WO2023042494A1 - 寿命推定方法、寿命推定装置及びコンピュータプログラム - Google Patents

寿命推定方法、寿命推定装置及びコンピュータプログラム Download PDF

Info

Publication number
WO2023042494A1
WO2023042494A1 PCT/JP2022/022706 JP2022022706W WO2023042494A1 WO 2023042494 A1 WO2023042494 A1 WO 2023042494A1 JP 2022022706 W JP2022022706 W JP 2022022706W WO 2023042494 A1 WO2023042494 A1 WO 2023042494A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
function
failure
physical quantity
ball screw
Prior art date
Application number
PCT/JP2022/022706
Other languages
English (en)
French (fr)
Inventor
久志 安田
聡麻 三谷
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN202280062206.XA priority Critical patent/CN117957108A/zh
Publication of WO2023042494A1 publication Critical patent/WO2023042494A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to a lifespan estimation method, a lifespan estimation device, and a computer program.
  • the injection molding machine is equipped with an injection device that melts and injects the molding material and a mold clamping device.
  • the injection device includes a heating cylinder having a nozzle at its tip, and a screw arranged in the heating cylinder so as to be rotatable in the circumferential direction and the axial direction.
  • the screw is driven rotationally and axially by a drive mechanism.
  • the drive mechanism includes a ball screw that converts the rotational drive force of the injection servomotor into the drive force in the axial direction of the screw and transmits the force (for example, Patent Document 1).
  • An object of the present invention is to provide a life estimation method, a life estimation device, and a computer program capable of accumulating physical quantity data indicating the state of a predetermined portion of an industrial machine and calculating the failure time or failure probability of the predetermined portion. That's what it is.
  • a lifespan estimation method acquires physical quantity data indicating the state of a predetermined part constituting an industrial machine, and stores the acquired physical quantity data and time data indicating the acquisition time of the physical quantity data in association with each other. Then, based on the obtained physical quantity data and the time data, a function for estimating a change over time in a parameter value that is correlated with the life of the predetermined part is calculated, and the calculated function is used to determine the value of the predetermined part. Calculate failure time or failure probability.
  • a lifespan estimation device corresponds to an acquisition unit that acquires physical quantity data indicating the state of a predetermined part that constitutes an industrial machine, and the acquired physical quantity data and time data that indicates when the physical quantity data was acquired. a function for estimating the change over time of a parameter value correlated with the lifetime of the predetermined portion based on the storage unit to be stored with the data and the acquired physical quantity data and the time data, and calculating the calculated function and a calculation unit for calculating a failure time or a failure probability of the predetermined part using the above.
  • a computer program acquires physical quantity data indicating a state of a predetermined part that constitutes an industrial machine, and stores the acquired physical quantity data and time data indicating acquisition time of the physical quantity data in association with each other. , based on the obtained physical quantity data and the time data, calculating a function for estimating a change over time of a parameter value correlated with the life of the predetermined part, and using the calculated function, the failure of the predetermined part A computer is caused to execute processing for calculating the timing or failure probability.
  • FIG. 1 is a schematic diagram showing a configuration example of an injection molding machine according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a configuration example of a driving device of the injection molding machine according to Embodiment 1;
  • 4 is a flow chart showing a processing procedure of a computing unit according to the first embodiment;
  • FIG. 4 is an explanatory diagram showing a method of calculating a function for estimating changes over time in vibration acceleration peak values that are correlated with the service life of a ball screw;
  • FIG. 4 is an explanatory diagram showing a method of calculating the failure probability of the life of a ball screw and the failure time;
  • FIG. 4 is an explanatory diagram showing a method of calculating the failure probability of the life of a ball screw and the failure time;
  • FIG. 4 is an explanatory diagram showing a method of calculating the failure probability of the life of a ball screw and the failure time;
  • FIG. 11 is a schematic diagram showing an example of a display screen for an estimation result
  • 9 is a flow chart showing a processing procedure of a computing unit according to the second embodiment
  • FIG. 11 is a schematic diagram showing a configuration example of a control device according to Embodiment 3;
  • FIG. 1 is a schematic diagram showing a configuration example of an injection molding machine 1 according to Embodiment 1.
  • An injection molding machine 1 according to the first embodiment includes a mold clamping device 2 that clamps a mold 21 , an injection device 3 that melts and injects a molding material, and a control device 4 .
  • the control device 4 functions as a life estimation device according to the first embodiment.
  • the mold clamping device 2 includes a fixed platen 22 fixed on the bed 20, a mold clamping housing 23 slidably provided on the bed 20, and a movable platen 24 that slides on the bed 20 as well.
  • the stationary platen 22 and the mold clamping housing 23 are connected by a plurality of tie bars 25, 25, . . .
  • the movable platen 24 is configured to be slidable between the fixed platen 22 and the mold clamping housing 23 .
  • a mold clamping mechanism 26 is provided between the mold clamping housing 23 and the movable platen 24 .
  • the mold clamping mechanism 26 is composed of, for example, a toggle mechanism.
  • the mold clamping mechanism 26 may be configured by a direct pressure type mold clamping mechanism, that is, a mold clamping cylinder.
  • a fixed mold 28 and a movable mold 27 are provided on the fixed platen 22 and the movable platen 24, respectively. When the mold clamping mechanism 26 is driven, the mold 21 is opened and closed.
  • the injection device 3 is provided on the base 30.
  • the injection device 3 includes a heating cylinder 31 having a nozzle 31a at its tip, and a screw 32 arranged in the heating cylinder 31 so as to be rotatable in the circumferential and axial directions.
  • a heater for melting the molding material is provided inside or on the outer periphery of the heating cylinder 31 .
  • the screw 32 is driven rotationally and axially by the driving device 5 .
  • a hopper 33 into which molding material is charged is provided near the rear end of the heating cylinder 31 .
  • the injection molding machine 1 also includes a nozzle touch device 34 for moving the injection device 3 in the front-rear direction (left-right direction in FIG. 1). When the nozzle touch device 34 is driven, the injection device 3 advances and the nozzle 31 a of the heating cylinder 31 touches the contact portion of the stationary platen 22 .
  • the control device 4 is a computer that controls the operations of the mold clamping device 2 and the injection device 3, and includes a processor (calculation unit) 41, a storage unit 42, an operation unit 43, an acquisition unit 44, a display unit 45, etc. as a hardware configuration.
  • the control device 4 may be a server device connected to a network.
  • the control device 4 may be configured with a plurality of computers to perform distributed processing, may be realized by a plurality of virtual machines provided in one server, or may be realized using a cloud server. may have been
  • the processor 41 includes a CPU (Central Processing Unit), a multi-core CPU, a GPU (Graphics Processing Unit), a GPGPU (General-purpose computing on graphics processing units), a TPU (Tensor Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA ( Field-Programmable Gate Array), arithmetic circuits such as NPU (Neural Processing Unit), internal storage devices such as ROM (Read Only Memory) and RAM (Random Access Memory), I/O terminals, timers, etc.
  • the processor 41 implements the control method according to the first embodiment by executing a computer program (program product) 42a stored in a storage unit 42, which will be described later.
  • the storage unit 42 is a non-volatile memory such as a hard disk, EEPROM (Electrically Erasable Programmable ROM), and flash memory.
  • the storage unit 42 stores a computer program 42a for causing a computer to execute processing for calculating the failure time and failure probability of the ball screw 51 .
  • the computer program 42a according to the first embodiment may be recorded on the recording medium 6 in a computer-readable manner.
  • the storage unit 42 stores a computer program 42a read from the recording medium 6 by the reading device.
  • a recording medium 6 is a semiconductor memory such as a flash memory.
  • the recording medium 6 may be an optical disc such as a CD (Compact Disc)-ROM, a DVD (Digital Versatile Disc)-ROM, or a BD (Blu-ray (registered trademark) Disc).
  • the recording medium 6 may be a magnetic disk such as a flexible disk or a hard disk, or a magneto-optical disk.
  • the computer program 42a according to the first embodiment may be downloaded from an external server connected to a communication network and stored in the storage unit 42. FIG.
  • the operation unit 43 is an input device such as a touch panel, soft keys, hard keys, keyboard, and mouse.
  • the acquisition unit 44 AD-converts a rotation angle signal output from an encoder 50d, which will be described later, and an acceleration signal output from the acceleration sensor 5a, and acquires rotation angle data and acceleration data.
  • the display unit 45 is a liquid crystal panel, organic EL display, electronic paper, plasma display, or the like. The display unit 45 displays various information according to the image data given from the processor 41 .
  • the injection molding machine 1 has set values that define molding conditions such as injection start time, mold resin temperature, nozzle temperature, cylinder temperature, hopper temperature, mold clamping force, injection speed, injection acceleration, injection peak pressure, injection stroke, etc. is set.
