WO2023042587A1 - 磁気ギアード回転機械、発電システム、および、駆動システム - Google Patents

磁気ギアード回転機械、発電システム、および、駆動システム Download PDF

Info

Publication number
WO2023042587A1
WO2023042587A1 PCT/JP2022/030724 JP2022030724W WO2023042587A1 WO 2023042587 A1 WO2023042587 A1 WO 2023042587A1 JP 2022030724 W JP2022030724 W JP 2022030724W WO 2023042587 A1 WO2023042587 A1 WO 2023042587A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
face
pole piece
magnetic pole
Prior art date
Application number
PCT/JP2022/030724
Other languages
English (en)
French (fr)
Inventor
健 池見
良次 岡部
崇俊 松下
幹人 佐々木
スチュアート カルバリー
デビッド パウエル
グリン クック
ラドゥ-ステファン ドラガン
Original Assignee
三菱重工業株式会社
マグノマティックス リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, マグノマティックス リミテッド filed Critical 三菱重工業株式会社
Priority to EP22869734.8A priority Critical patent/EP4329160A1/en
Priority to CN202280036789.9A priority patent/CN117397153A/zh
Publication of WO2023042587A1 publication Critical patent/WO2023042587A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • the present disclosure relates to magnetically geared rotating machines, power generation systems, and drive systems.
  • This application claims priority based on Japanese Patent Application No. 2021-149617 filed with the Japan Patent Office on September 14, 2021, the contents of which are incorporated herein.
  • a magnetically geared rotating machine that converts the number of revolutions between two rotors and transmits torque.
  • a magnetically geared rotating machine disclosed in Patent Document 1 includes, in order from the radially inner side, an internal rotor supporting a plurality of permanent magnets, an external rotor including a plurality of magnetic pole pieces, and a stator.
  • the stator is provided with a plurality of windings and a plurality of stator magnets.
  • An object of the present disclosure is to provide a magnetically geared rotary machine, power generation system, and drive system that suppress eddy current loss.
  • a magnetically geared rotating machine comprises: a stator; a rotor including a plurality of rotor magnets; a pole piece rotor including a plurality of pole pieces disposed at radial positions between the stator and the rotor; each of the pole pieces has a pole piece end face facing one side in the axial direction; each of the rotor magnets has a rotor magnet end face facing the one side; at least part of the magnetic pole piece end face is positioned on the other side in the axial direction with respect to the rotor magnet end face; or
  • the finger end surfaces facing the one side of each of the plurality of fingers holding the stator magnets provided on the teeth of the stator from both sides in the circumferential direction are aligned with the tooth end surfaces of the teeth facing the one side. At least one of the relationship located on the other side is established.
  • a power generation system includes: a prime mover; and the above magnetic geared rotary machine as a magnetic geared generator configured to be driven by an input from the prime mover to generate power.
  • a drive system comprises: the above magnetic geared rotary machine as a magnetic geared motor configured to output power; and a drive section configured to be driven by the power output from the magnetic geared rotary machine.
  • FIG. 1 is a schematic diagram illustrating a magnetically geared rotary machine according to one embodiment
  • FIG. It is a schematic diagram showing a magnetic geared rotating machine according to another embodiment.
  • 1 is a radial cross-sectional view of a magnetically geared rotating machine according to one embodiment
  • FIG. 1 is a schematic diagram of a stator according to one embodiment
  • FIG. 1 is a schematic diagram showing an internal configuration of a magnetically geared rotating machine including magnetic pole pieces according to the first embodiment
  • FIG. 5 is a schematic diagram showing the internal configuration of a magnetically geared rotating machine including magnetic pole pieces according to a second embodiment
  • It is a figure which shows various magnetic geared rotating machines prepared in order to verify the reduction effect of eddy current loss.
  • FIG. 4 is a diagram showing eddy current loss when axial positions of components of a magnetically geared rotating machine are changed;
  • 4 is a first graph showing eddy current loss according to the axial distance between one end face of a magnetic pole and the end face of a rotor magnet;
  • FIG. 11 is a second graph showing eddy current loss according to the axial distance between the one end face of the magnetic pole and the end face of the rotor magnet;
  • FIG. 4 is a first graph showing eddy current loss according to the axial distance from the finger end face to the tooth end face;
  • 4 is a second graph showing eddy current loss according to the axial distance from the finger end face to the tooth end face;
  • FIG. 1A is a schematic diagram illustrating examples of magnetically geared rotating machines, respectively.
  • the "axial direction” is the direction parallel to the rotational axis of the pole piece rotor 30 and the rotor 40 of the magnetic geared rotating machine 10
  • the "radial direction” is the magnetic pole direction. It is the direction perpendicular to the rotational axis of the half rotor 30 and the rotor 40 .
  • the magnetically geared rotating machine 10 is a magnetically geared generator 10A configured to be driven by input from the prime mover 2 to generate electricity.
  • the magnetic geared generator 10A is configured to supply electric power P generated by power generation to a power supply destination 4, which may be, for example, a power system.
  • a power supply destination 4 which may be, for example, a power system.
  • the magnetically geared rotary machine 10 receives power P from a power supply source 6, which may be, for example, a power system, to drive the drive unit 8. It is a magnetic geared motor 10B configured.
  • the magnetic geared generator 10A forms part of the power generation system 1A.
  • the power generation system 1A may be, for example, a renewable energy power generation system such as a wind power generation system or a tidal current power generation system. If the power generation system 1A is a wind power generation system, the prime mover 2 is a wind turbine rotor. When the power generation system 1A is a tidal current power generation system, the prime mover 2 is a water turbine rotor.
  • the magnetically geared generator 10A includes a stator 20 including a plurality of stator magnets 22 and a plurality of stator windings 24, a pole piece rotor 30 including a plurality of pole pieces 31, and a plurality of rotor magnets 42. and a rotor 40 .
  • stator 20 is disposed within a housing 21 that rotatably supports pole piece rotor 30 and rotor 40 .
  • the pole piece rotor 30 is configured to rotate with the rotating shaft 3 of the prime mover 2 .
  • Each of the plurality of magnetic pole pieces 31 provided at radial positions between the stator 20 and the rotor 40 includes a plurality of axially laminated magnetic steel plates 35 .
  • the magnetic pole piece rotor 30 includes end plates 30 ⁇ /b>A provided at both axial ends of the magnetic pole pieces 31 , and a power transmission shaft 34 for transmitting power to the prime mover 2 .
  • the power transmission shaft 34 of this example is connected to the rotating shaft 3 of the prime mover 2 and also to one end plate 30A.
  • the power transmission shaft 34 is rotatably supported by the housing 21 via a bearing B1. Power is transmitted (input) from the rotating shaft 3 of the prime mover 2 to the power transmission shaft 34 , so that the magnetic pole piece rotor 30 rotates integrally with the rotating shaft 3 .
  • the rotor 40 includes a rotor core 43 provided with a plurality of rotor magnets 42 , end plates 44 provided at both ends of the rotor core 43 in the axial direction, and a rotary shaft 47 extending axially inside the rotor core 43 in the radial direction. including.
  • the rotating shaft 47 is rotatably supported by the housing 21 via a bearing B2.
  • the magnetic geared generator 10A has a configuration in which the stator 20, the pole piece rotor 30, and the rotor 40 are arranged in this order toward the inner side in the radial direction.
  • the magnetic geared generator 10A has a configuration in which the rotor 40, the pole piece rotor 30, and the stator 20 are arranged in order radially inward.
  • the above-described magnetic geared generator 10A has a structure in which a magnetic gear and a generator are integrated, and by using the harmonic type magnetic gear principle and electromagnetic induction, mechanical input from the prime mover 2 is converted into electric power. do.
  • power generation in the magnetic geared generator 10A may be performed according to the following principle.
  • the magnetic flux of the stator magnets 22 is modulated by the magnetic pole pieces 31 of the magnetic pole piece rotor (low-speed rotor) 30 that rotates together with the rotating shaft 3 of the prime mover 2, and the rotor magnets 42 receive magnetic force from the modulated magnetic field. (High-speed rotor) 40 rotates.
  • the rotor 40 rotates, current is generated in the stator windings 24 by electromagnetic induction.
  • the number of magnetic poles NL of the magnetic pole pieces 31 is greater than the number of pole pairs NS of the stator magnets 22 .
  • NH-order magnetic flux main magnetic flux
  • higher-order harmonic magnetic flux than NH-order for example, NH + NS-order magnetic flux
  • FIG. When the leakage magnetic flux Lf is generated, an eddy current can be generated in the in-plane direction in each electromagnetic steel sheet 35 . Relatively large eddy currents can be generated in the magnetic steel plates 35 at, for example, both ends in the axial direction of the magnetic pole pieces 31 .
  • the magnetic flux Lf0 generated due to, for example, the stator magnet 22 moves the stator 20 described later with reference to FIG. 2 (teeth 26 described later as a more specific example) It can pass axially.
  • eddy currents can occur at both ends of the stator 20 in the axial direction.
  • the eddy current generated in the stator 20 is generated when the magnetic flux generated by the rotor magnet 42 or the magnetic flux generated by the energization of the stator winding 24 passes through the stator core 23.
  • magnetic geared motor 10B forms part of drive system 1B.
  • a drive system 1B including a drive unit 8 drives a magnetic geared motor 10B as a drive source.
  • the drive system 1B may be a vehicle that runs using a magnetic geared motor 10B as a power source.
  • the rotating shaft 9 of the drive unit 8 may be a drive shaft for transmitting power to the wheels. good.
  • the basic configuration of the magnetic geared motor 10B is common to the magnetic geared generator 10A shown in FIG. 1A.
  • the magnetic geared motor 10B includes a stator 20 including a plurality of stator magnets 22 and a plurality of stator windings 24, a pole piece rotor 30 including a plurality of pole pieces 31, and a plurality of rotor magnets 42. and a rotor 40 including.
  • stator 20 is secured within a housing 21 that rotatably supports pole piece rotor 30 and rotor 40 .
  • Each of the plurality of magnetic pole pieces 31 provided at radial positions between the stator 20 and the rotor 40 includes a plurality of magnetic steel sheets 35 laminated in the axial direction.
  • the magnetic pole piece rotor 30 includes end plates 30A provided at both ends of the magnetic pole piece 31 in the axial direction, and a power transmission shaft 34 for transmitting power to and from the drive section 8 .
  • the power transmission shaft 34 of this example is connected to the rotating shaft 9 of the drive unit 8 and also to one end plate 30A.
  • the power transmission shaft 34 is rotatably supported by the housing 21 via a bearing B1.
  • the power generated in the magnetic geared motor 10B is transmitted (output) from the power transmission shaft 34 to the rotating shaft 9 of the drive unit 8, thereby rotating the shaft 3B and operating the drive unit 8.
  • the rotor 40 includes a rotor core 43 provided with a plurality of rotor magnets 42 , end plates 44 provided at both ends of the rotor core 43 in the axial direction, and a rotary shaft 47 extending axially inside the rotor core 43 in the radial direction. including.
  • the rotating shaft 47 is rotatably supported by the housing 21 via a bearing B2.
  • the magnetic geared motor 10B has a configuration in which the stator 20, the pole piece rotor 30, and the rotor 40 are arranged in order radially inward.
  • the magnetic geared motor 10B has a configuration in which the rotor 40, the pole piece rotor 30, and the stator 20 are arranged in this order radially inward.
  • the magnetic geared motor 10B has a structure in which a magnetic gear and a motor are integrated, and rotates a rotor (high-speed rotor) 40 by a rotating magnetic field generated by energization of the stator windings 24 .
  • Power transmission from the rotor 40 to the pole piece rotor (low speed rotor) 30 utilizes the principle of harmonic magnetic gears.
  • the drive unit 8 is driven by transmitting the power output from the magnetic geared motor 10 ⁇ /b>B in operation to the rotating shaft 9 .
  • an axial leakage flux Lf may occur in the magnetic pole pieces 31, as in the magnetic geared generator 10A.
  • an eddy current can be generated in the in-plane direction in each magnetic pole piece 31 .
  • Relatively large eddy currents can be generated in the magnetic steel plates 35 at, for example, both ends in the axial direction of the magnetic pole pieces 31 .
  • the magnetic flux Lf0 generated by the stator magnet 22 can axially pass through the stator 20 (as a more specific example, teeth 26 to be described later).
  • eddy currents can occur at both ends of the stator 20 in the axial direction.
  • the eddy current generated in the stator 20 is generated by passing through the stator 20, such as magnetic flux generated due to the rotor magnet 42 and magnetic flux generated due to the energization of the stator windings 24. In some cases.
  • FIG. 2 is a radial cross-sectional view of a magnetically geared rotating machine according to one embodiment.
  • the "circumferential direction” is the circumferential direction based on the aforementioned "axial direction” (see FIGS. 1A and 1B).
  • the stator 20 of the magnetic geared rotating machine 10 includes a stator core 23 extending in the circumferential direction, a plurality of teeth 26 protruding from the stator core 23 toward the pole piece rotor 30, and a plurality of includes a plurality of stator magnets 22 provided on the tip side of the teeth 26 of the .
  • a plurality of slots 25 extending in the axial direction are provided between adjacent two of the plurality of teeth 26 arranged so as to line up in the circumferential direction. Both axial ends of each slot 25 are open, and the above-described stator winding 24 is wound around the slot 25 . That is, the multiple teeth 26 support the stator windings 24 .
  • the plurality of stator magnets 22 includes a plurality of stator magnets 22N, 22S having different magnetic poles arranged alternately in the circumferential direction.
  • each stator magnet 22 is an axially elongated rod-shaped member having a rectangular cross section.
  • FIG. 2 shows a stator 20 having a surface permanent magnet (SPM) structure in which stator magnets 22 are attached to the surfaces of teeth 26 .
  • the stator 20 may have an interior permanent magnet (IPM) structure in which the stator magnets 22 are embedded in the stator core 23 .
  • the rotor 40 provided at a position radially displaced from the stator 20 having the above configuration includes a plurality of rotor magnets 42 arranged so as to line up in the circumferential direction.
  • the plurality of rotor magnets 42 are a plurality of permanent magnets alternately arranged in the circumferential direction and having different magnetic poles.
  • the number of magnetic poles of the plurality of rotor magnets 42 is less than the number of magnetic poles of the plurality of stator magnets 22 .
  • Each rotor magnet 42 may be an elongated rod member having a rectangular cross-section.
  • FIG. 2 shows a rotor 40 having a surface permanent magnet (SPM) structure in which rotor magnets 42 are attached to the surface of a rotor core 43 .
  • the rotor 40 may have an interior permanent magnet (IPM) structure in which the rotor magnets 42 are embedded in the rotor core 43 .
  • the rotor 40 may include the end plates 44 described above with reference to FIGS. 1A and 1B in addition to the rotor magnets 42 and the rotor core 43 .
  • the end plate 44 is an annular plate extending radially.
  • the magnetic pole piece rotor 30 includes a plurality of magnetic pole pieces 31 arranged circumferentially at radial positions between the stator 20 and the rotor 40 configured as described above.
  • Each pole piece 31 includes a plurality of axially laminated magnetic steel sheets 35 (see FIGS. 1A and 1B) as previously described.
  • Each pole piece 31 faces the rotor 40 across a first air gap G1 and faces the stator 20 across a second air gap G2.
  • the pole piece rotor 30 faces the rotor magnets 42 across a first air gap G1 and the stator It faces the magnet 22 across the second air gap G2.
  • pole piece rotor 30 may face each of stator core 23 and rotor core 43 .
  • the pole piece rotor 30 includes a plurality of holders 39 alternately arranged in the circumferential direction with the plurality of pole pieces 31 .
  • Each holder 39 according to one embodiment is made of a non-magnetic material.
  • holder 39 may be made of a magnetic material.
  • Each pole piece 31 is sandwiched and held by two holders 39 on both sides in the circumferential direction.
  • a hole 38 (see FIG. 3) which may be circular when viewed in the axial direction, for example, may be formed in the central portion of each of the plurality of magnetic steel plates 35 forming the pole piece 31 .
  • a plurality of electromagnetic steel plates 35 may be held by inserting axially extending bars (not shown) into these holes 38 .
  • Each axial end of the bar may be connected to the pair of end plates 30A (see FIG. 1A).
  • FIG. 3 is a schematic diagram of a stator according to one embodiment.
  • the stator 20 may further include a plurality of fingers 29 that sandwich and hold the stator magnets 22 provided at the tips of the teeth 26 from both sides in the circumferential direction.
  • Each finger 29 extending in the axial direction is provided on the tip side surface of the teeth 26 so as to form an integral structure with the teeth 26 .
  • Fingers 29 may be directly connected to teeth 26, or at least a portion of fingers 29 may be indirectly connected to teeth 26 via another member such as a holder.
  • FIG. 3 is a schematic diagram of a stator according to one embodiment.
  • the stator 20 may further include a plurality of fingers 29 that sandwich and hold the stator magnets 22 provided at the tips of the teeth 26 from both sides in the circumferential direction.
  • Each finger 29 extending in the axial direction is provided on the tip side surface of the teeth 26 so as to form an integral structure with the teeth 26 .
  • Fingers 29 may be directly connected to teeth 26, or at least a portion
