WO2023043224A1 - 콘크리트 조기강도 발현용 코어-쉘 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법 - Google Patents

콘크리트 조기강도 발현용 코어-쉘 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법 Download PDF

Info

Publication number
WO2023043224A1
WO2023043224A1 PCT/KR2022/013788 KR2022013788W WO2023043224A1 WO 2023043224 A1 WO2023043224 A1 WO 2023043224A1 KR 2022013788 W KR2022013788 W KR 2022013788W WO 2023043224 A1 WO2023043224 A1 WO 2023043224A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
core
concrete
shell nanoparticles
oxide
Prior art date
Application number
PCT/KR2022/013788
Other languages
English (en)
French (fr)
Inventor
김정선
김수일
서보찬
송광훈
Original Assignee
주식회사 실크로드시앤티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 실크로드시앤티 filed Critical 주식회사 실크로드시앤티
Publication of WO2023043224A1 publication Critical patent/WO2023043224A1/ko
Priority to CONC2024/0002917A priority Critical patent/CO2024002917A2/es

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0086Seeding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0086Seeding materials
    • C04B22/00863Calcium silicate hydrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00008Obtaining or using nanotechnology related materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/05Materials having an early high strength, e.g. allowing fast demoulding or formless casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to core-shell nanoparticles and a method for producing the same, and more particularly, to a co-strength agent capable of adjusting the size of the core-shell nanoparticles according to the size of colloidal metal oxide particles and promoting the early development of strength in concrete. It relates to core-shell nanoparticles for developing early strength of concrete that can be used.
  • Admixture is a material that is added in addition to cement, aggregate, and water, which are the basic materials of concrete manufacturing, to give special performance to concrete or to improve its properties. it means.
  • the development of excellent admixtures is recognized as one of the most important things in the development of concrete materials because the physical properties of concrete change greatly depending on the admixtures used.
  • the mainstream of concrete admixtures are AE water reducing agents, high performance water reducing agents, and high performance AE water reducing agents.
  • Synthetic surfactants, ligninsulfonic acid, naphthalene, melamine, and polycarboxylic acid admixtures are used as main components. Even ultra-short-strength performance is not guaranteed.
  • precast concrete which is produced by pouring concrete into a mold.
  • the strength of concrete is rapidly developed by steam curing using steam, which consumes a large amount of energy. Since precast is to produce molded concrete of a certain shape, the rotation rate of the mold used is one of the important parts. Therefore, the development of early strength of concrete is an important factor in order to use less energy and increase the rotation rate of the mold.
  • Korean Patent Registration No. 10-1963579 discloses an early-strength concrete composition applicable to areas where early-strength development is required.
  • the present invention has been made to solve the problems of the prior art, to provide a core-shell nanoparticle capable of promoting early strength development of hydraulic materials, particularly concrete, and a composition for forming concrete containing the same. There is a purpose.
  • an object of the present invention is to provide a method for preparing core-shell nanoparticles in which the size of the core-shell nanoparticles can be adjusted according to the size of the colloidal metal oxide particle.
  • the metal oxide is one or more metals selected from the group consisting of metalloids, transition metals, post-transition metals, and lanthanide metals.
  • the metal oxide is silica (SiO 2 ), titanium dioxide (TiO 2 ), cerium oxide (CeO 2 ), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), manganese oxide (MnO) 2 ), iron oxide (Fe 2 O 3 ), vanadium oxide (V 2 O 5 ), tin oxide (SnO 2 ), and tungsten oxide (WO 3 ).
  • the calcium-containing inorganic compound is calcium silicate, calcium titanate, calcium cerate, calcium zincate, calcium aluminate, calcium zirco Calcium zirconate, calcium permanganate, calcium ferrite, calcium vanadate, calcium stannate, calcium tungstate and their hydrates It may include one or more selected from the group consisting of.
  • the shell may further include a polycarboxylate ether-based compound.
  • Another aspect of the present invention is,
  • aggregate aggregate; binder; admixture; and water; and the admixture is provided with a composition for forming concrete comprising core-shell nanoparticles for developing the early strength of the concrete.
  • Another aspect of the present invention is,
  • Preparation of core-shell nanoparticles for early strength development of concrete including preparing core-shell nanoparticles by stirring a first solution containing a water-soluble calcium compound and a second solution containing a water-dispersible colloidal metal oxide.
  • a method is provided.
  • the ratio (d:r) of the particle size (r) of the core-shell nanoparticles to the particle size (d) of the colloidal metal oxide may be 1:1.005 to 1:30.
  • the water-soluble calcium compound includes calcium nitrate, calcium chloride, calcium formate, calcium acetate, calcium bicarbonate, calcium bromide, Calcium carbonate, Calcium citrate, Calcium chlorate, Calcium fluoride, Calcium gluconate, Calcium hydroxide, Calcium oxide ( Calcium oxide, Calcium hypochlorite, Calcium iodide, Calcium lactate, Calcium nitrite, Calcium oxalate, Calcium phosphate ), Calcium propionate, Calcium silicate, Calcium stearate, Calcium sulfate, Calcium sulfate hemihydrate, Calcium sulfate dihydrate dihydrate), calcium sulfide, calcium tartrate, calcium aluminate, tricalcium silicate, dicalcium silicate and their hydrates It may include one or more selected species.
  • the first solution and the second solution may each independently further include at least one selected from the group consisting of a dispersant, an alkali metal hydroxide, and a combination thereof.
  • the dispersing agent may include a polycarboxylate ether-based compound.
  • the alkali metal hydroxide may include at least one selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), and lithium hydroxide (LiOH).
  • the first solution may further include the dispersing agent, and may include 50 to 150 parts by weight of the dispersing agent based on 100 parts by weight of the water-soluble calcium compound.
  • the second solution may further include the alkali metal hydroxide, and may include 100 to 200 parts by weight of the alkali metal hydroxide based on 100 parts by weight of the water-dispersible colloidal metal oxide.
  • drying the core-shell nanoparticles may be further included.
  • the core-shell nanoparticles of the present invention can be used as an early strength development accelerator because they can accelerate the early strength development of hydraulic materials, especially concrete, and have economical effects because they can shorten the construction period and reduce construction costs.
  • the method for preparing core-shell nanoparticles of the present invention has an effect of controlling the size of core-shell nanoparticles according to the size of colloidal metal oxide particles.
  • FIG. 1 is a flow chart showing a method for producing core-shell nanoparticles for developing early strength of concrete according to the present invention.
  • the first aspect of the present application is,
  • the core-shell nanoparticle may include a core containing a metal oxide.
  • the metal oxide may include one or more metals selected from the group consisting of metalloids, transition metals, post-transition metals, and lanthanide metals.
  • the metal oxide is silica (SiO 2 ), titanium dioxide (TiO 2 ), cerium oxide (CeO 2 ), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), zirconium oxide ( ZrO 2 ), manganese oxide (MnO 2 ), iron oxide (Fe 2 O 3 ), vanadium oxide (V 2 O 5 ), tin oxide (SnO 2 ), and tungsten oxide (WO 3 ).
  • SiO 2 silica
  • TiO 2 titanium dioxide
  • CeO 2 cerium oxide
  • zinc oxide ZnO
  • aluminum oxide Al 2 O 3
  • zirconium oxide ZrO 2
  • manganese oxide MnO 2
  • iron oxide Fe 2 O 3
  • vanadium oxide V 2 O 5
  • tin oxide SnO 2
  • tungsten oxide WO 3
  • the metal oxide may preferably include silica (SiO 2 ).
  • the core-shell nanoparticles for developing early strength of concrete may include a shell located on the surface of the core and containing an inorganic compound containing calcium.
  • the inorganic compound containing calcium is calcium silicate, calcium titanate, calcium cerate, calcium zincate, calcium aluminate Calcium aluminate, Calcium zirconate, Calcium permanganate, Calcium ferrite, Calcium vanadate, Calcium stannate, Calcium tungstate Calcium tungstate) and at least one selected from the group consisting of hydrates thereof.
  • the inorganic compound containing calcium may preferably include at least one selected from the group consisting of calcium silicate and calcium silicate hydrate.
  • the hydration process of cement is that the cement compound reacts with water to form a hydrate, solidifies as the fluidity is lost, and as time passes, the hydration reaction proceeds and hardens to increase the strength of the structure, so hydration and hardening ( intensity) form a close relationship.
  • C 3 S tricalcium silicate
  • 2CaOSiO 2 dicalcium silicate
  • C 2 S calcium hydroxide
  • CSH Calcium Silicate Hydrate
  • the core comprising silica (SiO 2 ) according to the present invention; And a shell containing CSH;
  • the initial hydration process of cement which was the conventional rate-determining step, can be omitted. Therefore, since the curing time of concrete can be drastically reduced, the construction period at the construction site can be shortened by 2/3 compared to the previous one through the realization of early strength that could not be expressed in existing concrete through the addition of this and the development of application technology for this. It has the advantage of increasing efficiency and dramatically saving energy.
  • the shell of the core-shell nanoparticles for developing early strength of concrete may further include a polycarboxylate ether-based compound.
  • the second aspect of the present application is,
  • the composition for forming concrete may include an aggregate.
  • Aggregate is a mineral material for construction that is a base of the composition for forming concrete and can be aggregated by a binder to form a single lump.
  • the aggregate included in the composition for forming concrete may include fine aggregate and coarse aggregate.
  • the fine aggregate means an aggregate of a particle size that passes 100% through a standard 5 mm sieve.
  • the coarse aggregate means an aggregate of a particle size remaining 100% in a standard 5 mm sieve.
  • the fine aggregate may include crushed sand, natural sand, washed sand, recycled aggregate having a particle size of 0.01 to 5 mm, or any combination thereof.
  • the fine aggregate may preferably be crushed sand, but is not limited thereto.
  • the coarse aggregate may include crushed stone, crushed slag, natural gravel, crushed gravel, recycled aggregate having a particle size of 5 to 25 mm, or any combination thereof.
  • the coarse aggregate may be crushed gravel, but is not limited thereto.
  • the content of the aggregate may be 60 to 90 parts by weight based on 100 parts by weight of the total content of the composition for forming concrete.
  • the content of the aggregate is less than 60 parts by weight based on 100 parts by weight of the total content of the composition for forming concrete, when preparing concrete from the composition for forming concrete, the compressive strength of concrete increases, but at the same time, the unit cost of concrete manufacturing increases, and the aggregate If the content exceeds 90 parts by weight based on 100 parts by weight of the total content of the composition for forming concrete, separation between the aggregate and the binder may occur and the quality of the concrete may deteriorate.