  • the injection molding machine 1 has information such as resin pressure at the tip of the cylinder, check ring seating state, holding pressure switching pressure, holding pressure switching speed, holding pressure switching position, holding pressure completion position, cushion position, metering back pressure, metering torque, and the like.
  • Set values are set to define molding conditions.
  • setting values are set which determine molding conditions such as a metering completion position, a screw 32 retreat speed, a cycle time, a mold closing time, an injection time, a pressure holding time, a metering time, and a mold opening time.
  • the injection molding machine 1 in which these set values are set operates according to the set values.
  • FIG. 2 is a cross-sectional view showing a configuration example of the driving device 5 of the injection molding machine 1 according to the first embodiment.
  • the driving device 5 includes an injection servomotor 50 and a ball screw 51 for axially driving the screw 32 .
  • the injection servomotor 50 is provided with an encoder 50 d that detects a rotation angle and outputs a rotation angle signal indicating the rotation angle to the control device 4 .
  • the control device 4 controls the rotation of the injection servomotor 50 based on the rotation angle signal output from the encoder 50d.
  • the output shaft of the injection servomotor 50 is provided with a small pulley 50a.
  • the ball screw 51 includes a ball screw shaft 51a and a nut 51b screwed onto the ball screw shaft 51a.
  • a base end of the ball screw shaft 51a is rotatably supported by a first plate 52 having a hole and a bearing seat via a bearing 52a.
  • a large pulley 50c is provided at the proximal end of the ball screw shaft 51a.
  • the small pulley 50a and the large pulley 50c are connected by a timing belt 50b, and the rotational force of the small pulley 50a is transmitted to the large pulley 50c to rotate the ball screw shaft 51a.
  • the direction toward the base end of the ball screw shaft 51a (right side in FIG. 1) is called the backward direction, and the opposite direction (left side in FIG.
  • the forward direction is called the forward direction.
  • the advancing direction and the retreating direction are collectively referred to as the advancing/retreating direction.
  • a load cell 53 is provided on the forward direction side surface of the nut 51 b , and the forward direction side surface of the load cell 53 is fixed to the second plate 54 .
  • a plurality of through holes are formed in the second plate 54, and guide shafts 55 are inserted through the through holes.
  • the second plate 54 is guided by the guide shaft 55 and moves in the advancing/retreating direction.
  • a third plate 56 is provided on the forward direction side of the first plate 52, and one end and the other end of the guide shaft 55 are supported by the first plate 52 and the third plate 56, respectively.
  • a hole and a bearing seat are provided in the second plate 54, and an output shaft 58 is supported in the hole via a bearing 54a.
  • a plasticizing pulley 57 is provided on the output shaft 58 .
  • the plasticizing pulley 57 is connected via a timing belt (not shown) to a pulley attached to a motor for rotating the screw 32 (not shown).
  • the center of rotation of the output shaft 58 coincides with the center of rotation of the ball screw shaft 51a.
  • the output shaft 58 is formed with a recess into which the tip of the ball screw shaft 51a enters when the nut 51b is moved back and forth. Further, one end of the screw 32 is fixed to the output shaft 58 so that the center axis thereof coincides with the output shaft 58 .
  • a through hole through which the screw 32 is inserted is formed in the third plate 56 .
  • One end of the heating cylinder 31 is fixed to the third plate 56 so that the screw 32 inserted through the through hole of the third plate 56 can move in the heating cylinder 31 in the axial direction.
  • An acceleration sensor 5a is attached to the nut 51b of the ball screw 51 to detect the vibration of the nut 51b.
  • the acceleration sensor 5 a outputs the detected acceleration signal to the control device 4 .
  • the processor 41 of the control device 4 AD-converts the acceleration signal output from the acceleration sensor 5a into acceleration data in the acquisition unit 44 and acquires the acceleration data.
  • the controller 4 can estimate the life of the ball screw 51 based on the acceleration data.
  • the outline of the molding process cycle is as follows, and the control device 4 performs processing to sequentially move the forward/backward movement range of the nut 51b in the repeated molding process cycle.
  • injection molding a well-known mold closing process, mold clamping process, injection unit advancing process, injection process, weighing process, injection unit retreating process, mold opening process and ejecting process are sequentially performed.
  • FIG. 3 is a flow chart showing the processing procedure of the processor 41 according to the first embodiment.
  • the processor 41 acquires acceleration data indicating the state of the ball screw 51 from the acceleration sensor 5a via the acquisition unit 44 (step S111).
  • the calculation unit associates the acquired acceleration data with the time data indicating the time when the acceleration data was acquired and stores them in the storage unit 42 (step S112).
  • Time data is obtained from the timer.
  • the calculation unit calculates a first function for estimating the temporal change in the acceleration peak value that is correlated with the service life of the ball screw 51 (step S113 ).
  • the acceleration peak value is an example of parameter values that are correlated with the life of the ball screw 51 .
  • FIG. 4 is an explanatory diagram showing a method of calculating a function for estimating a change over time in the vibration acceleration peak value that correlates with the service life of the ball screw 51.
  • FIG. The horizontal axis of the graph shown in FIG. 4 indicates time, and the vertical axis indicates acceleration peak value.
  • the time on the horizontal axis corresponds to the operating time of the ball screw 51, and the acceleration peak value corresponds to the degree of failure of the ball screw 51.
  • the processor 41 Based on the acceleration data and time data accumulated in the storage unit 42 over a predetermined period of time, the processor 41 obtains a first function indicating the temporal change of the acceleration peak value by the maximum likelihood estimation method.
  • the first function is represented by the following formula.
  • P a x e bt + c (1) however, P: acceleration peak value t: time a, b, c: coefficient
  • the processor 41 obtains the first function by calculating the coefficients a, b, and c that minimize the mean squared error.
  • the processor 41 estimates the change over time of the value obtained by adding the standard deviation (predetermined deviation) of the normal distribution to the acceleration peak value calculated using the first function.
  • a second function for is calculated (step S114). Specifically, the processor 41 calculates acceleration peak values (average values) calculated using the first function at a plurality of time points, and acceleration data and time data as sample data stored in the storage unit 42. , to calculate the standard deviation at each of the multiple time points. Then, a value obtained by adding the standard deviation at each time point to the acceleration peak value (average value) at each time point is obtained. Then, the processor 41 calculates a second function indicating the temporal change of the calculated value by the maximum likelihood estimation method. The second function is also expressed using an exponential function as shown in Equation (1) above.
  • the processor 41 calculates a third function for estimating the temporal change of the values obtained by subtracting the standard deviation of the normal distribution from the multiple time point meter values (step S115).
  • the calculation method of the third function is the same as the calculation method of the second function.
  • the processor 41 calculates the failure time and failure probability of the ball screw 51 using the first function (step S116). Similarly, the processor 41 calculates the failure time and failure probability of the ball screw 51 using the second function (step S117). The processor 41 also calculates the failure time and failure probability of the ball screw 51 using the third function (step S118).
  • FIG. 5A and 5B are explanatory diagrams showing a method of calculating the life failure probability and failure timing of the ball screw 51.
  • the processor 41 determines the point at which the acceleration peak value calculated using the first function reaches a predetermined failure determination threshold as the failure time when the failure probability is 50% (first probability).
  • the failure determination threshold value may be stored in the storage unit 42 in advance, or may be configured so that the processor 41 receives it from the operator through the operation unit 43 .
  • the processor 41 calculates the point in time when the acceleration peak value calculated using the second function reaches a predetermined failure determination threshold as the failure time when the failure probability is 16% (second probability).
  • the processor 41 calculates the point in time when the acceleration peak value calculated using the third function reaches a predetermined failure determination threshold as the failure time when the failure probability is 84% (third probability).
  • the processor 41 uses the first function to find the acceleration peak value (average value) at the specific estimated reference time. Then, the processor 41 calculates the variance or standard deviation at the estimated reference time based on the average value of the acceleration peak values and the acceleration data and the time data as samples stored in the storage unit 42, , the probability that the acceleration peak value becomes the failure determination threshold may be calculated. That is, assuming that the acceleration peak value follows a normal distribution at the estimated reference time, the probability that the acceleration peak value becomes the failure determination threshold can be obtained.
  • the processor 41 displays the measured value graph 45a and the estimated value graphs 45b, 45c, 45d, etc. on the display unit 45 (step S119), and ends the process.
  • FIG. 6 is a schematic diagram showing an example of a display screen for estimation results.
  • the processor 41 displays the horizontal axis and the vertical axis of the graph on the display unit 45, and displays the graph lines of the measured value graph 45a and the estimated value graphs 45b, 45c, and 45d.
  • the horizontal axis indicates the operating time corresponding to the elapsed time
  • the vertical axis indicates the degree of failure corresponding to the acceleration peak value.
  • the measured value graph 45a is a graph showing measured values of changes in acceleration peak value over time, based on the acceleration data and time data stored in the storage unit 42 .
  • Estimated value graphs 45b, 45c, and 45d are graphs showing temporal changes in acceleration peak values obtained by the first function, the second function, and the third function, respectively.
  • the processor 41 also displays a threshold line image 45f indicating the failure determination threshold on the display unit 45.
  • FIG. Furthermore, the processor 41 displays a normal distribution image 45e indicating the elapsed time from the present
  • the operator of the injection molding machine 1 visually recognizes the current actual state of the ball screw 51, failure time, and failure probability from the measured value graph 45a and the estimated value graphs 45b, 45c, and 45d displayed on the display unit 45. be able to.
  • the injection molding machine 1 As described above, according to the injection molding machine 1 according to the first embodiment, it is possible to accumulate acceleration data indicating the state of the ball screw 51 of the injection molding machine 1 and calculate the failure time and failure probability of the ball screw 51. can.
  • a first function indicating the relationship between time and the acceleration peak value is obtained by the maximum likelihood estimation method, and the point in time when the acceleration peak value calculated using the first function reaches a predetermined failure determination threshold is It can be calculated as a failure time with a failure probability of 50%. Also, the point in time when the acceleration peak value calculated using the second function reaches a predetermined failure determination threshold can be calculated as the failure time with a failure probability of 16%. Furthermore, the point in time when the acceleration peak value calculated using the third function reaches a predetermined failure determination threshold can be calculated as the failure time with a failure probability of 84%.
  • the current state of the ball screw 51 can be displayed using the measured value graph 45a and estimated value graphs 45b, 45c, and 45d.
  • the failure timing and failure probability of the ball screw 51 are estimated based on the vibration of the ball screw 51.
  • physical quantity data indicating the current or torque of the injection servomotor 50 is used.
  • the processor 41 calculates a function indicating the temporal change of the peak value of the current or torque based on the physical quantity data indicating the current or torque of the injection servomotor 50, and similarly to the first embodiment, the ball screw 51 Failure time and failure probability can be calculated. Further, the failure timing and failure probability of the ball screw 51 may be calculated based on the concentration of iron powder contained in the lubricating oil of the ball screw 51 . In the first embodiment, an example of calculating the failure time and failure probability of the ball screw 51 has been described. Further, the physical quantity data indicating the state of a predetermined portion of the industrial machine may be acquired, and the failure time and failure probability of the predetermined portion may be calculated.
  • the second function and the third function for estimating the value obtained by adding and subtracting the standard deviation from the average value of the acceleration peak values are exemplified, but the present invention is not limited to this.
  • a function for estimating a value obtained by adding or subtracting an arbitrary predetermined deviation to or from the average value of the acceleration peak values may be calculated, and the failure time and failure probability may be estimated using the function.
  • the injection molding machine 1 according to the second embodiment differs from the first embodiment in that the failure time and failure probability are calculated for each part of the ball screw shaft 51a. Since other configurations of the injection molding machine 1 are the same as those of the injection molding machine 1 according to the first embodiment, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 7 is a flow chart showing the processing procedure of the calculation unit according to the second embodiment.
  • the processor 41 acquires acceleration data indicating the state of the ball screw 51 from the acceleration sensor 5a via the acquisition unit 44 (step S211).
  • the processor 41 also acquires angle data, in other words, position data indicating the position of the nut 51b, from the encoder 50d via the acquisition unit 44 (step S211).
  • the rotation angle of the injection servomotor 50 corresponds to the position of the nut 51b on the ball screw shaft 51a.
  • the calculation unit associates the acquired acceleration data, the position data, and the time data indicating the time when the acceleration data and the position data were acquired, and stores them in the storage unit 42 (step S212). Time data is obtained from the timer.
  • the calculation unit calculates the first function for estimating the temporal change in the acceleration peak value that is correlated with the service life of the ball screw 51. It is calculated for each part of the screw shaft 51a (step S213).
  • the processor 41 applies the second function for estimating the change over time of the value obtained by adding the standard deviation of the normal distribution to the acceleration peak value calculated using the first function. is calculated for each (step S214).
  • the processor 41 calculates a third function for estimating the temporal change of the values obtained by subtracting the standard deviation of the normal distribution from the plurality of time point meter values for each part of the ball screw shaft 51a (step S215).
  • the method of calculating the first to third functions is the same as in the first embodiment.
  • the processor 41 uses the first function to calculate the failure time and failure probability of the ball screw 51 for each part of the ball screw shaft 51a (step S216). Similarly, the processor 41 uses the second function to calculate the failure time and failure probability of the ball screw 51 for each part of the ball screw shaft 51a (step S217). The processor 41 also uses the third function to calculate the failure time and failure probability of the ball screw 51 for each part of the ball screw shaft 51a (step S218).
  • the method of calculating the failure time and failure probability using the first to third functions is the same as in the first embodiment.
  • the processor 41 displays the measured value graph 45a and the estimated value graphs 45b, 45c, 45d, etc. on the display unit 45 (step S219), and ends the process.
  • the acceleration data indicating the state of the ball screw 51 of the injection molding machine 1 is accumulated, and the failure time and failure probability of the ball screw 51 are calculated for each part of the ball screw shaft 51a. can be calculated.
  • the injection molding machine 1 according to the third embodiment differs from the first embodiment in that the failure time and failure probability of the ball screw shaft 51a are calculated by machine learning. Since other configurations of the injection molding machine 1 are the same as those of the injection molding machine 1 according to the first embodiment, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 8 is a schematic diagram showing a configuration example of the control device 4 according to the third embodiment.
  • the processor 41 of the control device 4 according to the third embodiment includes a learning processing section 41a as a functional section.
  • the storage unit 42 also stores a learning model 42 b for estimating the failure time and failure probability of the ball screw 51 .
  • the learning processing unit 41a may be realized by software, or may be configured by hardware. Also, a part of the learning processing unit 41a may be configured by hardware.
  • the processor 41 reads out the learning model 42b and the computer program 42a from the storage unit 42 and executes them.
  • the learning model 42b is a neural network that outputs a failure probability when the peak value of vibration acceleration and the elapsed time, which is the operating time of the ball screw 51, are input.
  • the learning model 42b includes an input layer, a hidden layer, and an output layer.
  • the input layer has a plurality of nodes to which peak vibration acceleration values and elapsed times are input.
  • the hidden layer includes a plurality of hidden layers having a plurality of nodes, and the nodes of the hidden layer on the input side are connected to the nodes of the input layer.
  • the output layer has nodes that output failure probabilities. Each node in the output layer is connected to an intermediate layer node on the output side.
  • the learning model 42b can be generated by machine learning using training data including the peak value of vibration acceleration, elapsed time, and failure probability.
  • the learning processing unit 41a of the processor 41 performs machine learning on the learning model 42b by optimizing the weighting coefficients of the learning model 42b by error backpropagation using training data, error gradient descent, or the like.
  • the learning model 42b has nodes corresponding to a plurality of elapsed times in the output layer, and when the peak value of the vibration acceleration is input, the failure probability is output from the node corresponding to each elapsed time. You may
  • the processor 41 can calculate the failure probability of the ball screw 51 by inputting the currently detected peak value of the vibration acceleration and an arbitrary elapsed time into the learning model 42b. Using the relationship between the elapsed time and the failure probability calculated using the learning model 42b, the processor 41 displays the measured value graph 45a and the estimated value graphs 45b, 45c, and 45d on the display unit 45 in the same manner as in the first embodiment. do it.
  • the failure time and failure probability of the ball screw 51 are calculated, and the measured value graph 45a and the estimated value graphs 45b, 45c, and 45d are displayed on the display unit 45. can be displayed in
  • the learning model 42b using a neural network has been described in the third embodiment, it is possible to estimate the failure time and failure probability using other known machine learning models such as SVM (Support Vector Machine) and Bayesian network. can be configured to

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

産業機械を構成する所定部位の状態を示す物理量データを取得し、取得した物理量データ及び物理量データの取得時を示す時間データを対応付けて記憶し、取得した物理量データ及び時間データに基づいて、所定部位の寿命と相関のあるパラメータ値の経時変化を推定するための関数を算出し、算出した関数を用いて所定部位の故障時期又は故障確率を算出する。

Description

寿命推定方法、寿命推定装置及びコンピュータプログラム
 本発明は、寿命推定方法、寿命推定装置及びコンピュータプログラムに関する。
 射出成形機は、成形材料を溶融して射出する射出装置及び型締装置を備える。射出装置は、先端部にノズルを有する加熱シリンダと、当該加熱シリンダ内に周方向と軸方向とに回転可能に配されたスクリュとを備える。スクリュは駆動機構によって転方向と軸方向とに駆動する。駆動機構は、射出用サーボモータの回転駆動力をスクリュの軸方向への駆動力に変換して伝達するボールねじを備える(例えば、特許文献1)。
特開2019-166702号公報
 ところで、射出成形機の使用条件と使用時間からボールねじの点検目安の時期を表示することが行われている。しかし、同じように点検目安時期に到達してもボールねじの損傷具合は射出成形機毎に差がある。その結果、点検目安時期になっても射出成形機の点検が実施されるケースは少ない。
 本発明の目的は、産業機械を構成する所定部位の状態を示す物理量データを蓄積し、所定部位の故障時期又は故障確率を算出することができる寿命推定方法、寿命推定装置及びコンピュータプログラムを提供することにある。
 本発明の一態様に係る寿命推定方法は、産業機械を構成する所定部位の状態を示す物理量データを取得し、取得した前記物理量データ及び該物理量データの取得時を示す時間データを対応付けて記憶し、取得した前記物理量データ及び前記時間データに基づいて、前記所定部位の寿命と相関のあるパラメータ値の経時変化を推定するための関数を算出し、算出した前記関数を用いて前記所定部位の故障時期又は故障確率を算出する。
 本発明の一態様に係る寿命推定装置は、産業機械を構成する所定部位の状態を示す物理量データを取得する取得部と、取得した前記物理量データ及び該物理量データの取得時を示す時間データを対応付けて記憶する記憶部と、取得した前記物理量データ及び前記時間データに基づいて、前記所定部位の寿命と相関のあるパラメータ値の経時変化を推定するための関数を算出し、算出した前記関数を用いて前記所定部位の故障時期又は故障確率を算出する演算部とを備える。
 本発明の一態様に係るコンピュータプログラムは、産業機械を構成する所定部位の状態を示す物理量データを取得し、取得した前記物理量データ及び該物理量データの取得時を示す時間データを対応付けて記憶し、取得した前記物理量データ及び前記時間データに基づいて、前記所定部位の寿命と相関のあるパラメータ値の経時変化を推定するための関数を算出し、算出した前記関数を用いて前記所定部位の故障時期又は故障確率を算出する処理をコンピュータに実行させる。
 上記によれば、産業機械を構成する所定部位の状態を示す物理量データを蓄積し、所定部位の故障時期又は故障確率を算出することができる。
実施形態1に係る射出成形機の構成例を示す模式図である。 実施形態1に係る射出成形機の駆動装置の構成例を示す断面図である。 実施形態1に係る演算部の処理手順を示すフローチャートである。 ボールねじの寿命と相関のある振動加速度ピーク値の経時変化を推定するための関数の算出方法を示す説明図である。 ボールねじの寿命の故障確率及び故障時期の算出方法を示す説明図である。 ボールねじの寿命の故障確率及び故障時期の算出方法を示す説明図である。 推定結果の表示画面例を示す模式図である。 実施形態2に係る演算部の処理手順を示すフローチャートである。 実施形態3に係る制御装置の構成例を示す模式図である。
 本発明の実施形態に係る射出成形機(寿命推定装置)、寿命推定方法及びコンピュータプログラムの具体例を、以下に図面を参照しつつ説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 図1は、実施形態1に係る射出成形機1の構成例を示す模式図である。本実施形態1に係る射出成形機1は、金型21を型締めする型締装置2と、成形材料を溶融して射出する射出装置3と、制御装置4とを備える。制御装置4は、本実施形態1に係る寿命推定装置として機能する。
 型締装置2はベッド20上に固定された固定盤22と、ベッド20上をスライド可能に設けられた型締ハウジング23と、ベッド20上を同様にスライドする可動盤24とを備える。固定盤22と型締ハウジング23は複数本、例えば4本のタイバー25、25、…によって連結されている。可動盤24は、固定盤22と型締ハウジング23の間でスライド自在に構成されている。型締ハウジング23と可動盤24の間には型締機構26が設けられている。型締機構26は、例えばトグル機構から構成されている。なお、型締機構26は、直圧式の型締機構、つまり型締シリンダによって構成してもよい。固定盤22と可動盤24にはそれぞれ固定金型28と、可動金型27が設けられ、型締機構26を駆動すると金型21が型開閉されるようになっている。
 射出装置3は、基台30上に設けられている。射出装置3は、先端部にノズル31aを有する加熱シリンダ31と、当該加熱シリンダ31内に周方向と軸方向とに回転可能に配されたスクリュ32とを備える。加熱シリンダ31の内部又は外周には、成形材料を溶融させるためのヒータが設けられている。スクリュ32は駆動装置5によって回転方向と軸方向とに駆動する。
 加熱シリンダ31の後端部近傍には、成形材料が投入されるホッパ33が設けられている。また、射出成形機1は、射出装置3を前後方向(図1中左右方向)に移動させるノズルタッチ装置34を備える。ノズルタッチ装置34を駆動すると、射出装置3が前進して加熱シリンダ31のノズル31aが固定盤22の密着部にタッチするように構成されている。
 制御装置4は、型締装置2及び射出装置3の動作を制御するコンピュータであり、ハードウェア構成としてプロセッサ(演算部)41、記憶部42、操作部43、取得部44及び表示部45等を備える。なお、制御装置4は、ネットワークに接続されたサーバ装置であっても良い。また、制御装置4は、複数台のコンピュータで構成し分散処理する構成でもよいし、1台のサーバ内に設けられた複数の仮想マシンによって実現されていてもよいし、クラウドサーバを用いて実現されていてもよい。
 プロセッサ41は、CPU(Central Processing Unit)、マルチコアCPU、GPU(Graphics Processing Unit)、GPGPU(General-purpose computing on graphics processing units)、TPU(Tensor Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、NPU(Neural Processing Unit)等の演算回路、ROM(Read Only Memory)、RAM(Random Access Memory)等の内部記憶装置、I/O端子、計時部等を有する。プロセッサ41は、後述の記憶部42が記憶するコンピュータプログラム(プログラム製品)42aを実行することにより、本実施形態1に係る制御方法を実施する。
 記憶部42は、ハードディスク、EEPROM(Electrically Erasable Programmable ROM)、フラッシュメモリ等の不揮発性メモリである。記憶部42は、ボールねじ51の故障時期及び故障確率を算出する処理をコンピュータに実行させるためのコンピュータプログラム42aを記憶している。
 本実施形態1に係るコンピュータプログラム42aは、記録媒体6にコンピュータ読み取り可能に記録されている態様でも良い。記憶部42は、読出装置によって記録媒体6から読み出されたコンピュータプログラム42aを記憶する。記録媒体6はフラッシュメモリ等の半導体メモリである。また、記録媒体6はCD(Compact Disc)-ROM、DVD(Digital Versatile Disc)-ROM、BD(Blu-ray(登録商標)Disc)等の光ディスクでも良い。更に、記録媒体6は、フレキシブルディスク、ハードディスク等の磁気ディスク、磁気光ディスク等であっても良い。更にまた、通信網に接続されている外部サーバから本実施形態1に係るコンピュータプログラム42aをダウンロードし、記憶部42に記憶させても良い。
 操作部43は、タッチパネル、ソフトキー、ハードキー、キーボード、マウス等の入力装置である。
 取得部44は、後述のエンコーダ50dから出力される回転角信号、加速度センサ5aから出力される加速度信号をAD変換し、回転角データ及び加速度データを取得する。
 表示部45は、液晶パネル、有機ELディスプレイ、電子ペーパ、プラズマディスプレイ等である。表示部45は、プロセッサ41から与えられた画像データに応じた各種情報を表示する。
 射出成形機1には、射出開始時点、金型内樹脂温度、ノズル温度、シリンダ温度、ホッパ温度、型締力、射出速度、射出加速度、射出ピーク圧力、射出ストローク等の成形条件を定める設定値が設定される。また射出成形機1には、シリンダ先端樹脂圧、逆防リング着座状態、保圧切替圧力、保圧切替速度、保圧切替位置、保圧完了位置、クッション位置、計量背圧、計量トルク等の成形条件を定める設定値が設定される。更に射出成形機1には、計量完了位置、スクリュ32後退速度、サイクル時間、型閉時間、射出時間、保圧時間、計量時間、型開時間等の成形条件を定める設定値が設定される。そして、これらの設定値が設定された射出成形機1は、当該設定値に従って動作する。
 図2は、実施形態1に係る射出成形機1の駆動装置5の構成例を示す断面図である。駆動装置5は、スクリュ32を軸方向に駆動するための射出用サーボモータ50及びボールねじ51を備える。射出用サーボモータ50には、回転角を検出し、回転角を示す回転角信号を制御装置4へ出力するエンコーダ50dが設けられている。制御装置4はエンコーダ50dから出力される回転角信号に基づいて、射出用サーボモータ50の回転を制御する。射出用サーボモータ50の出力軸には、小プーリ50aが設けられている。
 ボールねじ51は、ボールねじ軸51aと、ボールねじ軸51aに螺合したナット51bとを備える。ボールねじ軸51aの基端部は、孔部及び軸受け座を有する第1プレート52にベアリング52aを介して回転可能に支持されている。ボールねじ軸51aの基端部には大プーリ50cが設けられている。小プーリ50aと、大プーリ50cは、はタイミングベルト50bにより連結されており、小プーリ50aの回転力が大プーリ50cに減速伝達され、ボールねじ軸51aが回転する。
 以下、ボールねじ軸51aの基端部側の方向を(図1中、右側)を後退方向、その反対側の方向(図1中、左方向)を前進方向と呼ぶ。また、前進方向及び後退方向を合わせて進退方向と呼ぶ。射出用サーボモータ50が駆動して大プーリ50c及びボールねじ軸51aが回転すると、その回転方向に応じてナット51bは前進方向及び後退方向へ移動する。
 ナット51bの前進方向側の面には、ロードセル53が設けられ、ロードセル53の前進方向側の面は第2プレート54に固定されている。第2プレート54には複数の貫通孔が形成されており、貫通孔にはガイド軸55が挿通している。第2プレート54は、ガイド軸55によって案内され進退方向へ移動する。第1プレート52の前進方向側には、第3プレート56が設けられており、ガイド軸55の一端部及び他端部はそれぞれ第1プレート52及び第3プレート56に支持されている。ボールねじ軸51aが回転すると、ナット51b、ロードセル53及び第2プレート54は、ガイド軸55に沿って進退方向へ一体的に移動する。
 第2プレート54には孔部及び軸受け座が設けられており、孔部にベアリング54aを介して出力軸58が支持されている。出力軸58には可塑化用プーリ57が設けられている。可塑化用プーリ57は不図示のタイミングベルトを介して、不図示のスクリュ32回転用モータに取り付けられたプーリに連結されている。出力軸58の回転中心はボールねじ軸51aの回転中心と一致している。出力軸58は、ナット51bが進退移動した際に、ボールねじ軸51aの先端部が侵入する凹部が形成されている。また、出力軸58には中心軸が一致するようにスクリュ32の一端が固定されている。第3プレート56には、スクリュ32が挿通する貫通孔が形成されている。第3プレート56の貫通孔を挿通したスクリュ32が加熱シリンダ31内を軸方向に移動できるように、加熱シリンダ31の一端部が第3プレート56に固定されている。
 また、ボールねじ51のナット51bには、ナット51bの振動を検出する加速度センサ5aが取り付けられている。加速度センサ5aは、検出した加速度信号を制御装置4へ出力する。制御装置4のプロセッサ41は加速度センサ5aから出力された加速度信号を取得部44にて加速度データにAD変換して取得する。制御装置4は、加速度データに基づいてボールねじ51の寿命を推定することができる。
 成形工程サイクルの概要は以下の通りであり、制御装置4は、繰り返される成形工程サイクルにおいて、ナット51bの進退移動範囲を逐次移動させる処理を行う。射出成形に際しては、周知の型閉工程、型締工程、射出ユニット前進工程、射出工程、計量工程、射出ユニット後退工程、型開工程及びエジェクト工程が順次に行われる。
 図3は、実施形態1に係るプロセッサ41の処理手順を示すフローチャートである。プロセッサ41は取得部44を介して、加速度センサ5aからボールねじ51の状態を示す加速度データを取得する(ステップS111)。
 そして、演算部は、取得した加速度データと、当該加速度データを取得した時間を示す時間データとを対応付けて記憶部42に記憶する(ステップS112)。時間データは、計時部から得られる。
 次いで、演算部は、記憶部42が記憶する加速度データ及び時間データに基づいて、ボールねじ51の寿命と相関のある加速度ピーク値の経時変化を推定するための第1関数を算出する(ステップS113)。加速度ピーク値は、ボールねじ51の寿命と相関のあるパラメータ値の一例である。
 図4は、ボールねじ51の寿命と相関のある振動加速度ピーク値の経時変化を推定するための関数の算出方法を示す説明図である。図4に示すグラフの横軸は時間、縦軸は加速度ピーク値を示している。横軸の時間は、ボールねじ51の稼働時間に相当し、加速度ピーク値は、ボールねじ51の故障度に対応する。プロセッサ41は、所定期間にわたって記憶部42に蓄積された加速度データ及び時間データに基づいて、加速度ピーク値の経時変化を示す第1関数を最尤推定法にて求める。
 例えば、第1関数は、例えば下記式で表される。
 P=a×ebt+c…(1)
但し、
P:加速度ピーク値
t:時間
a,b,c:係数
 プロセッサ41は、平均二乗誤差が最小となる係数a,b,cを算出することによって、第1関数を求める。
 次いで、プロセッサ41は、図4中破線で示すように、第1関数を用いて算出される加速度ピーク値に対して、正規分布の標準偏差(所定偏差)を加算した値の経時変化を推定するための第2関数を算出する(ステップS114)。具体的には、プロセッサ41は、複数の時点における第1関数を用いて算出される加速度ピーク値(平均値)と、記憶部42が記憶する標本データとしての加速度データ及び時間データとに基づいて、複数の各時点における標準偏差を算出する。そして、各時点の加速度ピーク値(平均値)それぞれに、当該時点における標準偏差を加算した値を求める。そして、プロセッサ41は、算出された値の経時変化を示す第2関数を最尤推定法にて算出する。第2関数も上記式(1)に示すような指数関数を用いて表される。
 また、プロセッサ41は、複数の時点メータ値に対して、正規分布の記標準偏差を減算した値の経時変化を推定するための第3関数を算出する(ステップS115)。第3関数の算出方法は、第2関数の算出方法と同様である。
 次いで、プロセッサ41は、第1関数を用いてボールねじ51の故障時期及び故障確率を算出する(ステップS116)。同様に、プロセッサ41は、第2関数を用いてボールねじ51の故障時期及び故障確率を算出する(ステップS117)。また、プロセッサ41は、第3関数を用いてボールねじ51の故障時期及び故障確率を算出する(ステップS118)。
 図5A及び図5Bは、ボールねじ51の寿命の故障確率及び故障時期の算出方法を示す説明図である。プロセッサ41は、例えば、図5Aに示すように、第1関数を用いて算出される加速度ピーク値が所定の故障判定閾値に達する時点を、故障確率が50%(第1確率)となる故障時期として算出する。故障判定閾値は、予め記憶部42が記憶しておいてもよいし、プロセッサ41が操作部43にてオペレータから受け付けるように構成してもよい。
 また、プロセッサ41は、第2関数を用いて算出される加速度ピーク値が所定の故障判定閾値に達する時点を、故障確率が16%(第2確率)となる故障時期として算出する。
 更に、プロセッサ41は、第3関数を用いて算出される加速度ピーク値が所定の故障判定閾値に達する時点を、故障確率が84%(第3確率)となる故障時期として算出する。
 なお、上記の例では、第1関数、第2関数及び第3関数と、故障判定閾値とが交わる点から、故障時期を推定する例を説明したが、図5Bに示すように、特定の推定基準時点における故障確率を算出するように構成してもよい。プロセッサ41は、第1関数を用いて特定の推定基準時点における加速度ピーク値(平均値)を求める。そして、プロセッサ41は、加速度ピーク値の平均値と、記憶部42が記憶する標本としての加速度データ及び時間データとに基づいて、当該推定基準時点における分散又は標準偏差を算出し、当該推定基準時点において加速度ピーク値が故障判定閾値となる確率を算出すればよい。つまり、当該推定基準時点において加速度ピーク値は正規分布に従っているものと仮定し、加速度ピーク値が故障判定閾値となる確率を求めればよい。
 次いで、プロセッサ41は、実測値グラフ45a及び推定値グラフ45b,45c,45d等を表示部45に表示し(ステップS119)、処理を終える。
 図6は、推定結果の表示画面例を示す模式図である。プロセッサ41は、グラフの横軸及び縦軸を表示部45に表示し、実測値グラフ45a及び推定値グラフ45b,45c,45dのグラフ線を表示する。
 横軸は経過時間に相当する稼働時間を示し、縦軸は加速度ピーク値に相当する故障度を示す。実測値グラフ45aは、記憶部42が記憶する加速度データ及び時間データに基づく、加速度ピーク値の経時変化の実測値を示すグラフである。推定値グラフ45b,45c,45dは、それぞれ第1関数、第2関数、第3関数で求められる加速度ピーク値の経時変化を示すグラフである。
 また、プロセッサ41は、故障判定閾値を示す閾値線画像45fを表示部45に表示する。更に、プロセッサ41は、現時点からの経過時間とボールねじ51の故障確率を示す正規分布画像45eを表示する。
 射出成形機1のオペレータは表示部45に表示される実測値グラフ45a及び推定値グラフ45b,45c,45dから、現在のボールねじ51の実際の状態、故障時期及び故障確率を視覚的に認識することができる。
 以上の通り、本実施形態1に係る射出成形機1によれば、射出成形機1のボールねじ51の状態を示す加速度データを蓄積し、ボールねじ51の故障時期及び故障確率を算出することができる。
 具体的には、最尤推定法にて時間と加速度ピーク値との関係を示す第1関数を求め、第1関数を用いて算出される加速度ピーク値が所定の故障判定閾値に達する時点を、故障確率50%の故障時期として算出することができる。
 また、第2関数を用いて算出される加速度ピーク値が所定の故障判定閾値に達する時点を、故障確率16%の故障時期として算出することができる。
 更に、第3関数を用いて算出される加速度ピーク値が所定の故障判定閾値に達する時点を、故障確率84%の故障時期として算出することができる。
 また、実測値グラフ45a及び推定値グラフ45b,45c,45dを用いて、現在のボールねじ51の状態を表示することができる。
 なお、本実施形態1では、ボールねじ51の振動に基づいて、ボールねじ51の故障時期及び故障確率を推定する例を説明したが、射出用サーボモータ50の電流又はトルクを示す物理量データを用いてもよい。プロセッサ41は、射出用サーボモータ50の電流又はトルクを示す物理量データに基づいて、電流又はトルクのピーク値の経時変化を示す関数を算出し、本実施形態1と同様にして、ボールねじ51の故障時期及び故障確率を算出することができる。また、ボールねじ51の潤滑油に含まれる鉄粉濃度に基づいてボールねじ51の故障時期及び故障確率を算出するように構成してもよい。
 また、本実施形態1ではボールねじ51の故障時期及び故障確率を算出する例を説明したが、型締装置2、射出装置3の故障時期及び故障確率を算出するように構成してもよい。
 更に、産業機械を構成する所定部位の状態を示す物理量データを取得し、当該所定部位の故障時期及び故障確率を算出するように構成してもよい。
 更にまた、本実施形態1では、加速度ピーク値の平均値に標準偏差を加算及び減算した値を推定する第2関数及び第3関数を例示したが、これに限定されるものではない。加速度ピーク値の平均値に任意の所定偏差を加減算した値を推定する関数を算出し、当該関数を用いて故障時期及び故障確率を推定するように構成してもよい。
(実施形態2)
 実施形態2に係る射出成形機1は、ボールねじ軸51aの部位毎に故障時期及び故障確率を算出する点が実施形態1と異なる。射出成形機1のその他の構成は、実施形態1に係る射出成形機1と同様であるため、同様の箇所には同じ符号を付し、詳細な説明を省略する。
 図7は実施形態2に係る演算部の処理手順を示すフローチャートである。プロセッサ41は取得部44を介して、加速度センサ5aからボールねじ51の状態を示す加速度データを取得する(ステップS211)。また、プロセッサ41は取得部44を介して、エンコーダ50dから角度データ、言い換えるとナット51bの位置を示す位置データを取得する(ステップS211)。射出用サーボモータ50の回転角は、ボールねじ軸51aにおけるナット51bの位置に相当する。
 そして、演算部は、取得した加速度データと、位置データと、当該加速度データ及び位置データを取得した時間を示す時間データとを対応付けて記憶部42に記憶する(ステップS212)。時間データは、計時部から得られる。
 次いで、演算部は、記憶部42が記憶する加速度データ、位置データ及び時間データに基づいて、ボールねじ51の寿命と相関のある加速度ピーク値の経時変化を推定するための第1関数を、ボールねじ軸51aの部位毎に算出する(ステップS213)。
 次いで、プロセッサ41は、第1関数を用いて算出される加速度ピーク値に対して、正規分布の標準偏差を加算した値の経時変化を推定するための第2関数を、ボールねじ軸51aの部位毎に算出する(ステップS214)。
 また、プロセッサ41は、複数の時点メータ値に対して、正規分布の記標準偏差を減算した値の経時変化を推定するための第3関数を、ボールねじ軸51aの部位毎に算出する(ステップS215)。
 なお、第1関数~第3関数の算出方法は実施形態1と同様である。
 次いで、プロセッサ41は、第1関数を用いてボールねじ51の故障時期及び故障確率を、ボールねじ軸51aの部位毎に算出する(ステップS216)。同様に、プロセッサ41は、第2関数を用いてボールねじ51の故障時期及び故障確率を、ボールねじ軸51aの部位毎に算出する(ステップS217)。また、プロセッサ41は、第3関数を用いてボールねじ51の故障時期及び故障確率を、ボールねじ軸51aの部位毎に算出する(ステップS218)。
 なお、第1関数~第3関数を用いた故障時期及び故障確率の算出方法は実施形態1と同様である。
 そして、プロセッサ41は、実測値グラフ45a及び推定値グラフ45b,45c,45d等を表示部45に表示し(ステップS219)、処理を終える。
 本実施形態2に係る射出成形機1によれば、射出成形機1のボールねじ51の状態を示す加速度データを蓄積し、ボールねじ51の故障時期及び故障確率をボールねじ軸51aの部位毎に算出することができる。
(実施形態3)
 実施形態3に係る射出成形機1は、機械学習によりボールねじ軸51aの故障時期及び故障確率を算出する点が実施形態1と異なる。射出成形機1のその他の構成は、実施形態1に係る射出成形機1と同様であるため、同様の箇所には同じ符号を付し、詳細な説明を省略する。
 図8は、実施形態3に係る制御装置4の構成例を示す模式図である。実施形態3に係る制御装置4のプロセッサ41は、機能部として学習処理部41aを備える。また、記憶部42は、ボールねじ51の故障時期及び故障確率を推定するための学習モデル42bを記憶する。なお、学習処理部41aはソフトウェアで実現してもよいし、ハードウェアで構成してもよい。また学習処理部41aの一部をハードウェアで構成してもよい。
 プロセッサ41は、記憶部42から学習モデル42b及びコンピュータプログラム42aを読み出して実行する。
 学習モデル42bは、振動加速度のピーク値と、ボールねじ51の稼働時間である経過時間が入力された場合に、故障確率を出力するニューラルネットワークである。学習モデル42bは、入力層と、隠れ層と、出力層とを備える。入力層は、振動加速度のピーク値及び経過時間が入力される複数のノードを有する。隠れ層は、複数のノードを有する中間層を複数備え、入力側の中間層のノードは入力層のノードと結合されている。出力層は、故障確率を出力するノードを有する。出力層の各ノードは、出力側の中間層のノードと結合されている。
 学習モデル42bは、振動加速度のピーク値及び経過時間と、故障確率とを含む訓練データを用いて機械学習させることにより生成することができる。例えば、プロセッサ41の学習処理部41aは、訓練データを用いた誤差逆伝播法、誤差勾配降下法等によって、学習モデル42bの重み係数を最適化することにより、学習モデル42bを機械学習させる。
 なお、学習モデル42bは、複数の経過時間に相当するノードを出力層に備え、振動加速度のピーク値が入力された場合に、各経過時間に相当するノードから故障確率が出力されるように構成してもよい。
 プロセッサ41は、現時点で検出した振動加速度のピーク値と、任意の経過時間とを学習モデル42bに入力することによって、ボールねじ51の故障確率を算出することができる。プロセッサ41は、学習モデル42bを用いて算出した経過時間と故障確率との関係を用いて、実施形態1と同様にして実測値グラフ45a及び推定値グラフ45b,45c,45dを表示部45に表示するとよい。
 本実施形態3に係る射出成形機1によれば、実施形態1と同様、ボールねじ51の故障時期及び故障確率を算出し、実測値グラフ45a及び推定値グラフ45b,45c,45dを表示部45に表示することができる。
 なお、本実施形態3ではニューラルネットワークを用いた学習モデル42bを説明したが、SVM(Support Vector Machine)、ベイジアンネットワーク等のその他の公知の機械学習モデルを用いて故障時期及び故障確率を推定するように構成してもよい。
 1 射出成形機
 2 型締装置
 3 射出装置
 4 制御装置
 5 駆動装置
 5a 加速度センサ
 6 記録媒体
 31 加熱シリンダ
 32 スクリュ
 50 射出用サーボモータ
 50d エンコーダ
 51 ボールねじ
 41 プロセッサ
 51 ボールねじ
 51a ボールねじ軸
 51b ナット
 

Claims (10)

  1.  産業機械を構成する所定部位の状態を示す物理量データを取得し、
     取得した前記物理量データ及び該物理量データの取得時を示す時間データを対応付けて記憶し、
     取得した前記物理量データ及び前記時間データに基づいて、前記所定部位の寿命と相関のあるパラメータ値の経時変化を推定するための関数を算出し、
     算出した前記関数を用いて前記所定部位の故障時期又は故障確率を算出する
     寿命推定方法。
  2.  前記関数を用いて算出される前記パラメータ値が、故障判定閾値に達する時点を故障時期として算出する
     請求項1に記載の寿命推定方法。
  3.  最尤推定法にて算出した前記関数を用いて算出される前記パラメータ値が前記故障判定閾値に達する時点を故障確率が50%の故障時期として算出する
     請求項2に記載の寿命推定方法。
  4.  最尤推定法にて、前記パラメータ値の経時変化を推定するための第1関数を算出し、
     前記第1関数を用いて算出される前記パラメータ値に対して所定偏差を加算した値の経時変化を推定するための第2関数を算出し、
     前記第1関数を用いて算出される前記パラメータ値に対して前記所定偏差を減算した値の経時変化を推定するための第3関数を算出し、
     前記第1関数を用いて算出される前記パラメータ値が前記故障判定閾値に達する時点を、故障確率が第1確率の場合の故障時期として算出し、
     前記第2関数を用いて算出される前記パラメータ値が前記故障判定閾値に達する時点を、故障確率が第2確率の場合の故障時期として算出し、
     前記第3関数を用いて算出される前記パラメータ値が前記故障判定閾値に達する時点を、故障確率が第3確率の場合の故障時期として算出する
     請求項2に記載の寿命推定方法。
  5.  前記物理量データ及び前記時間データに基づく前記パラメータ値の経時変化を示す実測値グラフと、前記第1関数、前記第2関数及び前記第3関数を示す推定値グラフと、前記故障判定閾値とを表示する
     請求項4に記載の寿命推定方法。
  6.  前記産業機械はボールねじを有する成形機であり、
     前記ボールねじの故障時期又は故障確率を算出する
     請求項1から請求項5のいずれか1項に記載の寿命推定方法。
  7.  前記物理量データは、前記ボールねじの振動加速度、前記ボールねじを駆動するモータの電流又はトルクを示すデータであり、前記パラメータ値は、前記振動加速度、前記電流又は前記トルクのピーク値である
     請求項6に記載の寿命推定方法。
  8.  前記成形機は、先端部にノズルを有するシリンダ内に回転方向と軸方向とに駆動可能に設けられたスクリュを備え、前記ボールねじは、回転可能に設けられたボールねじ軸と、該ボールねじ軸に螺合され該ボールねじ軸の回転に伴い進退されるナットとを有し、該ナットの進退により前記スクリュを前記軸方向に駆動するものであり、
     前記ボールねじに対する前記ナットの位置を示す位置データと、該位置の前記ボールねじの状態を示す前記物理量データとを取得し、
     取得した前記位置データ、前記物理量データ及び該物理量データの取得時を示す前記時間データを対応付けて記憶し、
     取得した前記位置データ、前記物理量データ及び前記時間データに基づいて、前記ボールねじの寿命と相関のある前記パラメータ値の経時変化を推定するための前記関数を、前記ボールねじ軸の部位毎に算出する
     請求項7に記載の寿命推定方法。
  9.  産業機械を構成する所定部位の状態を示す物理量データを取得する取得部と、
     取得した前記物理量データ及び該物理量データの取得時を示す時間データを対応付けて記憶する記憶部と、
     取得した前記物理量データ及び前記時間データに基づいて、前記所定部位の寿命と相関のあるパラメータ値の経時変化を推定するための関数を算出し、算出した前記関数を用いて前記所定部位の故障時期又は故障確率を算出する演算部と
     を備える寿命推定装置。
  10.  産業機械を構成する所定部位の状態を示す物理量データを取得し、
     取得した前記物理量データ及び該物理量データの取得時を示す時間データを対応付けて記憶し、
     取得した前記物理量データ及び前記時間データに基づいて、前記所定部位の寿命と相関のあるパラメータ値の経時変化を推定するための関数を算出し、
     算出した前記関数を用いて前記所定部位の故障時期又は故障確率を算出する
     処理をコンピュータに実行させるためのコンピュータプログラム。
     
PCT/JP2022/022706 2021-09-16 2022-06-06 寿命推定方法、寿命推定装置及びコンピュータプログラム WO2023042494A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280062206.XA CN117957108A (zh) 2021-09-16 2022-06-06 寿命估计方法、寿命估计装置及计算机程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-151214 2021-09-16
JP2021151214A JP2023043530A (ja) 2021-09-16 2021-09-16 寿命推定方法、寿命推定装置及びコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2023042494A1 true WO2023042494A1 (ja) 2023-03-23

Family

ID=85602684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022706 WO2023042494A1 (ja) 2021-09-16 2022-06-06 寿命推定方法、寿命推定装置及びコンピュータプログラム

Country Status (3)

Country Link
JP (1) JP2023043530A (ja)
CN (1) CN117957108A (ja)
WO (1) WO2023042494A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238106A (ja) * 1999-02-19 2000-09-05 Toshiba Mach Co Ltd 電動射出成形機のボールねじ寿命予測方法および装置
JP2019166702A (ja) 2018-03-23 2019-10-03 株式会社日本製鋼所 機械学習器により成形条件を調整する射出成形機システム
WO2020136823A1 (ja) * 2018-12-27 2020-07-02 三菱電機株式会社 異常診断装置および異常診断方法
JP2021074918A (ja) * 2019-11-06 2021-05-20 株式会社日本製鋼所 異常検知装置、異常検知方法及びコンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238106A (ja) * 1999-02-19 2000-09-05 Toshiba Mach Co Ltd 電動射出成形機のボールねじ寿命予測方法および装置
JP2019166702A (ja) 2018-03-23 2019-10-03 株式会社日本製鋼所 機械学習器により成形条件を調整する射出成形機システム
WO2020136823A1 (ja) * 2018-12-27 2020-07-02 三菱電機株式会社 異常診断装置および異常診断方法
JP2021074918A (ja) * 2019-11-06 2021-05-20 株式会社日本製鋼所 異常検知装置、異常検知方法及びコンピュータプログラム

Also Published As

Publication number Publication date
CN117957108A (zh) 2024-04-30
JP2023043530A (ja) 2023-03-29

Similar Documents

Publication Publication Date Title
JP5855993B2 (ja) 射出成形機
JP7306968B2 (ja) 異常検知装置、異常検知方法及びコンピュータプログラム
JP6591260B2 (ja) 射出成形用情報管理装置、および射出成形機
WO2021090765A1 (ja) 異常検知装置、異常検知方法及びコンピュータプログラム
JP2008302528A (ja) 射出成形機
WO2023042494A1 (ja) 寿命推定方法、寿命推定装置及びコンピュータプログラム
JP4364828B2 (ja) 成形機監視装置、方法及びプログラム
JP2006297603A (ja) 成形機及びその監視表示方法
WO2023149029A1 (ja) 寿命予測方法、寿命予測装置及びコンピュータプログラム
JP4237237B2 (ja) スクリュー回転トルク監視機能を備えた射出成形機
WO2023037676A1 (ja) 射出成形機、制御方法及びコンピュータプログラム
JP7348022B2 (ja) 射出成形機管理装置及び射出成形機
JP2022113523A (ja) コンピュータプログラム、異常検知方法、異常検知装置、成形機システム及び学習モデル生成方法
CN114829102A (zh) 学习模型生成方法、计算机程序、设定值决定装置、成型机和成型装置系统
JP2023017386A (ja) 成形条件調整方法、コンピュータプログラム、成形条件調整装置及び射出成形機
WO2023007945A1 (ja) データセット作成方法、学習モデル生成方法、コンピュータプログラム及びデータセット作成装置
JP2023170672A (ja) 状態判定装置、状態判定制御システム、状態判定方法及びコンピュータプログラム
WO2024106002A1 (ja) 成形条件修正装置、成形機、成形条件修正方法及びコンピュータプログラム
WO2024122169A1 (ja) 自動評価装置、自動評価方法及びコンピュータプログラム
JP2024018556A (ja) 成形条件調整装置、成形機、成形条件調整方法及びコンピュータプログラム
WO2022196755A1 (ja) 強化学習方法、コンピュータプログラム、強化学習装置及び成形機
CN117881518A (zh) 成型条件参数调节方法、计算机程序、成型条件参数调节装置以及成型机
JP2024090308A (ja) 情報処理装置、情報処理方法およびプログラム
JP2023120015A (ja) 成形条件調整方法、コンピュータプログラム、成形条件調整装置及び射出成形機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280062206.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022869643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022869643

Country of ref document: EP

Effective date: 20240416