  • the length in the circumferential direction at the tip of the tooth 26 (hereinafter also referred to as the tip width of the tooth 26) is indicated by the dimension Lw.
  • the teeth 26 include a tooth end surface 26A facing one side in the axial direction and a tooth opposite surface 26B on the side opposite to the tooth end surface 26A (see FIG. 4).
  • FIG. 4 is a schematic diagram showing the internal configuration of a magnetically geared rotating machine including magnetic pole pieces according to the first embodiment.
  • the pole piece 32 (31) includes a pole piece end face 32A facing one axial side, and the rotor magnet 42 includes a rotor magnet end face 42A facing one axial side.
  • at least part of the magnetic pole piece end face 32A is positioned on the other side in the axial direction with respect to the rotor magnet end face 42A (hereinafter also referred to as the first positional relationship).
  • pole piece 32 includes a pole piece opposing surface 32B opposite pole piece end surface 32A
  • rotor magnet 42 includes a rotor magnet opposing surface 42B opposite rotor magnet end surface 42A.
  • At least part of the magnetic pole piece opposite surface 32B is positioned on one side in the axial direction with respect to the rotor magnet opposite surface 42B (hereinafter also referred to as a second positional relationship).
  • the pole pieces 32 are provided at axial positions between the axial ends of the rotor magnets 42 . That is, the pole pieces 32 in this example are axially shorter than the rotor magnets 42 .
  • the plurality of magnetic steel sheets 35 forming the pole piece 32 have the same size.
  • Each of the magnetic pole piece end surface 32A and the magnetic pole piece opposite surface 32B may be formed by one surface of a plurality of electromagnetic steel plates 35 (details will be described later with reference to FIG. 5).
  • the establishment of the first positional relationship reduces the eddy current at one axial end of the pole piece 32 .
  • the establishment of the second positional relationship reduces eddy currents at the other axial end of the pole piece 32 . Therefore, according to the above configuration, it is possible to realize the magnetically geared rotary machine 10 with reduced eddy current loss.
  • At least one of the first positional relationship and the second positional relationship may be established even when the third positional relationship, which will be described later, is not established. Note that in other embodiments, the second positional relationship may not be established.
  • the magnetic pole piece opposite surface 32B may be positioned at the same axial position as the rotor magnet opposite surface 42B, or may be positioned on the other axial side of the rotor magnet opposite surface 42B. Even in this case, the effect of reducing the eddy current loss of the magnetically geared rotary machine 10 can be enjoyed by establishing the first positional relationship.
  • the dimension La1 is 0.5% or more of the axial length (dimension Lr) of the rotor magnet 42 and 10% or less of the axial length of the rotor magnet 42 .
  • the axial distance (dimension La2) from the magnetic pole piece opposite surface 32B to the rotor magnet opposite surface 42B is 0.5% or more of the axial length of the rotor magnet 42 and 10% or less of the axial length.
  • FIG. 4 is a schematic diagram, and thus the above-described length relationship and positional relationship of the components included in the magnetic geared rotary machine 10 are not necessarily shown faithfully. This is the same for the length relationship and the positional relationship, which will be described later separately, and is the same for FIG.
  • the axial distance from the magnetic pole piece end face 32A to the rotor magnet end face 42A is 0.5% or more of the axial length of the rotor magnet 42, and Being less than 10% of the directional length significantly reduces eddy current losses at one axial end of the pole piece 32 .
  • the axial distance from the magnetic pole piece opposite surface 32B to the rotor magnet opposite surface 42B is 0.5% or more of the axial length of the rotor magnet 42 and At 10% or less, the eddy current loss at the other axial end of the pole piece 32 is significantly reduced. Therefore, according to the above configuration, the magnetically geared rotary machine 10 in which the eddy current loss is more effectively reduced is realized.
  • the axial distance (dimension La2) from the magnetic pole piece opposite surface 32B to the rotor magnet opposite surface 42B may be less than 0.5% of the axial length (dimension Lr) of the rotor magnet 42. , may exceed 10% of the dimension Lr. Even in this case, the effect of reducing the eddy current loss in the magnetic pole piece 32 can be obtained because the dimension La1 and the dimension Lr have the above relationship.
  • the axial distance (dimension La1) from the magnetic pole piece end face 32A to the rotor magnet end face 42A is 50% or more of the facing distance (dimension Ls) between the magnetic pole piece 32 and the rotor 40, and It is 1200% or less of this facing distance.
  • the axial distance (dimension La2) from the magnetic pole piece opposing surface 32B to the rotor magnet opposing surface 42B is 50% or more and 1200% or less of the dimension Ls.
  • the dimension Ls is the radial distance between the pole pieces 32 and the rotor magnets 42 .
  • dimension Ls may be the radial distance between pole pieces 32 and rotor core 43 .
  • the dimension Ls may coincide with the radial dimension of the first air gap G1 described above.
  • the axial distance (dimension La1) from the magnetic pole piece end face 32A to the rotor magnet end face 42A is 50% or more of the opposing distance (dimension Ls) between the magnetic pole piece 32 and the rotor 40.
  • the axial distance (dimension La2) from the magnetic pole piece opposing surface 32B to the rotor magnet opposing surface 42B is 50% or more and 1200% of the opposing distance (dimension Ls) between the magnetic pole piece 32 and the rotor 40.
  • the eddy current loss at the other axial end of the pole piece 32 is significantly reduced.
  • the magnetically geared rotary machine 10 in which the eddy current loss is more effectively reduced is realized. Even if the axial distance (dimension La2) from the magnetic pole piece opposite surface 32B to the rotor magnet opposite surface 42B is less than 50% of the opposing distance (dimension Ls) between the magnetic pole piece 32 and the rotor 40, Alternatively, it may exceed 1200% of the dimension Ls. Even in this case, the effect of reducing the eddy current loss in the magnetic pole piece 32 can be obtained because the dimension La1 and the dimension Ls have the above relationship.
  • the fingers 29 include finger end surfaces 29A facing one axial side
  • the teeth 26 include tooth end surfaces 26A facing one axial side.
  • a relationship (hereinafter also referred to as a third positional relationship) is established in which the finger end face 29A is located on the other side in the axial direction relative to the tooth end face 26A.
  • a similar positional relationship is also established on the other side in the axial direction.
  • the finger 29 includes a finger opposite surface 29B opposite to the finger end surface 29A
  • the tooth 26 includes a tooth opposite surface 26B opposite to the tooth end surface 26A.
  • a relationship (hereinafter also referred to as a fourth positional relationship) is established in which the finger opposite surface 29B is located on one side in the axial direction relative to the tooth opposite surface 26B.
  • the eddy current loss at the one end portion of the stator 20 in the axial direction is reduced by establishing the third positional relationship.
  • the fourth positional relationship the eddy current loss at the other axial end of the stator 20 is reduced. Therefore, according to the above configuration, it is possible to realize the magnetically geared rotary machine 10 with reduced eddy current loss.
  • At least one of the third positional relationship and the fourth positional relationship may be established together with the first positional relationship described above, or may be established even when the first positional relationship is not established. Note that in other embodiments, the fourth positional relationship may not be established.
  • the finger opposite surface 29B may be positioned at the same axial position as the tooth opposite surface 26B, or may be positioned on the other axial side of the tooth opposite surface 26B. Even in this case, the effect of reducing the eddy current loss of the magnetically geared rotating machine 10 can be obtained by establishing the third positional relationship.
  • the dimension Lt1 is 0.5% or more of the axial length (dimension Le) of the teeth 26 and 4% or less of the axial length of the teeth 26 .
  • the axial distance (dimension Lt2) from the finger opposite surface 29B to the tooth opposite surface 26B is 0.5% or more and 4% or less of the axial length of the teeth 26.
  • the axial distance from the finger end surfaces 29A to the tooth end surfaces 26A is 0.5% or more and 4% or less of the axial length of the teeth 26, so that the stator 20 The eddy current loss at one axial end of is significantly reduced.
  • the axial distance from the finger opposite surface 29B to the tooth opposite surface 26B is 0.5% or more and 4% or less of the axial length of the teeth 26, so that the axial direction of the stator 20 and other Eddy current losses at the edges are significantly reduced. Therefore, according to the above configuration, the magnetically geared rotary machine 10 in which the eddy current loss is more effectively reduced is realized.
  • the axial distance (dimension Lt2) from the finger opposite surface 29B to the tooth opposite surface 26B may be less than 0.5% of the axial length (dimension Le) of the teeth 26 or greater than 4% of the dimension Le. may Even in this case, the effect of reducing the eddy current loss in the stator 20 can be enjoyed because the dimension Lt1 and the dimension Le have the above relationship.
  • the axial distance (dimension Lt1) from the finger end face 29A to the tooth end face 26A is 3% or more of the tip width (dimension Lw in FIG. 3) of the tooth 26, and 25% or less of the tip width of 26.
  • the axial distance (dimension Lt2) from the finger opposite surface 29B to the tooth opposite surface 26B is also 3% or more and 25% or less of the tip width of the teeth 26.
  • the axial distance from the finger end surface 29A to the tooth end surface 26A is 3% or more of the tip width of the teeth 26 and 25% or less of the tip width of the teeth 26, so that the fixed Eddy current losses at one axial end of the element 20 are significantly reduced.
  • the axial distance from the finger opposite surface 29B to the tooth opposite surface 26B is 3% or more of the tip width of the teeth 26 and 25% or less of the tip width of the teeth 26, so that the axial distance of the stator 20 Eddy current losses at the other end of the direction are significantly reduced. Therefore, according to the above configuration, the magnetically geared rotary machine 10 in which the eddy current loss is more effectively reduced is realized.
  • the axial distance (dimension Lt2) from the finger opposite surface 29B to the tooth opposite surface 26B may be less than 3% of the tip width (dimension Lw in FIG. 3) of the tooth 26, or the dimension Lw may exceed 25% of the Even in this case, the effect of reducing the eddy current loss in the stator 20 can be enjoyed because the dimension Lt1 and the dimension Lw have the above relationship.
  • the stator magnet 22 has a stator magnet end face 22A facing one side in the axial direction and a stator magnet opposite face 22B opposite to the stator magnet end face 22A.
  • the stator magnet end face 22A is located on the other side in the axial direction from the rotor magnet end face 42A.
  • the stator magnet opposite surface 22B is located on one side in the axial direction with respect to the rotor magnet opposite surface 42B.
  • the stator magnets 22 are therefore axially shorter than the rotor magnets 42 .
  • stator magnets 22 having a radial length shorter than that of the fingers 29 for the convenience of viewing the drawing, but the stator magnets 22 have the same radial length as the fingers 29. , or may be radially longer than the fingers 29 .
  • eddy current loss on one axial side of the pole piece 32 can be reduced by positioning the stator magnet end face 22A on the other axial side of the rotor magnet end face 42A. Also, the axial length of the stator magnet 22 can be reduced. Further, the stator magnet opposing surface 22B is located on one axial side of the rotor magnet opposing surface 42B, thereby reducing eddy current loss on the other axial side of each of the pole pieces 32 and the stator 20. , the axial length of the stator 20 can be reduced. Therefore, according to the above configuration, it is possible to realize the magnetically geared rotary machine 10 that achieves both reduction in eddy current loss and cost reduction.
  • the stator magnet opposite surface 22B may be positioned at the same axial position as the rotor magnet opposite surface 42B or on the other axial side of the rotor magnet opposite surface 42B. Even in this case, the stator magnet end face 22A is located on the other axial side of the rotor magnet end face 42A, so that eddy current loss can be reduced and the cost of the magnetically geared rotary machine 10 can be reduced.
  • stator magnet end face 22A is provided at the same axial position as the pole piece end face 32A or at an axial position between the pole piece end face 32A and the rotor magnet end face 42A.
  • stator magnet opposite surface 22B is provided at the same axial position as the magnetic pole piece opposite surface 32B, or at an axial position between the magnetic pole piece opposite surface 32B and the rotor magnet opposite surface 42B. be done.
  • the portion of the stator magnet 22 located on one side of the magnetic pole piece end face 32A hardly contributes to the generation of magnetic transmission torque in the magnetic geared rotating machine 10 . Therefore, according to the above configuration, the extra stator magnets 22 can be reduced, and the cost of the magnetic geared rotating machine 10 can be reduced.
  • the stator magnet opposite surface 22B may be located on the other axial side of the magnetic pole piece opposite surface 32B. Even in this case, if the positional relationship between the stator magnet end face 22A and the magnetic pole piece end face 32A is as described above, the cost of the magnetic geared rotating machine 10 can be reduced.
  • FIG. 5 is a schematic diagram showing the internal configuration of a magnetically geared rotating machine including magnetic pole pieces according to the second embodiment.
  • the magnetic pole piece 33 (31) according to the second embodiment has a first magnetic pole piece end portion 331 which is the end portion on one side in the axial direction and a second magnetic pole piece end portion 332 on the opposite side to the first magnetic pole piece end portion 331.
  • the first magnetic pole piece end portion 331 is formed with a magnetic pole piece end surface 33A that is an end surface of the magnetic pole piece 33 facing one side in the axial direction
  • the second magnetic pole piece end portion 332 is formed with an end surface opposite to the magnetic pole piece end surface 33A. is formed.
  • the plurality of magnetic steel sheets 35 forming the magnetic pole piece 33 are sequentially arranged from the axial center side of the magnetic pole piece 33 into the first magnetic steel sheet 35A, A second electromagnetic steel sheet 35B and a third electromagnetic steel sheet 35C are included.
  • the radial length of these electromagnetic steel sheets 35 is shorter as the electromagnetic steel sheets 35 are located on the outer side in the axial direction. Further, the radial positions of the ends 355A, 355B, and 355C of the first electromagnetic steel sheet 35A, the second electromagnetic steel sheet 35B, and the third electromagnetic steel sheet 35C on the stator 20 side are aligned.
  • these electromagnetic steel sheets 35 are laminated so that the radial positions of the ends on the stator 20 side are aligned.
  • one surface of each of the first electromagnetic steel sheet 35A, the second electromagnetic steel sheet 35B, and the third electromagnetic steel sheet 35C forms the magnetic pole piece end surface 33A.
  • one surface of each of the first electromagnetic steel sheet 35A, the second electromagnetic steel sheet 35B, and the third electromagnetic steel sheet 35C forms the magnetic pole piece opposite surface 33B.
  • the holes 38 (see FIG. 3) formed in the electromagnetic steel sheet 35, the hole 38 formed in the first electromagnetic steel sheet 35A has a circular shape when viewed in the axial direction.
  • the holes 38 formed in each of the second electromagnetic steel sheet 35B and the third electromagnetic steel sheet 35C are semicircular.
  • the hole 38 formed in the third electromagnetic steel plate 35C preferably surrounds more than half of the peripheral surface of the bar (not shown) when viewed in the axial direction. This realizes a configuration in which the third electromagnetic steel plate 35C is less likely to come off radially outward from the bar.
  • the magnetic pole piece end surface 33A formed by one side of the third electromagnetic steel plate 35C is at the same axial position as the rotor magnet end surface 42A, but the first positional relationship described above is established. This is because the magnetic pole piece end face 33A formed by one side of each of the first magnetic steel plate 35A and the second magnetic steel plate 35B is located on the other axial side of the rotor magnet end face 42A. Similarly, in the second magnetic pole piece end portion 332, one side of each of the first magnetic steel sheet 35A and the second magnetic steel sheet 35B forming the magnetic pole piece opposite surface 33B is located on one axial side of the rotor magnet opposite surface 42B. , the second positional relationship is established.
  • the axial distance between the magnetic pole piece end face 33A and the rotor magnet end face 42A is the end of the magnetic pole piece end face 33A on the rotor 40 side (that is, the first magnetic steel plate 35A formed by the first magnetic steel plate 35A). It is the axial distance between the magnetic pole piece end face 33A) and the rotor magnet end face 42A, and corresponds to the dimension Lb1 in FIG. For example, if dimension Lb1 is greater than or equal to 0.5% of the axial length of rotor magnet 42 and less than or equal to 10% of the axial length of rotor magnet 42, eddy currents on one axial side of pole piece 33 A significant loss reduction effect can be enjoyed.
  • the dimension Lb1 is 50% or more and 1200% or less of the facing distance between the magnetic pole pieces 33 and the rotor 40 (the rotor magnets 42 in FIG. 5), the vortices on one side of the magnetic pole pieces 33 in the axial direction Remarkable reduction effect of current loss can be enjoyed.
  • the pole pieces 33 have a stator-side facing surface 36 that faces the stator 20 (stator magnets 22 in the example of FIG. 5) and a rotor 40 (rotating magnet in the example of FIG. 5). It has a rotor-side facing surface 37 that faces the child magnet 42). Both the stator-side facing surface 36 and the rotor-side facing surface 37 extend in the axial direction. In the example of FIG. 5, end portions 355A, 355B, and 355C of the first electromagnetic steel sheet 35A, the second electromagnetic steel sheet 35B, and the third electromagnetic steel sheet 35C form part of the stator-side facing surface 36, respectively.
  • the magnetic transmission torque (more specifically, the magnetic torque transmitted between the pole piece rotor 30 and the rotor 40) during operation of the magnetic geared rotating machine 10 is the axis of the stator-side facing surface 36. It tends to increase as the directional length increases. According to the above configuration, since the stator-side facing surface 36 is longer than the rotor-side facing surface 37, at least a portion of the magnetic pole piece end surface 32A is positioned on the other side in the axial direction of the rotor magnet end surface 42A. The axial length of the stator-side facing surface 36 can be ensured. Therefore, the magnetically geared rotary machine 10 that can reduce the eddy current loss and ensure the magnetic transmission torque is realized.
  • stator-side facing surface 36 is longer in the axial direction than the rotor-side facing surface 37, and the first electromagnetic steel plate 35A, the second electromagnetic steel plate 35B, and the third electromagnetic steel plate 35C having different lengths in the radial direction are arranged. It can be realized by a simple laminated structure. Therefore, it is possible to reduce eddy current loss and ensure magnetic transmission torque in the magnetic geared rotating machine 10 with a simple configuration in which a plurality of electromagnetic steel sheets 35 having different radial lengths are laminated. .
  • stator magnet end surface 22A is located at the same axial position as the end 366A on one axial side of the stator-side facing surface 36, or at the same axial position as the end 366A of the stator-side facing surface 36, It is provided at an axial position between one end 377 ⁇ /b>A of the rotor-side facing surface 37 .
  • stator magnet opposing surface 22B is located at the same position as the other axial end 366B of the stator-side opposing surface 36, or It is provided at an axial position between the side ends 377B.
  • the portions of the stator magnets 22 located axially outside the pole pieces 33 hardly contribute to the generation of magnetic transmission torque of the magnetically geared rotary machine 10 .
  • the portion of the stator magnet 22 that hardly contributes to the magnetic transmission torque can be reduced, so the cost of the magnetically geared rotary machine 10 can be reduced.
  • the stator magnet opposing surface 22B may be located on the other side in the axial direction of the end 366B of the stator side opposing surface 36 . Even in this case, for example, if the stator magnet end surface 22A is located at the same axial position as the end 366A of the stator side facing surface 36, the cost of the magnetic geared rotating machine 10 can be reduced.
  • FIG. 6 shows various magnetic geared rotary machines prepared for verifying the effect of reducing eddy current loss.
  • FIG. 7 shows eddy current losses when the axial positions of components of a magnetically geared rotating machine are changed.
  • the inventors identified, by simulation, the effect of reducing eddy current loss by changing the axial positions of the components of the magnetically geared rotary machine 10 including the pole pieces 32 according to the first embodiment. More specifically, the axial positions of the components shown in (A) to (D) below were changed, and the eddy current losses obtained by analysis were compared.
  • D Teeth end surface 26A
  • FIG. 7 shows the result of specifying the eddy current loss by simulation when each of the magnetic geared rotary machines 10 of 6 functions as the magnetic geared generator 10A.
  • the eddy current losses shown in the graph are the sum of the eddy current losses on one axial side of the pole piece 32 and the eddy current losses on one axial side of the stator 20 .
  • PP in the table at the bottom of FIG. 7 is an abbreviation for "Pole Piece” and indicates the magnetic pole end surface 32A.
  • HSR Mag is an abbreviation for "High Speed Rotor Magnet” and indicates the rotor magnet end face 42A (the axial position of the rotor magnet end face 42A is not changed in this analysis).
  • ST Mag is an abbreviation for “Stator Magnet” and indicates the stator magnet end surface 22A.
  • ST Finger is an abbreviation of “Stator Finger” and indicates the finger end surface 29A.
  • ST Teeth is an abbreviation of “Stator Teeth” and indicates the tooth end surface 26A. No. 2 to No. The amount by which the component indicated by 6 is displaced from the reference in the other axial direction is the same value (constant value).
  • the reason why the eddy current loss of the pole piece 32 is reduced is as follows.
  • the leakage magnetic flux Lf generated in the magnetic pole piece 32 passes through the magnetic pole piece 32 in the axial direction and flows toward one axial side of the rotor magnet end surface 42A (No. 1 in FIG. 6).
  • the magnetic pole piece end surface 32A is located on the other side in the axial direction of the rotor magnet end surface 42A, the magnetic flux is less likely to flow from the magnetic pole piece end surface 32A to the axial direction one side of the rotor magnet end surface 42A.
  • the leakage magnetic flux Lf generated in the magnetic pole piece 32 is suppressed, and the eddy current loss of the magnetic pole piece 32 is reduced.
  • the eddy current loss at the other axial end of the pole piece 32 is also reduced when the second positional relationship is established. It is also concluded that even if the stator-side facing surface 36 of the magnetic pole piece 32 is longer than the rotor-side facing surface 37, the eddy current loss can be reduced by establishing the first positional relationship. . Furthermore, it is concluded that the same eddy current loss effect can be enjoyed when the magnetic geared rotary machine 10 functions as the magnetic geared motor 10B.
  • the reason why the eddy current loss of the teeth 26 is reduced is as follows.
  • One of the causes of the eddy current loss in the stator 20 is that the magnetic flux flowing axially between the fingers 29 flows into the teeth 26 from one side in the axial direction (No. 1 in FIG. 6).
  • the magnetic flux flowing between the fingers 29 is the magnetic flux Lf 0 (No. 1 in FIG. 6) caused by the stator magnet 22, the magnetic flux caused by the rotor magnet 42, or the magnetic flux caused by the energization of the stator winding 24.
  • the finger end faces 29A are positioned on the other axial side of the tooth end faces 26A, the magnetic flux flowing between the fingers 29 flows in various directions on one axial side of the tooth end faces 26A. becomes possible. As a result, the magnetic flux flowing into the tooth end face 26A from one side in the axial direction is suppressed, and the eddy current flowing through the tooth 26 is reduced. As a result, among the eddy current losses in the stator 20, at least the eddy current losses in the teeth 26 are reduced. For the above reason, even when the finger opposite surface 29B is located on one side of the tooth opposite surface 26B in the axial direction (even when the fourth positional relationship is established), the effect of reducing the eddy current loss can be obtained. is concluded. Furthermore, it is concluded that the same eddy current loss effect can be enjoyed when the magnetic geared rotary machine 10 functions as the magnetic geared motor 10B.
  • the magnetic pole piece end face 32A, the stator magnet end face 22A, the finger end face 29A, and the tooth end face 26A are displaced to the other side in the axial direction from the rotor magnet end face 42A. It was found that the effect of reducing eddy current loss is highly exhibited.
  • FIG. 8 is a first graph showing the eddy current loss according to the axial distance between the pole piece end face and the rotor magnet end face.
  • FIG. 9 is a second graph showing the eddy current loss according to the axial distance between the pole piece end face and the rotor magnet end face.
  • the horizontal axis of the graph in FIG. 8 indicates the ratio of the dimension La1 to the axial length of the rotor magnet 42 (the dimension Lr in FIG. 4).
  • the vertical axis of the graph indicates No. in FIG.
  • Based on the eddy current loss in the pole piece 32 indicated by No. 2 shows the percentage of eddy current losses in the pole piece 32 indicated by 2 (as is the vertical axis of FIG. 9). In other words, the smaller the value on the vertical axis, the higher the effect of reducing the eddy current loss in the pole piece 32 .
  • FIG. 9 represents the ratio of dimension La1 to the opposing distance (dimension Ls in FIG. 6) between pole pieces 31 and rotor 40.
  • the axial length of the pole piece 32 is changed by the amount of change in the dimension La1.
  • Plotted points in the graphs of FIGS. 8 and 9 are eddy current losses obtained by simulation (the same applies to graphs of FIGS. 10 and 11, which will be described later).
  • FIG. 10 is a first graph showing eddy current loss according to the axial distance from the finger end face to the tooth end face.
  • FIG. 11 is a second graph showing the eddy current loss according to the axial distance from the finger end face to the tooth end face.
  • the horizontal axis of the graph in FIG. 10 indicates the ratio of the dimension Lt1 to the axial length of the teeth 26 (the dimension Le in FIG. 4).
  • the vertical axis of the same graph represents No. in FIG. No. 1 based on the eddy current loss in the stator 20 indicated by No. 1.
  • 4 shows the percentage of eddy current loss in the stator 20 indicated by 4 (the same applies to the vertical axis of FIG. 11).
  • the horizontal axis of the graph in FIG. 11 represents the ratio of dimension Lw to the facing distance (dimension Ls in FIG. 6) between pole piece 31 and rotor 40 .
  • the axial length of the finger 29 is changed by the amount of change in the dimension Lt.
  • a magnetically geared rotating machine (10) according to at least one embodiment of the present disclosure, a stator (20); a rotor (40) including a plurality of rotor magnets (42); a pole piece rotor (30) comprising a plurality of pole pieces (31) located radially between the stator (20) and the rotor (40); each of the pole pieces (31) has a pole piece end surface (32A, 33A) facing one side in the axial direction; each of the rotor magnets (42) has a rotor magnet end face (42A) facing the one side; At least part of the magnetic pole piece end faces (32A, 33A) is positioned on the other side in the axial direction with respect to the rotor magnet end face (42A), or The finger end faces (29A) facing the one side of each of the plurality of fingers (29) holding the stator magnets (22) provided on the teeth (26) of the stator (20) from both sides in the circumferential direction. ) is positioned on the other side with respect to the tooth
  • the magnetically geared rotating machine (10) of 1) above wherein the stator (20) includes a plurality of the stator magnets (22); each of the stator magnets (22) has a stator magnet end face (22A) facing the one side; The stator magnet end face (22A) is located on the other side of the rotor magnet end face (42A).
  • the stator magnet end face (22A) is located on the other side in the axial direction of the rotor magnet end face (42A), thereby reducing eddy current loss in the magnetic pole pieces (31).
  • the axial length of the stator magnet (22) can be reduced, the cost can be reduced. Therefore, according to the configuration of 2) above, it is possible to realize a magnetically geared rotating machine (10) that achieves both reduction in eddy current loss and cost reduction.
  • stator magnet end face (22A) is located at the same axial position as the pole piece end face (32A, 33A) or axially between the pole piece end face (32A, 33A) and the rotor magnet end face (42A). It is provided in the directional position.
  • the portion of the stator magnet (22) located on one side of the magnetic pole end faces (32A, 33A) is mostly responsible for the generation of magnetic transmission torque in the magnetic geared rotating machine (10). do not contribute. Therefore, according to the above configuration 3), the extra stator magnets (22) that hardly contribute to the generation of magnetic transmission torque can be reduced, and the cost of the magnetically geared rotating machine (10) can be reduced.
  • the magnetically geared rotating machine (10) of 1) above wherein at least part of the magnetic pole piece end faces (32A, 33A) is located on the other side with respect to the rotor magnet end face (42A);
  • the pole piece (31) comprises: a stator-side facing surface (36, 360) extending in the axial direction and facing the stator (20); a rotor-side facing surface (37, 370) extending in the axial direction and facing the rotor (40);
  • the stator-side facing surface (36, 360) is longer than the rotor-side facing surface (37, 370) in the axial direction.
  • stator-side facing surface (36, 360) is longer in the axial direction than the rotor-side facing surface (37, 370), at least a part of the magnetic pole end surface (32A, 33A) is positioned on the other side in the axial direction with respect to the rotor magnet end surface (42A), the axial length of the stator-side facing surface (36, 360) can be increased. Therefore, it is possible to suppress a decrease in transmission torque in the magnetically geared rotating machine (10) while suppressing eddy current loss in the magnetic pole piece (31). Therefore, a magnetically geared rotary machine (10) capable of reducing eddy current loss and ensuring magnetic transmission torque is realized.
  • each of the pole pieces (31) includes a first pole piece end (331), which is the end of the one side;
  • the first magnetic pole piece end (331) has a plurality of electromagnetic steel plates (35) laminated so that the radial positions of the ends (355A, 355B) on the stator (20) side are aligned,
  • the plurality of electromagnetic steel sheets (35) are a first electromagnetic steel plate (35A) forming part of the rotor-side facing surface (37, 370); and a second electromagnetic steel plate (35B) provided at a radial position closer to the stator (20) than the rotor-side facing surface (37, 370).
  • a simple configuration in which a plurality of electromagnetic steel sheets (35) having different radial lengths are laminated makes it possible to reduce eddy current loss and ensure magnetic transmission torque. be able to.
  • the stator (20) includes a plurality of the stator magnets (22); each of the stator magnets (22) has a stator magnet end face (22A) facing the one side;
  • the stator magnet end surface (22A) is located at the same axial position as the one end (366A) of the stator-side facing surface (36, 360), or It is provided at an axial position between the one-side end (366A) and the one-side end (377A) of the rotor-side facing surface (37, 370).
  • the axial distance (dimensions La1, Lb1) from the magnetic pole piece end faces (32A, 33A) to the rotor magnet end face (42A) is 0.5 times the axial length (dimension Lr) of the rotor magnet (42). It is 5% or more and 10% or less of the axial length (dimension Lr) of the rotor magnet (42).
  • the axial distances (sizes La1, Lb1) from the magnetic pole piece end faces (32A, 33A) to the rotor magnet end face (42A) are the axial lengths of the rotor magnets (42).
  • (dimension Lr) is 0.5% or more and 10% or less, the effect of reducing eddy current loss in the magnetic pole piece (31) can be improved. Therefore, according to the configuration of 7) above, a magnetically geared rotary machine (10) in which eddy current loss is more effectively reduced is realized.
  • Each of the magnetic pole pieces (31) faces the rotor (40) across an air gap (second air gap G2),
  • the axial distance (dimensions La1, Lb1) from the magnetic pole piece end faces (32A, 33A) to the rotor magnet end face (42A) is the opposing distance (dimension Ls) and 1200% or less of the facing distance (dimension Ls).
  • the axial distances (dimensions La1, Lb1) from the magnetic pole piece end faces (32A, 33A) to the rotor magnet end face (42A) are equal to the magnetic pole piece (31) and the rotor (40). 50% or more and 1200% or less of the facing distance (dimension Ls) from the magnetic pole piece (31) can improve the effect of reducing eddy current loss in the magnetic pole piece (31). Therefore, according to the above configuration 8), a magnetically geared rotary machine (10) in which eddy current loss is more effectively reduced is realized.
  • the axial distance (dimension Lt1) from the finger end face (29A) to the tooth end face (26A) is 0.5% or more of the axial length (dimension Le) of the tooth (26), and the tooth ( It is 4% or less of the axial length (dimension Le) of 26).
  • the axial distance (dimension Lt1) from the finger end face (29A) to the tooth end face (26A) is 0.5% or more of the axial length (dimension Le) of the tooth (26). and 4% or less, the eddy current loss in the stator (20) can be reduced. Therefore, according to the above configuration 9), a magnetically geared rotary machine (10) in which eddy current loss is more effectively reduced is realized.
  • the axial distance (dimension Lt1) from the finger end face (29A) to the tooth end face (26A) is 3% or more of the circumferential length (dimension Lw) of the tips of the teeth (26), and It is 25% or less of the length (dimension Lw).
  • the axial distance (dimension Lt1) from the finger end face (29A) to the tooth end face (26A) is 3% or more of the circumferential length (dimension Lw) of the tip of the tooth (26). And, by being 25% or less of the circumferential length (dimension Lw) of the tip, eddy current loss in the stator (20) can be reduced. Therefore, according to the configuration of 10) above, a magnetically geared rotating machine (10) in which eddy current loss is more effectively reduced is realized.
  • a power generation system (1A) according to at least one embodiment of the present disclosure, a prime mover (2); A magnetic geared rotating machine (10) according to any one of 1) to 10) above, which is a magnetic geared generator (10A) configured to generate power by being driven by an input from the prime mover (2).
  • a drive system (1B) according to at least one embodiment of the present disclosure, comprising: A magnetically geared rotary machine (10) according to any one of 1) to 10) above as a magnetic geared motor (10B) configured to output power; and a drive section (8) configured to be driven by the power output from the magnetic geared rotary machine (10).
  • expressions such as “in a certain direction”, “along a certain direction”, “parallel”, “perpendicular”, “center”, “concentric” or “coaxial”, etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
  • expressions such as “identical”, “equal”, and “homogeneous”, which express that things are in the same state not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

磁気ギアード回転機械は、固定子と、複数の回転子磁石を含む回転子と、固定子と回転子との間の径方向位置に設けられた複数の磁極片を含む磁極片回転子と、を備え、各々の磁極片は、軸方向の一方側を向く磁極片端面を有し、各々の回転子磁石は、一方側を向く回転子磁石端面を有し、磁極片端面の少なくとも一部が、回転子磁石端面に対して軸方向の他方側に位置する、または、固定子のティースに設けられた固定子磁石を周方向の両側から挟んで保持する複数のフィンガーの各々が有する一方側を向くフィンガー端面が、ティースが有する一方側を向くティース端面に対して他方側に位置する。

Description

磁気ギアード回転機械、発電システム、および、駆動システム
 本開示は、磁気ギアード回転機械、発電システム、および、駆動システムに関する。
 本願は、2021年9月14日に日本国特許庁に出願された特願2021-149617号に基づき優先権を主張し、その内容をここに援用する。
 従来、2つの回転子の間で回転数を変換してトルクを伝達する磁気ギアード回転機械が公知である。例えば、特許文献1で開示される磁気ギアード回転機械は、径方向内側から順に、複数の永久磁石を支持する内部回転子、複数の磁極片を含む外部回転子、および固定子を備える。固定子には、複数の巻線と複数の固定子磁石とが設けられる。巻線で流れる三相交流に応じて生じる回転磁界によって内部回転子が回転すると、内部回転子の永久磁石で生じる磁束が磁極片によって変調される。変調された磁場と固定子磁石の磁場とによって、外部回転子は回転する。
特許第5643857号公報
 磁気ギアード回転機械が効率的に稼働するためには、例えば固定子及び磁極片などにおける渦電流損失が抑制されることが好ましい。
 本開示の目的は、渦電流損失を抑制した磁気ギアード回転機械、発電システム、及び駆動システムを提供することである。
 本発明の少なくとも一実施形態に係る磁気ギアード回転機械は、
 固定子と、
 複数の回転子磁石を含む回転子と、
 前記固定子と前記回転子との間の径方向位置に設けられた複数の磁極片を含む磁極片回転子と、を備え、
 各々の前記磁極片は、軸方向の一方側を向く磁極片端面を有し、
 各々の前記回転子磁石は、前記一方側を向く回転子磁石端面を有し、
 前記磁極片端面の少なくとも一部が、前記回転子磁石端面に対して前記軸方向の他方側に位置する関係、または、
 前記固定子のティースに設けられた固定子磁石を周方向の両側から挟んで保持する複数のフィンガーの各々が有する前記一方側を向くフィンガー端面が、前記ティースが有する前記一方側を向くティース端面に対して前記他方側に位置する関係、の少なくとも一方の関係が成立する。
 本発明の少なくとも一実施形態に係る発電システムは、
 原動機と、
 前記原動機からの入力によって駆動されて発電するように構成された磁気ギアード発電機としての上記の磁気ギアード回転機械と
を備える。
 本発明の少なくとも一実施形態に係る駆動システムは、
 動力を出力するように構成された磁気ギアードモータとしての上記の磁気ギアード回転機械と、
 前記磁気ギアード回転機械から出力された前記動力によって駆動するように構成された駆動部と
を備える。
 本開示によれば、渦電流損失を抑制した磁気ギアード回転機械、発電システム、及び駆動システムを提供できる。
一実施形態に係る磁気ギアード回転機械を示す概略図である。 他の実施形態に係る磁気ギアード回転機械を示す概略図である。 一実施形態に係る磁気ギアード回転機械の径方向断面図である。 一実施形態に係る固定子の概略図である。 第1の実施形態に係る磁極片を含む磁気ギアード回転機械の内部構成を示す概略図である。 第2の実施形態に係る磁極片を含む磁気ギアード回転機械の内部構成を示す概略図である。 渦電流損失の低減効果を検証するために用意された各種の磁気ギアード回転機械を示す図である。 磁気ギアード回転機械の構成要素の軸方向位置を変更させた場合の渦電流損失を示す図である。 磁極片端面と回転子磁石端面の軸方向距離に応じた渦電流損失を示す第1のグラフである。 磁極片端面と回転子磁石端面の軸方向距離に応じた渦電流損失を示す第2のグラフである。 フィンガー端面からティース端面までの軸方向距離に応じた渦電流損失を示す第1のグラフである。 フィンガー端面からティース端面までの軸方向距離に応じた渦電流損失を示す第2のグラフである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
(磁気ギアード回転機械10の概要)
 図1A及び図1Bは、それぞれ、磁気ギアード回転機械の例を示す概略図である。ここで、図1A及び図1Bにおいて、「軸方向」は磁気ギアード回転機械10の磁極片回転子30および回転子40の回転軸(rotational axis)に平行な方向であり、「径方向」は磁極片回転子30および回転子40の回転軸(rotational axis)に直交する方向である。
 一実施形態では、図1Aに示すように、磁気ギアード回転機械10は、原動機2からの入力によって駆動されて発電するように構成された磁気ギアード発電機10Aである。磁気ギアード発電機10Aは、発電により生成した電力Pを例えば電力系統であってもよい電力供給先4に向けて供給するように構成される。
 他の実施形態では、図1Bに示すように、磁気ギアード回転機械10は、例えば電力系統であってもよい電力供給源6からの電力Pの供給を受けて、駆動部8を駆動するように構成される磁気ギアードモータ10Bである。
 図1Aに示す実施形態では、磁気ギアード発電機10Aは、発電システム1Aの一部を構成する。発電システム1Aは、例えば、風力発電システムや潮流発電システムのような再生可能エネルギー発電システムであってもよい。発電システム1Aが風力発電システムである場合、原動機2は風車ロータである。発電システム1Aが潮流発電システムである場合、原動機2は水車ロータである。
 磁気ギアード発電機10Aは、複数の固定子磁石22及び複数の固定子巻線24を含む固定子20と、複数の磁極片31を含む磁極片回転子30と、複数の回転子磁石42を含む回転子40とを備える。図1Aに示す例では、固定子20は、磁極片回転子30と回転子40を回転可能に支持するハウジング21の内部に配置される。磁極片回転子30は、原動機2の回転シャフト3とともに回転するように構成される。固定子20と回転子40との間の径方向位置に設けられた複数の磁極片31は各々、軸方向に積層された複数の電磁鋼板35を含む。磁極片回転子30は、磁極片31の軸方向両端にそれぞれ設けられるエンドプレート30Aと、原動機2との間で動力を伝達するための動力伝達軸34とを含む。本例の動力伝達軸34は、原動機2の回転シャフト3に連結されると共に、一方のエンドプレート30Aに連結される。動力伝達軸34は、ベアリングB1を介してハウジング21によって回転可能に支持される。動力が原動機2の回転シャフト3から動力伝達軸34に伝達(入力)されることで、磁極片回転子30は回転シャフト3と一体的に回転する。回転子40は、複数の回転子磁石42が設けられるロータコア43と、ロータコア43の軸方向両端にそれぞれ設けられるエンドプレート44と、ロータコア43の径方向内側で軸方向に延在する回転シャフト47とを含む。回転シャフト47は、ベアリングB2を介してハウジング21に回転可能に支持される。
 なお、図1Aに示す実施形態では、磁気ギアード発電機10Aは、径方向の内側に向かって、固定子20、磁極片回転子30、及び回転子40の順に配置された構成を有する。別の実施形態では、磁気ギアード発電機10Aは、径方向の内側に向かって、回転子40、磁極片回転子30、及び固定子20の順に配置された構成を有する。
 上述の磁気ギアード発電機10Aは、磁気ギアと発電機とを一体化した構造を有し、高調波型磁気ギア原理および電磁誘導を利用することで、原動機2からの機械的入力を電力に変換する。
 例えば、磁気ギアード発電機10Aにおける発電は以下の原理により行われてもよい。原動機2の回転シャフト3とともに回転する磁極片回転子(低速ロータ)30の磁極片31によって、固定子磁石22の磁束が変調され、変調された磁場から回転子磁石42が磁力を受けて回転子(高速ロータ)40が回転する。このとき、磁極片回転子30に対する回転子40の回転数の比(増速比)は、回転子磁石42の極対数NHに対する磁極片31の磁極数NLの比(=NL/NH)で表される。回転子40が回転することで、電磁誘導によって固定子巻線24に電流が発生する。なお、磁極片31の磁極数NLは、固定子磁石22の極対数NSよりも多い。
 磁気ギアード発電機10Aの稼働時、磁気ギアード発電機10Aの内部では、NH次の磁束(主磁束)、及び、NH次よりも高次な高調波磁束(例えば、NH+NS次の磁束)など種々の磁束が生じ得る。これらの磁束の一部は、例えば固定子磁石22を避けるために、磁極片31を軸方向に通過する漏れ磁束Lfになる。漏れ磁束Lfが生じると、各電磁鋼板35では、面内方向に渦電流が発生し得る。磁極片31のうち例えば軸方向両端部にある電磁鋼板35では、比較的大きな渦電流が発生し得る。
 また、磁気ギアード発電機10Aの稼働時、例えば固定子磁石22に起因して発生する磁束Lfが、図2を用いて後述する固定子20(より具体的な一例として後述のティース26)を軸方向に通過し得る。これにより、固定子20の軸方向両端部では渦電流が発生し得る。なお、固定子20で発生する渦電流は、回転子磁石42に起因して発生する磁束や固定子巻線24の通電に起因して発生する磁束などがステータコア23を通過することで発生する場合もある。
 図1Bに示す実施形態において、磁気ギアードモータ10Bは、駆動システム1Bの一部を構成する。駆動部8を含む駆動システム1Bは、磁気ギアードモータ10Bを駆動源として駆動する。一例として、駆動システム1Bは磁気ギアードモータ10Bを動力源として走行する車両であってもよく、この場合、駆動部8の回転シャフト9は、ホイールに動力を伝達するためのドライブシャフトであってもよい。
 磁気ギアードモータ10Bの基本構成は、図1Aに示す磁気ギアード発電機10Aと共通する。すなわち、磁気ギアードモータ10Bは、複数の固定子磁石22及び複数の固定子巻線24を含む固定子20と、複数の磁極片31を含む磁極片回転子30と、複数の回転子磁石42を含む回転子40とを備える。図1Bに示す例では、固定子20は、磁極片回転子30と回転子40を回転可能に支持するハウジング21の内部に固定される。固定子20と回転子40との間の径方向位置に設けられた複数の磁極片31の各々は、軸方向に積層された複数の電磁鋼板35を含む。磁極片回転子30は、磁極片31の軸方向両端にそれぞれ設けられるエンドプレート30Aと、駆動部8との間で動力を伝達するための動力伝達軸34とを含む。本例の動力伝達軸34は、駆動部8の回転シャフト9に連結されると共に、一方のエンドプレート30Aに連結される。動力伝達軸34は、ベアリングB1を介してハウジング21によって回転可能に支持される。磁気ギアードモータ10Bにおいて生成された動力が動力伝達軸34から駆動部8の回転シャフト9に伝達(出力)されることで、シャフト3Bが回転して、駆動部8は動作する。回転子40は、複数の回転子磁石42が設けられるロータコア43と、ロータコア43の軸方向両端にそれぞれ設けられるエンドプレート44と、ロータコア43の径方向内側で軸方向に延在する回転シャフト47とを含む。回転シャフト47は、ベアリングB2を介してハウジング21に回転可能に支持される。
 図1Bに示す実施形態では、磁気ギアードモータ10Bは、径方向の内側に向かって、固定子20、磁極片回転子30、及び回転子40の順に配置された構成を有する。別の実施形態では、磁気ギアードモータ10Bは、径方向の内側に向かって、回転子40、磁極片回転子30、固定子20の順に配置された構成を有する。
 なお、磁気ギアードモータ10Bは、磁気ギアとモータとを一体化した構造を有し、固定子巻線24の通電によって発生する回転磁界によって回転子(高速ロータ)40を回転させる。回転子40から磁極片回転子(低速ロータ)30への動力伝達では高調波磁気ギアの原理が利用される。稼働する磁気ギアードモータ10Bから出力された動力が回転シャフト9に伝達することによって駆動部8は駆動する。
 磁気ギアードモータ10Bの稼働時、磁気ギアード発電機10Aと同様、磁極片31では軸方向の漏れ磁束Lfが発生し得る。この場合、各磁極片31では、面内方向に渦電流が発生し得る。磁極片31のうち例えば軸方向両端部にある電磁鋼板35では、比較的大きな渦電流が発生し得る。
 また、磁気ギアードモータ10Bの稼働時、例えば固定子磁石22に起因して発生する磁束Lfが固定子20(より具体的な一例として後述のティース26)を軸方向に通過し得る。これにより、固定子20の軸方向両端部では渦電流が発生し得る。なお、固定子20で発生する渦電流は、回転子磁石42に起因して発生する磁束や固定子巻線24の通電に起因して発生する磁束などが固定子20を通過することで発生する場合もある。
(磁気ギアード電気機械の内部構造)
 続けて、図2を参照して、上述した磁気ギアード回転機械10(10A,10B)の内部構造について説明する。
 図2は、一実施形態に係る磁気ギアード回転機械の径方向断面図である。図2では、図面を見易くする都合、磁気ギアード回転機械10の一部の構成要素にのみ、ハッチングを施している。図2において、「周方向」は、既述の「軸方向」(図1A、図1B参照)を基準とした周方向である。
 図2で例示されるように、磁気ギアード回転機械10の固定子20は、周方向に延在するステータコア23と、ステータコア23から磁極片回転子30に向けて突出する複数のティース26と、複数のティース26の先端側に設けられる複数の固定子磁石22を含む。周方向に並ぶように配置された複数のティース26のうち隣接する2つの間にはそれぞれ、軸方向に延在する複数のスロット25が設けられる。各々のスロット25の軸方向両端は開放されており、スロット25には上述の固定子巻線24が巻かれている。つまり、複数のティース26は固定子巻線24を支持する。スロット25に収まらない固定子巻線24のコイルエンドはステータコア23から突出してもよい。
 また、複数の固定子磁石22は、周方向に交互に並ぶように配置された磁極の異なる複数の固定子磁石22N、22Sを含む。
 図2に示す例では、各々の固定子磁石22は、矩形断面を有する軸方向に長尺なロッド状部材である。
 図2には、固定子磁石22がティース26の表面に取り付けられた表面磁石型(SPM;Surface Permanent Magnet)の構造を有する固定子20を示している。他の実施形態では、固定子20は、固定子磁石22がステータコア23に埋め込まれた埋込磁石型(IPM;Interior Permanent Magnet)の構造を有していてもよい。
 上記構成の固定子20から径方向にずれた位置に設けられる回転子40は、周方向に並ぶように配置された複数の回転子磁石42を含む。複数の回転子磁石42は、周方向に交互に配置された磁極が互いに異なる複数の永久磁石である。複数の回転子磁石42の磁極数は、複数の固定子磁石22の磁極数よりも少ない。各々の回転子磁石42は、矩形断面を有する長尺なロッド部材であってもよい。
 図2には、回転子磁石42がロータコア43の表面に取り付けられた表面磁石型(SPM;Surface Permanent Magnet)の構造を有する回転子40を示している。他の実施形態では、回転子40は、回転子磁石42がロータコア43に埋め込まれた埋込磁石型(IPM;Interior Permanent Magnet)の構造を有していてもよい。
 回転子40は、回転子磁石42及びロータコア43以外にも、図1A及び図1Bを参照して上述したエンドプレート44を含んでいてもよい。エンドプレート44は、径方向に沿って延在する環状プレートである。
 磁極片回転子30は、上記構成の固定子20と回転子40との間の径方向位置において周方向に並ぶように配置された複数の磁極片31を含む。各々の磁極片31は、軸方向に積層された既述の複数の電磁鋼板35(図1A、図1B参照)を含む。各々の磁極片31は、第1エアギャップG1を隔てて回転子40と対向し、第2エアギャップG2を隔てて固定子20と対向する。例えば、回転子40と固定子20がいずれも表面磁石型の構造を有する実施形態では、磁極片回転子30は、回転子磁石42と第1エアギャップG1を隔てて対向し、且つ、固定子磁石22と第2エアギャップG2を隔てて対向する。別の実施形態では、磁極片回転子30は、ステータコア23とロータコア43のそれぞれと対向してもよい。
 さらに磁極片回転子30は、複数の磁極片31と周方向に交互に配置される複数のホルダ39を含む。一実施形態に係る各々のホルダ39は非磁性材料によって形成される。別の実施形態では、ホルダ39は磁性体材料によって形成されてもよい。各々の磁極片31は、周方向両側にある2つのホルダ39によって挟まれて保持される。
 また、磁極片31を構成する複数枚の電磁鋼板35の各々の中央部に、例えば軸方向視で円形であってもよい孔38(図3参照)が形成されてもよい。軸方向に延在するバー(図示外)がこれらの孔38に差し込まれることで、複数枚の電磁鋼板35が保持されてもよい。上記のバーの軸方向両端はそれぞれ、上述の一対のエンドプレート30A(図1A参照)に連結されてもよい。
 続いて、図3を参照し、一実施形態に係る固定子20のさらに詳細な構成を例示する。図3は、一実施形態に係る固定子の概略図である。固定子20は、ティース26の先端に設けられた固定子磁石22をそれぞれ周方向の両側から挟んで保持する複数のフィンガー29をさらに含んでもよい。軸方向に延在する各フィンガー29は、ティース26の先端側の表面に、ティース26と一体構造となって設けられている。フィンガー29はティース26に直接的に接続されてもよいし、フィンガー29の少なくとも一部がホルダなどの別の部材を介してティース26に間接的に接続されてもよい。
 図3では、ティース26の先端における周方向における長さ(以下、ティース26の先端幅ともいう)を寸法Lwによって示している。
 また、ティース26は、軸方向の一方側を向くティース端面26Aと、ティース端面26Aとは反対側のティース反対面26Bを含む(図4参照)。
(第1の実施形態に係る磁極片32と回転子40との位置関係)
 図4を参照し、磁気ギアード回転機械10の内部構造の詳細を説明する。図4は、第1の実施形態に係る磁極片を含む磁気ギアード回転機械の内部構成を示す概略図である。
 第1の実施形態に係る磁極片32(31)は軸方向の一方側を向く磁極片端面32Aを含み、回転子磁石42は軸方向の一方側を向く回転子磁石端面42Aを含む。本実施形態では、磁極片端面32Aの少なくとも一部が、回転子磁石端面42Aに対して軸方向の他方側に位置する関係(以下、第1の位置関係ともいう)が成立する。
 また、軸方向の他方側でも同様の位置関係が成立する。詳細には、磁極片32は磁極片端面32Aとは反対側の磁極片反対面32Bを含み、回転子磁石42は回転子磁石端面42Aとは反対側の回転子磁石反対面42Bを含む。そして、磁極片反対面32Bの少なくとも一部が、回転子磁石反対面42Bに対して軸方向の一方側に位置する関係(以下、第2の位置関係ともいう)が成立する。
 従って、図4で例示される実施形態では、磁極片32は、回転子磁石42の軸方向両端の間となる軸方向位置に設けられる。つまり、本例の磁極片32は回転子磁石42よりも軸方向において短い。
 また、図4で例示される実施形態では、磁極片32を構成する複数枚の電磁鋼板35は互いに同じ大きさを有する。従って、最も一方側に位置する1枚の電磁鋼板35の片面のみが磁極片端面32Aを形成し、最も他方側に位置する1枚の電磁鋼板35の片面のみが磁極片反対面32Bを形成する。
 なお、磁極片端面32Aと磁極片反対面32Bはそれぞれ、複数枚の電磁鋼板35の片面によって構成されてもよい(詳細は図5を用いて後述する)。
 発明者らの知見によれば、第1の位置関係が成立することで、磁極片32の軸方向一端部における渦電流は低減する。同様に、第2の位置関係が成立することで、磁極片32の軸方向他端部における渦電流は低減する。よって、上記構成によれば、渦電流損失を低減した磁気ギアード回転機械10を実現できる。第1の位置関係または第2の位置関係の少なくとも一方の位置関係は、後述の第3の位置関係が不成立のときでも成立してよい。
 なお、他の実施形態では、第2の位置関係は成立しなくてもよい。つまり、磁極片反対面32Bが回転子磁石反対面42Bと同じ軸方向位置、または、回転子磁石反対面42Bよりも軸方向の他方側に位置してもよい。この場合でも、第1の位置関係の成立により、磁気ギアード回転機械10の渦電流損失の低減効果を享受することができる。
 磁極片端面32Aから回転子磁石端面42Aまでの軸方向距離(寸法La1)の詳細を説明する。本実施形態では、寸法La1が、回転子磁石42の軸方向長さ(寸法Lr)の0.5%以上、且つ、回転子磁石42の軸方向長さの10%以下である。
 軸方向他方側でも同様の関係が成立する。詳細には、磁極片反対面32Bから回転子磁石反対面42Bまでの軸方向距離(寸法La2)は、回転子磁石42の軸方向長さの0.5%以上、且つ、回転子磁石42の軸方向長さの10%以下である。
 なお、図4は概略図であるので、磁気ギアード回転機械10に含まれる構成要素の上記のような長さの関係、および、位置関係が忠実に示されているとは限らない。これは、別途後述の長さの関係および位置関係についても同様であるし、図5についても同様である。
 発明者らの知見によれば、磁極片端面32Aから回転子磁石端面42Aまでの軸方向距離が、回転子磁石42の軸方向長さの0.5%以上、且つ、回転子磁石42の軸方向長さの10%以下であることで、磁極片32の軸方向一端部における渦電流損失は顕著に低減する。同様に、磁極片反対面32Bから回転子磁石反対面42Bまでの軸方向距離が、回転子磁石42の軸方向長さの0.5%以上、且つ、回転子磁石42の軸方向長さの10%以下であることで、磁極片32の軸方向他端部における渦電流損失は顕著に低減する。よって、上記構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械10が実現する。
 なお、磁極片反対面32Bから回転子磁石反対面42Bまでの軸方向距離(寸法La2)は、回転子磁石42の軸方向長さ(寸法Lr)の0.5%未満であってもよいし、寸法Lrの10%を上回ってもよい。この場合であっても、寸法La1と寸法Lrが上記の関係を有することで、磁極片32における渦電流損失の低減効果を享受することができる。
 また、本実施形態では、磁極片端面32Aから回転子磁石端面42Aまでの軸方向距離(寸法La1)は、磁極片32と回転子40との対向距離(寸法Ls)の50%以上、且つ、この対向距離の1200%以下である。
 軸方向の他方側も同様である。詳細には、磁極片反対面32Bから回転子磁石反対面42Bまでの軸方向距離(寸法La2)は、寸法Lsの50%以上、且つ、1200%以下である。
 なお、回転子40が表面磁石型の構造を有する図4の例では、寸法Lsは磁極片32と回転子磁石42との径方向距離である。他の例では、寸法Lsは、磁極片32とロータコア43との径方向距離であってもよい。また、寸法Lsは上述の第1エアギャップG1の径方向寸法と一致してもよい。
 発明者らの知見によれば、磁極片端面32Aから回転子磁石端面42Aまでの軸方向距離(寸法La1)が、磁極片32と回転子40との対向距離(寸法Ls)の50%以上、且つ、1200%以下であることで、磁極片32の軸方向一端部における渦電流損失は顕著に低減する。同様に、磁極片反対面32Bから回転子磁石反対面42Bまでの軸方向距離(寸法La2)が、磁極片32と回転子40との対向距離(寸法Ls)の50%以上、且つ、1200%以下であることで、磁極片32の軸方向他端部における渦電流損失は顕著に低減する。よって、上記構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械10が実現する。
 なお、磁極片反対面32Bから回転子磁石反対面42Bまでの軸方向距離(寸法La2)は、磁極片32と回転子40との対向距離(寸法Ls)に対して50%未満であってもよいし、寸法Lsに対して1200%を上回ってもよい。この場合であっても、寸法La1と寸法Lsが上記の関係を有することで、磁極片32における渦電流損失の低減効果を享受することができる。
(フィンガー29とティース26との位置関係)
 図4で例示される実施形態では、フィンガー29は軸方向の一方側を向くフィンガー端面29Aを含み、ティース26は軸方向の一方側を向くティース端面26Aを含む。本例では、フィンガー端面29Aがティース端面26Aよりも軸方向の他方側に位置する関係(以下、第3の位置関係ともいう)が成立する。
 また、軸方向の他方側でも同様の位置関係が成立する。詳細には、フィンガー29はフィンガー端面29Aとは反対側のフィンガー反対面29Bを含み、ティース26はティース端面26Aとは反対側のティース反対面26Bを含む。そして、フィンガー反対面29Bがティース反対面26Bよりも軸方向の一方側に位置する関係(以下、第4の位置関係ともいう)が成立する。
 発明者らの知見によれば、第3の位置関係が成立することで、固定子20の軸方向一端部における渦電流損失は低減する。同様に、第4の位置関係が成立することで、固定子20の軸方向他端部における渦電流損失は低減する。よって、上記構成によれば、渦電流損失を低減した磁気ギアード回転機械10を実現できる。第3の位置関係または第4の位置関係の少なくとも一方の位置関係は、上述の第1の位置関係と共に成立してもよいし、第1の位置関係が不成立のときでも成立してよい。
 なお、他の実施形態では、第4の位置関係は成立しなくてもよい。つまり、フィンガー反対面29Bがティース反対面26Bと同じ軸方向位置、または、ティース反対面26Bよりも軸方向の他方側に位置してもよい。この場合でも、第3の位置関係の成立により、磁気ギアード回転機械10の渦電流損失の低減効果を享受することができる。
 フィンガー端面29Aからティース端面26Aまでの軸方向距離(寸法Lt1)の詳細を説明する。本実施形態では、寸法Lt1が、ティース26の軸方向長さ(寸法Le)の0.5%以上、且つ、ティース26の軸方向長さの4%以下である。
 軸方向の他方側でも同様の関係が成立する。詳細には、フィンガー反対面29Bからティース反対面26Bまでの軸方向距離(寸法Lt2)は、ティース26の軸方向長さの0.5%以上、且つ、4%以下である。
 発明者らの知見によれば、フィンガー端面29Aからティース端面26Aまでの軸方向距離が、ティース26の軸方向長さの0.5%以上、且つ、4%以下であることで、固定子20の軸方向一端部における渦電流損失は顕著に低減する。同様に、フィンガー反対面29Bからティース反対面26Bまでの軸方向距離が、ティース26の軸方向長さの0.5%以上、且つ、4%以下であることで、固定子20の軸方向他端部における渦電流損失は顕著に低減する。よって、上記構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械10が実現する。
 なお、フィンガー反対面29Bからティース反対面26Bまでの軸方向距離(寸法Lt2)は、ティース26の軸方向長さ(寸法Le)の0.5%未満でもよいし、寸法Leの4%を上回ってもよい。この場合でも、寸法Lt1と寸法Leが上記の関係を有することで、固定子20における渦電流損失の低減効果を享受することができる。
 また、図4で例示される実施形態では、フィンガー端面29Aからティース端面26Aまでの軸方向距離(寸法Lt1)は、ティース26の先端幅(図3の寸法Lw)の3%以上、且つ、ティース26の先端幅の25%以下である。また、フィンガー反対面29Bからティース反対面26Bまでの軸方向距離(寸法Lt2)も、ティース26の先端幅の3%以上、且つ、25%以下である。
 発明者らの知見によれば、フィンガー端面29Aからティース端面26Aまでの軸方向距離が、ティース26の先端幅の3%以上、且つ、ティース26の先端幅の25%以下であることで、固定子20の軸方向一端部における渦電流損失は顕著に低減する。同様に、フィンガー反対面29Bからティース反対面26Bまでの軸方向距離が、ティース26の先端幅の3%以上、且つ、ティース26の先端幅の25%以下であることで、固定子20の軸方向他端部における渦電流損失は顕著に低減する。よって、上記構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械10が実現する。
 なお、他の実施形態では、フィンガー反対面29Bからティース反対面26Bまでの軸方向距離(寸法Lt2)が、ティース26の先端幅(図3の寸法Lw)の3%未満でもよいし、寸法Lwの25%を上回ってもよい。この場合でも、寸法Lt1と寸法Lwが上記の関係を有することで、固定子20における渦電流損失の低減効果を享受することができる。
(固定子磁石22、回転子磁石42、および磁極片32の位置関係)
 図4で例示される実施形態では、固定子磁石22は、軸方向の一方側を向く固定子磁石端面22Aと、固定子磁石端面22Aとは反対側の固定子磁石反対面22Bとを有する。固定子磁石端面22Aは、回転子磁石端面42Aよりも軸方向において他方側に位置する。また、固定子磁石反対面22Bは、回転子磁石反対面42Bよりも軸方向において一方側に位置する。従って、固定子磁石22は回転子磁石42よりも軸方向において短い。
 なお、図4では、図面を見やすくする都合、フィンガー29よりも径方向長さの短い固定子磁石22を概略的に図示するが、固定子磁石22はフィンガー29と同一の径方向長さを有してもよいし、フィンガー29よりも径方向に長くてもよい。
 発明者らの知見によれば、固定子磁石端面22Aが回転子磁石端面42Aよりも軸方向の他方側に位置することで、磁極片32の軸方向一方側における渦電流損失を低減できる。また、固定子磁石22の軸方向長さは低減できる。さらに、固定子磁石反対面22Bは、回転子磁石反対面42Bよりも軸方向の一方側に位置することで、磁極片32と固定子20の各々の軸方向他方側における渦電流損失を低減でき、固定子20の軸方向長さを低減できる。よって、上記構成によれば、渦電流損失の低減と低コスト化とを両立した磁気ギアード回転機械10を実現できる。
 なお、固定子磁石反対面22Bは、回転子磁石反対面42Bと同じ軸方向位置、または、回転子磁石反対面42Bよりも軸方向他方側に位置してもよい。この場合でも、固定子磁石端面22Aが回転子磁石端面42Aよりも軸方向他方側に位置するので、渦電流損失の低減と磁気ギアード回転機械10の低コスト化とを実現できる。
 図4で例示される実施形態では、固定子磁石端面22Aは、磁極片端面32Aと同じ軸方向位置、または、磁極片端面32Aと回転子磁石端面42Aとの間の軸方向位置に設けられる。軸方向他方側でも同様に、固定子磁石反対面22Bは、磁極片反対面32Bと同じ軸方向位置、または、磁極片反対面32Bと回転子磁石反対面42Bとの間の軸方向位置に設けられる。
 発明者らの知見によれば、磁極片端面32Aよりも一方側にある固定子磁石22の部位は、磁気ギアード回転機械10における磁気的な伝達トルクの発生に殆ど寄与しない。従って、上記構成によれば、余分な固定子磁石22を低減でき、磁気ギアード回転機械10を低コスト化できる。
 なお、固定子磁石反対面22Bは、磁極片反対面32Bよりも軸方向の他方側に位置してもよい。この場合でも、固定子磁石端面22Aと磁極片端面32Aとの位置関係が上述の通りであれば、磁気ギアード回転機械10の低コスト化を達成できる。
(第2の実施形態に係る磁極片33と回転子40との位置関係)
 図5は、第2の実施形態に係る磁極片を含む磁気ギアード回転機械の内部構成を示す概略図である。
 第2の実施形態に係る磁極片33(31)は、軸方向一方側の端部である第1磁極片端部331と、第1磁極片端部331とは反対側の第2磁極片端部332とを有する。第1磁極片端部331には、軸方向の一方側を向く磁極片33の端面である磁極片端面33Aが形成され、第2磁極片端部332には、磁極片端面33Aとは反対側の端面である磁極片反対面33Bが形成される。
 そして、第1磁極片端部331と第2磁極片端部332のそれぞれにおいて、磁極片33を構成する複数枚の電磁鋼板35は、磁極片33の軸方向中心側から順に、第1電磁鋼板35A、第2電磁鋼板35B、及び第3電磁鋼板35Cを含む。これら電磁鋼板35の径方向長さは、軸方向外側に位置する電磁鋼板35であるほど短い。また、第1電磁鋼板35A、第2電磁鋼板35B、及び第3電磁鋼板35Cの各々の固定子20側の端部355A、355B、355Cは、径方向位置が揃えられている。つまり、これらの電磁鋼板35は、固定子20側の端部の径方向位置が揃うよう積層されている。
 上記の第1磁極片端部331では、第1電磁鋼板35A、第2電磁鋼板35B、及び第3電磁鋼板35Cの各々の片面が磁極片端面33Aを形成する。同様に、第2磁極片端部332では、第1電磁鋼板35A、第2電磁鋼板35B、及び第3電磁鋼板35Cの各々の片面が磁極片反対面33Bを形成する。
 電磁鋼板35に形成される孔38(図3参照)のうち、第1電磁鋼板35Aに形成される孔38は軸方向視で円形状である。他方、第2電磁鋼板35Bと第3電磁鋼板35Cの各々に形成される孔38は半円形状である。例えば、第3電磁鋼板35Cに形成される孔38は、軸方向視において、バー(図示外)の周面の半分以上を囲むことが好ましい。これにより、第3電磁鋼板35Cがバーに対して径方向外側に外れにくい構成が実現する。
 第1磁極片端部331では、第3電磁鋼板35Cの片面によって形成される磁極片端面33Aは回転子磁石端面42Aと同じ軸方向位置にあるが、上述の第1の位置関係は成立する。なぜなら、第1電磁鋼板35A及び第2電磁鋼板35Bの各々の片面によって形成される磁極片端面33Aは、回転子磁石端面42Aよりも軸方向の他方側に位置するからである。
 同様に、第2磁極片端部332においても、磁極片反対面33Bを形成する第1電磁鋼板35Aと第2電磁鋼板35Bの各々の片面が、回転子磁石反対面42Bよりも軸方向の一方側に位置しているため、第2の位置関係は成立する。
 発明者らの知見によれば、磁極片端面33Aの一部のみが回転子磁石端面42Aよりも軸方向の他方側に位置する第1の位置関係が成立する場合でも、磁極片33の軸方向一端部における渦電流損失は低減する。同様に、磁極片反対面33Bの一部のみが回転子磁石反対面42Bよりも軸方向の一方側に位置する第2の位置関係が成立する場合でも、磁極片33の軸方向他端部における渦電流損失は低減する。よって、磁気ギアード回転機械10の渦電流損失を低減できる。
 図5で例示される実施形態では、磁極片端面33Aと回転子磁石端面42Aとの軸方向距離は、磁極片端面33Aの回転子40側の端部(つまり、第1電磁鋼板35Aが形成する磁極片端面33A)と回転子磁石端面42Aとの軸方向距離であり、図5の寸法Lb1に該当する。例えば、寸法Lb1が、回転子磁石42の軸方向長さの0.5%以上かつ回転子磁石42の軸方向長さの10%以下であれば、磁極片33の軸方向一方側における渦電流損失の顕著な低減効果を享受できる。また、寸法Lb1が、磁極片33と回転子40(図5では回転子磁石42)との対向距離の50%以上、且つ、1200%以下であれば、磁極片33の軸方向一方側における渦電流損失の顕著な低減効果を享受できる。
 図5で例示される実施形態では、磁極片33は、固定子20(図5の例では固定子磁石22)と対向する固定子側対向面36と、回転子40(図5の例では回転子磁石42)と対向する回転子側対向面37とを有する。固定子側対向面36と回転子側対向面37はいずれも軸方向に延在する。
 図5の例では、第1電磁鋼板35A、第2電磁鋼板35B、及び第3電磁鋼板35Cの各々の端部355A、355B、355Cが固定子側対向面36の一部を構成する。他方、これらの電磁鋼板35のうち第1電磁鋼板35Aの回転子40側の端部のみが、回転子側対向面37の一部を構成し、第2電磁鋼板35Bと第3電磁鋼板35Cは回転子側対向面37よりも固定子20側の径方向位置に設けられる。
 従って、固定子側対向面36は、回転子側対向面37よりも軸方向において長い。
 磁気ギアード回転機械10の稼働時の磁気的な伝達トルク(より詳細には磁極片回転子30と回転子40との間で伝達される磁気的なトルク)は、固定子側対向面36の軸方向長さが長いほど、大きくなる傾向にある。上記構成によれば、固定子側対向面36が回転子側対向面37によりも長いので、磁極片端面32Aの少なくとも一部を回転子磁石端面42Aよりも軸方向の他方側に位置させつつ、固定子側対向面36の軸方向長さを確保できる。よって、渦電流損失を低減すると共に、磁気的な伝達トルクを確保することができる磁気ギアード回転機械10が実現する。
 また、固定子側対向面36が回転子側対向面37よりも軸方向に長い構成を、径方向長さの互いに異なる第1電磁鋼板35A、第2電磁鋼板35B、及び第3電磁鋼板35Cが積層される簡易な構成によって、実現することができる。よって、径方向長さの互いに異なる複数枚の電磁鋼板35が積層された簡易な構成によって、磁気ギアード回転機械10における渦電流損失の低減と磁気的な伝達トルクの確保とを両立させることができる。
 また、図5の実施形態では、固定子磁石端面22Aは、固定子側対向面36の軸方向の一方側の端366Aと同じ軸方向位置、または、固定子側対向面36の端366Aと、回転子側対向面37の一方側の端377Aとの間の軸方向位置に設けられる。また、固定子磁石反対面22Bは、固定子側対向面36の軸方向の他方側の端366Bと同じ位置、または、固定子側対向面36の端366Bと、回転子側対向面37の他方側の端377Bとの間の軸方向位置に設けられる。
 上述した通り、固定子磁石22のうち磁極片33よりも軸方向の外側に位置する部位は、磁気ギアード回転機械10の磁気的な伝達トルクの発生に殆ど寄与しない。上記構成によれば、磁気的な伝達トルクに殆ど寄与しない固定子磁石22の部位を低減することができるので、磁気ギアード回転機械10の低コスト化を実現することができる。
 なお、固定子磁石反対面22Bが、固定子側対向面36の端366Bよりも軸方向の他方側に位置してもよい。この場合であっても、例えば固定子磁石端面22Aが固定子側対向面36の端366Aと同じ軸方向位置にあれば、磁気ギアード回転機械10の低コスト化は実現する。
(実施例1)
 図6、図7を参照し、磁気ギアード回転機械10の構成要素の軸方向における位置関係と、渦電流損失の低減効果との関係を説明する。図6は、渦電流損失の低減効果を検証するために用意された各種の磁気ギアード回転機械を示す。図7は、磁気ギアード回転機械の構成要素の軸方向位置を変更させた場合の渦電流損失を示す。
 発明者らは、第1の実施形態に係る磁極片32を含む磁気ギアード回転機械10ついて、構成要素の軸方向位置を変更することによる渦電流損失の低減効果をシミュレーションによって特定した。より具体的には、以下の(A)~(D)で示す構成要素の軸方向位置を変更し、解析によって求まる渦電流損失を比較した。
(A)磁極片端面32A
(B)固定子磁石端面22A
(C)フィンガー端面29A
(D)ティース端面26A
 より詳細な解析条件を説明する。上記の(A)~(D)の軸方向位置が揃えられた磁気ギアード回転機械10を基準(No.1)として、いずれかの構成要素を軸方向の他方側に変位させた(該構成要素の軸方向長さを短くした)磁気ギアード回転機械10をNo.2~No.6として想定した。例えば、図6、図7に示すように、No.2の磁気ギアード回転機械10は、磁極片端面32Aが軸方向の他方側に基準よりも変位している。また、No.3の磁気ギアード回転機械10は、磁極片端面32Aと固定子磁石端面22Aが軸方向の他方側に基準よりも変位している。そして、No.1~No.6の各々の磁気ギアード回転機械10が磁気ギアード発電機10Aとして機能したときの渦電流損失をシミュレーションにより特定した結果が図7の上段のグラフに示されている。グラフで示される渦電流損失は、磁極片32の軸方向一方側における渦電流損失と、固定子20の軸方向一方側における渦電流損失との合計である。
 なお、図7の下段にある表の”PP”は、“Pole Piece”の略であり、磁極片端面32Aを示す。”HSR Mag”は、“High Speed Rotor Magnet”の略であり、回転子磁石端面42Aを示す(本解析では、回転子磁石端面42Aの軸方向位置は変更されていない)。”ST Mag”は、“Stator Magnet”の略であり、固定子磁石端面22Aを示す。”ST Finger”は、“Stator Finger”の略であり、フィンガー端面29Aを示す。”ST Teeth”は、“Stator Teeth”の略であり、ティース端面26Aを示す。
 No.2~No.6で示される構成要素が軸方向の他方側に基準に対して変位している量は、いずれも同じ値(一定値)である。
 図7のNo.1とNo.2を比較することで、磁極片端面32Aが回転子磁石端面42Aよりも軸方向の他方側に位置すれば、渦電流損失(特に磁極片32における渦電流損失)が低下することが了解される。つまり、第1の位置関係が成立すると、磁気ギアード回転機械10の渦電流損失が低下することが了解される。そして、上記した(B)~(D)の構成要素が軸方向の他方側に変位しているかに関わらず、第1の位置関係が成立すれば、渦電流損失(特に磁極片32における渦電流損失)が低下することが、No.1と、No3、No.5、No.6とを比較することで了解される。
 発明者らの知見によれば、磁極片32の渦電流損失が低下する理由は以下の通りである。磁極片32で生じる漏れ磁束Lfは、磁極片32を軸方向に通過して、回転子磁石端面42Aよりも軸方向の一方側へ流れる(図6のNo.1)。この点、磁極片端面32Aが回転子磁石端面42Aよりも軸方向の他方側に位置することで、磁極片端面32Aから回転子磁石端面42Aよりも軸方向一方側へ磁束が流れにくくなる結果、磁極片32で生じる漏れ磁束Lfが抑制され、磁極片32の渦電流損失が低下する。
 上記の理由によれば、第2の位置関係が成立する場合も、磁極片32の軸方向他端部における渦電流損失は低下することが結論付けられる。また、磁極片32の固定子側対向面36が回転子側対向面37よりも長い構成が採用されても、第1の位置関係の成立により渦電流損失の低減効果を享受できることが結論付けられる。さらに、磁気ギアード回転機械10が磁気ギアードモータ10Bとして機能した場合も、同様の渦電流損失効果を享受できることが結論付けられる。
 また、図7のNo.1と、No.4とを比較することで、フィンガー端面29Aが、ティース端面26Aに対して軸方向の他方側に位置すれば、渦電流損失(特に固定子20における渦電流損失)が低下することが了解される。つまり、第3の位置関係が成立すると、磁気ギアード回転機械10の渦電流損失が低下することが了解される。そして、上記した(A)、(C)の構成要素が軸方向の他方側に変位しても、第3の位置関係が成立すれば、渦電流損失(特に磁極片32における渦電流損失)が低下することが、No.1とNo.5とを比較することで了解される。
 発明者らの知見によれば、ティース26の渦電流損失が低下する理由は以下の通りである。固定子20における渦電流損失の一因は、フィンガー29の間を軸方向に沿って流れる磁束が、軸方向の一方側からティース26に流入することにある(図6のNo.1)。フィンガー29の間を流れる上記磁束は、固定子磁石22に起因する磁束Lf(図6のNo.1)、回転子磁石42に起因する磁束、または固定子巻線24の通電に起因する磁束の少なくともいずれかを含む。この点、フィンガー端面29Aがティース端面26Aよりも軸方向の他方側に位置することで、フィンガー29の間を流れる上記磁束は、ティース端面26Aよりも軸方向の一方側で種々の方向に流れることが可能となる。結果、軸方向の一方側からティース端面26Aに流入する磁束が抑制され、ティース26を流れる渦電流が低下する。これにより、固定子20における渦電流損失のうち少なくともティース26における渦電流損失が低下する。
 上記の理由によれば、フィンガー反対面29Bがティース反対面26Bよりも軸方向の一方側に位置する場合も(第4の位置関係が成立する場合も)、渦電流損失の低減効果を享受できることが結論付けられる。さらに、磁気ギアード回転機械10が磁気ギアードモータ10Bとして機能した場合も、同様の渦電流損失効果を享受できることが結論付けられる。
 また、図7のNo.1と、No.3、No.5、No.6とを比較することで、固定子磁石端面22Aが回転子磁石端面42Aよりも軸方向の他方側に位置する場合、磁極片32における渦電流損失が低減することが判った。
 さらに、上記の解析結果によれば、No.5で示される、磁極片端面32A、フィンガー端面29A、及び固定子磁石端面22Aが、回転子磁石端面42Aおよびティース端面26Aに対して軸方向の他方側に変位している磁気ギアード回転機械10が渦電流損失の低減効果を最も高く発揮することが判った。
 また、No.6で示される、磁極片端面32A、固定子磁石端面22A、フィンガー端面29A、およびティース端面26Aが、回転子磁石端面42Aよりも軸方向の他方側に変位している磁気ギアード回転機械10も、渦電流損の低減効果を高く発揮することが判った。
(実施例2)
 図8、図9を参照し、磁極片端面32Aと回転子磁石端面42Aの軸方向距離に応じた磁極片31における渦電流損失の低減効果について説明する。図8は、磁極片端面と回転子磁石端面の軸方向距離に応じた渦電流損失を示す第1のグラフである。図9は、磁極片端面と回転子磁石端面の軸方向距離に応じた渦電流損失を示す第2のグラフである。
 発明者らは、図6のNo.2で示される磁気ギアード回転機械10の寸法La1と、No.2で示される磁極片32での渦電流損失との関係をシミュレーションによって特定した。
 図8のグラフの横軸は、回転子磁石42の軸方向長さ(図4の寸法Lr)に対する寸法La1の割合を示す。また同グラフの縦軸は、図7のNo.1で示される磁極片32での渦電流損失を基準とした、No.2で示される磁極片32での渦電流損失の割合を示す(図9の縦軸も同様である)。つまり、縦軸での値が小さいほど、磁極片32での渦電流損失の低減効果が高く発揮されることを意味する。図9のグラフの横軸は、磁極片31と回転子40との対向距離(図6の寸法Ls)に対する寸法La1の割合を示す。なお、本解析では、寸法La1の変化量分、磁極片32の軸方向長さを変更させている。
 また、図8、図9のグラフにおけるプロット点が、シミュレーションにより求めた渦電流損失である(後述の図10、図11のグラフにおいても同様である)。
 図8のグラフで示される通り、回転子磁石42の軸方向長さに対する寸法La1の割合が0.5%以上になると、渦電損失がおよそ80%以下となり、渦電流損失の顕著な低減効果が確認された。また、上記割合が10%を上回っても、渦電流損失の低減効果は向上しないことが判った。よって、回転子磁石42の軸方向長さに対する寸法La1の割合が0.5%以上、且つ、10%以下であると、渦電流損失の顕著な低減効果が発揮されることが判った。
 次に、図9のグラフで示される通り、磁極片31と回転子40との対向距離に対する寸法La1の割合が50%以上になると、渦電損失がおよそ80%以下となり、渦電流損失の顕著な低減効果が確認された。また、上記割合が1200%を上回っても、渦電流損失の低減効果は向上しないことが判った。よって、磁極片31と回転子40との対向距離に対する寸法La1の割合が50%以上、且つ、1200%以下であると、渦電流損失の顕著な低減効果が発揮されることが判った。
 (実施例3)
 図10、図11を参照し、フィンガー端面29Aからティース端面26Aまでの軸方向距離に応じたティース26の渦電流損失の低減効果について説明する。図10は、フィンガー端面からティース端面までの軸方向距離に応じた渦電流損失を示す第1のグラフである。図11は、フィンガー端面からティース端面までの軸方向距離に応じた渦電流損失を示す第2のグラフである。
 発明者らは、図6のNo.4で示される磁気ギアード回転機械10の寸法Lt1と、No.4で示される固定子20での渦電流損失との関係をシミュレーションによって特定した。
 図10のグラフの横軸は、ティース26の軸方向長さ(図4の寸法Le)に対する寸法Lt1の割合を示す。また同グラフの縦軸は、図6のNo.1で示される固定子20での渦電流損失を基準とした、No.4で示される固定子20での渦電流損失の割合を示す(図11の縦軸も同様である)。つまり、縦軸での値が小さいほど、固定子20での渦電流損失の低減効果が高く発揮されることを意味する。図11のグラフの横軸は、磁極片31と回転子40との対向距離(図6の寸法Ls)に対する寸法Lwの割合を示す。なお、本解析では、寸法Ltの変化量分、フィンガー29の軸方向長さを変更させている。
 図10のグラフで示される通り、ティース26の軸方向長さに対する寸法Lt1の割合が0.5%以上になると、渦電損失が90%以下となり、渦電流損失の顕著な低減効果が確認された。また、上記割合が4%を上回っても、渦電流損失の低減効果は向上しないことが判った。よって、ティース26の軸方向長さに対する寸法Lt1の割合が0.5%以上、且つ、4%以下であると、固定子20での渦電流損失の顕著な低減効果が発揮されることが判った。
 次に、図11のグラフで示される通り、磁極片32と回転子40との対向距離に対する寸法Lwの割合が3%以上になると、渦電損失が90%以下となり、渦電流損失の顕著な低減効果が確認された。また、上記割合が25%を上回っても、渦電流損失の低減効果は向上しないことが判った。よって、磁極片31と回転子40との対向距離に対する寸法Lwの割合が3%以上、且つ、25%以下であると、固定子20での渦電流損失の顕著な低減効果が発揮されることが判った。
(まとめ)
 以下、幾つかの実施形態に係る磁気ギアード回転機械10、発電システム1A、および駆動システム1Bの概要を記載する。
1)本開示の少なくとも一実施形態に係る磁気ギアード回転機械(10)は、
 固定子(20)と、
 複数の回転子磁石(42)を含む回転子(40)と、
 前記固定子(20)と前記回転子(40)との間の径方向位置に設けられた複数の磁極片(31)を含む磁極片回転子(30)と、を備え、
 各々の前記磁極片(31)は、軸方向の一方側を向く磁極片端面(32A、33A)を有し、
 各々の前記回転子磁石(42)は、前記一方側を向く回転子磁石端面(42A)を有し、
 前記磁極片端面(32A、33A)の少なくとも一部が、前記回転子磁石端面(42A)に対して前記軸方向の他方側に位置する、または、
 前記固定子(20)のティース(26)に設けられた固定子磁石(22)を周方向の両側から挟んで保持する複数のフィンガー(29)の各々が有する前記一方側を向くフィンガー端面(29A)が、前記ティース(26)が有する前記一方側を向くティース端面(26A)に対して前記他方側に位置する。
 発明者らの知見によれば、磁極片端面(32A、33A)が回転子磁石端面(42A)に対して軸方向の他方側に位置することで、磁極片(31)の軸方向一方側における渦電流損失は低減する。また、フィンガー端面(29A)がティース端面(26A)よりも軸方向の他方側に位置することで、固定子(20)の軸方向一方側における渦電流損失は低減する。よって、上記1)の構成によれば、渦電流損失を低減した磁気ギアード回転機械(10)を実現できる。
2)幾つかの実施形態では、上記1)に記載の磁気ギアード回転機械(10)であって、
 前記固定子(20)は、複数の前記固定子磁石(22)を含み、
 各々の前記固定子磁石(22)は、前記一方側を向く固定子磁石端面(22A)を有し、
 前記固定子磁石端面(22A)は、前記回転子磁石端面(42A)よりも前記他方側に位置する。
 発明者らの知見によれば、固定子磁石端面(22A)が回転子磁石端面(42A)よりも軸方向において他方側に位置することで、磁極片(31)における渦電流損失を低減できる。また、固定子磁石(22)の軸方向長さを低減できるので、低コスト化が実現する。よって、上記2)の構成によれば、渦電流損失の低減と低コスト化を両立した磁気ギアード回転機械(10)を実現できる。
3)幾つかの実施形態では、上記2)に記載の磁気ギアード回転機械(10)であって、
 前記固定子磁石端面(22A)は、前記磁極片端面(32A、33A)と同じ軸方向位置、または、前記磁極片端面(32A、33A)と前記回転子磁石端面(42A)との間の軸方向位置に設けられる。
 発明者らの知見によれば、磁極片端面(32A、33A)よりも一方側にある固定子磁石(22)の部位は、磁気ギアード回転機械(10)における磁気的な伝達トルクの発生に殆ど寄与しない。従って、上記3)の構成によれば、磁気的な伝達トルクの発生に殆ど寄与しない余分な固定子磁石(22)を低減でき、磁気ギアード回転機械(10)を低コスト化できる。
4)幾つかの実施形態では、上記1)に記載の磁気ギアード回転機械(10)であって、
 前記磁極片端面(32A、33A)の少なくとも一部が、前記回転子磁石端面(42A)に対して前記他方側に位置し、
 前記磁極片(31)は、
  前記軸方向に延在し、前記固定子(20)と対向する固定子側対向面(36、360)と、
  前記軸方向に延在し、前記回転子(40)と対向する回転子側対向面(37、370)とを含み、
 前記固定子側対向面(36、360)は、前記回転子側対向面(37、370)よりも前記軸方向において長い。
 上記4)の構成によれば、固定子側対向面(36、360)が回転子側対向面(37、370)によりも軸方向に長いので、磁極片端面(32A、33A)の少なくとも一部を回転子磁石端面(42A)に対して軸方向の他方側に位置させつつ、固定子側対向面(36、360)の軸方向長さを長くできる。従って、磁極片(31)における渦電流損失を抑制しつつ、磁気ギアード回転機械(10)における伝達トルクの低下を抑制できる。よって、渦電流損失を低減すると共に、磁気的な伝達トルクを確保することができる磁気ギアード回転機械(10)が実現する。
5)幾つかの実施形態では、上記4)に記載の磁気ギアード回転機械(10)であって、
 各々の前記磁極片(31)は、前記一方側の端部である第1磁極片端部(331)を含み、
 前記第1磁極片端部(331)は、前記固定子(20)側の端部(355A、355B)の径方向位置が揃うよう積層された複数枚の電磁鋼板(35)を有し、
 前記複数枚の電磁鋼板(35)は、
   前記回転子側対向面(37、370)の一部を形成する第1電磁鋼板(35A)と、
   前記回転子側対向面(37、370)よりも前記固定子(20)側の径方向位置に設けられた第2電磁鋼板(35B)と、を有する。
 上記5)の構成によれば、径方向長さの互いに異なる複数枚の電磁鋼板(35)が積層された簡易な構成によって、渦電流損失の低減と磁気的な伝達トルクの確保とを両立させることができる。
6)幾つかの実施形態では、上記4)または5)に記載の磁気ギアード回転機械(10)であって、
 前記固定子(20)は、複数の前記固定子磁石(22)を含み、
 各々の前記固定子磁石(22)は、前記一方側を向く固定子磁石端面(22A)を有し、
 前記固定子磁石端面(22A)は、前記固定子側対向面(36、360)の前記一方側の端(366A)と同じ軸方向位置、または、前記固定子側対向面(36、360)の前記一方側の前記端(366A)と、前記回転子側対向面(37、370)の前記一方側の端(377A)との間の軸方向位置に設けられる。
 上記6)の構成によれば、磁気的な伝達トルクに殆ど寄与しない固定子磁石(22)の部位を低減することができるので、磁気ギアード回転機械(10)の低コスト化を実現することができる。
7)幾つかの実施形態では、上記1)から6)のいずれかに記載の磁気ギアード回転機械(10)であって、
 前記磁極片端面(32A、33A)の少なくとも一部が、前記回転子磁石端面(42A)に対して前記他方側に位置し、
 前記磁極片端面(32A、33A)から前記回転子磁石端面(42A)までの軸方向距離(寸法La1、Lb1)は、前記回転子磁石(42)の軸方向長さ(寸法Lr)の0.5%以上、且つ、前記回転子磁石(42)の軸方向長さ(寸法Lr)の10%以下である。
 発明者らの知見によれば、磁極片端面(32A、33A)から回転子磁石端面(42A)までの軸方向距離(寸法La1、Lb1)が、前記回転子磁石(42)の軸方向長さ(寸法Lr)の0.5%以上、且つ、10%以下であることで、磁極片(31)における渦電流損失の低減効果を向上できる。よって、上記7)の構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械(10)が実現する。
8)幾つかの実施形態では、上記1)から7)のいずれかに記載の磁気ギアード回転機械(10)であって、
 前記磁極片端面(32A、33A)の少なくとも一部が、前記回転子磁石端面(42A)に対して前記軸方向の前記他方側に位置し、
 各々の前記磁極片(31)は、エアギャップ(第2エアギャップG2)を隔てて前記回転子(40)と対向し、
 前記磁極片端面(32A、33A)から前記回転子磁石端面(42A)までの軸方向距離(寸法La1、Lb1)は、前記磁極片(31)と前記回転子(40)との対向距離(寸法Ls)の50%以上、且つ、前記対向距離(寸法Ls)の1200%以下である。
 発明者らの知見によれば、磁極片端面(32A、33A)から回転子磁石端面(42A)までの軸方向距離(寸法La1、Lb1)が、磁極片(31)と前記回転子(40)との対向距離(寸法Ls)の50%以上、且つ、1200%以下であることで、磁極片(31)における渦電流損失の低減効果を向上できる。よって、上記8)の構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械(10)が実現する。
9)幾つかの実施形態では、上記1)から8)のいずれかに記載の磁気ギアード回転機械(10)であって、
 前記フィンガー端面(29A)が、前記ティース端面(26A)に対して前記他方側に位置し、
 前記フィンガー端面(29A)から前記ティース端面(26A)までの軸方向距離(寸法Lt1)は、前記ティース(26)の軸方向長さ(寸法Le)の0.5%以上、且つ、前記ティース(26)の前記軸方向長さ(寸法Le)の4%以下である。
 発明者らの知見によれば、フィンガー端面(29A)からティース端面(26A)までの軸方向距離(寸法Lt1)が、ティース(26)の軸方向長さ(寸法Le)の0.5%以上、且つ、4%以下であることで、固定子(20)における渦電流損失を低減できる。よって、上記9)の構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械(10)が実現する。
10)幾つかの実施形態では、上記1)から9)のいずれかに記載の磁気ギアード回転機械(10)であって、
 前記フィンガー端面(29A)が、前記ティース端面(26A)に対して前記他方側に位置し、
 前記フィンガー端面(29A)から前記ティース端面(26A)までの軸方向距離(寸法Lt1)は、前記ティース(26)の先端の周方向長さ(寸法Lw)の3%以上、且つ、前記周方向長さ(寸法Lw)の25%以下である。
 発明者らの知見によれば、フィンガー端面(29A)からティース端面(26A)までの軸方向距離(寸法Lt1)が、ティース(26)の先端の周方向長さ(寸法Lw)の3%以上、且つ、先端の周方向長さ(寸法Lw)の25%以下であることで、固定子(20)における渦電流損失を低減できる。よって、上記10)の構成によれば、渦電流損失をより効果的に低減した磁気ギアード回転機械(10)が実現する。
11)本開示の少なくとも一実施形態に係る発電システム(1A)は、
 原動機(2)と、
 前記原動機(2)からの入力によって駆動されて発電するように構成された磁気ギアード発電機(10A)としての、上記1)から10)の何れかの磁気ギアード回転機械(10)と
を備える。
 上記11)の構成によれば、上記1)と同様の理由によって、渦電流損失を低減した発電システム(1A)を実現できる。
12)本開示の少なくとも一実施形態に係る駆動システム(1B)は、
 動力を出力するように構成された磁気ギアードモータ(10B)としての、上記1)から10)の何れかの磁気ギアード回転機械(10)と、
 前記磁気ギアード回転機械(10)から出力された前記動力によって駆動するように構成された駆動部(8)と
を備える。
 上記12)の構成によれば、上記1)と同様の理由によって、渦電流損失を低減した駆動システム(1B)を実現できる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1A   :発電システム
1B   :駆動システム
2    :原動機
8    :駆動部
10   :磁気ギアード回転機械
10A  :磁気ギアード発電機
10B  :磁気ギアードモータ
20   :固定子
22   :固定子磁石
22A  :固定子磁石端面
26   :ティース
26A  :ティース端面
29   :フィンガー
29A  :フィンガー端面
30   :磁極片回転子
31   :磁極片
32A、33A  :磁極片端面
35   :電磁鋼板
35A  :第1電磁鋼板
35B  :第2電磁鋼板
36、360   :固定子側対向面
37、370   :回転子側対向面
40   :回転子
42   :回転子磁石
42A  :回転子磁石端面
331  :第1磁極片端部
355A、355B :端部
377A、377B :端
G2   :第2エアギャップ

 

Claims (12)

  1.  固定子と、
     複数の回転子磁石を含む回転子と、
     前記固定子と前記回転子との間の径方向位置に設けられた複数の磁極片を含む磁極片回転子と、を備え、
     各々の前記磁極片は、軸方向の一方側を向く磁極片端面を有し、
     各々の前記回転子磁石は、前記一方側を向く回転子磁石端面を有し、
     前記磁極片端面の少なくとも一部が、前記回転子磁石端面に対して前記軸方向の他方側に位置する関係、または、
     前記固定子のティースに設けられた固定子磁石を周方向の両側から挟んで保持する複数のフィンガーの各々が有する前記一方側を向くフィンガー端面が、前記ティースが有する前記一方側を向くティース端面に対して前記他方側に位置する関係、の少なくとも一方の関係が成立する
    磁気ギアード回転機械。
  2.  前記固定子は、複数の前記固定子磁石を含み、
     各々の前記固定子磁石は、前記一方側を向く固定子磁石端面を有し、
     前記固定子磁石端面は、前記回転子磁石端面よりも前記他方側に位置する
    請求項1に記載の磁気ギアード回転機械。
  3.  前記固定子磁石端面は、前記磁極片端面と同じ軸方向位置、または、前記磁極片端面と前記回転子磁石端面との間の軸方向位置に設けられる
    請求項2に記載の磁気ギアード回転機械。
  4.  前記磁極片端面の少なくとも一部が、前記回転子磁石端面に対して前記他方側に位置し、
     前記磁極片は、
      前記軸方向に延在し、前記固定子と対向する固定子側対向面と、
      前記軸方向に延在し、前記回転子と対向する回転子側対向面とを含み、
     前記固定子側対向面は、前記回転子側対向面よりも前記軸方向において長い
    請求項1に記載の磁気ギアード回転機械。
  5.  各々の前記磁極片は、前記一方側の端部である第1磁極片端部を含み、
     前記第1磁極片端部は、前記固定子側の端部の径方向位置が揃うよう積層された複数枚の電磁鋼板を有し、
     前記複数枚の電磁鋼板は、
       前記回転子側対向面の一部を形成する第1電磁鋼板と、
       前記回転子側対向面よりも前記固定子側の径方向位置に設けられた第2電磁鋼板と、を有する
    請求項4に記載の磁気ギアード回転機械。
  6.  前記固定子は、複数の前記固定子磁石を含み、
     各々の前記固定子磁石は、前記一方側を向く固定子磁石端面を有し、
     前記固定子磁石端面は、前記固定子側対向面の前記一方側の端と同じ軸方向位置、または、前記固定子側対向面の前記一方側の前記端と、前記回転子側対向面の前記一方側の端との間の軸方向位置に設けられる
    請求項4または5に記載の磁気ギアード回転機械。
  7.  前記磁極片端面の少なくとも一部が、前記回転子磁石端面に対して前記他方側に位置し、
     前記磁極片端面から前記回転子磁石端面までの軸方向距離は、前記回転子磁石の軸方向長さの0.5%以上、且つ、前記回転子磁石の前記軸方向長さの10%以下である
    請求項1乃至5の何れか1項に記載の磁気ギアード回転機械。
  8.  前記磁極片端面の少なくとも一部が、前記回転子磁石端面に対して前記他方側に位置し、
     各々の前記磁極片は、エアギャップを隔てて前記回転子と対向し、
     前記磁極片端面から前記回転子磁石端面までの軸方向距離は、前記磁極片と前記回転子との対向距離の50%以上、且つ、前記対向距離の1200%以下である
    請求項1乃至5の何れか1項に記載の磁気ギアード回転機械。
  9.  前記フィンガー端面が、前記ティース端面に対して前記他方側に位置し、
     前記フィンガー端面から前記ティース端面までの軸方向距離は、前記ティースの軸方向長さの0.5%以上、且つ、前記ティースの前記軸方向長さの4%以下である
    請求項1乃至5の何れか1項に記載の磁気ギアード回転機械。
  10.  前記フィンガー端面が、前記ティース端面に対して前記他方側に位置し、
     前記フィンガー端面から前記ティース端面までの軸方向距離は、前記ティースの先端の周方向長さの3%以上、且つ、前記周方向長さの25%以下である
    請求項1乃至5の何れか1項に記載の磁気ギアード回転機械。
  11.  原動機と、
     前記原動機からの入力によって駆動されて発電するように構成された磁気ギアード発電機としての、請求項1乃至5の何れか1項に記載の磁気ギアード回転機械と
    を備える発電システム。
  12.  動力を出力するように構成された磁気ギアードモータとしての、請求項1乃至5の何れか1項に記載の磁気ギアード回転機械と、
     前記磁気ギアード回転機械から出力された前記動力によって駆動するように構成された駆動部と
    を備える駆動システム。

     
PCT/JP2022/030724 2021-09-14 2022-08-12 磁気ギアード回転機械、発電システム、および、駆動システム WO2023042587A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22869734.8A EP4329160A1 (en) 2021-09-14 2022-08-12 Magnetic geared rotary machine, power generation system, and drive system
CN202280036789.9A CN117397153A (zh) 2021-09-14 2022-08-12 磁性齿轮传动旋转机械、发电系统及驱动系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-149617 2021-09-14
JP2021149617A JP2023042363A (ja) 2021-09-14 2021-09-14 磁気ギアード回転機械、発電システム、および、駆動システム

Publications (1)

Publication Number Publication Date
WO2023042587A1 true WO2023042587A1 (ja) 2023-03-23

Family

ID=85602123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030724 WO2023042587A1 (ja) 2021-09-14 2022-08-12 磁気ギアード回転機械、発電システム、および、駆動システム

Country Status (4)

Country Link
EP (1) EP4329160A1 (ja)
JP (1) JP2023042363A (ja)
CN (1) CN117397153A (ja)
WO (1) WO2023042587A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023692A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 回転電機の回転子
JP5643857B2 (ja) 2006-04-24 2014-12-17 マグノマティックス リミテッドMagnomatics Limited 電気機械
JP2021112945A (ja) * 2020-01-17 2021-08-05 三菱重工業株式会社 電動車両
JP2021149617A (ja) 2020-03-19 2021-09-27 本田技研工業株式会社 レコメンド案内装置、レコメンド案内方法、および、レコメンド案内プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023692A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 回転電機の回転子
JP5643857B2 (ja) 2006-04-24 2014-12-17 マグノマティックス リミテッドMagnomatics Limited 電気機械
JP2021112945A (ja) * 2020-01-17 2021-08-05 三菱重工業株式会社 電動車両
JP2021149617A (ja) 2020-03-19 2021-09-27 本田技研工業株式会社 レコメンド案内装置、レコメンド案内方法、および、レコメンド案内プログラム

Also Published As

Publication number Publication date
JP2023042363A (ja) 2023-03-27
EP4329160A1 (en) 2024-02-28
CN117397153A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
JP5539191B2 (ja) 磁気誘導子型回転機およびそれを用いた流体移送装置
JP4926107B2 (ja) 回転電機
JP5491484B2 (ja) スイッチドリラクタンスモータ
JP6903144B2 (ja) 永久磁石式回転電機
JP5159228B2 (ja) 磁気誘導子形同期回転機およびそれを用いた自動車用過給機
JP5250692B2 (ja) 永久磁石式回転電機
JP2011142735A (ja) 永久磁石式回転電機
JP2012100502A (ja) 回転電動機
JP6212117B2 (ja) 同期電動機
JP7047337B2 (ja) 永久磁石式回転電機
JP2010098931A (ja) モータ
JP6083307B2 (ja) 回転機
WO2023042587A1 (ja) 磁気ギアード回転機械、発電システム、および、駆動システム
US20240154511A1 (en) Magnetic geared rotating machine, power generation system, and magnetic pole piece rotor
JP6854875B1 (ja) 回転電機
US20240235360A1 (en) Magnetic geared rotating machine, power generation system, and drive system
JP5460807B1 (ja) 同期電動機
WO2022202050A1 (ja) 磁気ギアード回転機械、及び発電システム
JP6591268B2 (ja) 永久磁石回転電機、及び永久磁石回転電機の固定子
JP6089606B2 (ja) 回転機
JP6079395B2 (ja) 回転機
JP5340332B2 (ja) 回転電機
JP2008263681A (ja) 交流モータ
WO2021019703A1 (ja) 三相交流発電機
JP5924913B2 (ja) 発電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18562541

Country of ref document: US

Ref document number: 2022869734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280036789.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022869734

Country of ref document: EP

Effective date: 20231120

NENP Non-entry into the national phase

Ref country code: DE