全机械制冷运行模式:环境温度比较高(如20℃以上时),冷水机14开启,水环自然冷却换热装置18停止运行,电动调节水阀21的旁通开度为0%、二次换热介质16不流经水环自然冷却换热装置18,轴流风机19也处于停止状态,二次换热介质16的所有冷量均由冷水机14提供。
2)混合制冷运行模式:环境温度较低(如0~20℃时),冷水机14和水环自然冷却换热装置18均开启运行,电动调节水阀21的旁通开度为100%、所有的二次换热介质16先流经水环自然冷却换热装置18,利用轴流风机19和和自然冷却换热盘管20的强制对流换热对二次换热介质16进行散热预冷,二次换热介质16再进一步流经冷水机14进行补偿制冷达到所需的温度。
3)完全自然冷却运行模式:环境温度较低(如0℃以下时),冷水机14停止运行,水环自然冷却换热装置18开启运行,电动调节水阀21的旁通开度先保持为100%、所有的二次换热介质16流经水环自然冷却换热装置18,并通过调节轴流风机19的转速来调节自然冷却产生的冷量;如果环境温度极低,轴流风机19已处于最低转速下(一般是10~30%)自然冷却产生的冷量仍然偏大(表现在二次换热介质16温度偏低),则保持轴流风机19在最低转速下稳定运行,并通过调节电动调节水阀21的旁通开度来控制自然冷却产生的冷量。
实施例3
如图3,一种液冷装置和辅助散热装置结合的服务器散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ和自然冷却冷水装置Ⅶ。所述液冷服务器机柜Ⅰ包括机柜柜体1和设置机于柜柜体内的多个液冷服务器2,所述液冷服务器2设有液冷服务器芯片3,所述液冷装置Ⅱ包括液冷散热器4、分配器6和集流器5,所述分配器6和集流器5分别通过多根进液连接支管7和出液连接支管17与设置于液冷服务器内的液冷散热器4一一连接,所述液冷散热器4与液冷服务器芯片3接触或设于芯片3附近;所述自然冷却冷水装置Ⅶ包括设在液冷装置上的门式冷水换热器8、安装在冷水换热器8出风侧的风机9、进水连接管12、出水连接管11、水泵13、电动调节水阀21、水环自然冷却换热装置18和冷水机14,所述冷水机14与冷水换热器8通过进水连接管12和出水连接管11分别连接形成环路,所述的水环自然冷却换热装置18包括轴流风机19和自然冷却换热盘管20,所述自然冷却换热盘管20一端与电动调节水阀21相连另一端与出水连接管11连接并联在冷水机14两端。所述冷水换热器8为门式冷水换热器。
所述的液冷装置Ⅱ外置安装在机柜柜体1上,可以采用固定式或活动式安装,优选固定式安装。所述自然冷却冷水装置Ⅶ的门式冷水换热器8安装在液冷装置Ⅱ上。
所述的液冷装置Ⅱ的进液连接支管7,可以采用硬态管或软态管,优选软态管,
所述的自然冷却冷水装置Ⅶ的门式冷水换热器8可以安装在机柜柜体1的前门侧或背门侧,优选安装在背门侧;自然冷却冷水装置Ⅶ的门式冷水换热器8可以轴转打开,门式冷水换热器8的进水连接管12和出水连接管11均采用软态管。
所述的自然冷却冷水装置Ⅶ的电动调节水阀21可以采用二通阀或者三通阀,优选三通阀。电动调节水阀21的安装位置可以在水环自然冷却换热装置18的进口或者出口管路上,优选安装在出口管路上。
所述的液冷装置Ⅱ和液冷服务器2的一次换热介质15,可以采用自来水、纯净水、有机溶液、无机溶液、氟利昂,优选采用纯净水。
所述的自然冷却冷水装置Ⅶ的二次换热介质16为水或防冻溶液。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的液冷换热介质15带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的液冷换热介质15的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的液冷换热介质15从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或自然冷却冷水装置Ⅶ的风机9产生的空气流带走,流经自然冷却冷水装置Ⅶ的门式冷水换热器8后,空气流的热量被15~20℃的二次换热介质16吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。
在自然冷却冷水装置Ⅶ的循环,门式冷水换热器8内部的二次换热介质16吸收热量后温度由12~15℃升高至17~20℃,在水泵13的循环动力作用下流入冷水机14和水环自然冷却冷水装置18,重新冷却为12~17℃后,流回门式冷水换热器8,如此循环。
在自然冷却冷水装置Ⅶ的外循环,根据环境温度的不同,有两种运行模式:
1)机械制冷运行模式:环境温度比较高(如0℃以上时),冷水机14开启,水环自然冷却换热装置18停止运行,电动调节水阀21的旁通开度为0%、二次换热介质16不流经水环自然冷却换热装置18,轴流风机19也处于停止状态,二次换热介质16的所有冷量均由冷水机14提供。
2)自然冷却运行模式:环境温度较低(如0℃以下时),冷水机14停止运行,水环自然冷却换热装置18开启运行,电动调节水阀21的旁通开度先保持为100%、所有的二次换热介质16流经水环自然冷却换热装置18,并通过调节轴流风机19的转速来调节自然冷却产生的冷量;如果环境温度极低,轴流风机19已处于最低转速下(一般是10~30%)自然冷却产生的冷量仍然偏大(表现在二次换热介质16温度偏低),则保持轴流风机19在最低转速下稳定运行,并通过调节电动调节水阀21的旁通开度来控制自然冷却产生的冷量。
实施例4
如图4,一种自然冷却冷水装置和液冷装置结合的服务器散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ和门式热管空调Ⅳ。所述液冷服务器机柜Ⅰ包括机柜柜体1和设置机于柜柜体内的多个液冷服务器2,所述液冷服务器2设有液冷服务器芯片3,所述液冷装置Ⅱ包括液冷散热器4、分配器6和集流器5,所述分配器6和集流器5分别通过多根进液连接支管7和出液连接支管17与设置于液冷服务器内的液冷散热器4一一连接,所述液冷散热器4与液冷服务器芯片3接触或设于芯片3附近;所述门式热管空调Ⅳ包括设在机柜柜体前门侧或背门侧的蒸发器25、安装在蒸发器25出风侧的风机9、连接气管27、连接液管26、水泵13、冷凝器10和冷水机14,所述蒸发器25与冷凝器10通过连接气管27和连接液管26分别连接形成内环路,所述冷凝器10和冷水机14连接形成外环路,所述冷凝器10和冷水机14之间设有水泵。
所述的液冷装置Ⅱ外置安装在机柜柜体1上,采用固定式安装。
所述的液冷装置Ⅱ的进液连接支管7、出液连接支管17和蒸发器25的连接气管27、连接液26管均采用软态管。
所述风机9采用轴流式风机;所述的蒸发器25采用全铝微通道换热器;所述蒸发器25安装在背门侧,可以轴转打开;所述冷凝器10采用板式换热器;所述冷水机14采用板式换热器。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的一次换热介质15带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的一次换热介质15的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的一次换热介质15从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或门式热管空调Ⅳ的风机9产生的空气流带走,流经门式热管空调Ⅳ的蒸发器25后,空气流的热量被15~20℃的二次换热介质16吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。蒸发器25内部的液态的二次换热介质16吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管27流入冷凝器9,热量被冷水机14和水泵13提供的低温冷冻水带走,冷凝为液态工质后,沿连接液管26流回蒸发器25,如此循环。
实施例5
如图5,一种自然冷却冷水装置和液冷装置结合的服务器散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ和风冷自然冷却热管空调Ⅴ。所述液冷服务器机柜Ⅰ包括机柜柜体1和设置机于柜柜体内的多个液冷服务器2,所述液冷服务器2设有液冷服务器芯片3,所述液冷装置Ⅱ包括液冷散热器4、分配器6和集流器5,所述分配器6和集流器5分别通过多根进液连接支管7和出液连接支管17与设置于液冷服务器内的液冷散热器4一一连接,所述液冷散热器4与液冷服务器芯片3接触或设于芯片3附近;所述风冷自然冷却热管空调Ⅴ包括设在机柜柜体1背门侧的蒸发器25、安装在蒸发器8出风侧的风机9、连接气管27、连接液管26、风冷自然冷却换热装置18、电动调节冷媒阀21、水泵13、冷凝器10和冷水机14,所述蒸发器25与冷凝器10通过连接气管27和连接液管26分别连接形成内环路,所述连接气管27上设有风冷自然冷却换热装置18和电动调节冷媒阀21,所述电动调节冷媒阀21安装在风冷自然冷却换热装置18的出口管路上;所述冷凝器10与冷水机14连接形成外环路,所述冷凝器10与冷水机14之间还设有水泵13。
进一步地,所述的水环自然冷却换热装置18包括轴流风机19和自然冷却换热盘管18,所述自然冷却换热盘管18一端设在连接气管27上另一端与电动调节冷媒阀21连接。电动调节冷媒阀21采用二通阀或者三通阀,优选三通阀。
所述的液冷装置Ⅱ的进液连接支管7、出液连接支管17和蒸发器25的连接气管27、连接液26管均采用软态管。所述的液冷装置Ⅱ外置安装在机柜柜体1上,采用固定式安装。所述蒸发器25可以轴转打开。
所述的液冷装置Ⅱ和液冷服务器2的液冷换热介质23,采用纯净水;所述的风冷自然冷却热管空调Ⅴ的内循环换热介质24为R134a氟利昂;所述的外循环换热介质22为水,在最低气温会低于零度的地区,优选乙二醇溶液等防冻溶液。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的液冷换热介质23带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的液冷换热介质23的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的液冷换热介质23从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或风冷自然冷却热管空调Ⅴ的风机9产生的空气流带走,流经风冷自然冷却热管空调Ⅴ的蒸发器25后,空气流的热量被15~20℃的内循环换热介质24吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。
在风冷自然冷却热管空调Ⅴ的内循环,蒸发器25内部的液态的内循环换热介质24吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管27流入冷凝器9,热量被水泵13提供的低温的外循环换热介质22带走,冷凝为液态工质后,沿连接液管26流回蒸发器8,如此循环。
在风冷自然冷却热管空调Ⅴ,根据环境温度的不同,有三种运行模式:
1)完全机械制冷运行模式:环境温度比较高(如20℃以上时),冷水机14开启,风冷自然冷却换热装置18停止运行,电动调节冷媒阀21的旁通开度为0%、内循环换热介质24不流经风冷自然冷却换热装置18,轴流风机19也处于停止状态,内循环换热介质24冷凝所需的冷量,全部由冷凝器10和冷水机14通过二次换热提供。
2)混合制冷运行模式:环境温度较低(如0~20℃时),冷水机14和风冷自然冷却换热装置18均开启运行,电动调节冷媒阀21的旁通开度为100%、所有的内循环换热介质24先流经风冷自然冷却换热装置18,利用轴流风机19和和自然冷却换热盘管20的强制对流换热对内循环换热介质24进行散热预冷(部分冷凝),内循环换热介质24再进一步流经冷凝器10,剩余冷凝热量由冷水机14和水泵13提供的低温外循环换热介质22带走。
3)完全自然冷却运行模式:环境温度较低(如0℃以下时),冷水机14停止运行,风冷自然冷却换热装置18开启运行,电动调节冷媒阀21的旁通开度先保持为100%、所有的内循环换热介质24流经风冷自然冷却换热装置18,并通过调节轴流风机19的转速来调节自然冷却产生的冷量;如果环境温度极低,轴流风机19已处于最低转速下(一般是10~30%)自然冷却产生的冷量仍然偏大(表现在内循环换热介质24温度和压力偏低),则保持轴流风机19在最低转速下稳定运行,并通过调节电动调节冷媒阀21的旁通开度来控制自然冷却产生的冷量。
实施例6:
如图6,一种自然冷却冷水装置和液冷装置结合的服务器散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ和风冷自然冷却热管空调Ⅴ。所述液冷服务器机柜Ⅰ包括机柜柜体1和设置机于柜柜体内的多个液冷服务器2,所述液冷服务器2设有液冷服务器芯片3,所述液冷装置Ⅱ包括液冷散热器4、分配器6和集流器5,所述分配器6和集流器5分别通过多根进液连接支管7和出液连接支管17与设置于液冷服务器内的液冷散热器4一一连接,所述液冷散热器4与液冷服务器芯片3接触或设于芯片3附近;所述风冷自然冷却热管空调Ⅴ包括设在机柜柜体背门侧的蒸发器25、安装在蒸发器25出风侧的风机9、连接气管27、连接液管26、风冷自然冷却换热装置18、电动调节冷媒阀21、水泵13、冷凝器10和冷水机14,所述蒸发器25与冷凝器10通过连接气管27和连接液管26分别连接形成内环路,所述风冷自然冷却换热装置18一端设在连接气管27上另一端设在连接液管26上,所述风冷自然冷却换热装置18出口管路上设有电动调节冷媒阀21;所述冷凝器10与冷水机14连接形成外环路,所述冷凝器10与冷水机14之间设有水泵13。
进一步地,所述的水环自然冷却换热装置18包括轴流风机19和自然冷却换热盘管18,所述自然冷却换热盘管18一端设在连接气管27上另一端与电动调节冷媒阀21连接。电动调节冷媒阀21采用三通阀。
所述的液冷装置Ⅱ的进液连接支管7、出液连接支管17和蒸发器25的连接气管27、连接液26管均采用软态管。所述的液冷装置Ⅱ外置安装在机柜柜体1上,采用固定式安装。所述蒸发器25可以轴转打开。