  • the fine aggregate ratio (S / a) of the composition for forming concrete may be 35 to 65%.
  • the fine aggregate ratio (S/a) means the percentage of the absolute volume of the fine aggregate (S) with respect to the total aggregate (fine aggregate + coarse aggregate, a).
  • the fine aggregate ratio (S / a) of the concrete forming composition is less than 35%, the unit quantity and unit cement quantity decrease, resulting in poor workability and a problem that may be separated from other materials by becoming rough concrete.
  • the fine aggregate ratio (S / a) of the concrete forming composition exceeds 65%, there is a problem in that drying shrinkage, settlement cracks, and plastic shrinkage cracks increase.
  • the composition for forming concrete may include a binder.
  • the binder serves to impart durability and strength to concrete by improving and maintaining adhesion between aggregates (eg, fine aggregate or coarse aggregate) included in the composition for forming large concrete.
  • aggregates eg, fine aggregate or coarse aggregate
  • the binder is ordinary Portland cement, early strong Portland cement, lime cement, slag cement, blast furnace slag cement, Portland pozzolan cement, fly ash, bottom ash, gypsum cement, lime cement, silica fume, low heat generation cement or any combination thereof.
  • the binder may include ordinary Portland cement, slag cement, blast furnace slag cement, or any combination thereof, but is not limited thereto.
  • the content of the binder may be 1 to 50 parts by weight based on 100 parts by weight of the total content of the composition for forming concrete.
  • the content of the binder is within the above range with respect to 100 parts by weight of the total content of the composition for forming concrete, it is possible to reduce the manufacturing cost of concrete and increase watertightness.
  • the water-binder ratio (W / B) of the composition for forming concrete may be 20 to 60%. According to one embodiment of the present application, the water-binder ratio (W / B) of the composition for forming concrete may be 40 to 50%.
  • the water binder ratio (W / B) means a percentage of the amount of water (W) to the binder (B).
  • the composition for forming concrete may include an admixture.
  • the admixture may include core-shell nanoparticles for developing concrete early strength.
  • the core-shell nanoparticles include a core containing a metal oxide; and a shell located on the surface of the core and containing an inorganic compound containing calcium.
  • the metal oxide may include one or more metals selected from the group consisting of metalloids, transition metals, post-transition metals, and lanthanide metals.
  • the metal oxide is silica (SiO 2 ), titanium dioxide (TiO 2 ), cerium oxide (CeO 2 ), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), manganese oxide (MnO 2 ), iron oxide (Fe 2 O 3 ), vanadium oxide (V 2 O 5 ), tin oxide (SnO 2 ), and at least one selected from the group consisting of tungsten oxide (WO 3 ) It may contain.
  • the inorganic compound containing calcium is calcium silicate, calcium titanate, calcium cerate, calcium zincate, calcium aluminate Calcium aluminate, Calcium zirconate, Calcium permanganate, Calcium ferrite, Calcium vanadate, Calcium stannate, Calcium tungstate Calcium tungstate) and at least one selected from the group consisting of hydrates thereof.
  • the metal oxide includes silica (SiO 2 ), and the inorganic compound containing calcium is a group consisting of calcium silicate and calcium silicate hydrate. It may be one containing one or more selected from.
  • the core-shell nanoparticles may be provided as an admixture that promotes the development of early strength of concrete.
  • the particles act as nucleation seeds, and as they grow larger, they fill the gaps between the cement particles, thereby omitting the initial hydration process of cement, which was the conventional rate-determining step. Therefore, since the curing time of concrete can be drastically reduced, the construction period at the construction site can be shortened by 2/3 compared to the previous one through the realization of early strength that could not be expressed in existing concrete through the addition of this and the development of application technology for this. It has the advantage of increasing efficiency and dramatically saving energy.
  • the composition for forming concrete may include water.
  • the water can be used as long as it does not contain harmful substances, such as oil, acids, alkalis, salts, and organic substances.
  • the type of usable water is not particularly limited, and underground water, tap water, and the like can be used.
  • the third aspect of the present application is,
  • Preparation of core-shell nanoparticles for early strength development of concrete including preparing core-shell nanoparticles by stirring a first solution containing a water-soluble calcium compound and a second solution containing a water-dispersible colloidal metal oxide.
  • the method for producing core-shell nanoparticles is to prepare core-shell nanoparticles by stirring a first solution containing a water-soluble calcium compound and a second solution containing a water-dispersible colloidal metal oxide. It may include; the step of doing.
  • the water-soluble calcium compound is calcium nitrate, calcium chloride, calcium formate, calcium acetate, calcium bicarbonate , Calcium bromide, Calcium carbonate, Calcium citrate, Calcium chlorate, Calcium fluoride, Calcium gluconate, Calcium hydroxide Calcium hydroxide, Calcium oxide, Calcium hypochlorite, Calcium iodide, Calcium lactate, Calcium nitrite, Calcium oxalate oxalate, Calcium phosphate, Calcium propionate, Calcium silicate, Calcium stearate, Calcium sulfate, Calcium sulfate hemihydrate , Calcium sulfate dihydrate, Calcium sulfide, Calcium tartrate, Calcium aluminate, Tricalcium silicate, Dicalcium silicate And it may be one containing one or more selected from the group consisting of these hydrates.
  • the water-soluble calcium compound includes calcium nitrate hydrate, preferably calcium nitrate tetrahydrate (Ca(NO 3 ) 2 4H 2 O). it could be
  • the first solution and the second solution may each independently further include at least one selected from the group consisting of a dispersant, an alkali metal hydroxide, and a combination thereof.
  • the dispersing agent may include a polymer dispersing agent.
  • the polymer dispersant may include a polycarboxylate ether-based compound.
  • the dispersant inhibits aggregation between particles such as water-soluble calcium compounds, water-dispersible colloidal metal oxides, and alkali metal hydroxides used in the method for preparing core-shell nanoparticles of the present invention, and uses electrostatic or physical repulsive force to It may be that they are spaced apart from each other. Through this, even strength is expressed in the entire area of cement concrete, and sufficient workability can be secured while reducing the amount of mixed water.
  • the first solution may further include the dispersing agent, and may include 50 to 150 parts by weight of the dispersing agent based on 100 parts by weight of the water-soluble calcium compound.
  • nanoparticles having a core-shell structure may be prepared by using the water-dispersible colloidal metal oxide.
  • the metal oxide particles form a core
  • the core-shell nanoparticles may be prepared by reacting the surface of the metal oxide particles, which is the core, with calcium atoms of a water-soluble calcium compound.
  • the metal oxide is silica (SiO 2 ), titanium dioxide (TiO 2 ), cerium oxide (CeO 2 ), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), zirconium oxide ( ZrO 2 ), manganese oxide (MnO 2 ), iron oxide (Fe 2 O 3 ), vanadium oxide (V 2 O 5 ), tin oxide (SnO 2 ), and tungsten oxide (WO 3 ).
  • SiO 2 silica
  • TiO 2 titanium dioxide
  • CeO 2 cerium oxide
  • zinc oxide ZnO
  • aluminum oxide Al 2 O 3
  • zirconium oxide ZrO 2
  • manganese oxide MnO 2
  • iron oxide Fe 2 O 3
  • vanadium oxide V 2 O 5
  • tin oxide SnO 2
  • tungsten oxide WO 3
  • the colloidal metal oxide aqueous solution may be a colloidal silica (SiO 2 ) aqueous solution.
  • silica (SiO 2 ) is used as a core, and the surface of the silica (SiO 2 ) reacts with calcium atoms to form a core-shell structure in which calcium silicate or calcium silicate hydrate is a shell. Particles may be produced.
  • the colloidal metal oxide aqueous solution may be a colloidal titanium dioxide (TiO 2 ) aqueous solution.
  • titanium dioxide (TiO 2 ) is used as a core, and the surface of the titanium dioxide (TiO 2 ) reacts with calcium atoms to form calcium titanate or calcium titanate hydrate as a shell core- Shell-structured nanoparticles may be produced.
  • the colloidal metal oxide aqueous solution may be a colloidal cerium oxide (CeO 2 ) aqueous solution.
  • cerium oxide (CeO 2 ) is used as a core, and the surface of the cerium oxide (CeO 2 ) reacts with calcium atoms to form calcium cerate or calcium cerate hydrate as a shell core- Shell-structured nanoparticles may be produced.
  • the colloidal metal oxide aqueous solution may be a colloidal zinc oxide (ZnO) aqueous solution.
  • ZnO colloidal zinc oxide
  • nanoparticles may be prepared.
  • the colloidal metal oxide aqueous solution may be a colloidal aluminum oxide (Al 2 O 3 ) aqueous solution.
  • aluminum oxide (Al 2 O 3 ) is used as a core, and the surface of the aluminum oxide (Al 2 O 3 ) reacts with calcium atoms to form calcium aluminate or calcium aluminate hydrate.
  • Nanoparticles having a core-shell structure, which is the shell, may be produced.
  • the colloidal metal oxide aqueous solution may be a colloidal zirconium oxide (ZrO 2 ) aqueous solution.
  • zirconium oxide (ZrO 2 ) is used as a core, and the surface of the zirconium oxide (ZrO 2 ) reacts with calcium atoms so that calcium zirconate or calcium zirconate hydrate is the shell.
  • Core-shell structured nanoparticles may be prepared.
  • the colloidal metal oxide aqueous solution may be a colloidal manganese oxide (MnO 2 ) aqueous solution.
  • manganese oxide (MnO 2 ) is used as a core, and the surface of the manganese oxide (MnO 2 ) reacts with calcium atoms so that calcium permanganate or calcium permanganate hydrate is a shell.
  • Core-shell structured nanoparticles may be prepared.
  • the colloidal metal oxide aqueous solution may be a colloidal iron oxide (Fe 2 O 3 ) aqueous solution.
  • iron oxide (Fe 2 O 3 ) is used as a core, and the surface of the iron oxide (Fe 2 O 3 ) reacts with calcium atoms to form calcium ferrite or calcium ferrite hydrate as a shell core- Shell-structured nanoparticles may be produced.
  • the colloidal metal oxide aqueous solution may be a colloidal vanadium oxide (V 2 O 5 ) aqueous solution.
  • vanadium oxide (V 2 O 5 ) is used as a core, and the surface of the vanadium oxide (V 2 O 5 ) reacts with calcium atoms to form calcium vanadate or calcium vanadate hydrate.
  • Nanoparticles having a core-shell structure, which is the shell, may be produced.
  • the colloidal metal oxide aqueous solution may be a colloidal tin oxide (SnO 2 ) aqueous solution.
  • tin oxide (SnO 2 ) is used as a core, and the surface of the tin oxide (SnO 2 ) reacts with calcium atoms to form a core in which calcium stannate or calcium stannate hydrate is a shell. Shell-structured nanoparticles may be produced.
  • the colloidal metal oxide aqueous solution may be a colloidal tungsten oxide (WO 3 ) aqueous solution.
  • tungsten oxide (WO 3 ) is used as a core, and the surface of the tungsten oxide (WO 3 ) reacts with calcium atoms to form a core in which calcium tungstate or calcium tungstate hydrate is a shell. Shell-structured nanoparticles may be produced.
  • the core material of the core-shell nanoparticle varies depending on the type of colloidal metal oxide, and since the surface of the core and calcium atoms react, the shell material may also vary depending on the core material.
  • the water-dispersible colloidal metal oxide may be an aqueous colloidal silica solution, and the aqueous colloidal silica solution may have a solid content of 0.1 to 50% by weight and an average particle size of 10 to 1,000 nm. there is.
  • the alkali metal hydroxide may include at least one selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), and lithium hydroxide (LiOH).
  • the alkali metal hydroxide may include sodium hydroxide (NaOH).
  • the second solution may further include the alkali metal hydroxide, and may include 100 to 200 parts by weight of the alkali metal hydroxide based on 100 parts by weight of the water-dispersible colloidal metal oxide.
  • the step of simultaneously introducing the first solution and the second solution into the reactor containing the water and stirring may include.
  • the stirring may be mechanical stirring, but is not limited thereto.
  • the size of the core-shell nanoparticles may be adjustable according to the size of the colloidal metal oxide particles.
  • the core-shell nanoparticles may have different early strength promoting effects depending on their size and surface composition.
  • the ratio (d:r) of the particle size (r) of the core-shell nanoparticles to the particle size (d) of the colloidal metal oxide is 1:1.005 to 1:30.
  • a water-soluble calcium compound, a dispersant, a water-dispersible colloidal metal oxide, water, and the like may be used in the method for preparing the core-shell nanoparticles. Based on 0.01 to 50 parts by weight of the water-soluble calcium compound, 0.1 to 10 parts by weight of the dispersant, 0.01 to 10 parts by weight of the water-dispersible colloidal metal oxide, and 24 to 99 parts by weight of the water may be used.
  • the amount of the dispersant is less than 0.1 parts by weight, the viscosity of the solution in which the first solution and the second solution are mixed becomes excessively high, making it difficult to manufacture and use. Phase separation may occur between materials used in manufacturing. In addition, there is a case where the strength is lowered due to the generation of bubbles, and an unnecessary antifoaming agent is used to solve this problem.
  • the method for preparing the core-shell nanoparticles may further include drying the core-shell nanoparticles after the step of preparing the core-shell nanoparticles.
  • the drying step may use one of conventional drying methods, and may be using a method such as natural drying, hot air drying, freeze drying, etc., but is not limited thereto.
  • the method for producing core-shell nanoparticles according to the third aspect of the present application is characterized by using a water-dispersible colloidal metal oxide, preferably an aqueous colloidal silica solution, by controlling the size of the colloidal silica nanoparticles to obtain core-shell nanoparticles. It has the effect of controlling the size of the particles.
  • the prepared core-shell nanoparticles may have different early strength promoting effects depending on their size and surface composition.
  • the process for preparing the core-shell nanoparticles is simple, and only the size of the colloidal silica nanoparticles needs to be adjusted to obtain the desired size of the core-shell nanoparticles. The time and energy required for this are small, and the productivity is excellent.
  • the core-shell nanoparticles prepared according to the method for producing core-shell nanoparticles have an effect of accelerating the development of early strength of concrete, and thus can be used as an admixture for early strength development of concrete, that is, an early strength agent.
  • the first solution and the second solution were simultaneously added to the reactor containing the distilled water and stirred at 500 rpm for 120 minutes using a mechanical stirrer to obtain a core-shell structure nano Particles were prepared.
  • Examples 1 to 3 Composition for forming concrete (including quasi-crude cement)
  • the particle size of the core-shell nanoparticles prepared according to Preparation Examples 1 to 3 was measured using a particle size anlayzer (Malvern Instruments LTD. Zetasizer Nano ZSP). The results are shown in Table 4 below.
  • the concrete prepared by adding the core-shell nanoparticles for early strength development of concrete according to the present invention has higher compressive strength than the concrete without the addition of core-shell nanoparticles (Control).
  • Control core-shell nanoparticles
  • the core-shell nanoparticles of the present invention can promote early strength development of hydraulic materials, especially concrete, and can be used as an early strength development promoter, so there is industrial applicability that shortens construction period and construction cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 코어-쉘 나노입자 및 이의 제조방법에 관한 것으로서, 보다 구체적으로 콜로이달 금속 산화물 입자 크기에 따라 상기 코어-쉘 나노입자의 크기를 조절할 수 있고, 콘크리트의 조기 강도 발현을 촉진시키는 조강제로 사용할 수 있는 콘크리트 조기강도 발현용 코어-쉘 나노입자에 관한 것이다.

Description

콘크리트 조기강도 발현용 코어-쉘 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법
본 발명은 코어-쉘 나노입자 및 이의 제조방법에 관한 것으로서, 보다 구체적으로 콜로이달 금속 산화물 입자 크기에 따라 상기 코어-쉘 나노입자의 크기를 조절할 수 있고, 콘크리트의 조기 강도 발현을 촉진시키는 조강제로 사용할 수 있는 콘크리트 조기강도 발현용 코어-쉘 나노입자에 관한 것이다.
혼화제는 콘크리트 제조의 기본재료인 시멘트, 골재, 물 이외에 부가적으로 가해져 콘크리트에 특수한 성능을 부여하거나 성질을 개선하기 위해 첨가되는 재료로 그 사용량이 시멘트에 대해 1% 미만(고형분 기준)인 물질을 의미한다. 그러나 상대적으로 적은 사용량에도 불구하고 우수한 혼화제의 개발이 콘크리트 재료 개발에서 가장 중요한 것 중 하나로 인식되고 있는 것은 사용한 혼화제에 따라 콘크리트의 물성이 크게 바뀌기 때문이다. 현재 콘크리트 혼화제의 주류를 차지하고 있는 것은 AE 감수제, 고성능 감수제, 고성능 AE 감수제 등으로 합성계면활성제, 리그닌술폰산계, 나프탈렌계, 멜라민계, 폴리카본산계 혼화제 등이 주성분으로 사용되고 있으나 이들은 콘크리트의 조기강도 또는 초단기강도 성능까지 담보하지는 못한다.
한편, 시멘트 콘크리트를 제조할 시에 시멘트의 비율을 줄이고 이를 대체할 수 있는 플라이애쉬, 고로슬래그 등의 값싼 산업부산물을 사용하는 것이 요구되고 있다. 이러한 산업부산물의 발생량은 해마다 증가하는 추세에 있고 연간 2,000 만 톤 이상 발생되고 있어 시멘트의 대체제로 바람직하다. 그러나 산업부산물을 적용할 경우에 콘크리트의 조기강도가 감소한다는 문제점이 발생된다. 따라서 이를 해결하기 위해 조강첨가제의 필요성이 점차 대두되고 있다.
또한 동절기에 콘크리트를 타설하게 되면 콘크리트의 강도 발현이 현저히 지연됨에 따라 공사기간도 길어지게 되는데, 이를 해결하기 위해 타설된 콘크리트 주위에 열을 가하여 강도 발현 시간을 단축하기도 한다. 하지만 이는 공사 비용의 증가로 이어지기 때문에 콘크리트의 강도 발현 시간의 단축은 주요한 과제가 되고 있다.
이밖에도 성형틀에 콘크리트를 부어 제작하는 프리캐스트 콘크리트에서도 콘크리트 조기강도 발현은 중요한 부분이다. 특히 프리캐스트에서는 증기를 이용한 스팀 양생으로 콘크리트의 강도를 빠르게 발현하게 되는데, 이때 많은 양의 에너지를 소모하게 된다. 프리캐스트는 일정한 모양의 성형된 콘크리트를 제작하는 것이기에 사용되는 성형틀의 회전율이 중요한 부분 중에 하나이다. 따라서, 적은 에너지를 사용하고 성형틀의 회전율을 높이기 위해 콘크리트의 조기강도 발현은 중요한 요소가 된다.
종래 시멘트 콘크리트의 조기강도를 높일 수 있도록 다양한 물질을 적용하고 있으나, 이러한 물질을 적용하여 시멘트 콘크리트를 제조할 때 필요한 물질을 각각 혼합함에 따라 사용하기가 번거로운 단점이 있다. 또한, 이러한 물질은 단순 혼합 시 침전, 반응 등의 문제가 발생되기도 한다.
이와 관련하여, 한국등록특허 10-1963579호는 조기강도 발현이 요구되는 부분에 적용 가능한 조기강도 발현 콘크리트 조성물에 관하여 개시하고 있다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 안출된 것으로써, 수경성 재료 특히, 콘크리트의 조기 강도 발현을 촉진시킬 수 있는 코어-쉘 나노입자 및 이를 포함하는 콘크리트 형성용 조성물을 제공하는 것에 그 목적이 있다.
또한, 본 발명은 콜로이달 금속 산화물 입자 크기에 따라 코어-쉘 나노입자의 크기를 조절할 수 있는 코어-쉘 나노입자의 제조방법을 제공하는 것에 그 목적이 있다.
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은,
금속 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 위치하고, 칼슘을 포함하는 무기 화합물을 포함하는 쉘;을 포함하고, 상기 금속 산화물은 준금속, 전이금속, 전이후 금속 및 란타넘족 금속으로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함하는 것인 콘크리트 조기강도 발현용 코어-쉘 나노입자가 제공된다.
상기 금속 산화물은 실리카(SiO2), 이산화티타늄(TiO2), 산화세륨(CeO2), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화망간(MnO2), 산화철(Fe2O3), 산화바나듐(V2O5), 산화주석(SnO2) 및 산화텅스텐(WO3)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
상기 칼슘을 포함하는 무기 화합물은 칼슘 실리케이트(Calcium silicate), 칼슘 티타네이트(Calcium titanate), 칼슘 세레이트(Calcium cerate), 칼슘 징케이트(Calcium zincate), 칼슘 알루미네이트(Calcium aluminate), 칼슘 지르코네이트(Calcium zirconate), 칼슘 퍼망가네이트(Calcium permanganate), 칼슘 페라이트(Calcium ferrite), 칼슘 바나데이트(Calcium vanadate), 칼슘 스타네이트(Calcium stannate), 칼슘 텅스테이트(Calcium tungstate) 및 이들의 수화물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
상기 쉘은 폴리카르복실레이트 에테르계 화합물을 더 포함하는 것일 수 있다.
본 발명의 다른 일 측면은,
골재; 결합재; 혼화제; 및 물;을 포함하고, 상기 혼화제는 상기 콘크리트 조기강도 발현용 코어-쉘 나노입자를 포함하는 것인 콘크리트 형성용 조성물이 제공된다.
본 발명의 다른 일 측면은,
수용성칼슘 화합물을 포함하는 제1 용액 및 수분산성 콜로이달 금속 산화물을 포함하는 제2 용액을 교반하여 코어-쉘 나노입자를 제조하는 단계;를 포함하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법이 제공된다.
상기 콜로이달 금속 산화물의 입자 크기(d)에 대한 상기 코어-쉘 나노입자의 입자 크기(r)의 비(d:r)는 1:1.005 내지 1:30인 것일 수 있다.
상기 수용성칼슘 화합물은 칼슘 나이트레이트(Calcium nitrate), 칼슘 클로라이드(Calcium chloride), 칼슘 포메이트(Calcium formate), 칼슘 아세테이트(Calcium acetate), 칼슘 바이카보네이트(Calcium bicarbonate), 칼슘 브로마이드(Calcium bromide), 칼슘 카보네이트(Calcium carbonate), 칼슘 시트레이트(Calcium citrate), 칼슘 콜레이트(Calcium chlorate), 칼슘 플로라이드(Calcium fluoride), 칼슘 글루코네이트(Calcium gluconate), 칼슘 하이드록사이드(Calcium hydroxide), 칼슘 옥사이드(Calcium oxide), 칼슘 하이포클로라이드(Calcium hypochlorite), 칼슘 아이오다이드(Calcium iodide), 칼슘 락테이트(Calcium lactate), 칼슘 나이트라이트(Calcium nitrite), 칼슘 옥살레이트(Calcium oxalate), 칼슘 포스페이트(Calcium phosphate), 칼슘 프로피오네이트(Calcium propionate), 칼슘 실리케이트(Calcium silicate), 칼슘 스테아레이트(Calcium stearate), 칼슘 설페이트(Calcium sulfate), 칼슘 설페이트 헤미하이드레이트(Calcium sulfate hemihydrate), 칼슘 설페이트 디하이드레이트(Calcium sulfate dihydrate), 칼슘 설파이드(Calcium sulfide), 칼슘 타르타레이트(Calcium tartrate), 칼슘 알루미네이트(Calcium aluminate), 트라이칼슘 실리케이트(Tricalcium silicate), 디칼슘 실리케이트(Dicalcium silicate) 및 이들의 수화물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
상기 제1 용액 및 제2 용액은 각각 독립적으로 분산제, 알칼리 금속 수산화물 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 것일 수 있다.
상기 분산제는 폴리카르복실레이트 에테르계 화합물을 포함하는 것일 수 있다.
상기 알칼리 금속 수산화물은 수산화나트륨(NaOH), 수산화칼륨(KOH) 및 수산화리튬(LiOH)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
상기 제1 용액은 상기 분산제를 더 포함하고, 상기 수용성 칼슘 화합물 100 중량부에 대하여, 상기 분산제 50 내지 150 중량부를 포함하는 것일 수 있다.
상기 제2 용액은 상기 알칼리 금속 수산화물을 더 포함하고, 상기 수분산성 콜로이달 금속 산화물 100 중량부에 대하여, 상기 알칼리 금속 수산화물 100 내지 200 중량부를 포함하는 것일 수 있다.
상기 코어-쉘 나노입자를 제조하는 단계 이후에, 상기 코어-쉘 나노입자를 건조하는 단계;를 더 포함하는 것일 수 있다.
본 발명의 코어-쉘 나노입자는 수경성 재료 특히, 콘크리트의 조기 강도 발현을 촉진시킬 수 있어 조기 강도 발현 촉진제로 사용할 수 있으며, 공사기간 단축 및 공사비용 절감이 가능해 경제적인 효과가 있다.
또한, 본 발명의 코어-쉘 나노입자의 제조방법은 콜로이달 금속 산화물 입자 크기에 따라 코어-쉘 나노입자의 크기를 조절할 수 있는 효과가 있다.
도 1은 본 발명에 따른 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법을 나타낸 순서도이다.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위의 의해 정의될 뿐이다.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본원의 제1측면은,
금속 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 위치하고, 칼슘을 포함하는 무기 화합물을 포함하는 쉘;을 포함하는 콘크리트 조기강도 발현용 코어-쉘 나노입자를 제공한다.
이하, 본원의 제1측면에 따른 콘크리트 조기강도 발현용 코어-쉘(Core-shell) 나노입자에 대해 자세히 설명하도록 한다.
본원의 일 실시예에 따르면, 상기 코어-쉘 나노입자는 금속 산화물을 포함하는 코어를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 금속 산화물은 준금속, 전이금속, 전이후 금속 및 란타넘족 금속으로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 금속 산화물은 실리카(SiO2), 이산화티타늄(TiO2), 산화세륨(CeO2), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화망간(MnO2), 산화철(Fe2O3), 산화바나듐(V2O5), 산화주석(SnO2) 및 산화텅스텐(WO3)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 금속 산화물은 바람직하게는 실리카(SiO2)를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콘크리트 조기강도 발현용 코어-쉘 나노입자는 상기 코어의 표면 상에 위치하고, 칼슘을 포함하는 무기 화합물을 포함하는 쉘;을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 칼슘을 포함하는 무기 화합물은 칼슘 실리케이트(Calcium silicate), 칼슘 티타네이트(Calcium titanate), 칼슘 세레이트(Calcium cerate), 칼슘 징케이트(Calcium zincate), 칼슘 알루미네이트(Calcium aluminate), 칼슘 지르코네이트(Calcium zirconate), 칼슘 퍼망가네이트(Calcium permanganate), 칼슘 페라이트(Calcium ferrite), 칼슘 바나데이트(Calcium vanadate), 칼슘 스타네이트(Calcium stannate), 칼슘 텅스테이트(Calcium tungstate) 및 이들의 수화물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 칼슘을 포함하는 무기 화합물은 바람직하게는 칼슘 실리케이트(Calcium silicate) 및 칼슘 실리케이트 수화물(Calcium silicate hydrate)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
통상 시멘트의 수화과정은 시멘트 화합물이 물과 반응하여 수화물을 생성하고 유동성이 없어지면서 응결하고 시간이 더 경과함에 따라 더욱 수화 반응이 진행되어 경화되는 과정을 거쳐 구조물의 강도를 높이므로 수화와 경화(강도)는 밀접한 관계를 형성한다. 이러한 수화물은 알라이트(alite, C3S)라고 일컬어지는 규산삼칼슘(3CaOSiO2)과 벨라이트(belite, C2S)라고 통용되는 규산이칼슘 (2CaOSiO2)으로 이루어지는데 그 중 C3S는 시멘트 화합물 중에서 가장 많은 비중을 차지하고 있는 것으로 이것이 물과 반응하면 곧바로 수산화칼슘 [Ca(OH)2]과 규산칼슘수화물(C-S-H, Calcium Silicate Hydrate, 이하, "CSH"라 약칭함)을 생성하게 된다. 이 때 시멘트 화합물의 최종 수화 생성물인 CSH의 초기 생성 속도가 콘크리트의 조기강도 확보 여부에 큰 영향을 미치는 것으로 알려져 있으며 그 속도가 보통 적게는 6시간, 많게는 10시간 정도 걸리는 수화과정의 속도결정단계로 알려져 있다.
그러므로 본 발명에 따른 실리카(SiO2)를 포함하는 코어; 및 CSH를 포함하는 쉘;을 포함하는 코어-쉘 나노입자를 콘크리트 혼합체와 배합하게 되면 쉘 물질이 CSH를 포함하므로 상기 코어-쉘 나노입자가 핵생성 시드(nucleation seed)로 작용하여, 이들이 점점 커지면서 시멘트 입자 사이의 공극을 메움으로써 기존 속도결정단계였던 시멘트의 초기 수화 과정을 생략할 수 있게 된다. 따라서 콘크리트의 양생시간이 획기적으로 줄 수 있게 되므로 이의 첨가를 통해 기존 콘크리트에서 발현될 수 없었던 조기강도 구현 및 이의 응용기술 개발을 통해 건설현장의 공사기간을 기존 대비 2/3으로 단축시킬 수 있으므로 공정효율을 높이며 에너지를 획기적으로 절감할 수 있는 장점이 존재한다.
본원의 일 실시예에 따르면, 상기 콘크리트 조기강도 발현용 코어-쉘 나노입자의 쉘은 폴리카르복실레이트 에테르계 화합물을 더 포함하는 것일 수 있다.
본원의 제2측면은,
골재; 결합재; 혼화제; 및 물;을 포함하는 콘크리트 형성용 조성물을 제공한다.
이하, 본원의 제2측면에 따른 콘크리트 형성용 조성물에 대해 자세히 설명하도록 한다.
본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물은 골재를 포함하는 것일 수 있다.
골재는 상기 콘크리트 형성용 조성물의 베이스가 되는 것으로서 결합재에 의하여 뭉쳐져 하나의 덩어리를 이룰 수 있는 건설용 광물질 재료이다.
본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물에 포함된 골재는 잔골재 및 굵은 골재를 포함할 수 있다. 본 명세서에 있어서, 잔골재란 표준망체 5mm 체를 100% 통과하는 입도의 골재를 의미한다. 본 명세서에 있어서, 굵은 골재란 표준망체 5mm 체에 100% 남는 입도의 골재를 의미한다.
본원의 일 실시예에 따르면, 상기 잔골재는 부순 모래, 천연 모래, 세척사, 입자 크기가 0.01~5 mm인 순환골재 또는 이의 임의의 조합을 포함할 수 있다. 본원의 일 실시예에 따르면, 상기 잔골재는 바람직하게는 부순 모래일 수 있으나, 이에 한정되는 것은 아니다.
본원의 일 실시예에 따르면, 상기 굵은 골재는 쇄석, 부순 슬래그, 천연 자갈, 부순 자갈, 입자 크기가 5~25 mm인 순환골재 또는 이의 임의의 조합을 포함할 수 있다. 본원의 일 실시예에 따르면, 상기 굵은 골재는 부순 자갈일 수 있으나, 이에 한정되는 것은 아니다.
본원의 일 실시예에 따르면, 상기 골재의 함량은 상기 콘크리트 형성용 조성물의 총 함량 100 중량부에 대하여 60 내지 90 중량부일 수 있다. 상기 골재의 함량이 상기 콘크리트 형성용 조성물의 총 함량 100 중량부에 대하여 60 중량부 미만일 경우 상기 콘크리트 형성용 조성물로부터 콘크리트를 제조하는 경우 콘크리트 압축강도는 높아지나 동시에 콘크리트 제조 단가가 높아지며, 상기 골재의 함량이 상기 콘크리트 형성용 조성물의 총 함량 100 중량부에 대하여 90 중량부 초과일 경우, 골재와 결합재 사이의 분리가 일어날 수 있으며 콘크리트 품질이 저하될 우려가 있다.
본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물 중 잔골재율(S/a)은 35 내지 65%일 수 있다. 여기서, 상기 잔골재율(S/a)은 전체 골재(잔골재+굵은 골재, a)에 대한 잔골재(S)의 절대용적의 백분율을 의미한다. 상기 콘크리트 형성용 조성물의 잔골재율(S/a)이 35% 미만이 될 경우, 단위수량, 단위 시멘트량이 감소하여 작업성이 떨어지며, 거친 콘크리트가 되어 타 재료와 분리되는 현상을 보일 수 있는 문제가 있고, 상기 콘크리트 형성용 조성물의 잔골재율(S/a)이 65% 초과가 될 경우, 건조 수축, 침하균열 및 소성 수축균열 등이 증가하는 문제가 있다.
본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물은 결합재를 포함하는 것일 수 있다.
상기 결합재는 상기 큰크리트 형성용 조성물에 포함된 골재(예를 들어, 잔골재 또는 굵은 골재) 사이의 접착력을 향상시키고 유지함으로써 콘크리트에 내구성 및 강도를 부여하는 역할을 한다.
본원의 일 실시예에 따르면, 상기 결합재는 보통 포틀랜드 시멘트, 조강 포틀랜드 시멘트, 석회 시멘트, 슬래그 시멘트, 고로 슬래그 시멘트, 포틀랜드 포졸란 시멘트, 플라이애쉬, 바텀애쉬, 석고 시멘트, 석회 시멘트, 실리카퓸, 저발열시멘트 또는 이의 임의의 조합을 포함할 수 있다.
본원의 일 실시예에 따르면, 상기 결합재는 보통 포틀랜드 시멘트, 슬래그 시멘트, 고로 슬래그 시멘트, 또는 이의 임의의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본원의 일 실시예에 따르면, 상기 결합재의 함량은 상기 콘크리트 형성용 조성물의 총 함량 100 중량부에 대하여 1 내지 50 중량부일 수 있다. 상기 결합재의 함량이 상기 콘크리트 형성용 조성물의 총 함량 100 중량부에 대하여 상기 범위 이내일 경우 콘크리트의 제조 비용을 감소시키고 수밀성을 높일 수 있다.
본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물 중 물-결합재 비(W/B)는 20 내지 60%일 수 있다. 본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물 중 물-결합재 비(W/B)는 40 내지 50%일 수 있다. 여기서, 상기 물결합재 비(W/B)는 결합재(B)에 대한 물(W)의 양에 대한 백분율을 의미한다. 상기 콘크리트 형성용 조성물 중 물-결합재 비(W/B)가 20% 미만일 경우 상기 콘크리트 형성용 조성물로부터 제조된 콘크리트의 유동성이 저하될 수 있고, 상기 콘크리트 형성용 조성물 중 물-결합재 비(W/B)가 60% 초과일 경우 상기 콘크리트 형성용 조성물로부터 제조된 콘크리트의 내구성 및 강도가 저하될 수 있다.
본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물은 혼화제를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 혼화제는 콘크리트 조기강도 발현용 코어-쉘 나노입자를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 코어-쉘 나노입자는 금속 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 위치하고, 칼슘을 포함하는 무기 화합물을 포함하는 쉘;을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 금속 산화물은 준금속, 전이금속, 전이후 금속 및 란타넘족 금속으로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함하는 것일 수 있다.
*본원의 일 실시예에 따르면, 상기 금속 산화물은 실리카(SiO2), 이산화티타늄(TiO2), 산화세륨(CeO2), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화망간(MnO2), 산화철(Fe2O3), 산화바나듐(V2O5), 산화주석(SnO2) 및 산화텅스텐(WO3)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 칼슘을 포함하는 무기 화합물은 칼슘 실리케이트(Calcium silicate), 칼슘 티타네이트(Calcium titanate), 칼슘 세레이트(Calcium cerate), 칼슘 징케이트(Calcium zincate), 칼슘 알루미네이트(Calcium aluminate), 칼슘 지르코네이트(Calcium zirconate), 칼슘 퍼망가네이트(Calcium permanganate), 칼슘 페라이트(Calcium ferrite), 칼슘 바나데이트(Calcium vanadate), 칼슘 스타네이트(Calcium stannate), 칼슘 텅스테이트(Calcium tungstate) 및 이들의 수화물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 바람직하게는 상기 금속 산화물은 실리카(SiO2)를 포함하고, 상기 칼슘을 포함하는 무기 화합물은 칼슘 실리케이트(Calcium silicate) 및 칼슘 실리케이트 수화물(Calcium silicate hydrate)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 코어-쉘 나노입자는 콘크리트 조기 강도 발현을 촉진시키는 혼화제로서 제공되는 것일 수 있다.
상기 실리카(SiO2)를 포함하는 코어; 및 칼슘 실리케이트(Calcium silicate) 및 칼슘 실리케이트 수화물(Calcium silicate hydrate)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 포함하는 쉘;을 포함하는 코어-쉘 나노입자를 혼화제로 사용할 경우, 상기 코어-쉘 나노입자가 핵생성 시드(nucleation seed)로 작용하여, 이들이 점점 커지면서 시멘트 입자 사이의 공극을 메움으로써 기존 속도결정단계였던 시멘트의 초기 수화 과정을 생략할 수 있게 된다. 따라서 콘크리트의 양생시간이 획기적으로 줄 수 있게 되므로 이의 첨가를 통해 기존 콘크리트에서 발현될 수 없었던 조기강도 구현 및 이의 응용기술 개발을 통해 건설현장의 공사기간을 기존 대비 2/3으로 단축시킬 수 있으므로 공정효율을 높이며 에너지를 획기적으로 절감할 수 있는 장점이 존재한다.
본원의 일 실시예에 따르면, 상기 콘크리트 형성용 조성물은 물을 포함하는 것일 수 있다.
상기 물은 유해물질 예를 들어, 기름, 산, 알칼리, 염류 및 유기물 등을 포함하지 않은 것이면 모두 사용 가능하다. 사용 가능한 물은 그 종류가 특별히 한정되지 않고, 지하수, 수돗물 등을 사용할 수 있다.
본원의 제3측면은,
수용성칼슘 화합물을 포함하는 제1 용액 및 수분산성 콜로이달 금속 산화물을 포함하는 제2 용액을 교반하여 코어-쉘 나노입자를 제조하는 단계;를 포함하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법을 제공한다.
이하, 본원의 제3측면에 따른 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법에 대해 자세히 설명하도록 한다.
본원의 일 실시예에 따르면, 상기 코어-쉘 나노입자의 제조방법은 수용성칼슘 화합물을 포함하는 제1 용액 및 수분산성 콜로이달 금속 산화물을 포함하는 제2 용액을 교반하여 코어-쉘 나노입자를 제조하는 단계;를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 수용성칼슘 화합물은 칼슘 나이트레이트(Calcium nitrate), 칼슘 클로라이드(Calcium chloride), 칼슘 포메이트(Calcium formate), 칼슘 아세테이트(Calcium acetate), 칼슘 바이카보네이트(Calcium bicarbonate), 칼슘 브로마이드(Calcium bromide), 칼슘 카보네이트(Calcium carbonate), 칼슘 시트레이트(Calcium citrate), 칼슘 콜레이트(Calcium chlorate), 칼슘 플로라이드(Calcium fluoride), 칼슘 글루코네이트(Calcium gluconate), 칼슘 하이드록사이드(Calcium hydroxide), 칼슘 옥사이드(Calcium oxide), 칼슘 하이포클로라이드(Calcium hypochlorite), 칼슘 아이오다이드(Calcium iodide), 칼슘 락테이트(Calcium lactate), 칼슘 나이트라이트(Calcium nitrite), 칼슘 옥살레이트(Calcium oxalate), 칼슘 포스페이트(Calcium phosphate), 칼슘 프로피오네이트(Calcium propionate), 칼슘 실리케이트(Calcium silicate), 칼슘 스테아레이트(Calcium stearate), 칼슘 설페이트(Calcium sulfate), 칼슘 설페이트 헤미하이드레이트(Calcium sulfate hemihydrate), 칼슘 설페이트 디하이드레이트(Calcium sulfate dihydrate), 칼슘 설파이드(Calcium sulfide), 칼슘 타르타레이트(Calcium tartrate), 칼슘 알루미네이트(Calcium aluminate), 트라이칼슘 실리케이트(Tricalcium silicate), 디칼슘 실리케이트(Dicalcium silicate) 및 이들의 수화물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 수용성칼슘 화합물은 칼슘 나이트레이트 수화물(Calcium nitrate hydrate), 바람직하게는 칼슘 나이트레이트 4수화물(Calcium nitrate tetrahydrate, Ca(NO3)2 · 4H2O)을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 제1 용액 및 제2 용액은 각각 독립적으로 분산제, 알칼리 금속 수산화물 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 분산제는 고분자 분산제를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 고분자 분산제는 폴리카르복실레이트 에테르계 화합물을 포함하는 것일 수 있다.
상기 분산제는 본 발명의 코어-쉘 나노입자의 제조방법에서 사용되는 수용성 칼슘 화합물, 수분산성 콜로이달 금속 산화물, 알칼리 금속 수산화물 등의 입자간 응집을 저해하고, 정전기적 또는 물리적 반발력을 이용하여 상기 입자들이 서로 이격되도록 하는 것일 수 있다. 이를 통해 시멘트 콘크리트의 전체 영역에서 고른 강도가 발현되고, 배합되는 물의 양을 적게 하면서도 충분한 작업성을 확보할 수 있게 된다.
본원의 일 실시예에 따르면, 상기 제1 용액은 상기 분산제를 더 포함하고, 상기 수용성 칼슘 화합물 100 중량부에 대하여, 상기 분산제 50 내지 150 중량부를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 수분산성 콜로이달 금속 산화물을 사용함으로써 코어-쉘(Core-shell) 구조의 나노입자가 제조되는 것일 수 있다. 상기 금속 산화물 입자가 코어를 이루고, 코어인 상기 금속 산화물 입자의 표면이 수용성칼슘 화합물의 칼슘 원자와 반응하여 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 금속 산화물은 실리카(SiO2), 이산화티타늄(TiO2), 산화세륨(CeO2), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화망간(MnO2), 산화철(Fe2O3), 산화바나듐(V2O5), 산화주석(SnO2) 및 산화텅스텐(WO3)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 실리카(SiO2) 수용액일 수 있다. 이 경우, 실리카(SiO2)를 코어로 하고, 상기 실리카(SiO2)의 표면이 칼슘 원자와 반응하여 칼슘 실리케이트(Calcium silicate) 또는 칼슘 실리케이트 수화물(Calcium silicate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 이산화티타늄(TiO2) 수용액일 수 있다. 이 경우, 이산화티타늄(TiO2)을 코어로 하고, 상기 이산화티타늄(TiO2)의 표면이 칼슘 원자와 반응하여 칼슘 티타네이트(Calcium titanate) 또는 칼슘 티타네이트 수화물(Calcium titanate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화세륨(CeO2) 수용액일 수 있다. 이 경우, 산화세륨(CeO2)을 코어로 하고, 상기 산화세륨(CeO2)의 표면이 칼슘 원자와 반응하여 칼슘 세레이트(Calcium cerate) 또는 칼슘 세레이트 수화물(Calcium cerate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화아연(ZnO) 수용액일 수 있다. 이 경우, 산화아연(ZnO)을 코어로 하고, 상기 산화아연(ZnO)의 표면이 칼슘 원자와 반응하여 칼슘 징케이트(Calcium zincate) 또는 칼슘 징케이트 수화물(Calcium zincate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화알루미늄(Al2O3) 수용액일 수 있다. 이 경우, 산화알루미늄(Al2O3)을 코어로 하고, 상기 산화알루미늄(Al2O3)의 표면이 칼슘 원자와 반응하여 칼슘 알루미네이트(Calcium aluminate) 또는 칼슘 알루미네이트 수화물(Calcium aluminate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화지르코늄(ZrO2) 수용액일 수 있다. 이 경우, 산화지르코늄(ZrO2)을 코어로 하고, 상기 산화지르코늄(ZrO2)의 표면이 칼슘 원자와 반응하여 칼슘 지르코네이트(Calcium zirconate) 또는 칼슘 지르코네이트 수화물(Calcium zirconate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화망간(MnO2) 수용액일 수 있다. 이 경우, 산화망간(MnO2)을 코어로 하고, 상기 산화망간(MnO2)의 표면이 칼슘 원자와 반응하여 칼슘 퍼망가네이트(Calcium permanganate) 또는 칼슘 퍼망가네이트 수화물(Calcium permanganate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화철(Fe2O3) 수용액일 수 있다. 이 경우, 산화철(Fe2O3)을 코어로 하고, 상기 산화철(Fe2O3)의 표면이 칼슘 원자와 반응하여 칼슘 페라이트(Calcium ferrite) 또는 칼슘 페라이트 수화물(Calcium ferrite hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화바나듐(V2O5) 수용액일 수 있다. 이 경우, 산화바나듐(V2O5)을 코어로 하고, 상기 산화바나듐(V2O5)의 표면이 칼슘 원자와 반응하여 칼슘 바나데이트(Calcium vanadate) 또는 칼슘 바나데이트 수화물 (Calcium vanadate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화주석(SnO2) 수용액일 수 있다. 이 경우, 산화주석(SnO2)을 코어로 하고, 상기 산화주석(SnO2)의 표면이 칼슘 원자와 반응하여 칼슘 스타네이트(Calcium stannate) 또는 칼슘 스타네이트 수화물(Calcium stannate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 수용액은 콜로이달 산화텅스텐(WO3) 수용액일 수 있다. 이 경우, 산화텅스텐(WO3)을 코어로 하고, 상기 산화텅스텐(WO3)의 표면이 칼슘 원자와 반응하여 칼슘 텅스테이트(Calcium tungstate) 또는 칼슘 텅스테이트 수화물(Calcium tungstate hydrate)이 쉘인 코어-쉘 구조의 나노입자가 제조되는 것일 수 있다.
상기 기재한 바와 같이 콜로이달 금속 산화물의 종류에 따라 코어-쉘 나노입자의 코어 물질이 달라지며, 코어의 표면과 칼슘 원자가 반응하므로 코어 물질에 따라 쉘 물질도 달라지는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 수분산성 콜로이달 금속 산화물은 콜로이달 실리카 수용액일 수 있으며, 상기 콜로이달 실리카 수용액은 고형분이 0.1 내지 50 중량%이고, 평균 입자 크기가 10 내지 1,000 nm인 것일 수 있다.
본원의 일 실시예에 따르면, 상기 알칼리 금속 수산화물은 수산화나트륨(NaOH), 수산화칼륨(KOH) 및 수산화리튬(LiOH)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본원의 일 실시예에 따르면, 상기 알칼리 금속 수산화물은 수산화나트륨(NaOH)을 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 제2 용액은 상기 알칼리 금속 수산화물을 더 포함하고, 상기 수분산성 콜로이달 금속 산화물 100 중량부에 대하여, 상기 알칼리 금속 수산화물 100 내지 200 중량부를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 반응기에 물을 넣은 후, 상기 물이 들어있는 반응기에 상기 제1 용액 및 제2 용액을 동시에 투입하여 교반하는 단계;를 포함하는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 교반은 기계적 교반일 수 있으나, 이에 한정되는 것은 아니다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물 입자의 크기에 따라 상기 코어-쉘 나노입자의 크기를 조절할 수 있는 것일 수 있다. 상기 코어-쉘 나노입자는 그 크기와 표면 조성에 따라 조기강도 촉진 효과가 달라지는 것일 수 있다.
본원의 일 실시예에 따르면, 상기 콜로이달 금속 산화물의 입자 크기(d)에 대한 상기 코어-쉘 나노입자의 입자 크기(r)의 비(d:r)는 1:1.005 내지 1:30인 것일 수 있다.
본원의 일 실시예에 따르면, 상기 코어-쉘 나노입자의 제조방법에는 수용성칼슘 화합물, 분산제, 수분산성 콜로이달 금속 산화물, 물 등이 사용되는 것일 수 있다. 상기 수용성칼슘 화합물 0.01 내지 50 중량부에 대하여, 상기 분산제 0.1 내지 10 중량부, 상기 수분산성 콜로이달 금속 산화물 0.01 내지 10 중량부 및 상기 물 24 내지 99 중량부가 사용되는 것일 수 있다.
상기 분산제의 사용량이 0.1 중량부 미만이면 제1 용액과 제2 용액을 혼합한 용액의 점도가 지나치게 높아져 제조도 사용도 어렵게 되고, 반대로 10 중량부를 초과하면 경제성이 떨어질 뿐만 아니라 코어-쉘 나노입자의 제조에 사용되는 물질들끼리 상분리가 발생할 수 있다. 또한 기포발생으로 인한 강도 저하가 발생되어 이를 해결하기 위해 불필요한 소포제를 사용하는 경우가 발생되고, 이밖에 다량의 분산제로 인하여 콘크리트의 조기강도 저하 요인이 발생될 수 있다.
본원의 일 실시예에 따르면, 상기 코어-쉘 나노입자의 제조방법은 상기 코어-쉘 나노입자를 제조하는 단계 이후에, 상기 코어-쉘 나노입자를 건조하는 단계;를 더 포함하는 것일 수 있다. 상기 건조 단계는 통상의 건조 방법 중 하나를 사용할 수 있으며, 자연건조, 열풍건조, 동결건조 등의 방법을 사용하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본원의 제3측면에 따른 코어-쉘 나노입자의 제조방법은 수분산성 콜로이달 금속 산화물 바람직하게는 콜로이달 실리카 수용액을 사용하는 것이 특징이며, 콜로이달 실리카 나노입자의 크기를 조절함으로써 코어-쉘 나노입자의 크기를 조절할 수 있는 효과가 있다. 제조된 코어-쉘 나노입자는 그 크기와 표면 조성에 따라 조기강도 촉진 효과가 달라질 수 있다. 또한, 상기 코어-쉘 나노입자의 제조방법은 공정이 단순하며, 원하는 코어-쉘 나노입자의 크기를 얻기 위해 콜로이달 실리카 나노입자의 크기만을 조절하면 되기 때문에 원하는 코어-쉘 나노입자의 크기를 얻기 위해 소요되는 시간 및 에너지가 적고, 생산성이 우수한 효과가 있다. 상기 코어-쉘 나노입자의 제조방법에 따라 제조된 코어-쉘 나노입자는 콘크리트 조기 강도 발현을 촉진시키는 효과가 있으며, 따라서 콘크리트 조기 강도 발현용 혼화제 즉, 조강제로서 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
< 실시예 >
제조예 1 내지 5: 코어-쉘 나노입자 제조
제조예 1
질산칼슘 4수화물((CaNO3)2·4H2O, 시약급) 100g (0.4251mol), 고분자 분산제로서 실크로드시앤티 사의 제품인 폴리카르복실레이트계 분산제 100g, 증류수 43g을 500ml 비이커에 계량하고 자력교반기를 사용하여 30분간 교반하여 완전히 용해시켜 제1 용액을 제조하였다.
평균 입자크기가 15nm인 콜로이달 나노실리카 수용액(CNS) 42g (0.2125mol), 나노입자 표면 활성제로서 NaOH(50%) 60g, 증류수 420g을 1,000ml 비이커에 계량하고 자력교반기를 사용하여 24시간동안 교반하여 제2 용액을 제조하였다.
2L 4구 플라스크 반응기에 증류수 235g을 계량하여 넣은 후, 상기 증류수가 들어있는 반응기에 상기 제1 용액과 제2 용액을 동시에 투입하면서 기계식 교반기를 사용해 500rpm으로 120분 간 교반하여 코어-쉘 구조의 나노입자를 제조하였다.
제조예 2
제조예 1에서 평균 입자크기가 15nm인 콜로이달 나노실리카 수용액(CNS) 대신에 평균 입자크기가 45nm인 콜로이달 나노실리카 수용액(CNS)을 사용하는 것을 제외하고는 제조예 1과 동일한 방법으로 코어-쉘 구조의 나노입자를 제조하였다.
제조예 3
제조예 1에서 평균 입자크기가 15nm인 콜로이달 나노실리카 수용액(CNS) 대신에 평균 입자크기가 85nm인 콜로이달 나노실리카 수용액(CNS)을 사용하는 것을 제외하고는 제조예 1과 동일한 방법으로 코어-쉘 구조의 나노입자를 제조하였다.
제조예 1 내지 3에서 사용된 (CaNO3)2·4H2O, 폴리카르복실레이트계 분산제, 증류수, 콜로이달 나노실리카 수용액, NaOH의 양과 콜로이달 나노실리카의 입자 크기를 아래 표 1에 나타내었다.
구분 제1 용액 제2 용액 반응기
(CaNO3)2·4H2O 폴리카르복실레이트계 분산제(50%) 증류수 CNS SiO2 입자 크기 NaOH
(50%)
증류수 증류수
제조예 1 100g 100g 43g 42g 15nm 60g 420g 235g
제조예 2 100g 100g 43g 42g 45nm 60g 420g 235g
제조예 3 100g 100g 43g 42g 85nm 60g 420g 235g
실시예 1 내지 3: 콘크리트 형성용 조성물 (준조강 시멘트 포함)
실시예 1
하기 표 2와 같은 조성으로, 제조예 1에 따라 제조된 코어-쉘 나노입자를 포함하는 콘크리트 형성용 조성물을 제조하였다.
실시예 2
하기 표 2와 같은 조성으로, 제조예 2에 따라 제조된 코어-쉘 나노입자를 포함하는 콘크리트 형성용 조성물을 제조하였다.
실시예 3
하기 표 2와 같은 조성으로, 제조예 3에 따라 제조된 코어-쉘 나노입자를 포함하는 콘크리트 형성용 조성물을 제조하였다.
구분 사용된 코어-쉘 나노입자 W/B
(%)
S/A
(%)
Unit weight (kg/m3) Ad
(%)
Sample
(%)
Water Cement Sand Gravel
실시예 1 제조예 1 48.5 51 165 340 908 892 0.3 1.3
실시예 2 제조예 2
실시예 3 제조예 3
W/B: 물/결합재
S/A: 전체 골재(잔골재 + 굵은골재, a)에 대한 잔골재의 절대용적의 백분율
Cement: 준조강 시멘트(아세아시멘트社)
Sand: 쇄사
Gravel: 직경 25mm의 굵은 골재
Ad: 폴리카르복실레이트계 분산제 20% Solution
Sample: 제조예 1 내지 3에 따라 제조된 코어-쉘 나노입자
실시예 4 내지 6: 콘크리트 형성용 조성물 (OPC 시멘트 포함)실시예 4
하기 표 3과 같은 조성으로, 제조예 1에 따라 제조된 코어-쉘 나노입자를 포함하는 콘크리트 형성용 조성물을 제조하였다.
실시예 5
하기 표 3과 같은 조성으로, 제조예 2에 따라 제조된 코어-쉘 나노입자를 포함하는 콘크리트 형성용 조성물을 제조하였다.
실시예 6
*하기 표 3과 같은 조성으로, 제조예 3에 따라 제조된 코어-쉘 나노입자를 포함하는 콘크리트 형성용 조성물을 제조하였다.
구분 사용된 코어-쉘 나노입자 W/B
(%)
S/A
(%)
Unit weight (kg/m3) Ad
(%)
Sample
(%)
Water Cement Sand Gravel
실시예 4 제조예 1 48.5 51 165 340 908 892 0.3 1.3
실시예 5 제조예 2
실시예 6 제조예 3
W/B: 물/결합재
S/A: 전체 골재(잔골재 + 굵은골재, a)에 대한 잔골재의 절대용적의 백분율
Cement: OPC(쌍용社)
Sand: 쇄사
Gravel: 직경 25mm의 굵은 골재
Ad: 폴리카르복실레이트계 분산제 20% Solution
Sample: 제조예 1 내지 3에 따라 제조된 코어-쉘 나노입자
< 실험예 >
실험예 1: 입자 크기 평가
Particle size anlayzer (Malvern Instruments LTD. Zetasizer Nano ZSP)를 사용하여 제조예 1 내지 3에 따라 제조된 코어-쉘 나노입자의 입자 크기를 측정하였다. 그 결과를 아래 표 4에 나타내었다.
구분 평균 입자 크기(nm)
제조예 1 51
제조예 2 106
제조예 3 152
상기 표 4를 참조하면, 제조예 1 내지 3의 경우 콜로이달 실리카 나노입자의 크기에 따라 제조된 코어-쉘 나노입자의 크기가 조절되는 것을 확인할 수 있었다. 즉, 콜로이달 실리카 나노입자의 크기가 클수록 제조되는 코어-쉘 나노입자의 크기도 커지는 것을 확인할 수 있었다.
실험예 2: 콘크리트 성능 평가
실시예 1 내지 6에 따라 제조된 콘크리트 형성용 조성물의 콘크리트 조강 성능을 평가하기 위하여 양생온도 및 양생시간별 압축강도를 측정하였다. 하기 표 5의 조성으로 대조예(Control)의 콘크리트 형성용 조성물을 제조하여 압축강도를 비교하였다.
구분 W/B
(%)
S/A
(%)
Unit weight (kg/m3) Ad
(%)
Sample
(%)
Water Cement Sand Gravel
Control 48.5 51 165 340 908 892 1.1 -
아세아시멘트 사의 준조강 시멘트를 사용한 실시예 1 내지 3의 양생온도는 13℃였으며, 경과시간(hr) 별 압축강도를 아래 표 6에 나타내었다.
구분 경과시간(hr) 별 압축강도(MPa)
13 14 15 16 17 18
Control 0.83 1.54 2.11 3.28 4.34 5.15
실시예 1 5.19 6.31 7.60 9.16 10.21 11.02
실시예 2 5.35 6.25 7.53 9.04 10.15 11.11
실시예 3 5.11 6.15 7.39 9.28 10.29 11.23
쌍용 사의 OPC를 사용한 실시예 4 내지 6의 양생온도는 15℃였으며, 경과시간(hr) 별 압축강도를 아래 표 7에 나타내었다.
구분 경과시간(hr) 별 압축강도(MPa)
21 22 23 24 25 26
Control 0.61 1.25 1.74 2.36 2.73 3.12
실시예 4 3.44 4.05 4.46 5.25 6.01 6.84
실시예 5 3.25 3.92 4.33 5.11 6.15 6.71
실시예 6 3.56 4.11 4.29 5.36 6.22 6.96
상기 표 6 및 표 7을 참조하면, 본 발명에 따른 콘크리트 조기강도 발현용 코어-쉘 나노입자를 첨가하여 제조한 콘크리트가 코어-쉘 나노입자를 첨가하지 않은 콘크리트(Control)에 비해 압축강도가 더 우수한 것을 확인할 수 있었다. 이는 상기 코어-쉘 나노입자가 콘크리트의 조기 강도 발현을 촉진시킴으로써 나타나는 결과인 것으로 판단된다. 따라서, 본 발명에 따른 콘크리트 조기강도 발현용 코어-쉘 나노입자는 콘크리트 조기 강도 발현용 혼화제로서 사용할 수 있음을 확인할 수 있었다. 나아가 상기 코어-쉘 나노입자를 혼화제로 사용함으로써 조기 강도 구현이 가능하며, 공사기간 단축 및 공사비용 절감 등의 효과를 제공할 수 있다.
이상, 도면을 참조하여 바람직한 실시예와 함께 본 발명에 대하여 상세하게 설명하였으나, 이러한 도면과 실시예로 본 발명의 기술적 사상의 범위가 한정되는 것은 아니다. 따라서, 본 발명의 기술적 사상의 범위 내에서 다양한 변형예 또는 균등한 범위의 실시예가 존재할 수 있다. 그러므로 본 발명에 따른 기술적 사상의 권리범위는 청구범위에 의해 해석되어야 하고, 이와 동등하거나 균등한 범위 내의 기술 사상은 본 발명의 권리범위에 속하는 것으로 해석되어야 할 것이다.
본 발명의 코어-쉘 나노입자는 수경성 재료 특히, 콘크리트의 조기 강도 발현을 촉진시킬 수 있어 조기 강도 발현 촉진제로 사용할 수 있으므로, 공사기간 단축 및 공사비용 절감이 가능하다는 산업상 이용가능성이 있다.

Claims (14)

  1. 금속 산화물을 포함하는 코어; 및
    상기 코어의 표면 상에 위치하고, 칼슘을 포함하는 무기 화합물을 포함하는 쉘;을 포함하고,
    상기 금속 산화물은 준금속, 전이금속, 전이후 금속 및 란타넘족 금속으로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함하는 것인 콘크리트 조기강도 발현용 코어-쉘 나노입자.
  2. 제1항에 있어서,
    상기 금속 산화물은 실리카(SiO2), 이산화티타늄(TiO2), 산화세륨(CeO2), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화망간(MnO2), 산화철(Fe2O3), 산화바나듐(V2O5), 산화주석(SnO2) 및 산화텅스텐(WO3)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자.
  3. 제1항에 있어서,
    상기 칼슘을 포함하는 무기 화합물은 칼슘 실리케이트(Calcium silicate), 칼슘 티타네이트(Calcium titanate), 칼슘 세레이트(Calcium cerate), 칼슘 징케이트(Calcium zincate), 칼슘 알루미네이트(Calcium aluminate), 칼슘 지르코네이트(Calcium zirconate), 칼슘 퍼망가네이트(Calcium permanganate), 칼슘 페라이트(Calcium ferrite), 칼슘 바나데이트(Calcium vanadate), 칼슘 스타네이트(Calcium stannate), 칼슘 텅스테이트(Calcium tungstate) 및 이들의 수화물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자.
  4. 제1항에 있어서,
    상기 쉘은 폴리카르복실레이트 에테르계 화합물을 더 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자.
  5. 골재; 결합재; 혼화제; 및 물;을 포함하고,
    상기 혼화제는 제1항에 따른 콘크리트 조기강도 발현용 코어-쉘 나노입자를 포함하는 것인 콘크리트 형성용 조성물.
  6. 수용성칼슘 화합물을 포함하는 제1 용액 및 수분산성 콜로이달 금속 산화물을 포함하는 제2 용액을 교반하여 코어-쉘 나노입자를 제조하는 단계;를 포함하고,
    상기 코어-쉘 나노입자는 상기 금속 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 위치하고, 칼슘을 포함하는 무기 화합물을 포함하는 쉘;을 포함하는 것이고,
    상기 금속 산화물은 준금속, 전이금속, 전이후 금속 및 란타넘족 금속으로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함하는 것인 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  7. 제6항에 있어서,
    상기 콜로이달 금속 산화물의 입자 크기(d)에 대한 상기 코어-쉘 나노입자의 입자 크기(r)의 비(d:r)는 1:1.005 내지 1:30인 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  8. 제6항에 있어서,
    상기 수용성칼슘 화합물은 칼슘 나이트레이트(Calcium nitrate), 칼슘 클로라이드(Calcium chloride), 칼슘 포메이트(Calcium formate), 칼슘 아세테이트(Calcium acetate), 칼슘 바이카보네이트(Calcium bicarbonate), 칼슘 브로마이드(Calcium bromide), 칼슘 카보네이트(Calcium carbonate), 칼슘 시트레이트(Calcium citrate), 칼슘 콜레이트(Calcium chlorate), 칼슘 플로라이드(Calcium fluoride), 칼슘 글루코네이트(Calcium gluconate), 칼슘 하이드록사이드(Calcium hydroxide), 칼슘 옥사이드(Calcium oxide), 칼슘 하이포클로라이드(Calcium hypochlorite), 칼슘 아이오다이드(Calcium iodide), 칼슘 락테이트(Calcium lactate), 칼슘 나이트라이트(Calcium nitrite), 칼슘 옥살레이트(Calcium oxalate), 칼슘 포스페이트(Calcium phosphate), 칼슘 프로피오네이트(Calcium propionate), 칼슘 실리케이트(Calcium silicate), 칼슘 스테아레이트(Calcium stearate), 칼슘 설페이트(Calcium sulfate), 칼슘 설페이트 헤미하이드레이트(Calcium sulfate hemihydrate), 칼슘 설페이트 디하이드레이트(Calcium sulfate dihydrate), 칼슘 설파이드(Calcium sulfide), 칼슘 타르타레이트(Calcium tartrate), 칼슘 알루미네이트(Calcium aluminate), 트라이칼슘 실리케이트(Tricalcium silicate), 디칼슘 실리케이트(Dicalcium silicate) 및 이들의 수화물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  9. 제6항에 있어서,
    상기 제1 용액 및 제2 용액은 각각 독립적으로 분산제, 알칼리 금속 수산화물 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  10. 제9항에 있어서,
    상기 분산제는 폴리카르복실레이트 에테르계 화합물을 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  11. 제9항에 있어서,
    상기 알칼리 금속 수산화물은 수산화나트륨(NaOH), 수산화칼륨(KOH) 및 수산화리튬(LiOH)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  12. 제9항에 있어서,
    상기 제1 용액은 분산제를 더 포함하고,
    상기 수용성칼슘 화합물 100 중량부에 대하여, 상기 분산제 50 내지 150 중량부를 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  13. 제9항에 있어서,
    상기 제2 용액은 알칼리 금속 수산화물을 더 포함하고,
    상기 수분산성 콜로이달 금속 산화물 100 중량부에 대하여, 상기 알칼리 금속 수산화물 100 내지 200 중량부를 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
  14. 제6항에 있어서,
    상기 코어-쉘 나노입자를 제조하는 단계 이후에,
    상기 코어-쉘 나노입자를 건조하는 단계;를 더 포함하는 것을 특징으로 하는 콘크리트 조기강도 발현용 코어-쉘 나노입자의 제조방법.
PCT/KR2022/013788 2021-09-15 2022-09-15 콘크리트 조기강도 발현용 코어-쉘 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법 WO2023043224A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CONC2024/0002917A CO2024002917A2 (es) 2021-09-15 2024-03-11 Nanopartícula core-shell para el desarrollo temprano de la resistencia del concreto, composición para formar el concreto, que incluye la misma, y método para producir la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210123392A KR102609689B1 (ko) 2021-09-15 2021-09-15 콘크리트 조기강도 발현용 코어-쉘 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법
KR10-2021-0123392 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023043224A1 true WO2023043224A1 (ko) 2023-03-23

Family

ID=85603218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013788 WO2023043224A1 (ko) 2021-09-15 2022-09-15 콘크리트 조기강도 발현용 코어-쉘 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR102609689B1 (ko)
CO (1) CO2024002917A2 (ko)
WO (1) WO2023043224A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385237B1 (ko) * 2013-08-27 2014-04-16 이코넥스 주식회사 실리카퓸을 이용한 나노크기의 규산칼슘 수화물 제조방법
KR20140090562A (ko) * 2011-03-05 2014-07-17 러트거즈,더스테이트유니버시티오브뉴저지 결합 요소, 이 결합 요소를 가진 결합 매트릭스 및 복합 물질, 및 이들의 제조 방법
JP2016539906A (ja) * 2013-12-10 2016-12-22 マペイ ソシエタ ペル アチオニMAPEI S.p.A. セメント系組成物用の促進混和剤
KR101913645B1 (ko) * 2018-07-20 2019-01-07 이지스 주식회사 시멘트 콘크리트용 조강혼합물의 제조방법
KR102181656B1 (ko) * 2020-01-03 2020-11-23 주식회사 삼표산업 조강 첨가제 제조 방법 및 조강성 콘크리트 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124295B (en) * 2012-10-02 2014-06-13 Teknologian Tutkimuskeskus Vtt Process for the preparation of particles coated with calcium silicate hydrate and its use
JP2021505523A (ja) 2017-12-04 2021-02-18 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. 複合材料、製造方法およびその使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090562A (ko) * 2011-03-05 2014-07-17 러트거즈,더스테이트유니버시티오브뉴저지 결합 요소, 이 결합 요소를 가진 결합 매트릭스 및 복합 물질, 및 이들의 제조 방법
KR101385237B1 (ko) * 2013-08-27 2014-04-16 이코넥스 주식회사 실리카퓸을 이용한 나노크기의 규산칼슘 수화물 제조방법
JP2016539906A (ja) * 2013-12-10 2016-12-22 マペイ ソシエタ ペル アチオニMAPEI S.p.A. セメント系組成物用の促進混和剤
KR101913645B1 (ko) * 2018-07-20 2019-01-07 이지스 주식회사 시멘트 콘크리트용 조강혼합물의 제조방법
KR102181656B1 (ko) * 2020-01-03 2020-11-23 주식회사 삼표산업 조강 첨가제 제조 방법 및 조강성 콘크리트 조성물

Also Published As

Publication number Publication date
KR20230040430A (ko) 2023-03-23
KR102609689B1 (ko) 2023-12-06
CO2024002917A2 (es) 2024-03-18

Similar Documents

Publication Publication Date Title
WO2014017710A1 (ko) 급냉 제강환원슬래그 분말을 이용한 수경성 결합재 조성물 및 그 제조방법
US4509985A (en) Early high-strength mineral polymer
WO2011087304A2 (ko) 복합 알칼리 활성화제를 포함하는 무시멘트 알칼리 활성결합재, 이를 이용한 모르타르 또는 콘크리트
US8551241B2 (en) Fly ash based lightweight cementitious composition with high compressive strength and fast set
KR102376324B1 (ko) 글리옥실산의 바이설파이트 부가물을 포함하는 건축용 화학 조성물
KR102417651B1 (ko) 모르타르 및 시멘트 조성물을 위한 수화 제어 혼합물
EP2582643B1 (en) Grinding aid
WO2018016780A1 (ko) 칼슘 화합물을 포함하는 시멘트 콘크리트용 조강혼합물 및 이의 제조방법
WO2018016781A1 (ko) 슬래그를 포함하는 시멘트 콘크리트용 조강혼합물 및 이의 제조방법
EP1362017B1 (en) Cementitious material
KR20160058122A (ko) 칼슘 설포알루미네이트 복합 결합제
CN105073681A (zh) 用作包括提取硅酸盐的双组分回填灌浆的组合物
WO2019198892A1 (ko) 석탄 바닥재를 이용한 속성 고강도 지오폴리머의 제조 방법
WO2023080428A1 (ko) 콘크리트 조기강도 발현용 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법
ITMI20092105A1 (it) Legante idraulico comprendente una loppa d&#39;altoforno macinata
EP0312323A2 (en) Cement compositions
WO2018216932A1 (ko) 발포성형체의 제조방법
KR101877528B1 (ko) 활주로 보수용 초속경 특성을 갖는 모르타르 조성물 및 이를 이용한 활주로 보수방법
WO2018079868A1 (ko) 탄소광물화 처리된 비산재 및 조강형 팽창재를 포함하는 저수축 저탄소 그린 시멘트 조성물 및 이를 적용한 콘크리트
WO2023043224A1 (ko) 콘크리트 조기강도 발현용 코어-쉘 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법
EP4253340A1 (en) Supplementary cementitious materials from recycled cement paste
WO2020209504A1 (ko) 석고보드용 혼화제, 석고보드 형성용 조성물 및 이를 이용한 석고보드
JPH01172252A (ja) 早強ポルトランドセメントの製造方法
JP5193651B2 (ja) セメント組成物の調整方法、及びモルタル又はコンクリートの製造方法
JP2013053069A (ja) セメント組成物、それを用いたモルタル又はコンクリート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE