WO2023042860A1 - 電圧測定装置及び組電池システム - Google Patents

電圧測定装置及び組電池システム Download PDF

Info

Publication number
WO2023042860A1
WO2023042860A1 PCT/JP2022/034446 JP2022034446W WO2023042860A1 WO 2023042860 A1 WO2023042860 A1 WO 2023042860A1 JP 2022034446 W JP2022034446 W JP 2022034446W WO 2023042860 A1 WO2023042860 A1 WO 2023042860A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery cells
capacitors
battery
battery cell
Prior art date
Application number
PCT/JP2022/034446
Other languages
English (en)
French (fr)
Inventor
尚久 羽谷
俊明 尾関
悟朗 森
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to JP2023548488A priority Critical patent/JPWO2023042860A1/ja
Priority to CN202280061559.8A priority patent/CN117940779A/zh
Publication of WO2023042860A1 publication Critical patent/WO2023042860A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a voltage measuring device and an assembled battery system.
  • Patent Literature 1 discloses a device in which a voltage detection terminal is provided with an RC filter and a node of a capacitor on the opposite side of the voltage detection terminal is connected to GND.
  • the capacitors connected to the upper battery cells of the assembled battery have a voltage between the total voltage corresponding to the number of battery cells and GND. potential difference is generated, there is a problem that a high withstand voltage characteristic is required.
  • the present disclosure provides a voltage measuring device and an assembled battery system capable of lowering the withstand voltage characteristics required for capacitors connected to battery cells.
  • a voltage measurement device is a voltage measurement that independently detects the voltage of each of the plurality of battery cells in an assembled battery in which n (n is an integer equal to or greater than 2) battery cells are connected in series.
  • a device comprising: a positive electrode of the highest battery cell among the plurality of battery cells, a negative electrode of the lowest battery cell among the plurality of battery cells, and a contact between the battery cells of the plurality of battery cells. (n+1) first resistor elements to which first terminals are connected respectively, and (n+1) first terminals to which second terminals of the (n+1) first resistor elements are connected and a voltage measuring unit connected to a second terminal of each of the (n+1) first resistor elements, two of the (n+1) first capacitors.
  • the second terminal of the first capacitor is connected to the positive electrode of the k-th battery cell (k is an integer from 1 to n ⁇ 1) among the plurality of battery cells.
  • An assembled battery system includes the voltage measuring device described above and an assembled battery in which n (n is an integer equal to or greater than 2) battery cells are connected in series.
  • FIG. 1 is a block diagram showing the configuration of an assembled battery system according to Embodiment 1.
  • FIG. 2 is a block diagram showing a configuration of an assembled battery system according to a modification of Embodiment 1.
  • FIG. 3 is a block diagram showing the configuration of an assembled battery system according to Embodiment 2.
  • FIG. 4 is a block diagram showing a configuration of an assembled battery system according to Modification 1 of Embodiment 2.
  • FIG. 5 is a block diagram showing the configuration of an assembled battery system according to Modification 2 of Embodiment 2. As shown in FIG.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code
  • ordinal numbers such as “first” and “second” do not mean the number or order of constituent elements unless otherwise specified, so as to avoid confusion between constituent elements of the same kind and to distinguish between them. It is used for the purpose of
  • the assembled battery system 1 includes an assembled battery 200 and a voltage measuring device 100 .
  • the assembled battery system 1 measures the voltages of the plurality of battery cells B1 to Bn included in the assembled battery 200 in order to manage the state of the battery system in the battery management system that manages the state of the battery system including one or more assembled batteries 200. do.
  • the assembled battery system 1 may be one component of a battery management system.
  • n is a positive integer (eg, an integer of 2 or more (that is, a natural number of 2 or more)), and k is an integer of 1 or more and n ⁇ 1 or less.
  • Both ends of each of the plurality of battery cells B1 and the like are connected to the voltage measurement unit 30 via two voltage detection lines out of the plurality of voltage detection lines L1 to Ln+1.
  • the number of the plurality of battery cells B1 to Bn included in the assembled battery 200 and the voltage of each of the plurality of battery cells B1 to Bn are not particularly limited.
  • Each of the plurality of battery cells B1 to Bn may be battery cells of the same standard, for example.
  • the assembled battery 200 is an object to be measured by the voltage measuring device 100 .
  • the plurality of battery cells B1 to Bn are also referred to as the plurality of battery cells B1 and the like. Moreover, when referring to any one battery cell, it may be simply referred to as a battery cell and may not be numbered.
  • the battery cell Bn is the battery cell arranged on the highest potential side among the plurality of battery cells B1 and the like, and is the highest battery cell among the plurality of battery cells B1 and the like.
  • the battery cell B1 is the battery cell arranged on the lowest potential side among the plurality of battery cells B1 and the like, and is the lowest battery cell among the plurality of battery cells B1 and the like.
  • the voltage measuring device 100 measures the voltage of the assembled battery 200 .
  • the voltage measuring device 100 independently detects voltages of the plurality of battery cells B1 and the like included in the assembled battery 200 .
  • the voltage measuring device 100 is configured to be able to individually measure the voltages of a plurality of battery cells B1 and the like. This makes it possible to measure the voltage even when the voltage is too high to directly measure the voltage of the entire assembled battery 200, and it is also possible to determine the operation of each of the plurality of battery cells B1 and the like. Become.
  • the voltage measurement device 100 sequentially measures voltages of a plurality of battery cells B1 and the like.
  • the voltage measurement device 100 includes a plurality of voltage detection lines L1 to Ln+1, a resistor group 10, a capacitor group 20, a wire Lb1, and a voltage measurement section 30. Also, the resistor group 10 and the capacitor group 20 constitute a filter circuit.
  • the plurality of voltage detection lines L1 to Ln+1 include voltage detection lines L1, L2, L3, Lk-1, Lk, Lk+1, Lk+2, Ln-1, Ln and Ln+1, and detect voltages of the plurality of battery cells B1 and the like. Wiring for measurement.
  • the plurality of voltage detection lines L1 to Ln+1 are composed of nodes arranged between the battery cells and outside the battery cells at both ends (black circles in the dashed frame indicating the assembled battery 200 in FIG. 1), and the voltage measurement unit 30. Connect between the input terminals S1 to Sn+1.
  • the voltage detection lines Ln+1 and Ln are provided to measure the voltage of the battery cell Bn, the voltage detection line Ln+1 connects the positive electrode of the battery cell Bn and the input terminal Sn+1, and the voltage detection line Ln connects the battery cell Bn. is connected to the input terminal Sn.
  • the voltage detection lines Ln and Ln-1 are provided for measuring the voltage of the battery cell Bn-1, the voltage detection line Ln connects the positive electrode of the battery cell Bn-1 and the input terminal Sn, A voltage detection line Ln-1 connects the negative electrode of the battery cell Bn-1 and the input terminal Sn-1.
  • the voltage detection line Ln is wiring common to the negative electrode of the battery cell Bn and the positive electrode of the battery cell Bn-1.
  • Each of the voltage detection lines L2 to Ln is wiring common to adjacent battery cells.
  • the plurality of voltage detection lines L1 to Ln+1 are provided by the number of the plurality of battery cells B1, etc.+1. Also, hereinafter, the plurality of voltage detection lines L1 to Ln+1 will also be referred to as the plurality of voltage detection lines L1 and the like. Also, when referring to any one voltage detection line, it may simply be referred to as a voltage detection line and may not be numbered.
  • the voltage of each battery cell such as the plurality of battery cells B1 is input to the voltage measurement section 30 via the plurality of voltage detection lines L1 and the like and the filter circuit.
  • the resistor group 10 has a plurality of resistor elements R1 to Rn+1 including resistor elements R1, R2, R3, Rk-1, Rk, Rk+1, Rk+2, Rn-1, Rn and Rn+1.
  • Each of the plurality of resistance elements R1 to Rn+1 is arranged on each of the plurality of voltage detection lines L1 to Ln+1. That is, one resistance element is arranged for one voltage detection line.
  • a resistive element is realized, for example, by a resistor having a desired resistance value.
  • Each of the plurality of resistance elements R1 to Rn+1 has a first terminal connected to the positive electrode of the highest battery cell Bn, the negative electrode of the lowest battery cell B1, and a contact (node) between the battery cells.
  • a second terminal is connected to the voltage measuring section 30 .
  • the plurality of resistance elements R1 to Rn+1 will also be referred to as the plurality of resistance elements R1 and the like.
  • the resistive element is an example of a first resistive element
  • the plurality of resistive elements R1 to Rn+1 is an example of (n+1) first resistive elements.
  • the capacitor group 20 has a plurality of capacitors C1 to Cn+1 including capacitors C1, C2, C3, Ck-1, Ck, Ck+1, Ck+2, Cn-1, Cn and Cn+1.
  • Each of the plurality of capacitors C1 to Cn+1 has, for example, similar breakdown voltage characteristics.
  • a first terminal (first electrode) of each of the plurality of capacitors C1 to Cn+1 is connected to a second terminal of each of the plurality of resistance elements R1 to Rn+1. That is, the second terminal of one resistance element is connected to the first terminal of one capacitor.
  • Second terminals (second electrodes) of the plurality of capacitors C1 to Cn+1 are connected to each other by wiring Lc and have the same potential.
  • the wiring Lc may connect the second terminal of each of two or more capacitors including the capacitor Cn+1 among the plurality of capacitors C1 to Cn+1 to the wiring Lb1.
  • the wiring Lc is not connected to a DC (Direct Current) stable node such as GND (ground) or the power source of the voltage measurement unit 30 .
  • the plurality of capacitors C1 to Cn+1 will also be referred to as the plurality of capacitors C1 and the like. Also, when referring to any one capacitor, it may simply be described as a capacitor and may not be given a symbol.
  • the capacitors are examples of first capacitors, and capacitors C1 to Cn+1 are examples of (n+1) first capacitors.
  • the filter circuit is a circuit for removing ripples (noise) contained in the DC voltage. As shown in the resistor group 10 and the capacitor group 20, the filter circuit is composed of n+1 RC filters connected to each of the plurality of voltage detection lines L1 to Ln+1. The filter circuit can remove ripples contained in the DC voltages input to the voltage measurement unit 30 from each of the plurality of voltage detection lines L1 to Ln+1.
  • the wiring Lb1 is a wiring for connecting the positive electrode of the battery cell Bk and the wiring Lc.
  • the line Lb1 connects the node between the battery cells Bk and Bk-1 and the line Lc. That is, the voltage measuring device 100 sets the second terminal of each of the plurality of capacitors C1, etc., to the intermediate potential in the assembled battery 200 instead of GND (in the example of FIG. 1, the total voltage of the battery cells B1 to Bk). . It can also be said that the second terminal of each of the plurality of capacitors C1 and the like is grounded to the intermediate potential.
  • the intermediate potential is a voltage higher than the voltage of the battery cell B1 and lower than the total potential of the battery cells B1 to Bn-1. Note that the wiring Lb1 is not connected to the voltage measurement unit 30.
  • the second terminal of each of the plurality of capacitors C1, etc., and the positive electrode of the k-th battery cell Bk among the plurality of battery cells B1, etc. are connected by the wiring Lb1.
  • the potential difference generated in the capacitor Cn+1 is the sum of the first total voltage (the voltage at the first terminal of the capacitor Cn+1), which is the sum of the voltages of the battery cells B1 to Bn, and the sum of the voltages of the battery cells B1 to Bk. is the difference voltage from the second total voltage (the voltage at the second terminal of the capacitor Cn+1). That is, the potential difference generated in the capacitor Cn+1 is the third total voltage, which is the sum of the voltages of the battery cells Bk+1 to Bn.
  • the potential difference generated in the capacitor C1 is the voltage on the negative electrode side of the battery cell B1 (the voltage at the first terminal of the capacitor C1) and the total voltage of the battery cells B1 to Bk (the second voltage of the capacitor C1). terminal voltage).
  • the potential difference generated across the capacitor C1 is the second total voltage, which is the sum of the voltages of the battery cells B1 to Bk.
  • the potential difference generated in the capacitor Ck+1 is zero.
  • the battery cell Bk is preferably the battery cell arranged in the center of the assembled battery 200 from the viewpoint of lowering the withstand voltage characteristics required for the capacitors connected to the battery cells.
  • the line Lb1 may be connected so as to connect the node between the two battery cells connected in series with the line Lc.
  • the second terminals of two or more capacitors among the plurality of capacitors C1 and the like and the positive electrode of the k-th battery cell Bk among the plurality of battery cells B1 and the like are connected by the wiring Lb1. It should be connected.
  • the value of k is not limited to the above.
  • the predetermined range is, for example, the voltage of several battery cells, but is not limited to this.
  • the voltage measurement unit 30 is a device that detects the voltage of each of the plurality of battery cells B1 and the like.
  • the voltage measurement unit 30 is configured including, for example, an IC (Integrated Circuit).
  • the voltage measurement unit 30 has a switch unit 31 and an AD converter (ADC: Analog to Digital Converter) 32 .
  • the voltage measurement unit 30 has a plurality of input terminals including input terminals S1, S2, S3, Sk-1, Sk, Sk+1, Sk+2, Sn-1, Sn and Sn+1 to which the plurality of voltage detection lines L1 and the like are respectively connected. It has terminals S1 to Sn+1.
  • the voltage measurement section 30 may have a control section or the like for storing each cell voltage converted into digital data.
  • the switch unit 31 is realized by, for example, a multiplexer having a plurality of switches.
  • a switch is provided for each of the plurality of input terminals S1 to Sn+1.
  • a relay for example, a photo MOS relay or the like is used as the switch, but it is not limited to this.
  • the switch unit 31 sequentially selects the voltages of the plurality of battery cells B1 and the like in the assembled battery 200 periodically and outputs them to the AD converter 32 .
  • the switch unit 31 is controlled to turn on and off a plurality of switches so as to measure the voltage of each battery cell.
  • the AD converter 32 converts the voltage (analog value) output from the switch section 31 into a digital value and outputs it to a processing section such as a control section.
  • the voltage measurement unit 30 operates by receiving power supply from the outside.
  • the voltage measurement unit 30 may be connected to the positive electrode of the battery cell Bn via the wiring Lp1, for example, and may be supplied with power.
  • the voltage measurement unit 30 is connected to a DC stable node through a wiring Lp2, and in the example of FIG. 1, is connected to the negative electrode of the lowest battery cell B1.
  • the DC-stable node may be, for example, GND (for example, the GND of the board on which the voltage measurement unit 30 is mounted).
  • the voltage measuring device 100 measures each of the plurality of battery cells B1 and the like in the assembled battery 200 in which n (n is an integer equal to or greater than 2) battery cells B1 and the like are connected in series. It is a voltage measuring device that detects voltage independently.
  • the voltage measurement device 100 measures the positive electrode of the highest battery cell Bn among the plurality of battery cells B1 and the like, the negative electrode of the lowest battery cell B1 among the plurality of battery cells B1 and the like, and the battery cells B1 and the like.
  • a plurality of resistive elements R1 (an example of (n+1) first resistive elements) each having a first terminal connected to a contact between cells, and a second terminal of each of the resistive elements R1, etc.
  • a plurality of capacitors C1 and the like (an example of (n+1) first capacitors) to which the first terminals are connected, and a voltage measuring unit 30 connected to the second terminals of the plurality of resistor elements R1 and the like are connected.
  • the second terminals of two or more capacitors among the plurality of capacitors C1 and the like are connected to the positive electrodes of the k-th (k is an integer of 1 or more and n ⁇ 1 or less) battery cells Bk among the plurality of battery cells B1 or the like. connected to
  • the second terminal of the capacitor Cn+1 connected to the highest battery cell Bn can be set to the total voltage of the battery cells B1 to Bk, for example. That is, the potential difference generated in the capacitor Cn+1 can be made smaller than when the second terminal of the capacitor Cn+1 is connected to GND or the like. Therefore, the voltage measuring device 100 can lower the withstand voltage characteristics required for the capacitors connected to the battery cells. This contributes to a reduction in component costs in voltage measuring device 100 .
  • the second terminals of the (n+1) plurality of capacitors C1 and the like are connected to the positive electrode of the k-th battery cell Bk.
  • the voltage measuring device 100 can provide a wiring (for example, a wiring Lc) for setting the second terminals of the capacitors C1 and the like to the same potential.
  • a wiring for example, a wiring Lc
  • the required withstand voltage characteristics can be lowered.
  • the k-th battery cell Bk is the n/2th battery cell such as the plurality of battery cells B1.
  • the voltage measuring device 100 can further lower the withstand voltage characteristics required for the capacitors connected to the battery cells.
  • the assembled battery system 1 includes the above-described voltage measuring device 100 and n (n is an integer equal to or greater than 2) battery cells B1 or the like connected in series. and a battery 200 .
  • FIG. 2 is a block diagram showing the configuration of an assembled battery system 1a according to this modification.
  • the reference numerals of the voltage detection lines and input terminals are omitted in order to avoid complication.
  • a voltage measuring device 100a according to this modification differs from the voltage measuring device 100 according to the first embodiment in that it includes a resistive element 11 and a capacitor 21 (that is, an RC filter).
  • the resistance element 11 (RCM in FIG. 2) is arranged on the wiring Lb1.
  • the resistance element 11 is arranged between the first terminal of the resistance element Rk+1 and the wiring Lc.
  • the resistive element 11 is realized by a resistor having a desired resistance value, for example.
  • the resistance element 11 is an example of a second resistance element.
  • the capacitor 21 (CCM in FIG. 2) is arranged on the wiring Lc.
  • a first terminal (first electrode) of the capacitor 21 is connected to a second terminal of each of the plurality of capacitors C1 and the like via a wiring Lc. That is, the first terminal of the capacitor 21 is supplied with the intermediate potential in the assembled battery 200 (the total voltage of the battery cells B1 to Bk in the example of FIG. 2).
  • a second terminal (second electrode) of the capacitor 21 is connected to the negative electrode (line Lp2) of the battery cell B1. Note that the second terminal of the capacitor 21 may be connected to a DC stable node.
  • Capacitor 21 is an example of a second capacitor.
  • the resistor element 11 and the capacitor 21 arranged in this way function as an RC filter.
  • the connection position of the capacitor 21 is not limited to the position shown in FIG. 2, and may be connected to any battery cell terminal.
  • the second terminals of two or more capacitors among the plurality of capacitors C1 and the like and the positive electrode of the k-th battery cell Bk among the plurality of battery cells B1 and the like are connected by the wiring Lb1. It should be connected. That is, the voltage measuring device 100a includes a resistor element 11 connected between the second terminal of each of two or more capacitors C1 and the like and the positive electrode of the k-th battery cell Bk; A capacitor 21 connected to the second terminal of each of more than one capacitor may be provided.
  • the voltage measuring device 100a includes a resistive element connected between the second terminal of each of the two or more first capacitors and the positive electrode of the k-th battery cell Bk. 11 (an example of a second resistor element), and a capacitor 21 (an example of a second capacitor) connected to the second terminals of each of the two or more first capacitors.
  • the resistance element 11 and the capacitor 21 function as an RC filter, so that the voltage measuring device 100a can remove ripples contained in the DC voltage input to the line Lc through the line Lb1. That is, the voltage measuring device 100a can suppress fluctuations in the voltages of the second terminals of the plurality of capacitors C1 and the like due to noise contained in the DC voltage. Further, since the intermediate potential of the assembled battery 200 is supplied to the first terminal of the capacitor 21, the potential difference generated in the capacitor Cn+1 is the same as in the first embodiment. In other words, the voltage measuring device 100a can remove the influence of noise while maintaining the effect of lowering the withstand voltage characteristics required for the capacitors connected to the battery cells.
  • FIG. 3 is a block diagram showing the configuration of an assembled battery system 1b according to this embodiment.
  • a voltage measuring device 100b according to the present embodiment differs from the voltage measuring device 100 according to the first embodiment in that the filter circuit is realized by two circuits, a first filter circuit and a second filter circuit. .
  • the first filter circuit is a circuit for measuring the voltage of each of the battery cells B1 to Bm (m is an integer greater than or equal to 1 and less than k), and has a first resistor group 10a and a first capacitor group 20a.
  • the first filter circuit has m+1 RC filters.
  • Second terminals of the capacitors C1 to Cm+1 are connected by a wiring Lc1. That is, the second terminals of the capacitors C1 to Cm+1 connected to the m-th battery cells among the plurality of battery cells B1 and the like are connected. As a result, the second terminals of the capacitors C1 to Cm+1 have the same potential.
  • the wiring Lc1 is connected to GND (for example, the GND of the board on which the voltage measuring section 30 is mounted), so the second terminals of the capacitors C1 to Cm+1 are at 0V.
  • n is a positive integer (eg, an integer of 3 or more), and k is an integer of 2 or more and n-1 or less.
  • the second filter circuit is a circuit for measuring the voltage of each of the battery cells Bm+1 to Bn, and has a second resistor group 10b and a second capacitor group 20b.
  • the second filter circuit has n+1-m RC filters.
  • Second terminals of the capacitors Cm+2 to Cn+1 and 22 are connected by a wiring Lc2. That is, each of the second terminals of the capacitors Cm+2 to Cn+1 and 22 connected to the m+1-th to n-th battery cells including the k-th battery cell Bk among the plurality of battery cells B1 and the like is connected It is It can also be said that the second terminals of the plurality of capacitors C1 and the like are divided into two sets each having two or more second terminals connected to each other. In the example of FIG. 3, the capacitors C1 to Cm+1 form one set, and the capacitors Cm+2 to Cn+1 and 22 form one set.
  • the second terminals of the capacitors Cm+2 to Cn+1 and 22 are at the same potential.
  • the wiring Lc2 is connected to GND (for example, the GND of the board on which the voltage measurement unit 30 is mounted), so the second terminals of the capacitors Cm+2 to Cn+1 and 22 are connected to the battery cells Bm+1 to Bk is the total voltage of each. In this case, the potential difference generated across the capacitor Ck+1 is zero.
  • Capacitors Cm+2 to Cn+1 are examples of two or more first capacitors.
  • the wirings Lc1 and Lc2 may be connected to a common DC-stable node (eg, common GND) or may be connected to different DC-stable nodes (eg, different GNDs). good too.
  • a common DC-stable node eg, common GND
  • different DC-stable nodes eg, different GNDs
  • a wiring Lb2 is provided to connect the node between the battery cells Bm and Bm+1 and the input terminal Ssplit of the voltage measurement unit 30 .
  • the voltage measuring device 100b also includes a resistance element 12 (Rsplit shown in FIG. 3) arranged on the wiring Lb2 and a capacitor 22 (Csplit shown in FIG. 3), which constitute an RC filter.
  • a resistance element 12 Rsplit shown in FIG. 3
  • a capacitor 22 Csplit shown in FIG. 3
  • the resistance element 12 has a first terminal connected to the positive electrode of the m-th battery cell Bm, and a second terminal connected to the voltage measuring section 30 .
  • the resistive element 12 is implemented by, for example, a resistor having a desired resistance value.
  • the resistance element 12 is an example of a third resistance element.
  • the capacitor 22 has a first terminal (first electrode) connected to the second terminal of the resistance element 12 , and a second terminal (second electrode) connected to the first terminal (first electrode) of the capacitor 21 . ) is connected. A second terminal of the capacitor 22 is connected to the positive terminal of the kth battery cell.
  • Capacitor 22 is an example of a third capacitor.
  • n+2 RC filters are provided.
  • the potential difference generated in the capacitor Cn+1 is the sum of the fourth total voltage (the voltage at the first terminal of the capacitor Cn+1), which is the sum of the voltages of the battery cells Bm+1 to Bn, and the sum of the voltages of the battery cells Bm+1 to Bk. is the differential voltage from the fifth total voltage (the voltage at the second terminal of the capacitor Cn+1).
  • the potential difference generated in the capacitor Cn+1 is the sixth total voltage, which is the sum of the voltages of the battery cells Bk+1 to Bn.
  • the potential difference generated in the capacitor Cm+1 is the voltage difference between GND and the total voltage of the battery cells B1 to Bm (the voltage at the second terminal of the capacitor Cm+1).
  • the potential difference generated in the capacitor Cm+1 becomes the seventh total voltage, which is the sum of the voltages of the battery cells B1 to Bm.
  • the potential difference generated in the capacitor 22 is the voltage difference between the negative electrode of the battery cell Bm+1 and the total voltage of the battery cells Bm+1 to Bk (the voltage at the second terminal of the capacitor 22). That is, the potential difference generated in the capacitor 22 is the eighth total voltage, which is the sum of the voltages of the battery cells Bm+1 to Bk.
  • the battery cell Bm is the n/3th battery cell from the low potential side among the plurality of battery cells B1 and the like. It is preferable that the battery cell Bk is the 2n/3th battery cell from the low potential side among the plurality of battery cells B1 and the like.
  • n / 3th means n / 3th when n is a multiple of 3, and when n is other than a multiple of 3, ((n-1) or (n + 1)) / 3 means eyes.
  • the number of battery cells B1 to Bm, the number of battery cells Bm+1 to Bk, and the number of battery cells Bk+1 to Bn may be the same or the difference between the numbers may be 1 or less.
  • the values of m and k are not limited to the above.
  • the maximum potential difference generated in any one of the capacitors Cm+2 to Ck+1 and 22 connected to the cells Bm+1 to Bk (for example, the potential difference generated in the capacitor C22) and any of the capacitors Ck+1 to Cn+1 connected to the battery cells Bk+1 to Bn
  • the maximum potential difference (for example, the potential difference occurring in the capacitor Cn+1) that occurs in the above may be determined to match or be within a predetermined range.
  • the predetermined range is, for example, the voltage of several battery cells, but is not limited to this.
  • the first filter circuit is also provided with a wiring Lb1 so as to connect one of the voltage detection lines L2 to Lm to the wiring Lc1, and the resistance element 11 and the capacitor 21 are provided so as to form an RC filter.
  • the wiring Lc1 may not be provided in the second filter circuit.
  • the second terminals of the capacitors C1 to Cm+1 connected to the battery cells B1 to Bm are not limited to being connected to each other. It is sufficient if they are connected to each other.
  • the second terminals of the capacitors C1 to Cm+1 connected to the battery cells B1 to Bm are divided into s (where s is an integer equal to or greater than 2) sets each having two or more second terminals connected to each other. may have been
  • each of the s-tuples is connected to a DC-stable node such as GND.
  • a wiring (for example, 3) may be provided.
  • the voltage measurement device 100b When measuring the voltage of the (m+1)-th battery cell Bm+1, the voltage measurement device 100b measures the voltage between the second terminal of the m+2-th resistance element Rm+2 and the second terminal of the resistance element 12. to measure. That is, the voltage measuring device 100b does not use the m+1-th resistance element Rm+1 when measuring the voltage of the (m+1)-th battery cell Bm+1. Voltage measuring device 100b measures the voltage of the battery cell using the second terminal of the resistive element connected through capacitor 21 to a common DC stable node.
  • the voltage measurement device 100b turns off the m+1-th first switch, and turns off the m+1-th second switch and the m+2-th switch. Turn ON.
  • the m+1-th first switch is a switch to which the resistance element Rm+1 is connected via the input terminal Sm+1
  • the m+1-th second switch is connected to the resistance element 12 via the input terminal Ssplit.
  • the m+2th switch is a switch to which the resistance element Rm+2 is connected through the input terminal Sm+2.
  • the first terminal is connected to the positive electrode of the m-th battery cell Bm (m is an integer equal to or greater than 1 and less than k) among the plurality of battery cells B1 and the like. and a capacitor 22 (an example of a third capacitor) whose first terminal is connected to the second terminal of the resistor 12 .
  • a second terminal of the resistance element 12 is connected to the voltage measuring unit 30, a second terminal of the capacitor 22 is connected to the positive electrode of the k-th battery cell Bk, and among the plurality of battery cells B1 and the like,
  • the second terminals of two or more capacitors C1 to Cm+1 among the capacitors C1 to Cm+1 connected to the m-th battery cells B1 to Bm are connected to each other, and the plurality of capacitors C1, etc.
  • the two or more capacitors among the first capacitors in are connected to the (m+1)th to nth battery cells including the kth battery cell Bk among the plurality of battery cells B1, etc. and capacitors Cm+2 to Cn+1.
  • the maximum value of the potential difference generated in the capacitor will be one of the sixth total voltage, the seventh total voltage, and the eighth total voltage.
  • each of the sixth total voltage, the seventh total voltage, and the eighth total voltage is applied to the highest battery cell Bn when each of the plurality of capacitors C1 and the like is connected to GND. It can be less than half the potential difference developed across the connected capacitors. Therefore, the voltage measuring device 100b can further reduce the withstand voltage characteristics required for the capacitors connected to the battery cells. This contributes to further reducing the cost of parts in the voltage measuring device 100b.
  • the voltage measurement device 100b measures the second voltage of the m+2-th resistance element Rm+2 (an example of the first resistance element) among the plurality of resistance elements R1 and the like. terminal and the second terminal of the resistive element 12 is measured.
  • the voltage of the battery cell Bm+1 can be measured more accurately because the voltage can be measured using the second terminal of the resistive element to which the capacitor having the same potential as the second terminal is connected. can be done.
  • the second terminals of the capacitors C1 to Cm+1 connected to the battery cells B1 to Bm are connected to each other, and the m-th battery cell Bm is n/3 of the plurality of battery cells B1 and the like.
  • the k-th battery cell Bk is the 2n/3th battery cell among the plurality of battery cells B1 and the like.
  • the maximum value of the potential difference generated in the capacitor is 1 ⁇ 3 of the potential difference generated in the capacitor connected to the highest battery cell Bn when each of the plurality of capacitors C1 and the like is connected to GND. can do. That is, the withstand voltage of the capacitor can be reduced to about 1/3. Therefore, the voltage measuring device 100b can further reduce the withstand voltage characteristics required for the capacitors connected to the battery cells. This contributes to a further reduction in component costs in the voltage measuring device 100b.
  • the second terminals of the capacitors C1 to Cm connected to the battery cells B1 to Bm are divided into s (s is an integer equal to or greater than 2) groups in which two or more second terminals are connected to each other.
  • the s sets include those in which the second terminals of two or more of the capacitors C1 to Cm+1 connected to the battery cells B1 to Bm are connected to each other.
  • the withstand voltage characteristics required for the capacitors connected to the battery cells can be further lowered.
  • FIG. 4 is a block diagram showing the configuration of an assembled battery system 1c according to this modification. In addition, below, it demonstrates centering around difference with Embodiment 2, and abbreviate
  • FIG. A voltage measuring device 100c according to this modification differs from the voltage measuring unit 30 of the voltage measuring device 100b according to the second embodiment in the configuration of the voltage measuring unit 30c.
  • the voltage measurement section 30c has a first switch section 31c1, a second switch section 31c2, a third switch section 31c3, and a plurality of AD converters 32.
  • Each of the first switch section 31c1, the second switch section 31c2 and the third switch section 31c3 is implemented by, for example, a multiplexer having a plurality of switches.
  • the first switch section 31c1 is a switch section for measuring the voltages of the battery cells Bk+1 to Bn
  • the second switch section 31c2 is a switch section for measuring the voltages of the battery cells Bm+1 to Bk-1.
  • a third switch section 31c3 is a switch section for measuring the voltages of the battery cells B1 to Bm.
  • the AD converter 32 is connected to each of the first switch section 31c1, the second switch section 31c2, and the third switch section 31c3.
  • the number of switch units and the number of AD converters are not limited to the numbers shown in FIG. 4, and are not particularly limited as long as they are two or more. In addition, it is possible to arbitrarily set which battery cell is measured by which set of switch section and AD converter.
  • two or more multiplexers and two or more AD converters are used to measure the voltages of a plurality of battery cells B1 and the like.
  • FIG. 5 is a block diagram showing the configuration of an assembled battery system 1d according to this modification. In addition, below, it demonstrates centering around difference with Embodiment 2, and abbreviate
  • FIG. A voltage measuring device 100d according to this modification differs from the voltage measuring unit 30 of the voltage measuring device 100b according to the second embodiment in the configuration of a voltage measuring unit 30d.
  • the voltage measurement section 30d has a plurality of AD converters 32.
  • the battery cells and AD converters 32 are provided in one-to-one correspondence. That is, n AD converters 32 (the same number as the battery cells) are provided.
  • One ADC 32 is arranged for the input terminals Sm+2 and Ssplit.
  • the voltage between the second terminal of the m+1-th resistor element Rm+1 and the second terminal of the m-th resistor element Rm is measured.
  • One ADC 32 is arranged for the input terminals Sm+1 and Sm.
  • the voltage measurement section 30d does not have a switch section (for example, a multiplexer).
  • the voltage measurement section 30d can realize its function without having a switch section, so that the configuration of the voltage measurement section 30d can be simplified. This can contribute to cost reduction of the voltage measuring device 100d.
  • one assembled battery system is used, but at least one of the positive electrode of the highest battery cell and the negative electrode of the lowest battery cell is used in another assembled battery system. It may be connected to a battery cell. Also, the negative electrode of the lowest battery cell may be connected to GND.
  • each component of the voltage measuring device described in the above embodiments and the like may be realized as software, or typically as an LSI, which is an integrated circuit. These may be made into one chip individually, or may be made into one chip so as to include part or all of them. Although LSI is used here, it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration. Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit (general-purpose circuit that executes a dedicated program) or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connections or settings of the circuit cells inside the LSI may be used. Furthermore, if an integrated circuit technology that replaces the LSI appears due to advances in semiconductor technology or another derived technology, the components may naturally be integrated using that technology.
  • the present disclosure is useful, for example, as an in-vehicle voltage measuring device and assembled battery system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

電圧測定装置(100)は、複数の電池セル(B1等)がn(2以上の整数)個直列に接続された組電池(200)の複数の電池セル(B1等)それぞれの電圧を独立に検出する電圧測定装置(100)であって、複数の電池セル(B1等)のうち最上位の電池セル(Bn)の正極と、複数の電池セル(B1等)のうち最下位の電池セル(B1)の負極と、複数の電池セル(B1等)の電池セル間の接点とにそれぞれ第1の端子が接続されるn+1個の抵抗素子(R1等)と、n+1個の抵抗素子(R1等)それぞれの第2の端子に第1の端子が接続されるn+1個のコンデンサ(C1等)と、n+1個の抵抗素子(B1等)それぞれの第2の端子に接続される電圧測定部(30)とを備える。そして、n+1個のコンデンサ(C1等)のうち2個以上のコンデンサの第2の端子は、複数の電池セル(B1等)のうちk(kは1以上n-1以下の整数)個目の電池セルの正極に接続される。

Description

電圧測定装置及び組電池システム
 本開示は、電圧測定装置及び組電池システムに関する。
 電気自動車、ハイブリッド自動車等のモータ駆動等に用いられる大容量で高出力なバッテリーとして、多数の電池セルが直列に接続された組電池が用いられている。組電池では、安全にかつ長寿命に使用するために、組電池の各電池セル(又は各電池モジュール)の電圧を常時監視する必要があり、各電池セルの電圧を測定するための装置の検討が行われている。例えば、特許文献1には、電圧検出端子にRCフィルタを備え、コンデンサの電圧検出端子と逆側のノードをGNDに接続する装置が開示されている。
特開2011-185941号公報
 しかしながら、特許文献1に開示されている装置では、組電池の上位の電池セル(例えば、特許文献1の電池モジュールE1)に接続されるコンデンサには電池セル数分の総電圧とGNDとの間の電位差が発生するため、高耐圧特性が要求されるという課題がある。
 そこで、本開示は、電池セルに接続されるコンデンサに要求される耐圧特性を下げることができる電圧測定装置及び組電池システムを提供する。
 本開示の一態様に係る電圧測定装置は、複数の電池セルがn(nは2以上の整数)個直列に接続された組電池における前記複数の電池セルそれぞれの電圧を独立に検出する電圧測定装置であって、前記複数の電池セルのうち最上位の電池セルの正極と、前記複数の電池セルのうち最下位の電池セルの負極と、前記複数の電池セルの電池セル間の接点とにそれぞれ第1の端子が接続される(n+1)個の第1の抵抗素子と、前記(n+1)個の第1の抵抗素子それぞれの第2の端子に第1の端子が接続される(n+1)個の第1のコンデンサと、前記(n+1)個の第1の抵抗素子それぞれの第2の端子に接続される電圧測定部とを備え、前記(n+1)個の第1のコンデンサのうち2個以上の第1のコンデンサの第2の端子は、前記複数の電池セルのうちk(kは1以上n-1以下の整数)個目の電池セルの正極に接続される。
 本開示の一態様に係る組電池システムは、上記の電圧測定装置と、複数の電池セルがn(nは2以上の整数)個直列に接続された組電池とを備える。
 本開示の一態様によれば、電池セルに接続されるコンデンサに要求される耐圧特性を下げることができる電圧測定装置等を実現することができる。
図1は、実施の形態1に係る組電池システムの構成を示すブロック図である。 図2は、実施の形態1の変形例に係る組電池システムの構成を示すブロック図である。 図3は、実施の形態2に係る組電池システムの構成を示すブロック図である。 図4は、実施の形態2の変形例1に係る組電池システムの構成を示すブロック図である。 図5は、実施の形態2の変形例2に係る組電池システムの構成を示すブロック図である。
 以下、各実施の形態等について、図面を参照しながら具体的に説明する。
 なお、以下で説明する各実施の形態等は、いずれも包括的又は具体的な例を示すものである。以下の各実施の形態等で示される数値、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本開示を限定する主旨ではない。また、以下の各実施の形態等における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、一致等の要素間の関係性を示す用語、並びに、数値、及び、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度(例えば、10%程度)の差異をも含むことを意味する表現である。
 また、本明細書において、「第1」、「第2」などの序数詞は、特に断りの無い限り、構成要素の数又は順序を意味するものではなく、同種の構成要素の混同を避け、区別する目的で用いられている。
 (実施の形態1)
 [1-1.組電池システムの構成]
 本実施の形態に係る電圧測定装置及び組電池システムについて、図1を参照しながら説明する。図1に示すように、組電池システム1は、組電池200と、電圧測定装置100とを備える。組電池システム1は、1以上の組電池200を備えるバッテリシステムの状態を管理するバッテリマネジメントシステムにおけるバッテリシステムの状態の管理のために組電池200が有する複数の電池セルB1~Bnの電圧を測定する。組電池システム1は、バッテリマネジメントシステムの一構成要素であってもよい。
 組電池200は、電池セルB1、B2、B3、Bk-2、Bk-1、Bk、Bk+1、Bk+2、Bn-2、Bn-1及びBnを含む複数の電池セルB1~Bnが直列接続されて構成される。nは正の整数(例えば、2以上の整数(つまり、2以上の自然数))であり、kは1以上n-1以下の整数である。
 複数の電池セルB1等のそれぞれは、複数の電圧検出線L1~Ln+1のうち2本の電圧検出線を介して当該電池セルの両端が電圧測定部30に接続される。
 組電池200が有する複数の電池セルB1~Bnの数、及び、複数の電池セルB1~Bnそれぞれの電圧は特に限定されない。複数の電池セルB1~Bnのそれぞれは、例えば、同一規格の電池セルであってもよい。組電池200は、電圧測定装置100の測定対象である。
 なお、以降において、複数の電池セルB1~Bnを、複数の電池セルB1等とも記載する。また、任意の1つの電池セルを指すときは、単に電池セルと記載し、符号を付さないことがある。また、電池セルBnは、複数の電池セルB1等のうち最も高電位側に配置される電池セルであり、複数の電池セルB1等のうち最上位の電池セルである。電池セルB1は、複数の電池セルB1等のうち最も低電位側に配置される電池セルであり、複数の電池セルB1等のうち最下位の電池セルである。
 電圧測定装置100は、組電池200の電圧を測定する。電圧測定装置100は、組電池200が有する複数の電池セルB1等のそれぞれの電圧を独立に検出する。電圧測定装置100は、複数の電池セルB1等のそれぞれの電圧を個々に測定可能に構成される。これにより、組電池200の全体の電圧を直接測定するには電圧が高すぎる場合であっても電圧の測定が可能となり、また複数の電池セルB1等の個々に動作を判定することも可能となる。電圧測定装置100は、複数の電池セルB1等の電圧を順次測定する。
 電圧測定装置100は、複数の電圧検出線L1~Ln+1と、抵抗群10と、コンデンサ群20と、配線Lb1と、電圧測定部30とを備える。また、抵抗群10とコンデンサ群20とで、フィルタ回路が構成される。
 複数の電圧検出線L1~Ln+1は、電圧検出線L1、L2、L3、Lk-1、Lk、Lk+1、Lk+2、Ln-1、Ln及びLn+1を含み、複数の電池セルB1等のそれぞれの電圧を測定するための配線である。複数の電圧検出線L1~Ln+1は、各電池セルの間及び両端の電池セルの外側に配置されたノード(図1中の組電池200を示す破線枠内の黒丸)と、電圧測定部30の入力端子S1~Sn+1との間を接続する。
 例えば、電圧検出線Ln+1及びLnは、電池セルBnの電圧を測定するために設けられ、電圧検出線Ln+1は電池セルBnの正極と入力端子Sn+1とを接続し、電圧検出線Lnは電池セルBnの負極と入力端子Snとを接続する。また、例えば、電圧検出線Ln及びLn-1は、電池セルBn-1の電圧を測定するために設けられ、電圧検出線Lnは電池セルBn-1の正極と入力端子Snとを接続し、電圧検出線Ln-1は電池セルBn-1の負極と入力端子Sn-1とを接続する。電圧検出線Lnは、電池セルBnの負極及び電池セルBn-1の正極のそれぞれに共通の配線である。電圧検出線L2~Lnのそれぞれは、隣り合う電池セルに共通の配線である。
 なお、複数の電圧検出線L1~Ln+1は、複数の電池セルB1等の数+1本設けられる。また、以降において、複数の電圧検出線L1~Ln+1を、複数の電圧検出線L1等とも記載する。また、任意の1つの電圧検出線を指すときは、単に電圧検出線と記載し、符号を付さないことがある。
 複数の電池セルB1等の各電池セルの電圧は、複数の電圧検出線L1等及びフィルタ回路を介して電圧測定部30に入力される。
 抵抗群10は、抵抗素子R1、R2、R3、Rk-1、Rk、Rk+1、Rk+2、Rn-1、Rn及びRn+1を含む複数の抵抗素子R1~Rn+1を有する。複数の抵抗素子R1~Rn+1のそれぞれは、複数の電圧検出線L1~Ln+1のそれぞれに配置される。つまり、1つの電圧検出線に1つの抵抗素子が配置される。抵抗素子は、例えば、所望の抵抗値を有する抵抗器により実現される。複数の抵抗素子R1~Rn+1のそれぞれは、最上位の電池セルBnの正極と、最下位の電池セルB1の負極と、電池セル間の接点(ノード)とにそれぞれ第1の端子が接続されており、電圧測定部30に第2の端子が接続されている。
 なお、以降において、複数の抵抗素子R1~Rn+1を、複数の抵抗素子R1等とも記載する。また、任意の1つの抵抗素子を指すときは、単に抵抗素子と記載し、符号を付さないことがある。抵抗素子は、第1の抵抗素子の一例であり、複数の抵抗素子R1~Rn+1は、(n+1)個の第1の抵抗素子の一例である。
 コンデンサ群20は、コンデンサC1、C2、C3、Ck-1、Ck、Ck+1、Ck+2、Cn-1、Cn及びCn+1を含む複数のコンデンサC1~Cn+1を有する。複数のコンデンサC1~Cn+1のそれぞれは、例えば、同様の耐圧特性を有する。複数のコンデンサC1~Cn+1それぞれの第1の端子(第1の電極)は、複数の抵抗素子R1~Rn+1それぞれの第2の端子に接続される。つまり、1つのコンデンサの第1の端子に1つの抵抗素子の第2の端子が接続される。また、複数のコンデンサC1~Cn+1それぞれの第2の端子(第2の電極)は、配線Lcにより互いに接続されており、同電位である。
 なお、配線Lcは、複数のコンデンサC1~Cn+1のうちコンデンサCn+1を含む2以上のコンデンサそれぞれの第2の端子と、配線Lb1とを接続していればよい。また、配線Lcは、GND(グランド)、電圧測定部30の電源等のDC(Direct Current)的に安定したノードには接続されていない。
 なお、以降において、複数のコンデンサC1~Cn+1を、複数のコンデンサC1等とも記載する。また、任意の1つのコンデンサを指すときは、単にコンデンサと記載し、符号を付さないことがある。コンデンサは、第1のコンデンサの一例であり、コンデンサC1~Cn+1は、(n+1)個の第1のコンデンサの一例である。
 フィルタ回路は、直流電圧に含まれるリップル(ノイズ)を除去するための回路である。抵抗群10及びコンデンサ群20に示すように、フィルタ回路は、複数の電圧検出線L1~Ln+1のそれぞれに接続されたn+1個のRCフィルタにより構成される。フィルタ回路により、複数の電圧検出線L1~Ln+1のそれぞれから電圧測定部30に入力される直流電圧に含まれるリップルを除去することができる。
 配線Lb1は、電池セルBkの正極と配線Lcとを接続するための配線である。配線Lb1は、電池セルBk及びBk-1の間のノードと、配線Lcとを接続する。つまり、電圧測定装置100は、複数のコンデンサC1等それぞれの第2の端子を、GNDではなく、組電池200における中間電位(図1の例では、電池セルB1~Bkの総和の電圧)とする。複数のコンデンサC1等それぞれの第2の端子は、中間電位に接地されているとも言える。中間電位は、電池セルB1の電圧以上、電池セルB1~Bn-1の総和の電位以下の電圧である。なお、配線Lb1は、電圧測定部30には接続されていない。
 このように、電圧測定装置100では、複数のコンデンサC1等それぞれの第2の端子と、複数の電池セルB1等のうちk個目の電池セルBkの正極とが配線Lb1によりに接続される。
 この場合、コンデンサCn+1に発生する電位差は、電池セルB1~Bnそれぞれの電圧の総和である第1総電圧(コンデンサCn+1の第1の端子の電圧)と、電池セルB1~Bkそれぞれの電圧の総和である第2総電圧(コンデンサCn+1の第2の端子の電圧)との差分の電圧となる。つまり、コンデンサCn+1に発生する電位差は、電池セルBk+1~Bnそれぞれの電圧の総和である第3総電圧となる。また、この場合、コンデンサC1に発生する電位差は、電池セルB1の負極側の電圧(コンデンサC1の第1の端子の電圧)と、電池セルB1~Bkの総和の電圧(コンデンサC1の第2の端子の電圧)との差分の電圧となる。つまり、コンデンサC1に発生する電位差は、電池セルB1~Bkそれぞれの電圧の総和である第2総電圧となる。また、コンデンサCk+1に発生する電位差は、ゼロである。
 電池セルに接続されるコンデンサに要求される耐圧特性をより下げる観点から、電池セルBkは、組電池200における真ん中に配置された電池セルであるとよい。真ん中とは、nが偶数である場合、n/2個目を意味し、nが奇数である場合、(n-1)/2個目を意味する。例えば、n=10又はn=11である場合、k=5であるとよい。なお、正極に配線Lb1が接続される電池セルBkは、組電池200における真ん中(k=n/2)の電池セルであることに限定されず、k=2以上n以下の整数で示される電池セルであればよい。つまり、配線Lb1は、直列に接続された2つの電池セル間のノードと、配線Lcとを接続するように接続されていればよい。
 なお、電圧測定装置100では、複数のコンデンサC1等のうち2個以上のコンデンサの第2の端子と、複数の電池セルB1等のうちk個目の電池セルBkの正極とが配線Lb1によりに接続されていればよい。
 なお、kの値は、上記に限定されず、電池セルB1~Bkに接続されるコンデンサC1~Ckのいずれかにおいて発生する最大の電位差(例えば、コンデンサC1に発生する電位差)と、電池セルBk+1~Bnに接続されるコンデンサCk+1~Cnのいずれかにおいて発生する最大の電位差(例えば、コンデンサCnに発生する電位差)とが、一致する、又は、所定の範囲内となるように決定されてもよい。所定の範囲内は、例えば、電池セル数個分の電圧であるが、これに限定されない。
 電圧測定部30は、複数の電池セルB1等のそれぞれの電圧を検出する装置である。電圧測定部30は、例えば、IC(Integrated Circuit)を含んで構成される。
 電圧測定部30は、スイッチ部31と、AD変換器(ADC:Analog to Digital Converter)32とを有する。また、電圧測定部30は、複数の電圧検出線L1等それぞれが接続される入力端子S1、S2、S3、Sk-1、Sk、Sk+1、Sk+2、Sn-1、Sn及びSn+1を含む複数の入力端子S1~Sn+1を有する。また、図示しないが、電圧測定部30は、デジタルデータに変換された各セル電圧を保存するための制御部等を有していてもよい。
 スイッチ部31は、例えば、複数のスイッチを有するマルチプレクサにより実現される。スイッチは、複数の入力端子S1~Sn+1のそれぞれに設けられる。スイッチには、リレー(例えば、フォトMOSリレー等)が使用されるが、これに限定されない。
 スイッチ部31は、周期的に組電池200内の複数の電池セルB1等の電圧を順次選択してAD変換器32に出力する。スイッチ部31は、個々の電池セルの電圧を測定するように複数のスイッチのオン及びオフが制御される。
 AD変換器32は、スイッチ部31から出力された電圧(アナログ値)をデジタル値に変換して制御部等の処理部に出力する。
 また、電圧測定部30は、外部からの電源供給を受けて動作する。電圧測定部30は、例えば、配線Lp1により電池セルBnの正極と接続されており、電源供給を受けてもよい。また、電圧測定部30は、配線Lp2によりDC的に安定したノードに接続されており、図1の例では、最下位の電池セルB1の負極に接続されている。なお、DC的に安定したノードは、例えば、GND(例えば、電圧測定部30が実装される基板のGND)であってもよい。
 [1-2.効果等]
 以上のように本実施の形態に係る電圧測定装置100は、複数の電池セルB1等がn(nは2以上の整数)個直列に接続された組電池200における複数の電池セルB1等それぞれの電圧を独立に検出する電圧測定装置である。電圧測定装置100は、複数の電池セルB1等のうち最上位の電池セルBnの正極と、複数の電池セルB1等のうち最下位の電池セルB1の負極と、複数の電池セルB1等の電池セル間の接点とにそれぞれ第1の端子が接続される複数の抵抗素子R1等((n+1)個の第1の抵抗素子の一例)と、複数の抵抗素子R1等それぞれの第2の端子に第1の端子が接続される複数のコンデンサC1等((n+1)個の第1のコンデンサの一例)と、複数の抵抗素子R1等それぞれの第2の端子に接続される電圧測定部30とを備える。そして、複数のコンデンサC1等のうち2個以上のコンデンサの第2の端子は、複数の電池セルB1等のうちk(kは1以上n-1以下の整数)個目の電池セルBkの正極に接続される。
 これにより、最上位の電池セルBnに接続されるコンデンサCn+1の第2の端子を、例えば電池セルB1~Bkの総和の電圧とすることができる。つまり、コンデンサCn+1に発生する電位差を、コンデンサCn+1の第2の端子がGND等に接続されている場合に比べて小さくすることができる。よって、電圧測定装置100は、電池セルに接続されるコンデンサに要求される耐圧特性を下げることができる。これは、電圧測定装置100における部品コストの低減に寄与する。
 また、(n+1)個の複数のコンデンサC1等の第2の端子は、k個目の電池セルBkの正極に接続される。
 これにより、電圧測定装置100は、数のコンデンサC1等それぞれの第2の端子を同電位とするための配線(例えば、配線Lc)を設けるといった簡易な構成で、電池セルに接続されるコンデンサに要求される耐圧特性を下げることができる。
 また、k個目の電池セルBkは、複数の電池セルB1等のn/2個目に配置された電池セルである。
 これにより、コンデンサCn+1の第2の端子がGND等に接続されている場合に比べて、コンデンサCn+1に発生する電位差を半分にすることができる。よって、電圧測定装置100は、電池セルに接続されるコンデンサに要求される耐圧特性をより下げることができる。
 また、以上のように、本実施の形態に係る組電池システム1は、上記の電圧測定装置100と、複数の電池セルB1等がn(nは2以上の整数)個直列に接続された組電池200とを備える。
 これにより、上記の電圧測定装置100と同様の効果を奏する。
 (実施の形態1の変形例)
 以下、本変形例に係る電圧測定装置及び組電池システムについて、図2を参照しながら説明する。図2は、本変形例に係る組電池システム1aの構成を示すブロック図である。図2では、煩雑になることを避けるため、電圧検出線及び入力端子の符号の図示を省略している。なお、以下では、実施の形態1との相違点を中心に説明し、実施の形態1と同一又は類似の内容については説明を省略又は簡略化する。本変形例に係る電圧測定装置100aは、抵抗素子11及びコンデンサ21(つまり、RCフィルタ)を備える点において、実施の形態1に係る電圧測定装置100と相違する。
 抵抗素子11(図2中のRCM)は、配線Lb1上に配置される。抵抗素子11は、抵抗素子Rk+1の第1の端子と、配線Lcとの間に配置される。抵抗素子11は、例えば所望の抵抗値を有する抵抗器により実現される。抵抗素子11は、第2の抵抗素子の一例である。
 コンデンサ21(図2中のCCM)は、配線Lc上に配置される。コンデンサ21の第1の端子(第1の電極)は、複数のコンデンサC1等それぞれの第2の端子と配線Lcを介して接続される。つまり、コンデンサ21の第1の端子には、組電池200における中間電位(図2の例では、電池セルB1~Bkの総和の電圧)が供給される。コンデンサ21の第2の端子(第2の電極)は、電池セルB1の負極(配線Lp2)に接続される。なお、コンデンサ21の第2の端子は、DC的に安定したノードに接続されていればよい。コンデンサ21は、第2のコンデンサの一例である。
 このように配置された抵抗素子11及びコンデンサ21は、RCフィルタとして機能する。なお、コンデンサ21の接続位置は、図2に示す位置に限定されず、どの電池セルの端子と接続されてもよい。
 なお、電圧測定装置100aでは、複数のコンデンサC1等のうち2個以上のコンデンサの第2の端子と、複数の電池セルB1等のうちk個目の電池セルBkの正極とが配線Lb1によりに接続されていればよい。つまり、電圧測定装置100aは、複数のコンデンサC1等のうち2個以上のコンデンサそれぞれの第2の端子と、k個目の電池セルBkの正極との間に接続される抵抗素子11と、2個以上のコンデンサそれぞれの第2の端子と接続されるコンデンサ21とを備えていてもよい。
 以上のように本実施の形態に係る電圧測定装置100aは、2個以上の第1のコンデンサそれぞれの第2の端子と、k個目の電池セルBkの正極との間に接続される抵抗素子11(第2の抵抗素子の一例)と、2個以上の第1のコンデンサそれぞれの第2の端子に接続されるコンデンサ21(第2のコンデンサの一例)とを備える。
 これにより、抵抗素子11及びコンデンサ21がRCフィルタとして機能するので、電圧測定装置100aは、配線Lb1を介して配線Lcに入力される直流電圧に含まれるリップルを除去することができる。つまり、電圧測定装置100aは、直流電圧に含まれるノイズにより、複数のコンデンサC1等の第2の端子の電圧が変動することを抑制することができる。また、コンデンサ21の第1の端子に組電池200の中間電位が供給されるので、コンデンサCn+1に発生する電位差は、実施の形態1と同様である。つまり、電圧測定装置100aは、電池セルに接続されるコンデンサに要求される耐圧特性を下げる効果を維持した中で、ノイズの影響を除去することができる。
 (実施の形態2)
 [2-1.組電池システムの構成]
 本実施の形態に係る電圧測定装置及び組電池システムについて、図3を参照しながら説明する。図3は、本実施の形態に係る組電池システム1bの構成を示すブロック図である。なお、以下では、実施の形態1との相違点を中心に説明し、実施の形態1と同一又は類似の内容については説明を省略又は簡略化する。本実施の形態に係る電圧測定装置100bは、フィルタ回路が第1のフィルタ回路及び第2のフィルタ回路の2つの回路により実現される点において、実施の形態1に係る電圧測定装置100と相違する。
 第1のフィルタ回路は、電池セルB1~Bm(mは1以上k未満の整数)それぞれの電圧を測定するための回路であり、第1の抵抗群10a及び第1のコンデンサ群20aを有する。第1のフィルタ回路は、m+1個のRCフィルタを有する。コンデンサC1~Cm+1の第2の端子は、配線Lc1により接続されている。つまり、複数の電池セルB1等のうちm個目までの電池セルに接続されるコンデンサC1~Cm+1の第2の端子のそれぞれは、接続されている。これにより、コンデンサC1~Cm+1の第2の端子は、同電位となる。本実施の形態では、配線Lc1は、GND(例えば、電圧測定部30が実装される基板のGND)に接続されているので、コンデンサC1~Cm+1の第2の端子は、0Vである。
 なお、本実施の形態では、nは正の整数(例えば、3以上の整数)であり、kは2以上n-1以下の整数である。
 第2のフィルタ回路は、電池セルBm+1~Bnそれぞれの電圧を測定するための回路であり、第2の抵抗群10b及び第2のコンデンサ群20bを有する。第2のフィルタ回路は、n+1-m個のRCフィルタを有する。コンデンサCm+2~Cn+1及び22の第2の端子は、配線Lc2により接続されている。つまり、複数の電池セルB1等のうちk個目の電池セルBkを含むm+1個目からn個目までの電池セルに接続されるコンデンサCm+2~Cn+1及び22の第2の端子のそれぞれは、接続されている。複数のコンデンサC1等の第2の端子は、それぞれが2以上の第2の端子が互いに接続された2個の組に分割されているとも言える。図3の例では、コンデンサC1~Cm+1で1つの組が形成され、コンデンサCm+2~Cn+1及び22で1つの組が形成されている。
 これにより、コンデンサCm+2~Cn+1及び22の第2の端子は、同電位となる。本実施の形態では、配線Lc2は、GND(例えば、電圧測定部30が実装される基板のGND)に接続されているので、コンデンサCm+2~Cn+1及び22の第2の端子は、電池セルBm+1~Bkそれぞれの総和の電圧である。この場合、コンデンサCk+1に発生する電位差は、ゼロである。コンデンサCm+2~Cn+1は、2個以上の第1のコンデンサの一例である。
 配線Lc1及びLc2は、共通のDC的に安定したノード(例えば、共通のGND)に接続されていてもよいし、互いに異なるDC的に安定したノード(例えば、互いに異なるGND)に接続されていてもよい。
 また、電池セルBm及びBm+1間のノードと電圧測定部30の入力端子Ssplitとを接続する配線Lb2が設けられる。つまり、電池セルBm及びBm+1間のノードと電圧測定部30とを接続する配線は、2本(電圧検出線Lm+1及び配線Lb2)存在する。
 また、電圧測定装置100bは、RCフィルタを構成する、配線Lb2上に配置される抵抗素子12(図3に示すRsplit)と、コンデンサ22(図3に示すCsplit)とを備える。
 抵抗素子12は、m個目の電池セルBmの正極に第1の端子が接続され、電圧測定部30に第2の端子が接続される。抵抗素子12は、例えば、所望の抵抗値を有する抵抗器により実現される。抵抗素子12は、第3の抵抗素子の一例である。
 コンデンサ22は、抵抗素子12の第2の端子に第1の端子(第1の電極)が接続され、コンデンサ21の第1の端子(第1の電極)に第2の端子(第2の電極)が接続される。コンデンサ22の第2の端子は、k個目の電池セルの正極に接続される。コンデンサ22は、第3のコンデンサの一例である。
 このように、本実施の形態では、RCフィルタは、n+2個設けられる。
 この場合、コンデンサCn+1に発生する電位差は、電池セルBm+1~Bnそれぞれの電圧の総和である第4総電圧(コンデンサCn+1の第1の端子の電圧)と、電池セルBm+1~Bkそれぞれの電圧の総和である第5総電圧(コンデンサCn+1の第2の端子の電圧)との差分の電圧となる。つまり、コンデンサCn+1に発生する電位差は、電池セルBk+1~Bnそれぞれの電圧の総和である第6総電圧となる。また、この場合、コンデンサCm+1に発生する電位差は、GNDと、電池セルB1~Bmの総和の電圧(コンデンサCm+1の第2の端子の電圧)との差分の電圧となる。つまり、コンデンサCm+1に発生する電位差は、電池セルB1~Bmそれぞれの電圧の総和である第7総電圧となる。また、この場合、コンデンサ22に発生する電位差は、電池セルBm+1の負極と、電池セルBm+1~Bkの総和の電圧(コンデンサ22の第2の端子の電圧)との差分の電圧となる。つまり、コンデンサ22に発生する電位差は、電池セルBm+1~Bkそれぞれの電圧の総和である第8総電圧となる。
 なお、電池セルに接続されるコンデンサに要求される耐圧特性をより下げる観点から、電池セルBmは、複数の電池セルB1等のうち低電位側からn/3個目に配置された電池セルであり、電池セルBkは、複数の電池セルB1等のうち低電位側から2n/3個目に配置された電池セルであるとよい。n/3個目とは、nが3の倍数である場合、n/3個目を意味し、nが3の倍数以外である場合、((n-1)又は(n+1))/3個目を意味する。また、2n/3個目とは、nが3の倍数である場合、2n/3個目を意味し、nが3の倍数以外である場合、(2(n-1)又は2(n+1))/3個目を意味する。例えば、n=11~13である場合、m=4であり、k=8であるとよい。(n-1)又は(n+1)は、nを代入した値が3倍数となる方が選択される。
 また、例えば、電池セルB1~Bmの数と、電池セルBm+1~Bkの数と、電池セルBk+1~Bnの数とは同数又は数の差が1個以下であるとよい。
 なお、m及びkの値は、上記に限定されず、電池セルB1~Bmに接続されるコンデンサC1~Cm+1のいずれかにおいて発生する最大の電位差(例えば、コンデンサC1に発生する電位差)と、電池セルBm+1~Bkに接続されるコンデンサCm+2~Ck+1及び22のいずれかにおいて発生する最大の電位差(例えば、コンデンサC22に発生する電位差)と、電池セルBk+1~Bnに接続されるコンデンサCk+1~Cn+1のいずれかにおいて発生する最大の電位差(例えば、コンデンサCn+1に発生する電位差)とが、一致する、又は、所定の範囲内となるように決定されてもよい。所定の範囲内は、例えば、電池セル数個分の電圧であるが、これに限定されない。
 なお、第1のフィルタ回路にも、電圧検出線L2~Lmのいずれかと配線Lc1とを接続するように配線Lb1が設けられ、かつ、抵抗素子11及びコンデンサ21がRCフィルタを構成するように設けられてもよい。この場合、第2のフィルタ回路に配線Lc1は設けられていなくてもよい。
 なお、電池セルB1~Bmに接続されるコンデンサC1~Cm+1の第2の端子のそれぞれが互いに接続されることに限定されず、コンデンサC1~Cm+1のうち2個以上のコンデンサの第2の端子のそれぞれが互いに接続されていればよい。例えば、電池セルB1~Bmに接続されるコンデンサC1~Cm+1の第2の端子は、それぞれが2以上の第2の端子が互いに接続されたs個(sは2以上の整数)の組に分割されていてもよい。例えば、s個の組のそれぞれが、GND等のDC的に安定したノードに接続される。また、s個の組の少なくとも1つに含まれるコンデンサと抵抗を介して接続される2個以上の電池セルのいずれかと、当該組のコンデンサの第2の端子とを接続する配線(例えば、図3に示す配線Lb1に相当する配線)が設けられてもよい。
 [2-2.測定方法]
 上記のように構成される電圧測定装置100bにおける電圧の測定方法について説明する。以下では、(m+1)個目の電池セルBm+1の電圧を測定する場合の測定方法について説明する。
 電圧測定装置100bは、(m+1)個目の電池セルBm+1の電圧を測定する際に、m+2個目の抵抗素子Rm+2の第2の端子と、抵抗素子12の第2の端子との間の電圧を測定する。つまり、電圧測定装置100bは、(m+1)個目の電池セルBm+1の電圧を測定する際に、m+1個目の抵抗素子Rm+1を用いない。電圧測定装置100bは、コンデンサ21を介して共通のDC的に安定したノードに接続される抵抗素子の第2の端子を用いて、電池セルの電圧を測定する。
 また、電圧測定装置100bは、m+1個目の電池セルBm+1の電圧を測定する際に、m+1個目の第1のスイッチをOFFし、m+1個目の第2のスイッチ及びm+2個目のスイッチをONする。m+1個目の第1のスイッチは、入力端子Sm+1を介して抵抗素子Rm+1が接続されるスイッチであり、m+1個目の第2のスイッチは、入力端子Ssplitを介して抵抗素子12が接続されるスイッチである。m+2個目のスイッチは、入力端子Sm+2を介して抵抗素子Rm+2が接続されるスイッチである。
 [2-3.効果等]
 以上のように本実施の形態に係る電圧測定装置100bは、複数の電池セルB1等のうちm(mは1以上k未満の整数)個目の電池セルBmの正極に第1の端子が接続される抵抗素子12(第3の抵抗素子の一例)と、抵抗素子12の第2の端子に第1の端子が接続されるコンデンサ22(第3のコンデンサの一例)とを備える。そして、抵抗素子12の第2の端子は、電圧測定部30に接続され、コンデンサ22の第2の端子は、k個目の電池セルBkの正極に接続され、複数の電池セルB1等のうちm個目までの電池セルB1~Bmに接続されるコンデンサC1~Cm+1のうち2個以上のコンデンサの第2の端子のそれぞれは、互いに接続されており、複数のコンデンサC1等((n+1)個の第1のコンデンサの一例)のうち2個以上のコンデンサは、複数の電池セルB1等のうちk個目の電池セルBkを含む(m+1)個目からn個目までの電池セルに接続されるコンデンサCm+2~Cn+1を含む。
 これにより、コンデンサに発生する電位差の最大値は、上記の第6総電圧、第7総電圧及び第8総電圧のいずれかとなる。k及びmの取り方によっては、第6総電圧、第7総電圧及び第8総電圧のそれぞれを、複数のコンデンサC1等のそれぞれがGNDに接続されている場合に最上位の電池セルBnに接続されているコンデンサに発生する電位差の半分未満とすることができる。よって、電圧測定装置100bは、電池セルに接続されるコンデンサに要求される耐圧特性をより下げることができる。これは、電圧測定装置100bにおける部品コストをより低減することに寄与する。
 また、電圧測定装置100bは、m+1個目の電池セルBm+1の電圧を測定する際に、複数の抵抗素子R1等におけるm+2個目の抵抗素子Rm+2(第1の抵抗素子の一例)の第2の端子と、抵抗素子12の第2の端子との間の電圧を測定する。
 これにより、第2の端子の電位が同電位であるコンデンサが接続される抵抗素子の第2の端子を用いて電圧を測定することができるので、電池セルBm+1の電圧をより正確に測定することができる。
 また、電池セルB1~Bmに接続されるコンデンサC1~Cm+1の第2の端子のそれぞれは、互いに接続されており、m個目の電池セルBmは、複数の電池セルB1等のうちn/3個目に配置された電池セルであり、k個目の電池セルBkは、複数の電池セルB1等のうち2n/3個目に配置された電池セルである。
 これにより、コンデンサに発生する電位差の最大値を、複数のコンデンサC1等のそれぞれがGNDに接続されている場合に最上位の電池セルBnに接続されているコンデンサに発生する電位差の1/3とすることができる。つまり、コンデンサの耐圧を1/3程度にすることができる。よって、電圧測定装置100bは、電池セルに接続されるコンデンサに要求される耐圧特性をさらに下げることができる。これは、電圧測定装置100bにおける部品コストのさらなる低減に寄与する。
 また、電池セルB1~Bmに接続されるコンデンサC1~Cmの第2の端子は、それぞれが2以上の第2の端子が互いに接続されたs個(sは2以上の整数)の組に分割されており、s個の組には、電池セルB1~Bmに接続されるコンデンサC1~Cm+1のうち2個以上のコンデンサの第2の端子のそれぞれが互いに接続されたものが含まれる。
 これにより、さらに電池セルに接続されるコンデンサに要求される耐圧特性をさらに下げることができる。
 (実施の形態2の変形例1)
 以下、本変形例に係る電圧測定装置及び組電池システムについて、図4を参照しながら説明する。図4は、本変形例に係る組電池システム1cの構成を示すブロック図である。なお、以下では、実施の形態2との相違点を中心に説明し、実施の形態2と同一又は類似の内容については説明を省略又は簡略化する。本変形例に係る電圧測定装置100cは、電圧測定部30cの構成が、実施の形態2に係る電圧測定装置100bの電圧測定部30と相違する。
 電圧測定部30cは、第1のスイッチ部31c1、第2のスイッチ部31c2及び第3のスイッチ部31c3と、複数のAD変換器32とを有する。
 第1のスイッチ部31c1、第2のスイッチ部31c2及び第3のスイッチ部31c3のそれぞれは、例えば、複数のスイッチを有するマルチプレクサにより実現される。第1のスイッチ部31c1は、電池セルBk+1~Bnの電圧を測定するためのスイッチ部であり、第2のスイッチ部31c2は、電池セルBm+1~Bk-1の電圧を測定するためのスイッチ部であり、第3のスイッチ部31c3は、電池セルB1~Bmの電圧を測定するためのスイッチ部である。また、AD変換器32は、第1のスイッチ部31c1、第2のスイッチ部31c2及び第3のスイッチ部31c3のそれぞれに接続される。
 なお、スイッチ部の数及びAD変換器の数は、図4に示す数に限定されず、2以上であれば特に限定されない。また、どの電池セルをどのスイッチ部及びAD変換器の組で測定するかは任意に設定可能である。
 このように、本変形例では、2個以上のマルチプレクサと、2個以上のAD変換器とを用いて、複数の電池セルB1等の電圧を測定する。
 (実施の形態2の変形例2)
 以下、本変形例に係る電圧測定装置及び組電池システムについて、図5を参照しながら説明する。図5は、本変形例に係る組電池システム1dの構成を示すブロック図である。なお、以下では、実施の形態2との相違点を中心に説明し、実施の形態2と同一又は類似の内容については説明を省略又は簡略化する。本変形例に係る電圧測定装置100dは、電圧測定部30dの構成が、実施の形態2に係る電圧測定装置100bの電圧測定部30と相違する。
 図5に示すように、電圧測定部30dは、複数のAD変換器32を有する。例えば、電池セルとAD変換器32とは、一対一に設けられる。つまり、AD変換器32は、n個(電池セルと同数)設けられる。
 (m+1)個目の電池セルBm+1の電圧を測定する場合、m+2個目の抵抗素子Rm+2の第2の端子と、抵抗素子12の第2の端子との間の電圧を測定する。入力端子Sm+2及びSsplitに対して、1つのADC32が配置される。また、m個目の電池セルBmの電圧を測定する場合、m+1個目の抵抗素子Rm+1の第2の端子と、m個目の抵抗素子Rmの第2の端子との間の電圧を測定する。入力端子Sm+1及びSmに対して、1つのADC32が配置される。
 また、本変形例に係る電圧測定部30dは、スイッチ部(例えば、マルチプレクサ)を有していない。
 これにより、電圧測定部30dは、スイッチ部を有していなくでも機能を実現することができるので、電圧測定部30dの構成を簡素化することができる。これは、電圧測定装置100dのコスト低減に寄与し得る。
 (その他の実施の形態)
 以上、一つ又は複数の態様に係る電圧測定装置等について、各実施の形態等に基づいて説明したが、本開示は、この各実施の形態等に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示に含まれてもよい。
 例えば、上記各実施の形態等では、1つの組電池システムを用いて説明したが、最上位の電池セルの正極、及び、最下位の電池セルの負極の少なくとも一方は、他の組電池システムの電池セルに接続されていてもよい。また、最下位の電池セルの負極は、GNDに接続されていてもよい。
 また、上記実施の形態等で説明した電圧測定装置の各構成要素は、ソフトウェアとして実現されても良いし、典型的には、集積回路であるLSIとして実現されてもよい。これらは、個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路(専用のプログラムを実行する汎用回路)又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)又は、LSI内部の回路セルの接続若しくは設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。更には、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて構成要素の集積化を行ってもよい。
 本開示は、例えば車載用途の電圧測定装置、組電池システムとして有用である。
 1、1a、1b、1c、1d  組電池システム
 10  抵抗群
 10a  第1の抵抗群
 10b  第2の抵抗群
 11  抵抗素子(第2の抵抗素子)
 12  抵抗素子(第3の抵抗素子)
 20  コンデンサ群
 20a  第1のコンデンサ群
 20b  第2のコンデンサ群
 21  コンデンサ(第2のコンデンサ)
 22  コンデンサ(第3のコンデンサ)
 30、30c、30d  電圧測定部
 31  スイッチ部
 31c1  第1のスイッチ部
 31c2  第2のスイッチ部
 31c3  第3のスイッチ部
 32  AD変換器
 100、100a、100b、100c、100d  電圧測定装置
 200  組電池
 B1、B2、B3、Bm-1、Bm、Bm+1、Bk-2、Bk-1、Bk、Bk+1、Bk+2、Bn-2、Bn-1、Bn  電池セル
 C1、C2、C3、Cm、Cm+1、Cm+2、Ck-1、Ck、Ck+1、Ck+2、Cn-1、Cn、Cn+1  コンデンサ(第1のコンデンサ)
 L1、L2、L3、Lm、Lm+1、Lm+2、Lk-1、Lk、Lk+1、Lk+2、Ln-1、Ln、Ln+1  電圧検出線
 Lb1、Lb2、Lc、Lc1、Lc2、Lp1、Lp2  配線
 R1、R2、R3、Rm、Rm+1、Rm+2、Rk-1、Rk、Rk+1、Rk+2、Rn-1、Rn、Rn+1  抵抗素子(第1の抵抗素子)
 S1、S2、S3、Sm、Sm+1、Sm+2、Sk-1、Sk、Sk+1、Sk+2、Sn-1、Sn、Sn+1、Ssplit  入力端子

Claims (9)

  1.  複数の電池セルがn(nは2以上の整数)個直列に接続された組電池における前記複数の電池セルそれぞれの電圧を独立に検出する電圧測定装置であって、
     前記複数の電池セルのうち最上位の電池セルの正極と、前記複数の電池セルのうち最下位の電池セルの負極と、前記複数の電池セルの電池セル間の接点とにそれぞれ第1の端子が接続される(n+1)個の第1の抵抗素子と、
     前記(n+1)個の第1の抵抗素子それぞれの第2の端子に第1の端子が接続される(n+1)個の第1のコンデンサと、
     前記(n+1)個の第1の抵抗素子それぞれの第2の端子に接続される電圧測定部とを備え、
     前記(n+1)個の第1のコンデンサのうち2個以上の第1のコンデンサの第2の端子は、前記複数の電池セルのうちk(kは1以上n-1以下の整数)個目の電池セルの正極に接続される
     電圧測定装置。
  2.  前記2個以上の第1のコンデンサそれぞれの第2の端子と、前記k個目の電池セルの正極との間に接続される第2の抵抗素子と、
     前記2個以上の第1のコンデンサそれぞれの第2の端子に接続される第2のコンデンサとを備える
     請求項1に記載の電圧測定装置。
  3.  前記(n+1)個の第1のコンデンサの第2の端子は、前記k個目の電池セルの正極に接続される
     請求項1又は2に記載の電圧測定装置。
  4.  前記複数の電池セルのうちm(mは1以上k未満の整数)個目の電池セルの正極に第1の端子が接続される第3の抵抗素子と、
     前記第3の抵抗素子の第2の端子に第1の端子が接続される第3のコンデンサとを備え、
     前記第3の抵抗素子の前記第2の端子は、前記電圧測定部に接続され、
     前記第3のコンデンサの第2の端子は、前記k個目の電池セルの正極に接続され、
     前記複数の電池セルのうち前記m個目までの電池セルに接続される第1のコンデンサのうち2個以上の第1のコンデンサの第2の端子のそれぞれは、互いに接続されており、
     前記(n+1)個の第1のコンデンサのうち前記2個以上の第1のコンデンサは、前記複数の電池セルのうち前記k個目の電池セルを含む(m+1)個目から前記n個目までの電池セルに接続される第1のコンデンサを含む
     請求項1又は2に記載の電圧測定装置。
  5.  前記電圧測定装置は、
     前記(m+1)個目の電池セルの電圧を測定する際に、前記(n+1)個の第1の抵抗素子における(m+2)個目の第1の抵抗素子の第2の端子と、前記第3の抵抗素子の第2の端子との間の電圧を測定する
     請求項4に記載の電圧測定装置。
  6.  前記k個目の電池セルは、前記複数の電池セルのうちn/2個目に配置された電池セルである
     請求項1~5のいずれか1項に記載の電圧測定装置。
  7.  前記m個目までの電池セルに接続される第1のコンデンサの第2の端子のそれぞれは、互いに接続されており、
     前記m個目の電池セルは、前記複数の電池セルのうちn/3個目に配置された電池セルであり、
     前記k個目の電池セルは、前記複数の電池セルのうち2n/3個目に配置された電池セルである
     請求項4又は5に記載の電圧測定装置。
  8.  前記m個目までの電池セルに接続される第1のコンデンサの第2の端子は、それぞれが2以上の第2の端子が互いに接続されたs個(sは2以上の整数)の組に分割されており、
     前記s個の組には、前記m個目までの電池セルに接続される第1のコンデンサのうち前記2個以上の第1のコンデンサの第2の端子のそれぞれが互いに接続されたものが含まれる
     請求項4又は5に記載の電圧測定装置。
  9.  請求項1~8のいずれか1項に記載の電圧測定装置と、
     複数の電池セルがn(nは2以上の整数)個直列に接続された組電池とを備える
     組電池システム。
PCT/JP2022/034446 2021-09-15 2022-09-14 電圧測定装置及び組電池システム WO2023042860A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023548488A JPWO2023042860A1 (ja) 2021-09-15 2022-09-14
CN202280061559.8A CN117940779A (zh) 2021-09-15 2022-09-14 电压测定装置及电池组系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163244598P 2021-09-15 2021-09-15
US63/244,598 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042860A1 true WO2023042860A1 (ja) 2023-03-23

Family

ID=85602936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034446 WO2023042860A1 (ja) 2021-09-15 2022-09-14 電圧測定装置及び組電池システム

Country Status (3)

Country Link
JP (1) JPWO2023042860A1 (ja)
CN (5) CN116917752A (ja)
WO (1) WO2023042860A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069639A (ja) * 2009-09-24 2011-04-07 Honda Motor Co Ltd 電圧検出装置
JP2011185941A (ja) 2007-11-26 2011-09-22 Honda Motor Co Ltd 電池モジュール電圧検出装置
JP2015136255A (ja) * 2014-01-17 2015-07-27 株式会社ケーヒン 電圧検出装置
JP2016025794A (ja) * 2014-07-23 2016-02-08 日立オートモティブシステムズ株式会社 電池システム監視装置およびこれを備えた蓄電装置
US20200028369A1 (en) * 2018-07-18 2020-01-23 Nxp Usa, Inc. Battery stack monitoring and balancing circuit
WO2020129577A1 (ja) * 2018-12-17 2020-06-25 パナソニックセミコンダクターソリューションズ株式会社 電池監視制御回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185941A (ja) 2007-11-26 2011-09-22 Honda Motor Co Ltd 電池モジュール電圧検出装置
JP2011069639A (ja) * 2009-09-24 2011-04-07 Honda Motor Co Ltd 電圧検出装置
JP2015136255A (ja) * 2014-01-17 2015-07-27 株式会社ケーヒン 電圧検出装置
JP2016025794A (ja) * 2014-07-23 2016-02-08 日立オートモティブシステムズ株式会社 電池システム監視装置およびこれを備えた蓄電装置
US20200028369A1 (en) * 2018-07-18 2020-01-23 Nxp Usa, Inc. Battery stack monitoring and balancing circuit
WO2020129577A1 (ja) * 2018-12-17 2020-06-25 パナソニックセミコンダクターソリューションズ株式会社 電池監視制御回路

Also Published As

Publication number Publication date
CN116917752A (zh) 2023-10-20
CN117940779A (zh) 2024-04-26
CN116940851A (zh) 2023-10-24
JPWO2023042860A1 (ja) 2023-03-23
CN116964823A (zh) 2023-10-27
CN116981948A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
JP5847995B2 (ja) 半導体装置
JP6477593B2 (ja) 組電池監視システム
JP6630151B2 (ja) 半導体装置、電池監視システム、及び半導体装置の診断方法
JP6103798B2 (ja) フライングキャパシタ式電圧検出回路及び電池保護用集積回路
JP2012159407A (ja) 電池電圧監視装置
JP3738721B2 (ja) 組電池電圧検出回路
WO2019235027A1 (ja) 組電池監視システム
JP6767769B2 (ja) 半導体装置、電池監視システム、及び検出方法
US9619000B2 (en) Board, board apparatus and method for interconnection of boards
JP6624782B2 (ja) 半導体装置及び電池電圧の測定方法
JP5310646B2 (ja) フライングキャパシタ式組電池電圧検出回路の駆動方法
JP5634694B2 (ja) 電圧検出装置
JP6398964B2 (ja) 組電池監視システム
JP6922533B2 (ja) 電圧検出装置
CN107110895B (zh) 内置状态监视部的集成电路以及电源装置
CN111605433A (zh) 用于监测电池的电池单元的系统
WO2023042860A1 (ja) 電圧測定装置及び組電池システム
US10006966B2 (en) Battery voltage detection device
JP2017158269A (ja) 電圧検出装置
JP5368283B2 (ja) 電圧検出回路
JP6296152B2 (ja) 電圧検出部を備える電源装置
JP2017090383A (ja) 電圧測定装置
CN112701742A (zh) 单元数判定装置、充电器、电池组以及充电系统
JP6272285B2 (ja) 半導体装置の制御方法
JP2022175762A (ja) 電池監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548488

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280061559.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022870007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022870007

Country of ref document: EP

Effective date: 20240415