所述的液冷装置Ⅱ和液冷服务器2的液冷换热介质23,采用纯净水;所述的风冷自然冷却热管空调Ⅴ的内循环换热介质24为R134a氟利昂;所述的外循环换热介质22为水,在最低气温会低于零度的地区,优选乙二醇溶液等防冻溶液。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的液冷换热介质23带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的液冷换热介质23的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的液冷换热介质23从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或风冷自然冷却热管空调Ⅴ的风机9产生的空气流带走,流经风冷自然冷却热管空调Ⅴ的蒸发器25后,空气流的热量被15~20℃的内循环换热介质24吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。
在风冷自然冷却热管空调Ⅴ的内循环,蒸发器25内部的液态的内循环换热介质24吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管27流入冷凝器9,热量被水泵13提供的低温的外循环换热介质22带走,冷凝为液态工质后,沿连接液管26流回蒸发器8,如此循环。
在风冷自然冷却热管空调Ⅴ,根据环境温度的不同,有两种运行模式:
1)机械制冷运行模式:环境温度比较高(如0℃以上时),冷水机14开启,风冷自然冷却换热装置18停止运行,电动调节冷媒阀21的旁通开度为0%、内循环换热介质24不流经风冷自然冷却换热装置18,轴流风机19也处于停止状态,内循环换热介质24冷凝所需的冷量,全部由冷凝器10和冷水机14通过二次换热提供。
2)自然冷却运行模式:环境温度较低(如0℃以下时),冷水机14停止运行,风冷自然冷却换热装置18开启运行,电动调节冷媒阀21的旁通开度先保持为100%、所有的内循环换热介质24流经风冷自然冷却换热装置18,并通过调节轴流风机19的转速来调节自然冷却产生的冷量;如果环境温度极低,轴流风机19已处于最低转速下(一般是10~30%)自然冷却产生的冷量仍然偏大(表现在内循环换热介质24温度和压力偏低),则保持轴流风机19在最低转速下稳定运行,并通过调节电动调节冷媒阀21的旁通开度来控制自然冷却产生的冷量。
实施例7
如图7,一种水环自然冷却热管空调和液冷装置结合的服务器散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ和水环自然冷却热管空调Ⅵ。所述液冷服务器机柜Ⅰ包括机柜柜体1和设置机于柜柜体内的多个液冷服务器2,所述液冷服务器2设有液冷服务器芯片3,所述液冷装置Ⅱ包括液冷散热器4、分配器6和集流器5,所述分配器6和集流器5分别通过多根进液连接支管7和出液连接支管17与设置于液冷服务器内的液冷散热器4一一连接,所述液冷散热器4与液冷服务器芯片3接触或设于芯片3附近;所述水环自然冷却热管空调Ⅵ包括设在机柜柜体1前门侧或背门侧的蒸发器25、安装在蒸发器25出风侧的风机9、连接气管27、连接液管26、进液管28、出液管29、水环自然冷却换热装置30、电动调节冷媒阀21、水泵13、冷凝器10和冷水机14,所述蒸发器25与冷凝器10通过连接气管27和连接液管26分别连接形成内环路;所述冷凝器10与冷水机14通过进液管28和出液管29分别连接形成外环路,所述进液管28上依次串联有水泵13和水环自然冷却换热装置30,所述水环自然冷却换热装置30进口或出口管路上设有电动调节冷媒阀21。
进一步地,所述的水环自然冷却换热装置30包括轴流风机19和自然冷却换热盘管20,所述自然冷却换热盘管20一端设在连接气管27上另一端与电动调节冷媒阀21连接。电动调节冷媒阀21采用三通阀。
所述的液冷装置Ⅱ的进液连接支管7、出液连接支管17和蒸发器25的连接气管27、连接液26管均采用软态管。所述的液冷装置Ⅱ外置安装在机柜柜体1上,采用固定式安装。所述蒸发器25可以轴转打开。
所述的液冷装置Ⅱ和液冷服务器2的液冷换热介质23,采用纯净水;所述的风冷自然冷却热管空调Ⅵ的内循环换热介质24为R134a氟利昂;所述的外循环换热介质22为水,在最低气温会低于零度的地区,优选乙二醇溶液等防冻溶液。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的液冷换热介质23带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的液冷换热介质23的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的液冷换热介质23从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或水环自然冷却热管空调Ⅵ的风机9产生的空气流带走,流经水环自然冷却热管空调Ⅵ的蒸发器25后,空气流的热量被15~20℃的内循环换热介质24吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。
在水环自然冷却热管空调Ⅵ的内循环,蒸发器25内部的液态的内循环换热介质24吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管27流入冷凝器9,热量被水泵13提供的低温的外循环换热介质22带走,冷凝为液态工质后,沿连接液管26流回蒸发器25,如此循环。
在水环自然冷却热管空调Ⅵ的外循环,根据环境温度的不同,有三种运行模式:
1)完全机械制冷运行模式:环境温度比较高(如20℃以上时),冷水机14开启,水环自然冷却换热装置30停止运行,电动调节水阀21的旁通开度为0%、外循环换热介质22不流经水环自然冷却换热装置30,轴流风机19也处于停止状态,外循环换热介质22的所有冷量均由冷水机14提供。
2)混合制冷运行模式:环境温度较低(如0~20℃时),冷水机14和水环自然冷却换热装置30均开启运行,电动调节水阀21的旁通开度为100%、所有的外循环换热介质22先流经水环自然冷却换热装置30,利用轴流风机19和和自然冷却换热盘管20的强制对流换热对外循环换热介质22进行散热预冷,外循环换热介质22再进一步流经冷水机14进行补偿制冷达到所需的温度。
3)完全自然冷却运行模式:环境温度较低(如0℃以下时),冷水机14停止运行,水环自然冷却换热装置30开启运行,电动调节水阀21的旁通开度先保持为100%、所有的外循环换热介质22流经水环自然冷却换热装置18,并通过调节轴流风机19的转速来调节自然冷却产生的冷量;如果环境温度极低,轴流风机19已处于最低转速下(一般是10~30%)自然冷却产生的冷量仍然偏大(表现在外循环换热介质22温度偏低),则保持轴流风机19在最低转速下稳定运行,并通过调节电动调节水阀21的旁通开度来控制自然冷却产生的冷量。
实施例8
如图8,一种水环自然冷却热管空调和液冷装置结合的服务器散热系统,包括液冷服务器机柜Ⅰ,液冷装置Ⅱ和水环自然冷却热管空调Ⅵ。所述液冷服务器机柜Ⅰ包括机柜柜体1和设置机于柜柜体内的多个液冷服务器2,所述液冷服务器2设有液冷服务器芯片3,所述液冷装置Ⅱ包括液冷散热器4、分配器6和集流器5,所述分配器6和集流器5分别通过多根进液连接支管7和出液连接支管17与设置于液冷服务器内的液冷散热器4一一连接,所述液冷散热器4与液冷服务器芯片3接触或设于芯片3附近;所述水环自然冷却热管空调Ⅵ包括设在机柜1柜体背门侧的蒸发器25、安装在蒸发器25出风侧的风机9、连接气管27、连接液管26、进液管28、出液管29、水环自然冷却换热装置30、电动调节冷媒阀21、水泵13、冷凝器10和冷水机14,所述蒸发器25与冷凝器10通过连接气管27和连接液管26分别连接形成内环路,所述冷凝器10与冷水机14通过进液管28和出液管29分别连接形成外环路,所述水环自然冷却换热装置30一端设在进液管28上另一端设在出液管29上,所述水环自然冷却换热装置30的出口管路上设有电动调节冷媒阀21;所述水环自然冷却换热装置30的进口管路上还设有水泵13。
进一步地,所述的水环自然冷却换热装置30包括轴流风机19和自然冷却换热盘管20,所述自然冷却换热盘管20一端设在连接气管27上另一端与电动调节冷媒阀21连接。电动调节冷媒阀21采用三通阀。
所述的液冷装置Ⅱ的进液连接支管7、出液连接支管17和蒸发器25的连接气管27、连接液26管均采用软态管。所述的液冷装置Ⅱ外置安装在机柜柜体1上,采用固定式安装。所述蒸发器25可以轴转打开。
所述的液冷装置Ⅱ和液冷服务器2的液冷换热介质23采用纯净水;所述的风冷自然冷却热管空调Ⅲ的内循环换热介质24为R134a氟利昂;所述的外循环换热介质22为水,在最低气温会低于零度的地区,优选乙二醇溶液等防冻溶液。
本系统运行时,液冷服务器2中的液冷服务器芯片3的发热量占据总发热量约80%,这部分热量由液冷散热器4吸收,并通过流经液冷散热器4的、温度约35~45℃的液冷换热介质23带走,使得液冷服务器芯片3的内部温度保持在60~70℃的正常运行状态。每个液冷服务器2内部的液冷散热器4的液冷换热介质23的流量分配和汇集,均由液冷装置Ⅱ完成:温度约35~45℃的液冷换热介质23从供液总管道流入分配器6后,通过进液连接支管7进入液冷散热器4,吸收液冷服务器芯片3的热量后,变成40~50℃温度状态、通过出液连接支管17进入集流器5、流回集液总管道。
液冷服务器2中的其他元件的发热量占据总发热量约20%,这部分热量通过服务器本身风机或水环自然冷却热管空调Ⅵ的风机9产生的空气流带走,流经水环自然冷却热管空调Ⅵ的蒸发器25后,空气流的热量被15~20℃的内循环换热介质24吸收,使得空气流温度重新冷却到20~25℃左右,重新流入服务器带走服务器内部元件热量,如此循环。
在水环自然冷却热管空调Ⅵ的内循环,蒸发器25内部的液态的内循环换热介质24吸收热量后蒸发为气态,在热管循环动力作用下沿连接气管27流入冷凝器9,热量被水泵13提供的低温的外循环换热介质22带走,冷凝为液态工质后,沿连接液管26流回蒸发器25,如此循环。
在水环自然冷却热管空调Ⅵ的外循环,根据环境温度的不同,有两种运行模式:
1)机械制冷运行模式:环境温度比较高(如0℃以上时),冷水机14开启,水环自然冷却换热装置30停止运行,电动调节水阀21的旁通开度为0%、外循环换热介质22不流经水环自然冷却换热装置30,轴流风机19也处于停止状态,外循环换热介质22的所有冷量均由冷水机14提供。
2)自然冷却运行模式:环境温度较低(如0℃以下时),冷水机14停止运行,水环自然冷却换热装置30开启运行,电动调节水阀21的旁通开度先保持为100%、所有的外循环换热介质22流经水环自然冷却换热装置30,并通过调节轴流风机19的转速来调节自然冷却产生的冷量;如果环境温度极低,轴流风机19已处于最低转速下(一般是10~30%)自然冷却产生的冷量仍然偏大(表现在外循环换热介质22温度偏低),则保持轴流风机19在最低转速下稳定运行,并通过调节电动调节水阀21的旁通开度来控制自然冷却产生的冷量。
实施例9
如图9,一种风冷型列间空调和液冷装置结合的服务器机柜散热系统,包括服务器机柜100,所述服务器机柜100包括机柜柜体和设置机于柜柜体内的多个服务器,所述服务器设有服务器芯片,设有液冷装置000对服务器进行直接的液冷散热,还设有风冷型列间空调008进行辅助散热。
进一步地,所述液冷装置000包括内循环系统和外循环系统,所述内循环系统包括设于服务器内部的液导热管101、板式换热器004、内循环进液管009和内循环出液管001,所述板式换热器004通过内循环进液管009和内循环出液管001与液导热管101连接形成环路,所述内循环进液管009上还设有压补液装置003和第一循环液泵002;所述外循环系统为由冷液塔007、液箱006、第二循环液泵005、板式换热器004依次连接形成的环路。
所述液导热管101为热管部件,一端直接与服务器芯片接触传热,另一端接入内循环系统进行热交换。所述多个液导热管101并联接入内循环系统。所述的服务器液导热管内部充注制冷剂,常温常压下为气液两相状态,一端直接与服务器芯片接触传热,另一端与内循环系统液体载冷剂进行热交换,由于服务器内安装了各种电子元器件,为防止循环系统液体泄漏流到电子元器件,服务器机柜100内设置防液隔板110,对各个服务器液导热管101的两端进行防护隔离。运行时,通过内循环环路中的载冷剂循环流动,进行自然对流换热,将服务器芯片产生的热量不断散放到环境中。服务器芯片和外部液冷装置之间采用热管换热部件进行间接冷却,可避免液体直接进入服务器内部,降低因液体泄漏造成服务器损坏的几率。
所述第一或第二循环液泵002、005为变频液泵。所述第一或第二循环液泵002、005提供动力驱动管路中的流体流动。
运行时,所述内循环系统将服务器芯片传递给液导热管101的热量带走,所述外循环系统吸收的热量由外循环系统带走。
如图10所述,所述风冷型列间空调008为2个,并与服务器机柜100并列安装。所述多个服务器111并排安装于服务器机柜100,2个服务器机柜100相对安装形成中间的冷通道,相应地,2个服务器机柜100不相对的那侧为热通道,所述风冷型列间空调008从冷通道送风再由热通道回风。所述的列间空调008冷却空气,再由低温空气带走服务器111的剩余热量;所述的风冷列间空调008的加热、加湿功能可以调节机房的湿度。
实施例10
如图9,一种风冷型列间空调和液冷装置结合的服务器机柜散热系统,包括服务器机柜100,所述服务器机柜100包括机柜柜体和设置机于柜柜体内的多个服务器,所述服务器设有服务器芯片,设有液冷装置000对服务器进行直接的液冷散热,还设有风冷型列间空调008进行辅助散热。
进一步地,所述液冷装置000包括内循环系统和外循环系统,所述内循环系统包括设于服务器内部的液导热管101、板式换热器004、内循环进液管009和内循环出液管001,所述板式换热器004通过内循环进液管009和内循环出液管001与液导热管101连接形成环路,所述内循环进液管009上还设有压补液装置003和第一循环液泵002;所述外循环系统为由冷液塔007、液箱006、第二循环液泵005、板式换热器004依次连接形成的环路。
所述液导热管101为热管部件,一端直接与服务器芯片接触传热,另一端接入内循环系统进行热交换。所述多个液导热管101并联接入内循环系统。所述的服务器液导热管内部充注制冷剂,常温常压下为气体,一端直接与服务器芯片接触传热,另一端与内循环系统液体载冷剂进行热交换,由于服务器内安装了各种电子元器件,为防止循环系统液体泄漏流到电子元器件,服务器机柜100内设置防液隔板110,对各个服务器液导热管101的两端进行防护隔离。运行时,通过内循环环路中的载冷剂循环流动,进行自然对流换热,将服务器芯片产生的热量不断散放到环境中。服务器芯片和外部液冷装置之间采用热管换热部件进行间接冷却,可避免液体直接进入服务器内部,降低因液体泄漏造成服务器损坏的几率。
所述第一或第二循环液泵002、005为变频水泵。所述第一或第二循环液泵002、005提供动力驱动管路中的流体流动。
运行时,所述内循环系统将服务器芯片传递给液导热管101的热量带走,所述外循环系统吸收的热量由外循环系统带走。
如图11所述,所述风冷型列间空调008为2个,并与服务器机柜100并列安装。所述多个服务器111并排安装于服务器机柜100,2个服务器机柜100相对安装形成中间的热通道,相应地,2个服务器机柜100不相对的那侧为冷通道,所述风冷型列间空调008从冷通道送风再由热通道回风。所述的列间空调008冷却空气,再由低温空气带走服务器111的剩余热量;所述的风冷列间空调008的加热、加湿功能可以调节机房的湿度。
Claims (1)
1.一种液冷装置和辅助散热装置结合的服务器散热系统,包括液冷服务器机柜,所述液冷服务器机柜包括机柜柜体和设置于机柜柜体内的多个液冷服务器,其特征在于,设有液冷装置对液冷服务器进行直接的液冷散热,还设有辅助散热装置对液冷服务器进行辅助散热;所述液冷装置包括液冷散热器、分配器、集流器和一次换热介质,所述液冷散热器用于对服务器芯片进行散热,所述分配器通过多根进液连接支管与液冷散热器连接,液冷散热器再通过多根出液连接支管与所述集流器连接,所述一次换热介质通过分配器和进液连接支管进入液冷散热器,再通过出液连接支管流出液冷散热器并由集流器汇集;所述液冷装置包括内循环系统和外循环系统,所述内循环系统包括设于服务器内部的液导热管、中间换热器、内循环进液管和内循环出液管,所述中间换热器通过内循环进液管和内循环出液管与液导热管连接形成环路;所述外循环系统为由冷液塔、液箱、第二循环液泵、中间换热器依次连接形成的环路,内、外循环系统通过中间换热器实现热量的传递;所述液冷散热器设于服务器芯片附近,或直接与服务器芯片接触;所述辅助散热装置为热管空调,所述热管空调为水环自然冷却热管空调,所述热管空调包括蒸发器、水环自然冷却换热装置、电动调节冷媒阀、冷凝器、冷水机、连接管路及内、外循环换热介质,所述蒸发器与冷凝器通过连接管路连接形成内环路,并通过内环路的连接管路装载内循环换热介质,所述冷水机与冷凝器通过连接管路连接形成外环路,并通过外环路的连接管路装载外循环换热介质,所述水环自然冷却热管空调还包括风机和水泵,所述风机设于蒸发器出风侧,所述水泵设于冷凝器与冷水机之间,所述的水环自然冷却换热装置包括轴流风机和自然冷却换热盘管,所述自然冷却换热盘管串联或并联在外环路的连接管路上,所述电动调节冷媒阀设于水环自然冷却换热装置进口或出口管路上。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510144650.8A CN104754924B (zh) | 2015-03-31 | 2015-03-31 | 液冷装置和辅助散热装置结合的服务器散热系统 |
US15/547,350 US10356949B2 (en) | 2015-03-31 | 2015-05-05 | Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device |
PCT/CN2015/078306 WO2016155081A1 (zh) | 2015-03-31 | 2015-05-05 | 液冷装置和辅助散热装置结合的服务器机柜散热系统 |
EP15887049.3A EP3280233B1 (en) | 2015-03-31 | 2015-05-05 | Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510144650.8A CN104754924B (zh) | 2015-03-31 | 2015-03-31 | 液冷装置和辅助散热装置结合的服务器散热系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104754924A CN104754924A (zh) | 2015-07-01 |
CN104754924B true CN104754924B (zh) | 2016-02-03 |
Family
ID=53593825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510144650.8A Active CN104754924B (zh) | 2015-03-31 | 2015-03-31 | 液冷装置和辅助散热装置结合的服务器散热系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10356949B2 (zh) |
EP (1) | EP3280233B1 (zh) |
CN (1) | CN104754924B (zh) |
WO (1) | WO2016155081A1 (zh) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10448543B2 (en) * | 2015-05-04 | 2019-10-15 | Google Llc | Cooling electronic devices in a data center |
CN105431010B (zh) * | 2015-12-04 | 2018-01-05 | 西安工程大学 | 数据中心用喷泉/深井水散热系统 |
CN105555106B (zh) * | 2016-02-29 | 2018-05-22 | 北京百度网讯科技有限公司 | 用于机柜的冷却装置和机柜 |
CN105682422A (zh) * | 2016-02-29 | 2016-06-15 | 北京百度网讯科技有限公司 | 用于数据中心机柜的冷却装置、机柜和冷却系统 |
JP6244066B1 (ja) * | 2016-04-28 | 2017-12-06 | 株式会社ExaScaler | 冷却システム |
CN106507647B (zh) * | 2016-12-23 | 2023-07-18 | 广东申菱环境系统股份有限公司 | 一种太阳能吸收式制冷与液冷结合的散热系统 |
CN106642799A (zh) * | 2016-12-26 | 2017-05-10 | 广东申菱环境系统股份有限公司 | 一种数据中心冷热联供系统及其控制方法 |
CN106659081B (zh) * | 2016-12-27 | 2023-07-18 | 广东申菱环境系统股份有限公司 | 一种液冷服务器散热控制系统及其控制方法 |
CN106604616A (zh) * | 2017-01-04 | 2017-04-26 | 北京百度网讯科技有限公司 | 整机柜服务器系统的散热系统及方法 |
CN106659046A (zh) * | 2017-01-09 | 2017-05-10 | 北京百度网讯科技有限公司 | 服务器机柜 |
CN106714520B (zh) * | 2017-01-23 | 2023-06-16 | 江苏沙家浜医药化工装备股份有限公司 | 具有强制冷却功能的电气柜 |
CN106686953A (zh) * | 2017-02-10 | 2017-05-17 | 北京纳源丰科技发展有限公司 | 一种机柜服务器用液冷热管散热系统及其控制方法 |
CN106852086B (zh) * | 2017-03-24 | 2023-07-18 | 广东申菱环境系统股份有限公司 | 双级串联式液气双通道自然冷却数据中心散热系统 |
CN106895526A (zh) * | 2017-03-24 | 2017-06-27 | 广东申菱环境系统股份有限公司 | 一种带热回收/全自然冷却机房散热系统及其控制方法 |
CN106937517A (zh) * | 2017-04-17 | 2017-07-07 | 中国航天空气动力技术研究院 | 一种用于机架服务器芯片的散热装置 |
CN107249289A (zh) * | 2017-08-11 | 2017-10-13 | 郑州云海信息技术有限公司 | 一种服务器机柜的冷却系统 |
US10306809B1 (en) * | 2017-12-13 | 2019-05-28 | Oath Inc. | Server rack integrated with cold air delivery |
CN108323096A (zh) * | 2017-12-30 | 2018-07-24 | 广东申菱环境系统股份有限公司 | 一种水冷背板散热装置及其控制方法 |
CN108224574A (zh) * | 2018-02-27 | 2018-06-29 | 北京纳源丰科技发展有限公司 | 一种带蒸发式冷凝的热管排热系统 |
CN108668508A (zh) * | 2018-06-08 | 2018-10-16 | 浙江大学山东工业技术研究院 | 机柜的冷却装置及机柜 |
US10946358B2 (en) * | 2018-08-16 | 2021-03-16 | Beijing Aerospace Propulsion Institute | Skid-mounted depressurizing system |
JP2020029979A (ja) * | 2018-08-22 | 2020-02-27 | 日比谷総合設備株式会社 | 冷水製造装置及び空調システム |
JP2020029980A (ja) * | 2018-08-22 | 2020-02-27 | 日比谷総合設備株式会社 | 空調システム及び空調システム用冷水製造装置 |
US11202394B1 (en) * | 2018-10-26 | 2021-12-14 | United Sendees Automobile Association (USAA) | Data center cooling system |
US11737238B1 (en) * | 2018-10-26 | 2023-08-22 | United Services Automobile Association (Usaa) | Data center cooling system |
US10893633B2 (en) * | 2018-11-13 | 2021-01-12 | Modine Manufacturing Company | Method of cooling an electronics cabinet |
CN109682555B (zh) * | 2018-12-26 | 2021-03-09 | 苏州浪潮智能科技有限公司 | 一种bmc检测液冷服务器漏液的系统和方法 |
CN110062560B (zh) * | 2019-03-14 | 2022-02-25 | 华为技术有限公司 | 散热方法、散热装置、和机柜 |
CN110662122A (zh) * | 2019-04-26 | 2020-01-07 | 何佳俊 | 一种网络交换机多层放置架 |
EP3758130A1 (de) * | 2019-06-25 | 2020-12-30 | INVENOX GmbH | Aufnahmevorrichtung zur aufnahme und kühlung von einschubmodulen |
US10912229B1 (en) * | 2019-08-15 | 2021-02-02 | Baidu Usa Llc | Cooling system for high density racks with multi-function heat exchangers |
CA3148336A1 (en) * | 2019-08-19 | 2021-02-25 | Jason Todd ROTH | Data center cooling system and related methods |
CN112414186A (zh) * | 2019-08-23 | 2021-02-26 | 北京百度网讯科技有限公司 | 冷却换热系统 |
CN110769659B (zh) * | 2019-11-11 | 2020-08-11 | 安徽龙运智能科技有限公司 | 一种可防止电路过热的保护装置 |
CN113316348B (zh) * | 2020-02-26 | 2022-10-04 | 中国电信股份有限公司 | 冷却液应急分配设备 |
US11246241B1 (en) * | 2020-03-04 | 2022-02-08 | Amazon Technologies, Inc. | Movable media air handling unit |
CN111585287B (zh) * | 2020-04-17 | 2023-02-17 | 新风光电子科技股份有限公司 | 一种基于热管的高压动态无功补偿装置的散热系统 |
CN113811138B (zh) * | 2020-06-15 | 2023-04-28 | 中国移动通信集团设计院有限公司 | 柜门式热管空调系统以及机柜系统 |
CN112196836B (zh) * | 2020-10-14 | 2022-06-21 | 重庆市合川排水有限公司 | 一种离心式鼓风机自动降温系统 |
CN113015403A (zh) * | 2021-02-02 | 2021-06-22 | 乔彦勋 | 一种大数据机柜群采用的自然通风冷却楼结构 |
CN113133277B (zh) * | 2021-03-08 | 2022-08-12 | 烽火通信科技股份有限公司 | 一种集装箱数据中心的温度控制方法和调节系统 |
CN113038805A (zh) * | 2021-03-26 | 2021-06-25 | 北京汇钧科技有限公司 | 液冷柜、服务器冷却系统和数据中心 |
CN113163689B (zh) * | 2021-04-21 | 2022-07-12 | 西安交通大学 | 一种低功耗自然蒸发冷却服务器机柜 |
CN113316358B (zh) * | 2021-05-10 | 2023-03-31 | 中国船舶重工集团公司第七二三研究所 | 一种高集成度大换热量的双温液冷机柜 |
CN113382599B (zh) * | 2021-05-28 | 2022-07-12 | 西安交通大学 | 一种自然液膜蒸发冷却服务器机柜 |
CN113490392A (zh) * | 2021-06-18 | 2021-10-08 | 杭州华宏通信设备有限公司 | 一种冷却节能的智能化dc舱 |
CN113692188B (zh) * | 2021-08-16 | 2023-03-24 | 苏州浪潮智能科技有限公司 | 一种机房服务器机柜降温装置和服务器 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2512023Y (zh) * | 2001-10-21 | 2002-09-18 | 李海波 | 计算机液体循环式冷却散热装置 |
CN2657201Y (zh) * | 2003-09-13 | 2004-11-17 | 鸿富锦精密工业(深圳)有限公司 | 水冷式散热装置 |
CA2474415A1 (en) * | 2004-07-15 | 2006-01-15 | Gerald Hayes | Auxillary cooler for an engine located in a building |
US7450385B1 (en) * | 2007-06-15 | 2008-11-11 | International Business Machines Corporation | Liquid-based cooling apparatus for an electronics rack |
US20090044929A1 (en) * | 2007-08-15 | 2009-02-19 | Xigmatek Co., Ltd | Liquid cooling module |
TW200922448A (en) * | 2007-11-06 | 2009-05-16 | Yen Sun Technology Corp | Liquid-cooling auxiliary heat dissipation device |
US7944694B2 (en) * | 2008-10-23 | 2011-05-17 | International Business Machines Corporation | Liquid cooling apparatus and method for cooling blades of an electronic system chassis |
US7983040B2 (en) * | 2008-10-23 | 2011-07-19 | International Business Machines Corporation | Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem |
US7961475B2 (en) * | 2008-10-23 | 2011-06-14 | International Business Machines Corporation | Apparatus and method for facilitating immersion-cooling of an electronic subsystem |
US8259449B2 (en) * | 2008-11-21 | 2012-09-04 | Vette Corp. | Sidecar in-row cooling apparatus and method for equipment within an enclosure |
US9010141B2 (en) * | 2010-04-19 | 2015-04-21 | Chilldyne, Inc. | Computer cooling system and method of use |
US9038406B2 (en) * | 2010-05-26 | 2015-05-26 | International Business Machines Corporation | Dehumidifying cooling apparatus and method for an electronics rack |
CN102378551A (zh) * | 2010-08-24 | 2012-03-14 | 鸿富锦精密工业(深圳)有限公司 | 服务器机柜及其液冷散热系统 |
US8493738B2 (en) * | 2011-05-06 | 2013-07-23 | International Business Machines Corporation | Cooled electronic system with thermal spreaders coupling electronics cards to cold rails |
CN202153041U (zh) * | 2011-07-15 | 2012-02-29 | 孙晨啸 | 机房节能系统 |
CN102364406A (zh) * | 2011-09-19 | 2012-02-29 | 浪潮电子信息产业股份有限公司 | 一种机柜动态制冷散热控制方法 |
CN202585391U (zh) * | 2012-03-28 | 2012-12-05 | 深圳市研派科技有限公司 | 一种液冷散热系统 |
US8925333B2 (en) * | 2012-09-13 | 2015-01-06 | International Business Machines Corporation | Thermoelectric-enhanced air and liquid cooling of an electronic system |
IN2015DN03088A (zh) * | 2012-09-25 | 2015-10-02 | Liquidcool Solutions Inc | |
US9042098B2 (en) * | 2012-11-12 | 2015-05-26 | International Business Machines Corporation | Air-cooling and vapor-condensing door assembly |
US9313930B2 (en) * | 2013-01-21 | 2016-04-12 | International Business Machines Corporation | Multi-level redundant cooling system for continuous cooling of an electronic system(s) |
CN203323279U (zh) * | 2013-06-14 | 2013-12-04 | 北京创和世纪通讯技术股份有限公司 | 地板式列间微循环制冷末端及系统 |
US9332674B2 (en) * | 2013-10-21 | 2016-05-03 | International Business Machines Corporation | Field-replaceable bank of immersion-cooled electronic components |
US9357675B2 (en) * | 2013-10-21 | 2016-05-31 | International Business Machines Corporation | Pump-enhanced, immersion-cooling of electronic component(s) |
CN104049701A (zh) * | 2014-05-30 | 2014-09-17 | 北京空间飞行器总体设计部 | 水冷背板式换热器及其性能测试系统 |
CN104320953B (zh) * | 2014-09-19 | 2017-02-22 | 中国移动通信集团广东有限公司 | 一种二次水环路服务器机柜散热系统 |
CN204425887U (zh) * | 2015-03-31 | 2015-06-24 | 广东申菱空调设备有限公司 | 液冷装置和辅助散热装置结合的服务器散热系统 |
US9886042B2 (en) * | 2015-04-27 | 2018-02-06 | International Business Machines Corporation | Localized computer system humidity control |
US9668382B2 (en) * | 2015-08-11 | 2017-05-30 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Coolant distribution unit for a multi-node chassis |
US9622379B1 (en) * | 2015-10-29 | 2017-04-11 | International Business Machines Corporation | Drawer-level immersion-cooling with hinged, liquid-cooled heat sink |
CN105263301B (zh) * | 2015-11-12 | 2017-12-19 | 深圳市研派科技有限公司 | 一种液冷散热系统及其液体散热排 |
US9968010B2 (en) * | 2015-12-21 | 2018-05-08 | Dell Products, L.P. | Information handling system having flexible chassis block radiators |
US9839164B2 (en) * | 2015-12-21 | 2017-12-05 | Dell Products, L.P. | Rack information handling system having modular liquid distribution (MLD) conduits |
-
2015
- 2015-03-31 CN CN201510144650.8A patent/CN104754924B/zh active Active
- 2015-05-05 US US15/547,350 patent/US10356949B2/en active Active
- 2015-05-05 WO PCT/CN2015/078306 patent/WO2016155081A1/zh active Application Filing
- 2015-05-05 EP EP15887049.3A patent/EP3280233B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2016155081A1 (zh) | 2016-10-06 |
CN104754924A (zh) | 2015-07-01 |
US20180042140A1 (en) | 2018-02-08 |
US10356949B2 (en) | 2019-07-16 |
EP3280233B1 (en) | 2020-12-02 |
EP3280233A4 (en) | 2018-12-12 |
EP3280233A1 (en) | 2018-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104754924B (zh) | 液冷装置和辅助散热装置结合的服务器散热系统 | |
CN104699207A (zh) | 风冷自然冷却热管空调和液冷装置结合的服务器散热系统 | |
CN104703449B (zh) | 门式热管空调和液冷装置结合的服务器机柜散热系统 | |
CN104703447A (zh) | 自然冷却冷水装置和液冷装置结合的服务器散热系统 | |
CN101315912B (zh) | 一种用于大功率电力半导体器件的复合式冷却方法及装置 | |
CN104699208A (zh) | 水环自然冷却热管空调和液冷装置结合的服务器散热系统 | |
CN107182190B (zh) | 一种专用于对服务器进行散热的系统 | |
CN104244681B (zh) | 一种热管外循环式二次冷媒环路服务器机柜散热系统 | |
CN204650407U (zh) | 风冷自然冷却热管空调和液冷装置结合的服务器散热系统 | |
CN204466136U (zh) | 门式热管空调和液冷装置结合的服务器机柜散热系统 | |
CN107182191A (zh) | 一种能够同时实现对cpu芯片和服务器进行散热的系统 | |
CN110351986B (zh) | 具有复合冷源的分区内冷型机柜散热系统 | |
CN204425887U (zh) | 液冷装置和辅助散热装置结合的服务器散热系统 | |
CN104703452A (zh) | 液冷和压缩机空冷系统相结合的双效型服务器散热装置 | |
CN206909031U (zh) | 一种专用于对服务器进行散热的系统 | |
CN206895121U (zh) | 一种能够同时实现对cpu芯片和服务器进行散热的系统 | |
CN204425886U (zh) | 门式冷水换热装置和液冷装置结合的服务器机柜散热系统 | |
CN211429864U (zh) | 一种单机柜数据中心液冷结构 | |
CN105916361B (zh) | 一种适用于通信机柜的低耗淋水式热管散热成套设备 | |
CN204631750U (zh) | 水环自然冷却热管空调和液冷装置结合的服务器散热系统 | |
CN104697247A (zh) | 一种壳管式多功能换热器 | |
CN204425885U (zh) | 列间空调和液冷装置结合的服务器机柜散热系统 | |
CN104252187B (zh) | 一种二次水环路服务器机柜散热系统的控制方法 | |
CN2650207Y (zh) | 用于计算机芯片散热的微型制冷装置 | |
CN201213130Y (zh) | 一种用于大功率晶闸管的热管/风冷复合式散热系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 528313 Shunde City, Foshan province Chencun town machinery and equipment Park, No. ten, No. Road, No. 8 Applicant after: GUANGDONG SHENLING AIR-CONDITIONING EQUIPMENT CO., LTD. Address before: 528313 Shunde City, Foshan province Chencun town machinery and equipment Park, No. ten, No. Road, No. 8 Applicant before: Guangdong Shenling Air Conditioning Equipment Co., Ltd. |
|
COR | Change of bibliographic data | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |