WO2023042355A1 - 端末及び無線通信方法 - Google Patents
端末及び無線通信方法 Download PDFInfo
- Publication number
- WO2023042355A1 WO2023042355A1 PCT/JP2021/034183 JP2021034183W WO2023042355A1 WO 2023042355 A1 WO2023042355 A1 WO 2023042355A1 JP 2021034183 W JP2021034183 W JP 2021034183W WO 2023042355 A1 WO2023042355 A1 WO 2023042355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pucch
- sps
- ack
- harq
- slot
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 23
- 230000005540 biological transmission Effects 0.000 claims abstract description 96
- 238000011144 upstream manufacturing Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 29
- 101100264655 Enterobacteria phage T4 y12B gene Proteins 0.000 description 19
- 101100264657 Enterobacteria phage T4 y12D gene Proteins 0.000 description 16
- 230000006870 function Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 13
- 230000011664 signaling Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 101100264654 Enterobacteria phage T4 y12A gene Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
Definitions
- the present disclosure relates to terminals and wireless communication methods.
- LTE Long Term Evolution
- FAA Future Radio Access
- 5G 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- New-RAT Radio Access Technology
- NR Radio
- Non-Patent Document 1 For example, in NR, strengthening the function of feedback from terminals to base stations is under consideration in order to improve communication quality (for example, Non-Patent Document 1).
- PUCCH Physical Uplink Control Channel
- One aspect of the present disclosure is to provide a terminal that operates appropriately in a radio system that allows configuration of resources for transmitting uplink control signals in consideration of the repetition of uplink control signals.
- a terminal includes a receiving unit that receives a downlink control signal, and a control unit that controls repeated transmission of an uplink control signal and postponement of transmission of the uplink control signal based on the downlink control signal. and have
- a terminal receives a downlink control signal, and controls repeated transmission of an uplink control signal and postponement of transmission of the uplink control signal based on the downlink control signal.
- FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment
- FIG. 1 is a diagram illustrating a configuration example of a wireless communication system when DC (Dual connectivity) is performed;
- FIG. It is a figure which shows the basic operation example of the communication system in one Embodiment.
- FIG. 10 is a diagram showing an example of SPS HARQ-ACK postponement; It is a figure which shows an example of PUCCH repetition.
- FIG. 10 is a diagram showing an example of higher layer parameters indicating PUCCH repetition count information; It is a figure which shows an example of postponement of PUCCH repetition.
- FIG. 4 is a diagram showing an example of subslot-based PUCCH repetition; It is a figure which shows the case illustrated in embodiment.
- FIG. 10 is a diagram showing an example of Proposal 1 in Case 1-1;
- FIG. 10 is a diagram showing a first example of Proposal 1 in case 1-1;
- FIG. 10 is a diagram showing a first example of Proposal 2 in Case 2;
- FIG. 2 shows a supplement to Option 2 of Proposal 2;
- 1 is a block diagram showing an example of the configuration of a base station according to this embodiment;
- FIG. FIG. 2 is a block diagram showing an example of a configuration of a terminal according to this embodiment;
- FIG. It is a figure which shows an example of the hardware configuration of the base station and terminal which concern on this Embodiment.
- PDSCH Physical Downlink shared Channel
- SPS downlink semi-persistent scheduling
- the terminal When an uplink (UL) slot is arranged after a plurality of consecutive downlink (DL) slots, the terminal supports reception of a plurality of data in the DL slot in the UL slot after the DL slot. It may send an acknowledgment (e.g. Hybrid Automatic Repeat request - Acknowledgment (HARQ-ACK)).
- HARQ-ACK Hybrid Automatic Repeat request - Acknowledgment
- SPS PDSCH based on SPS may be described as SPS PDSCH, and acknowledgment to SPS PDSCH may be described as SPS HARQ-ACK.
- SPS operation is possible, SPS PDSCH is transmitted from the base station to the terminal, and an uplink control signal including SPS HARQ ACK from the terminal to the base station (for example, a PUCCH (Physical Uplink Control Channel) signal ) is transmitted as an example.
- a PUCCH Physical Uplink Control Channel
- FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present disclosure.
- a wireless communication system according to an embodiment of the present disclosure includes a base station 10 and terminals 20 as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is an example and there may be more than one.
- the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
- a physical resource of a radio signal is defined in the time domain and the frequency domain.
- the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
- a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
- the base station 10 can perform carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled and communicated with the terminal 20 .
- multiple CCs component carriers
- carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
- the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
- Synchronization signals are, for example, NR-PSS and NR-SSS.
- System information is transmitted, for example, on NR-PBCH or PDSCH, and is also called broadcast information.
- a base station 10 transmits control signals or data to terminals 20 on the DL and receives control signals or data from the terminals 20 on the UL.
- control channels such as PUCCH and PDCCH (Physical Downlink Control Channel)
- PUCCH and PDCCH Physical Downlink Control Channel
- shared channels such as PUSCH (Physical Uplink shared Channel) and PDSCH is called data. It is called, but such a way of calling is an example.
- the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. As shown in FIG. 1 , the terminal 20 receives control signals or data from the base station 10 on the DL and transmits control signals or data to the base station 10 on the UL, thereby performing various functions provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called UE, and the base station 10 may be called gNB.
- the terminal 20 can perform carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled and communicated with the base station 10 .
- multiple CCs component carriers
- carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
- a PUCCH-SCell with PUCCH may also be used.
- FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connectivity) is performed.
- a base station 10A serving as MN (Master Node) and a base station 10B serving as SN (Secondary Node) are provided.
- the base station 10A and base station 10B are each connected to a core network.
- Terminal 20 can communicate with both base station 10A and base station 10B.
- MCG Master Cell Group
- SCG Secondary Cell Group
- MCG is composed of one PCell and one or more SCells
- PSCell Primary SCell
- the processing operations in the present embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
- the base station 10 transmits downlink SPS setting information, PUCCH resource setting information, slot format setting information, etc. to the terminal 20 by RRC (Radio Resource Control) signaling, and the terminal 20 transmits these setting information. receive. Since the present embodiment targets downlink SPS, hereinafter, "SPS" means downlink SPS.
- the setting information of the slot format is, for example, tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated, and the TDD (Time Division Duplex) configuration in each symbol of each slot in one or more slots is determined by this setting information.
- DL, UL, or flexible is set.
- this setting information is called semi-static TDD setting information.
- flexibility may be described as F.
- Terminal 20 basically determines DL/UL/F of each symbol in each slot according to the semi-static TDD configuration information.
- This setting information is, for example, SlotFormatCombinationsPerCell. Since this information consists of slot format (SF) IDs, it is hereinafter referred to as SFI setting information.
- the terminal 20 receives DCI for activating the SPS setting from the base station 10, and in S103, receives data on the PDSCH resource according to the SPS setting.
- the terminal 20 transmits SPS HARQ-ACK to the base station 10 using the PUCCH resource of the slot at the time position specified by DCI (PUSCH resource may be used if there is UL scheduling).
- PUSCH resource may be used if there is UL scheduling.
- SPS HARQ-ACK is sometimes called HARQ-ACK.
- HARQ-ACK may also be called HARQ information, feedback information, or the like.
- the terminal 20 may receive DCI that dynamically designates the slot format from the base station 10 at or before or after S102.
- This DCI is control information that designates an ID to be actually used among a plurality of slot format IDs set in the SFI setting information.
- the terminal 20 determines DL/UL/F of each symbol of each slot according to the slot format instead of the semi-static TDD setting information.
- This DCI information is called dynamic SFI specification information (or dynamic SFI, or SFI).
- the symbol position where the PUCCH resource is set is set is It is conceivable that HARQ-ACK cannot be transmitted due to overlap with other symbols (eg, semi-static DL symbols).
- URLLC will consider enhancements to terminal feedback for Hybrid Automatic Repeat request - Acknowledgment (HARQ-ACK).
- HARQ-ACK is an example of information related to acknowledgment (eg, acknowledgment) for data received by the terminal.
- SPS HARQ-ACK deferring described above will be considered as an example of enhancements to overlap as described above.
- 3GPP agreed to support deferral of SPS HARQ-ACK in Rel-17. 3GPP also agreed on the following points regarding the postponement of SPS HARQ-ACK.
- SPS-PUCCH-AN-List-r16 or "n1PUCCH-AN” overlaps a semi-static DL or SSB symbol
- the SPS HARQ-ACK PUCCH may be deferred.
- SSB is an abbreviation for SS/PBCH block
- SS is an abbreviation for Synchronization Signal
- PBCH is an abbreviation for Physical Broadcast Channel, which may be referred to as broadcast channels.
- SPS-PUCCH-AN-List-r16 is included in information (for example, PUCCH-Config) that configures PUCCH resource parameters for the terminal.
- SPS-PUCCH-AN-List-r16 is an example of information indicating a PUCCH resource list for DL SPS HRQ-ACK.
- n1PUCCH-AN is included in, for example, information (eg, SPS-Config) used to configure DL semi-persistent transmission.
- n1PUCCH-AN is an example of information indicating HARQ resources of PUCCH for DL SPS.
- the postponement of SPS HARQ-ACK may be set for each SPS configuration.
- HARQ-ACK for deferrable SPS PDSCH settings may be deferred.
- K1 indicates the offset from the data (for example, SPS PDSCH) slot to the acknowledgment (for example, SPS HARQ-ACK) slot corresponding to the data.
- K_def indicates the offset from the slot indicated by K1 to the slot of deferred HARQ-ACK.
- a slot in which a deferred SPS HARQ-ACK can be transmitted is called a target slot or a target PUCCH slot.
- the target slot is the first available slot in which the determined PUCCH resource does not overlap with invalid symbols (eg semi-static DL or SSB symbols).
- the determined PUCCH resource may correspond to, for example, the PUCCH resource used for the postponed SPS HARQ-ACK transmission.
- the first available slot may be the earliest slot in the time direction. Invalid symbols may also be symbols different from semi-static DL or SSB symbols.
- SPS HARQ-ACK and dynamic HARQ-ACK multiplexing may be taken into account in determining the target slot.
- the transmission of the deferred SPS HARQ-ACK bits may not be further deferred. In this case, the deferred SPS HARQ-ACK bit may be dropped.
- FIG. 4 is a diagram showing an example of SPS HARQ-ACK postponement.
- the horizontal axis of FIG. 4 represents the time axis.
- FIG. 4 illustratively shows six slots.
- the plurality of slots may be referred to as the first slot and the second slot in order from the oldest slot (left side of the figure).
- the six slots are labeled "D" or "U” respectively. Slots labeled "D” denote DL slots and slots labeled "U” denote UL slots.
- the first slot contains SPS PDSCH#1 and SPS PDSCH#2, and the second slot contains SPS PDSCH#3.
- SPS HARQ-ACK deferral is enabled in SPS settings of SPS PDSCH#1 and SPS PDSCH#3, disabled in SPS settings of SPS PDSCH#2, and each SPS PDSCH SPS HARQ-ACK for H may be sent in the third slot.
- SPS HARQ-ACK can be transmitted in the third slot may correspond to information indicating the transmission slot of SPS HARQ-ACK instructing transmission in the third slot.
- the SPS HARQ-ACK PUCCH is deferred because the SPS HARQ-ACK overlaps with the semi-static DL.
- K1 indicates the offset from the data (eg SPS PDSCH) to the corresponding acknowledgment (eg SPS HARQ-ACK).
- the 5th slot corresponds to the first available slot (target slot) that does not overlap with invalid symbols (eg semi-static DL or SSB symbols). Therefore, the HARQ-ACK bits for SPS PDSCH#1 and SPS PDSCH#3 for which SPS HARQ-ACK deferral is enabled (deferred HARQ-ACK bits) are sent in the target slot.
- ⁇ Slot-based PUCCH repetition> In PUCCH format 1/3/4 of Rel.15/16, slot based PUCCH repetition is supported.
- the terminal repeats PUCCH transmission a predetermined number of times based on instructions and/or settings from the base station.
- FIG. 5 is a diagram showing an example of PUCCH repetition.
- the number of PUCCH repetitions may be determined based on information reported from the base station.
- the nth iteration may also be referred to as the nth transmission occurrence, and so on.
- the first transmission may be referred to as the first PUCCH repetition.
- FIG. 6 is a diagram showing an example of upper layer parameters indicating information on the number of PUCCH repetitions.
- a terminal may receive information indicating the number of repetitions, for example, through a higher layer parameter such as RRC.
- the terminal may receive information indicating the number of PUCCH repetitions by means of the slot number information element nrofSlots, as shown in FIG.
- the slot number information element nrofSlots may be configured for each PUCCH resource.
- the same symbol allocation may be applied between n consecutive slots.
- the terminal sets the number of PUCCH repetitions N_PUCCH ⁇ repeat (also referred to as N PUCCH repeat ) for PUCCH repetition using each slot number information element nrofSlots.
- N_PUCCH ⁇ repeat also referred to as N PUCCH repeat
- N_PUCCH ⁇ repeat>1 the terminal complies with rules 1-1 to 1-3 below.
- the terminal repeats PUCCH transmission with UCI (Uplink Control Information) over N_PUCCH ⁇ repeat slots.
- UCI Uplink Control Information
- PUCCH transmissions in each of the N_PUCCH ⁇ repeat slots have the same number of consecutive symbols.
- the number of symbols is specified in the number of symbols information element nrofsymbols in the PUCCH format 1 information element PUCCH-format1, or in the number of symbols information element nrofsymbols in the PUCCH format 3 information element PUCCH-format3, or in the PUCCH format 4 information element PUCCH-format4. provided by the number of symbols information element, nrofsymbols.
- PUCCH transmissions in each of the N_PUCCH ⁇ repeat slots have the same first symbol (starting symbol index).
- the first symbol is the starting symbol index information element startingSymbolIndex in the PUCCH format 1 information element PUCCH-format1, or the starting symbol index information element startingSymbolIndex in the PUCCH format 3 information element PUCCH-format3, or the PUCCH format 4 information element PUCCH.
- startingSymbolIndex Provided by the starting symbol index information element, startingSymbolIndex, in -format4.
- ⁇ PUCCH repetition postponing> In 3GPP Release 16 (hereinafter sometimes referred to as Rel.16 or Rel-16), for example, TS 38.213 section 9.2.6 defines collisions for PUCCHs with repetitions greater than 1. . This collision may be referred to as a "direction collision”. In addition, collision (collision) may be read as duplication or overlap.
- the terminal determines that for PUCCH transmission in a certain slot, the number of symbols available for PUCCH transmission is less than the value given by 'nrofSymbols' of the corresponding PUCCH format, the terminal determines that slot PUCCH shall not be transmitted in In other words, in this case, the terminal determines that there is a collision for PUCCH of PUCCH repetition in a certain slot.
- the PUCCH repetition in the case of N PUCCH repeat > 1 may be deferred until the next available slot.
- the postponed PUCCH repetition may include the first PUCCH repetition.
- a symbol indicated as DL may be a symbol indicated as DL by, for example, 'tdd-UL-DL-ConfigurationCommon' or 'tdd-UL-DL-ConfigurationDedicated'.
- tdd-UL-DL-ConfigurationCommon" or "tdd-UL-DL-ConfigurationDedicated” is slot format configuration information, and may be notified by higher layer signaling (for example, RRC signaling). good).
- postponing PUCCH repetition to the first repetition in the above case may or may not be supported.
- Fig. 7 is a diagram showing an example of postponement of PUCCH repetition. Ten slots are shown in FIG. As in FIG. 4, "D" in each slot in FIG. 7 indicates that it is a DL slot, and "U” indicates that it is a UL slot.
- the first slot in FIG. 7 contains SPS PDSCH#1, and the second slot contains SPS PDSCH#2.
- the SPS HARQ-ACK for each SPS PDSCH can be transmitted by repetition from the 3rd slot, e.g. if the 3rd slot is designated by K1 explain.
- the SPS HARQ-ACK overlaps the semi-static DL in the 3rd slot. Therefore, the PUCCH repetition of sending SPS HARQ-ACK is deferred.
- the PUCCH repetition is transmitted not in the 3rd slot but in the UL slots after the 4th slot.
- the first PUCCH repetition (“postponed rep#1" in FIG. 4) is transmitted, and in the 5th, 8th, and 9th slots, the postponed 2nd, 3rd and 4th PUCCH repetitions ("postponed rep#2", “postponed rep#3” and "postponed rep#4" respectively in FIG. 4) are sent .
- FIG. 8 is a diagram showing an example of subslot-based PUCCH repetition.
- the terminal controls to perform PUCCH transmission in each subslot (7 symbols).
- Rel.17 it was agreed to apply the slot-based PUCCH procedure of Rel.16 to sub-slot-based PUCCH and support sub-slot-based PUCCH repetition in HARQ-ACK. That is, Rel. 17 adopts the slot-based PUCCH of Rel. 16 by appropriately replacing it with "sub-slots" without optimizing it unless necessary. Note that the dynamic repetition indicator is also supported in Rel.17 subslot-based PUCCH.
- Rel-16 supports PUCCH repetition posting for PUCCH with N PUCCH repeat >1. Also, in Rel-17, the introduction of SPS HARQ ACK deferring is being considered. The combined behavior of deferring PUCCH repetition and deferring SPS HARQ ACK, and/or the interaction between deferring PUCCH repetition and deferring SPS HARQ ACK is subject to discussion.
- Case 1 is HARQ-ACK PUCCH determined in the initial slot with initial SPS HARQ-ACK bits and without deferred SPS HARQ-ACK bit(s), This is the case where N PUCCH repeat >1 is determined for that PUCCH.
- Case 1 includes the following cases 1-1 and 1-2.
- Case 1-1 Cases where the PUCCH resources in the initial slot (eg the first PUCCH repetition) overlap with semi-static DL or SSB symbols.
- the PUCCH resource in the initial slot (for example, the first PUCCH repetition) is a case that does not overlap with the semi-static DL or SSB symbols, and any one or more of the PUCCH repetitions other than the first PUCCH repetition is semi- Cases that overlap with static DL or SSB symbols.
- a PUCCH repetition other than the first PUCCH repetition is, for example, a PUCCH repetition after the first PUCCH repetition.
- FIG. 9 is a diagram showing a case illustrated in this embodiment.
- FIG. 9 shows three cases, case 1-1, case 1-2, and case 2.
- FIG. Each case shows 10 slots, similar to FIG. As in FIG. 4, "D" in each slot in FIG. 9 indicates a DL slot, and "U” indicates a UL slot.
- the first slot contains SPS PDSCH#1 and the second slot contains SPS PDSCH#2.
- Case 1-1 in FIG. 9 is a case where the PUCCH resource (for example, the first PUCCH repetition) in the third slot, which is the initial slot, overlaps with the semi-static DL.
- the PUCCH resource for example, the first PUCCH repetition
- Case 1-2 in FIG. 9 is a case where the PUCCH resource (eg, the first PUCCH repetition) in the third slot, which is the initial slot, does not overlap with the semi-static DL or SSB symbol, and the sixth slot This is the case where the 4th PUCCH repetition in is overlapped with the semi-static DL.
- the PUCCH resource eg, the first PUCCH repetition
- the sixth slot This is the case where the 4th PUCCH repetition in is overlapped with the semi-static DL.
- the SPS HARQ-ACK PUCCH is postponed because the SPS HARQ-ACKs for SPS PDSCH#1 and SPS PDSCH#2 overlap the semi-static DL in the third slot.
- the 4th slot which is the target slot, HARQ-ACK PUCCH with deferred SPS HARQ-ACK bits, and in the 4th slot, N PUCCH repeat > 1 is determined for that PUCCH is the case.
- the terminal either postpones PUCCH repetition according to the Rel-16 regulations, or postpones the SPS HARQ-ACK bit according to the Rel-17 SPS HARQ-ACK deferral regulations. , there is room for discussion as to which method should be applied.
- Proposal 0 does not assume that PUCCH repetition and deferral of SPS HARQ-ACK are enabled at the same time. Alternatively, it is not assumed that PUCCH repetition and deferral of SPS HARQ-ACK are set at the same time. For example, the terminal and/or base station does not assume that PUCCH repetition and SPS HARQ-ACK deferral are enabled at the same time. Alternatively, the terminal and/or the base station do not assume that PUCCH repetition and deferral of SPS HARQ-ACK are configured at the same time. Here, to make effective corresponds to "enable”. In Proposal 0, it is assumed that PUCCH repetition and deferral of SPS HARQ-ACK are set at the same time, but it may not be assumed that they are enabled at the same time.
- PUCCH repetition and deferral of SPS HARQ-ACK are enabled at the same time.
- PUCCH repetition and deferral of SPS HARQ-ACK are configured at the same time.
- a terminal and/or base station may assume that PUCCH repetition and SPS HARQ-ACK deferral are enabled at the same time.
- the terminal and/or the base station configure PUCCH repetition and postponement of SPS HARQ-ACK at the same time. In this case, for example, the following two proposals can be considered for the above cases 1 and 2.
- Proposal 1 assumes that PUCCH repetition and deferral of SPS HARQ-ACK are enabled at the same time in case 1 (case 1-1 and case 1-2) above. Alternatively, it is assumed that PUCCH repetition and deferral of SPS HARQ-ACK are set at the same time.
- Proposal 2 assumes that in case 2 above, PUCCH repetition and deferral of SPS HARQ-ACK are enabled at the same time. Or PUCCH repetition and SPS It is assumed that deferral of HARQ-ACK is set at the same time.
- Proposal 1 and Proposal 2 it may be assumed that the postponement of PUCCH repetition and the postponement of SPS HARQ-ACK are enabled at the same time. Alternatively, it may be assumed that PUCCH repetition postponement and SPS HARQ-ACK postponement are set at the same time.
- Proposal 0 does not assume that PUCCH repetition and deferral of SPS HARQ-ACK are enabled or configured at the same time.
- Proposal 0 includes Proposals 0-1 and/or Proposals 0-2 below.
- Proposal 0-1 In Proposal 0-1, the terminal does not assume that PUCCH resources with corresponding N PUCCH repeat >1 will be selected in any of Alt.1 to Alt.5 below. In other words, the terminal does not expect PUCCH repetition to be enabled in any of Alt.1 to Alt.5 below. Any of Alt.1 to Alt.5 below means that SPS HARQ-ACK deferral is enabled (or set), and SPS HARQ-ACK deferral is enabled. and where SPS HARQ-ACK deferral is assumed to be enabled (or assumed to be configured).
- the relevant PUCCH contains an SPS HARQ-ACK with an SPS setting with deferral enabled. Note that in this case, the PUCCH does not contain a dynamic HARQ-ACK and does not contain other SPS HARQ-ACKs for SPS configurations where deferral is not enabled. Also, in this case, the PUCCH may include only the SPS HARQ-ACK with the SPS setting for which deferment is valid.
- the PUCCH contains an SPS HARQ-ACK, deferral of SPS HARQ-ACK is enabled for any SPS configuration, and at least one SPS HARQ-ACK bit corresponds to the SPS configuration with deferral enabled do.
- the PUCCH does not include dynamic HARQ-ACK. Also, in this case, it may be irrelevant (doesn't depend) on whether or not there is another SPS HARQ-ACK with SPS settings for which deferral is not valid in the PUCCH.
- the PUCCH may include only SPS HARQ-ACK.
- the relevant PUCCH contains SPS HARQ-ACK, and deferral of SPS HARQ-ACK is valid for any SPS setting.
- the PUCCH does not include dynamic HARQ-ACK.
- the PUCCH may include only SPS HARQ-ACK.
- the relevant PUCCH contains any SPS HARQ-ACK with SPS settings with deferral enabled. In this case it may not matter whether there is any dynamic HARQ-ACK or not. Also, in this case, it may not matter whether there are other SPS HARQ-ACKs with SPS settings for which deferral is not valid.
- the relevant PUCCH contains any SPS HARQ-ACK, and deferral of SPS HARQ-ACK is valid for any SPS setting. Note that in this case, it may be irrelevant whether the corresponding SPS setting in the HARQ-ACK PUCCH enables deferral. Also, in this case, it may be irrelevant whether there is a dynamic HARQ-ACK or not. Also, in this case, the HARQ-ACK bit in the SPS may be irrelevant whether deferment belongs to the valid SPS configuration or not.
- Proposal 0-2 In Proposal 0-1, if there is any SPS configuration with deferral enabled, the terminal does not assume that the SPS HARQ-ACK PUCCH resource with N PUCCH repeat > 1 is configured in "PUCCH-Config" . For example, the terminal does not assume that the priority corresponding to the SPS HARQ-ACK bit is set to "PUCCH-Config". In other words, if there is any SPS configuration with deferral enabled, the terminal does not expect PUCCH repetition to be configured.
- the terminal can selectively control PUCCH transmission between PUCCH repetition and SPS HARQ ACK postponement. , PUCCH repetition, and in a wireless system that can configure resources for transmitting PUCCH, a terminal that operates appropriately can be provided.
- Proposal 1 assumes that in Case 1, PUCCH repetition and deferral of SPS HARQ-ACK are enabled at the same time. Alternatively, it is assumed that PUCCH repetition and deferral of SPS HARQ-ACK are set at the same time.
- Case 1 is the HARQ- determined in the initial slot with initial SPS HARQ-ACK bits and without deferred SPS HARQ-ACK bit(s).
- ACK PUCCH and N PUCCH repeat >1 is the case determined for that PUCCH.
- Case 1-1 is case 1 in which the PUCCH resource in the initial slot (for example, the first PUCCH repetition) overlaps with semi-static DL or SSB symbols.
- Proposal 1 applies one of the following three options.
- Option 1 follows the rules of Rel-16.
- the terminal follows Rel-16 behavior. Note that in Option 1, deferral of SPS HARQ-ACK for Rel-17 may not be considered.
- the terminal performs the operation of postponing each PUCCH repetition that collides with an invalid symbol until the next available slot.
- the PUCCH repetition to be postponed may include the first PUCCH repetition.
- Rel-17's SPS HARQ-ACK deferral rule takes precedence.
- Rel-17 SPS HARQ-ACK deferral rules apply over Rel-16 rules.
- the conditions under which SPS HARQ-ACK deferral is applied include the following examples.
- the first condition (hereinafter referred to as option 2-A condition) is when only SPS HARQ-ACK exists in HARQ-ACK PUCCH in the initial slot (for example, dynamic HARQ-ACK is not multiplexed case) and any SPS HARQ-ACK in the HARQ-ACK PUCCH corresponds to an SPS PDSCH configuration with deferral enabled.
- SPS PDSCH configuration SPS PDSCH configuration
- SPS configuration SPS configuration
- the second condition is when only SPS HARQ-ACK exists in HARQ-ACK PUCCH in the initial slot (for example, when dynamic HARQ-ACK is not multiplexed). and all SPS HARQ-ACKs in the HARQ-ACK PUCCH correspond to SPS PDSCH configurations with deferral enabled.
- the terminal for example, performs the operation of deferring the transmission of the SPS HARQ-ACK bit to be deferred until the target PUCCH slot.
- PUCCH does not have to be transmitted if the above conditions for option 2-A and option 2-B, which apply the postponement of SPS HARQ-ACK, are not satisfied. In other words, PUCCH repetition may not be transmitted in this case.
- the terminal may follow the rules of Rel-16.
- PUCCH repetition deferral may be applied and PUCCH repetition may be deferred.
- FIG. 10 is a diagram showing an example of proposal 1 in case 1-1.
- FIG. 10 shows an example of option 1 and an example in which option 2-A of option 2 is applied.
- Six slots are shown in each example. "D" of each slot indicates that it is a DL slot, and "U” indicates that it is a UL slot.
- the first slot in each example includes SPS PDSCH#1 and SPS PDSCH#2, and the second slot includes SPS PDSCH#3.
- SPS HARQ-ACK deferral is enabled in SPS settings of SPS PDSCH#1 and SPS PDSCH#3, disabled in SPS settings of SPS PDSCH#2, and SPS for each SPS PDSCH
- SPS HARQ-ACK overlaps the semi-static DL in the 3rd slot.
- the terminal follows the Rel-16 operation, so the PUCCH repetition is postponed.
- the first PUCCH repetition is postponed to the 5th slot, and in the 5th slot the first PUCCH repetition (“postponed rep#1” in FIG. 10) is transmitted. be.
- the second PUCCH repetition (“postponed rep#2” in FIG. 10) is transmitted.
- the first PUCCH repetition and the second PUCCH repetition may be repetitions for HARQ-ACK for SPS PDSCH#1, SPS PDSCH#2, and SPS PDSCH#3.
- Rel-17's SPS HARQ-ACK deferral rule takes precedence.
- the condition of option 2-A is when only SPS HARQ-ACK exists in HARQ-ACK PUCCH in the initial slot (for example, when dynamic HARQ-ACK is not multiplexed ) and any SPS HARQ-ACK in the HARQ-ACK PUCCH corresponds to an SPS PDSCH configuration with deferral enabled.
- HARQ-ACK for SPS PDSCH#1, SPS PDSCH#2 and SPS PDSCH#3
- HARQ-ACK for SPS PDSCH#1 and SPS PDSCH#3 in HARQ-ACK PUCCH corresponds to SPS PDSCH configuration with deferral enabled. That is, in the example of Option 2 in FIG. 10, the condition of Option 2-A is met, so the SPS HARQ-ACK postponement rule is applied. Then, the postponed SPS HARQ-ACK is sent in the 5th slot, which is the target slot.
- the HARQ-ACK transmitted here is the HARQ-ACK corresponding to the SPS PDSCH setting for which postponement is valid (HARQ-ACK for SPS PDSCH#1 and SPS PDSCH#3 in the example of FIG. 10). good.
- Option 3 may be applied in Proposal 1 for Case 1-1.
- a maximum deferral limitation set for each SPS configuration may be used as a postponing restriction for PUCCH repetition according to the Rel-16 rule.
- Point 1 Definition of Postponing Restriction
- the postponing restriction is defined by the slot offset from the postponed repetition to the SPS PDSCH slot.
- the deferred limit is defined by the interval (or distance) between the slot containing the deferred repetition and the SPS PDSCH slot. This interval may be represented, for example, by the number of slots.
- this offset is denoted as K1_rep. Note that K1_rep may be expressed as "K1 rep ".
- K1_rep?K1_eff_max where K1_eff_max denotes the maximum postponement limit.
- K1_eff_max may be set for each SPS setting according to Rel-17.
- Alt-A may be K1_rep ⁇ K1_eff_max.
- Alt-B K1_rep?K1_eff_max+N_rep
- K1_eff_max denotes the maximum postponement limit.
- K1_eff_max may be set for each SPS configuration according to Rel-17.
- Alt-B may be K1_rep ⁇ K1_eff_max+N_rep.
- N_rep represents the number of PUCCH repetitions.
- the number of PUCCH repetitions represented by N_rep may be the number of possible PUCCH repetitions.
- N_rep may be a PUCCH repetition coefficient (for example, N PUCCH repeat ) determined for the PUCCH resource in the initial slot.
- this setting may be described as Alt-B1.
- N_rep may be the maximum value of possible PUCCH repetition factors configured for PUCCH resources in "PUCCH-Config".
- this setting may be described as Alt-B2.
- N_rep may be a coefficient of PUCCH repetition determined for PUCCH resources in slots different from the initial slot.
- N_rep may be the minimum value, the average value, or the median value of the possible PUCCH repetition coefficients set for PUCCH resources in 'PUCCH-Config' good too.
- N_rep may be a coefficient different from the PUCCH repetition coefficient determined for the PUCCH resource.
- Point 2 Conditions for Postponing Restrictions In the PUCCH repetition (first PUCCH repetition or PUCCH repetition including the first PUCCH repetition, respectively), in either of the following Opt.A or Opt.B, It may be determined that the deferred constraint is satisfied.
- K1_rep restriction is satisfied for all SPS PDSCHs corresponding to HARQ-ACK PUCCH. In other words, in this case there are no SPS PDSCHs for which the K1_rep constraint is not satisfied.
- Opt.B The restriction of K1_rep is satisfied for at least one SPS PDSCH corresponding to HARQ-ACK PUCCH. In other words, in this case, if the K1_rep restriction is satisfied for at least one SPS PDSCH, there may be SPS PDSCHs for which the K1_rep restriction is not satisfied.
- Point 3 Deferred Restriction Confirmation/Applicable Target There are variations of Alt.1 and Alt.2 below for confirmation/application target of deferred restriction.
- Alt.1 In the first posted PUCCH repetition, postponed restrictions are confirmed and/or applied. In other words, for PUCCH repetitions other than the first posted PUCCH repetition, no postponing restrictions may be verified and/or applied.
- FIG. 11 is a diagram showing a first example of proposal 1 in case 1-1.
- FIG. 11 illustrates four variations. In each variation ten slots are shown. As in FIG. 4, "D" in each slot in FIG. 11 indicates that it is a DL slot, and "U” indicates that it is a UL slot.
- the first slot includes SPS PDSCH#1
- the second slot includes SPS PDSCH#2.
- the SPS HARQ-ACK for each SPS PDSCH can be sent from the 3rd slot.
- N_rep 4 for PUCCH that can be transmitted from the 3rd slot.
- Variation 1 shows an example that follows the Rel-16 deferral rule as a comparative example to Option 3.
- the SPS HARQ-ACK overlaps the semi-static DL in the 3rd slot. Therefore, the PUCCH repetition of sending SPS HARQ-ACK is deferred.
- the PUCCH repetition is transmitted not in the 3rd slot but in the UL slots after the 4th slot.
- the first PUCCH repetition (“postponed rep#1" in FIG. 4) is transmitted, and in the 5th, 8th, and 9th slots, the postponed 2nd, 3rd and 4th PUCCH repetitions ("postponed rep#2", “postponed rep#3” and "postponed rep#4" respectively in FIG. 4) are sent .
- K1_rep is defined by the slot offset from the postponed repetition to the SPS PDSCH slot.
- K1_rep is specified for postponed rep#2, posted rep#3, and posted rep#4, similarly to posted rep#1, K1_rep is specified.
- Variations 2 to 4 in FIG. 11 are examples in which Rel-16's postponing rule and Rel-17's SPS HARQ-ACK deferral limitation are integrated. It should be noted that variations 2 to 4, like variation 1, postpone the PUCCH repetition. Slots of each PUCCH repetition are the same as Variation 1.
- Variation 2 in Fig. 11 is an example where Alt.1 of point 3 above is applied.
- Alt.1 in the first posted PUCCH repetition, the postponed restriction is checked and/or applied.
- Variation 3 in FIG. 11 is an example where Alt.2 of point 3, Alt.A of point 1, and Opt.A of point 2 are applied.
- Alt.2 of point 3 the postponing restriction is confirmed in each of the postponed PUCCH repetitions (in the case of FIG. 11, each of "postponed rep#1" to "postponed rep#4").
- Opt.A of point 2 it is determined that the deferred restriction is satisfied if the K1_rep restriction is satisfied for all SPS PDSCHs corresponding to HARQ-ACK PUCCH.
- the K1_rep limit is "K1_rep?K1_eff_max". In other words, in Variation 3 of FIG.
- SPS PDSCH#1 and SPS PDSCH#2 corresponding to posted rep#1 both satisfy "K1_rep?K1_eff_max" and thus satisfy the postponed restriction.
- SPS HARQ-ACK for SPS PDSCH#1 and SPS PDSCH#2 may be sent.
- both SPS PDSCH#1 and SPS PDSCH#2 satisfy the postponing restriction as in posted rep#1.
- SPS PDSCH#1 corresponding to posted rep#3 does not satisfy "K1_rep?K1_eff_max", so it does not satisfy the postponed restriction.
- posted rep#3 does not send (drop) the SPS HARQ-ACK for SPS PDSCH#1.
- SPS HARQ-ACK for SPS PDSCH#2 may or may not be transmitted in posted rep#3.
- SPS PDSCH#1 does not satisfy the postponing restriction, and SPS PDSCH#2 satisfies the postponing restriction, as in posted rep#3.
- Variation 4 is an example where Alt.2 of point 3, Alt.A of point 1 and Opt.B of point 2 are applied.
- Variation 4 in FIG. 11 is an example where Alt.2 of point 3, Alt.A of point 1, and Opt.B of point 2 are applied.
- Alt.2 of point 3 the postponing restriction is confirmed in each of the postponed PUCCH repetitions (in the case of FIG. 11, each of "postponed rep#1" to "postponed rep#4").
- Opt.B for at least one SPS PDSCH corresponding to a HARQ-ACK PUCCH, it is determined that the deferred restriction is satisfied if the K1_rep restriction is satisfied.
- the K1_rep limit is "K1_rep?K1_eff_max". In other words, in Variation 4 of FIG.
- SPS PDSCH#1 and SPS PDSCH#2 corresponding to posted rep#1 both satisfy "K1_rep?K1_eff_max", so the postponed Meet limits.
- SPS HARQ-ACK for SPS PDSCH#1 and SPS PDSCH#2 may be sent.
- SPS PDSCH#1 and SPS PDSCH#2 both satisfy "K1_rep?K1_eff_max", so they satisfy the postponing restriction.
- SPS PDSCH#1 corresponding to posted rep#3 does not satisfy "K1_rep?K1_eff_max”
- SPS PDSCH#2 does not satisfy "K1_rep ?K1_eff_max” is satisfied.
- the postponed restriction is satisfied when the restriction of K1_rep is satisfied, so in variation 4, posted rep For #3, the deferred constraint is satisfied.
- SPS HARQ-ACK for SPS PDSCH#1 and SPS PDSCH#2 may be sent.
- posted rep#4 satisfies the postponed restriction as well as posted rep#3.
- Point 4 Applicability Conditions for SPS HARQ-ACK Deferral Limit
- SPS HARQ-ACK deferral limit The following conditions are applicable for applying the SPS HARQ-ACK deferral limit to a certain PUCCH. Note that the applicable conditions are not limited to the following examples.
- Condition 1 SPS HARQ-ACK with SPS PDSCH settings for which postponement is valid exists in the relevant PUCCH.
- the number of SPS HARQ-ACKs may be 1 or more.
- the PUCCH may include only the SPS HARQ-ACK with the SPS setting for which deferment is valid.
- SPS HARQ-ACK exists in the relevant PUCCH, and at least one SPS HARQ-ACK corresponds to an SPS configuration with deferral enabled. Note that in this case there may be no dynamic HARQ-ACK. Also, it may not depend on whether there are other SPS HARQ-ACKs with SPS settings for which deferral is not enabled.
- the PUCCH may include only SPS HARQ-ACK.
- SPS HARQ-ACK exists in the relevant PUCCH, and deferment of SPS HARQ-ACK is valid for any SPS. Note that dynamic HARQ-ACK may not exist in the PUCCH. Also, the SPS HARQ-ACK bit may be irrelevant whether deferment belongs to a valid SPS configuration. For example, the PUCCH may include only SPS HARQ-ACK.
- Condition 4 Any HARQ-ACK with SPS PDSCH settings for which deferment is valid exists in the relevant PUCCH. Note that in this case, it does not matter whether there is a dynamic HARQ-ACK. Also, it may be irrelevant whether there are HARQ-ACKs with other SPS settings for which deferral is not valid.
- Condition 5 Any SPS HARQ-ACK exists in the relevant PUCCH, and deferral of SPS HARQ-ACK for any SPS setting is valid. Note that it does not matter whether dynamic HARQ-ACK exists or not. Also, the SPS HARQ-ACK bit may be irrelevant whether deferment belongs to a valid SPS configuration.
- the conventional Rel-16 PUCCH repetition rule may be applied.
- Case 1-2 is a case where PUCCH resources in the initial slot (eg, first PUCCH repetition) in case 1 do not overlap with invalid symbols (eg, semi-static DL or SSB symbols), and the first This is a case where one or more PUCCH repetitions other than PUCCH repetitions overlap with semi-static DL or SSB symbols.
- PUCCH resources in the initial slot eg, first PUCCH repetition
- invalid symbols eg, semi-static DL or SSB symbols
- Proposal 1 applies one of the following options.
- Option 1 follows the rules of Rel-16.
- the terminal follows Rel-16 behavior. This is similar to Option 1 of Proposal 1 for Case 1-1.
- any PUCCH repetitions that collide with invalid symbols may be deferred until the next available slot.
- Option 3 of Proposal 1 for Case 1-1 described above may be applied.
- option 3, including Alt.2 to point 3, shown in option 3, may be applied.
- the terminal selectively controls PUCCH transmission, or PUCCH repetition and SPS HARQ ACK postponement.
- PUCCH transmission can be controlled in a manner that integrates the Therefore, in a radio system in which PUCCH transmission resources can be set in consideration of PUCCH repetition, terminals can operate appropriately.
- Proposal 1 it is possible to appropriately control PUCCH transmission, including setting of resources for transmitting PUCCH, for both cases 1-1 and 1-2.
- Proposal 1 may be applied to cases other than Case 1-1 and Case 1-2.
- Case 2 is a HARQ-ACK PUCCH with deferred SPS HARQ-ACK bits in the target slot, as described above, and N PUCCH repeat > 1 is determined for the PUCCH in the target slot. is.
- Option 0 Handled as an error case.
- both the SPS HARQ-ACK deferral and the PUCCH repetition operation may not be performed, or either one may be performed and the other may not be performed.
- the operation to be executed may be defined in advance by specifications, or information regarding the operation to be executed may be notified to the terminal.
- the notification method is not particularly limited.
- Option 1 Do not perform PUCCH repetition of HARQ-ACK PUCCHs in target slots containing deferred SPS HARQ-ACKs.
- Option 2 PUCCH repetition of HARQ-ACK PUCCH in target slots containing deferred SPS HARQ-ACK may be applied.
- Option 2 either Option 2-1 or Option 2-2 below may be applied.
- N_rep is determined in the same way as the legacy PUCCH repetition factor determination.
- N_rep is determined to be N PUCCH repeat .
- the legacy PUCCH repetition factor determination may be, for example, the method specified in Rel-16 or releases prior to Rel-16.
- N_rep determination for option 2-2 is shown. For example, in the first decision example (option 2-2A below), N_rep determines that the last repetition of the PUCCH repetition is within the maximum deferral limitation for each of the SPS PDSCHs. is intended to be guaranteed to be For example, N_rep is determined using equation (1).
- N_rep determines that the last repetition of the PUCCH repetition is the maximum deferral limitation for at least one of the SPS PDSCHs. ) is intended to be guaranteed to be within
- N_rep is determined using equation (2).
- K1_eff in equations (1) and (2) represents the slot offset from the SPS PDSCH slot to the target slot
- Case 2 may have multiple subcase instances.
- - Case 2-1 A case in which a new HARQ-ACK is included in the PUCCH of the target slot.
- - Case 2-1A New HARQ-ACK contains only new SPS HARQ-ACK.
- Case 2-1B New HARQ-ACK contains only new dynamic HARQ-ACK.
- - Case 2-1C New HARQ-ACK includes new dynamic HARQ-ACK and new SPS HARQ-ACK.
- Case 2-2 the case where the HARQ-ACK PUCCH of the target slot contains the deferred SPS HARQ-ACK bit.
- the new HARQ-ACK may be a HARQ-ACK that is not the postponed HARQ-ACK.
- Proposal 2 for Case 2 different options may be applied for each subcase of Case 2 as described above. For example, option 1 is applied to case 2-2, and option 2-1 is applied to case 2-1A.
- FIG. 12 is a diagram showing a first example of proposal 2 in case 2.
- FIG. Four options are illustrated in FIG. Ten slots are shown for each option.
- "D" in each slot in FIG. 12 indicates that it is a DL slot
- "U" indicates that it is a UL slot.
- the first slot contains SPS PDSCH#1 and the second slot contains SPS PDSCH#2.
- the SPS HARQ-ACK for each SPS PDSCH can be transmitted from the 3rd slot.
- N PUCCH repeat 4
- the SPS HARQ-ACK overlaps the semi-static DL in the third slot, as shown in FIG.
- N_rep is determined based on a combination of the determination of the legacy PUCCH repetition factor and the maximum deferral limit for each of the SPS settings. And in Option 2-2A, N_rep ensures that the last repetition of PUCCH repetitions is within the maximum deferral limit for each of the SPS PDSCHs.
- N_rep is determined based on a combination of the determination of the legacy PUCCH repetition factor and the maximum deferral limit for each of the SPS settings. And in Option 2-2B, N_rep ensures that the last repetition of the PUCCH repetition is within the maximum deferral limit for at least one of the SPS PDSCHs.
- the target slot definition ensures that the first PUCCH repetition in the target slot does not overlap with invalid symbols (eg semi-static DL or SSB symbols). However, there is a possibility that subsequent PUCCH repetitions after the first PUCCH repetition overlap with invalid symbols. The operation of the terminal in such a case will be explained.
- PUCCH containing the deferred SPS HARQ-ACK bit if PUCCH repetitions other than the first PUCCH repetition overlap with semi-static DL or SSB symbols, either of the following is selected.
- Alt.3 The Rel-16 PUCCH repetition deferring rule applies, but this rule is integrated with the SPS HARQ-ACK deferring limitation of Rel-17 SPS HARQ-ACK.
- Option 3 of Proposal 1 for Case 1-1 above may be applied in this case.
- option 3, including Alt.2 to point 3, shown in option 3, may be applied.
- Alt.1 may be applied to case 2-2
- Alt.2 may be applied to case 2-2.
- FIG. 13 is a diagram showing a supplement to Option 2 of Proposal 2.
- Alt.1 and Alt.2 are illustrated in FIG. Alt.1 and Alt.2 each show 10 slots.
- "D” in each slot in FIG. 13 indicates that it is a DL slot
- "U” indicates that it is a UL slot.
- the first slot contains SPS PDSCH#1 and the second slot contains SPS PDSCH#2.
- the SPS HARQ-ACK for each SPS PDSCH can be sent from the third slot.
- SPS HARQ-ACK overlaps semi-static DL. Therefore, the PUCCH repetition of sending SPS HARQ-ACK is deferred.
- the first PUCCH repetition of the 4th slot which is the target slot, does not overlap with invalid symbols (eg, semi-static DL or SSB symbols).
- the third PUCCH repetition (6th slot) and the fourth PUCCH repetition (7th slot) that follow the first PUCCH repetition overlap with invalid symbols.
- Alt.1 is not subject to the Rel-16 PUCCH repetition rule. Therefore, in the Alt.1 example of FIG. 13, the 3rd and 4th PUCCH repetitions that overlap invalid symbols are not transmitted (dropped).
- the conventional Rel-16 PUCCH repetition rule may be applied. Therefore, in the Alt.2 example of FIG. 13, the 3rd and 4th PUCCH repetitions that overlap with invalid symbols are also postponed. In the Alt.2 example of FIG. 13, the postponed 3rd and 4th PUCCH repetitions are transmitted in the 8th and 9th slots.
- the terminal selectively controls PUCCH transmission between PUCCH repetition and SPS HARQ ACK postponement, or PUCCH repetition and SPS HARQ ACK postponement.
- PUCCH transmission can be controlled in a manner that integrates the Therefore, in a radio system in which PUCCH transmission resources can be set in consideration of PUCCH repetition, terminals can operate appropriately.
- Proposal 2 is applied to Case 2
- the present disclosure is not limited to this.
- Proposal 2 may be applied to cases other than Case 2.
- the terminal can perform appropriate operation in a radio system in which resource settings are available.
- the uplink control signal for example, PUCCH signal
- the repetition of the uplink control signal for example, signals including SPS HARQ-ACK
- which option (or alternation) to use among the options (or alternation (Alt.)) of each proposal may be defined by the specifications, or may be specified by the upper layer. It may be set by a parameter.
- the terminal may report which option (or alternation) to use among the options (or alternations) of each proposal by means of terminal capability information (eg, "UE capability").
- terminal capability information eg, "UE capability”
- which option (or alternation) to use among the options (or alternation) of each proposal is determined by a combination of upper layer parameter settings and reported terminal capability information.
- the reported terminal capability information indicates, from among the terminal available options (or alternation), the base station determines one or more options (or alternation), the determined information is the upper layer may be set by the parameters of It should be noted that the information of the option (or alternation) to be used may be notified by physical layer control information (for example, DCI), without being limited to the example of being set by upper layer parameters.
- DCI physical layer control information
- slot may be replaced with “sub-slot”.
- slot is a term that indicates a certain time period, and may be replaced with other notations.
- slot may be replaced by other notations such as “symbol”, “time interval”, “time resource”.
- SPS has been described as an example in the present embodiment, the present disclosure is not limited to this.
- the present disclosure may be applied to persistent scheduling or dynamic scheduling.
- the SPS PDSCH and the SPS HARQ-ACK for the SPS PDSCH have been described as examples, but the present disclosure is not limited to this.
- the present disclosure may be applied to a data channel different from the SPS PDSCH and an acknowledgment for the data channel.
- the present disclosure may be applied not only to data channels but also to control channels (for example, PDCCH) and acknowledgments for control channels.
- the present disclosure may be applied to feedback information different from SPS HARQ-ACK.
- Different options may be applied to different PUCCH repetition schemes. For example, proposed options applied for slot-based PUCCH repetition schemes and proposed options applied for sub-slot-based PUCCH repetition schemes may be different from each other.
- the terminal capability information includes, for example, information specifying whether the terminal supports PUCCH repetition, information specifying whether the terminal supports SPS HARQ-ACK deferral, information specifying whether the terminal supports Information specifying whether to simultaneously support PUCCH repetition and deferral of SPS HARQ-ACK may be included.
- the capability information of the terminal includes information indicating whether the terminal supports each proposal described above and/or whether it supports each option (or each alternative) of each proposal. good too.
- deferral and postponing may be replaced with each other. Also, deferral and postponing may be replaced with other expressions such as delay, procrastination, and arrears, respectively.
- the expressions “limitation” and “restriction” may be replaced with each other. Also, the expressions “limitation” and “restriction” may be replaced with other expressions such as restriction, limitation, and restriction.
- the radio communication system includes base station 10 shown in FIG. 14 and terminal 20 shown in FIG.
- the number of base stations 10 and the number of terminals 20 are not particularly limited. A system in which two base stations 10 communicate with one terminal 20 may also be used.
- the wireless communication system may be a wireless communication system according to New Radio (NR).
- NR New Radio
- the wireless communication system may be a wireless communication system according to a scheme called URLLC and/or IIoT.
- the wireless communication system may be a wireless communication system that conforms to a system called 5G, Beyond 5G, 5G Evolution, or 6G.
- the base station 10 may be called an NG-RAN Node, ng-eNB, eNodeB (eNB), or gNodeB (gNB).
- the terminal 20 may be called User Equipment (UE).
- the base station 10 may be regarded as a device included in the network to which the terminal 20 connects.
- the radio communication system may include Next Generation-Radio Access Network (NG-RAN).
- NG-RAN includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
- 5GC 5G-compliant core network
- NG-RAN and 5GC may be simply referred to as "networks”.
- the base station 10 performs wireless communication with the terminal 20.
- the wireless communication performed complies with NR.
- At least one of the base station 10 and the terminal 20 uses Massive MIMO (Multiple-Input Multiple-Output) to generate beams (BM) with higher directivity by controlling radio signals transmitted from a plurality of antenna elements. You can respond.
- at least one of the base station 10 and the terminal 20 may support carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle.
- CA carrier aggregation
- CC component carriers
- at least one of the base station 10 and the terminal 20 may support dual connectivity (DC), etc., in which communication is performed between the terminal 20 and each of the plurality of base stations 10 .
- a wireless communication system may support multiple frequency bands.
- a wireless communication system supports Frequency Ranges (FR) 1 and FR2.
- the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
- FR1 Sub-Carrier Spacing (SCS) of 15 kHz, 30 kHz or 60 kHz may be used, and a bandwidth (BW) of 5 MHz to 100 MHz may be used.
- SCS Sub-Carrier Spacing
- BW bandwidth
- FR2 is, for example, a higher frequency than FR1.
- FR2 may use an SCS of 60 kHz or 120 kHz and a bandwidth (BW) of 50 MHz to 400 MHz.
- FR2 may include a 240 kHz SCS.
- the wireless communication system in this embodiment may support a frequency band higher than the frequency band of FR2.
- the wireless communication system in this embodiment can support frequency bands exceeding 52.6 GHz and up to 114.25 GHz.
- Such high frequency bands may be referred to as "FR2x.”
- Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
- DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
- SCS Sub-Carrier Spacing
- DFT-S-OFDM may be applied to both uplink and downlink, or may be applied to either one.
- a time division duplex (TDD) slot configuration pattern may be set.
- slots for transmitting downlink (DL) signals, slots for transmitting uplink (UL) signals, slots in which DL signals, UL signals and guard symbols are mixed, and signals to be transmitted are flexible
- a pattern may be defined that indicates the order of two or more of the slots to be changed to .
- channel estimation of PUSCH can be performed using a demodulation reference signal (DMRS) for each slot.
- DMRS demodulation reference signal
- Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
- the terminal 20 may transmit the DMRS assigned to each of the multiple slots so that the base station 10 can perform joint channel estimation using DMRS.
- an enhanced function may be added to the feedback function from the terminal 20 to the base station 10.
- enhanced functionality of terminal feedback for HARQ-ACK may be added.
- the configurations of the base station 10 and the terminal 20 will be explained. It should be noted that the configurations of the base station 10 and the terminal 20 described below are examples of functions related to the present embodiment.
- the base station 10 and terminal 20 may have functions not shown. Also, the functional division and/or the name of the functional unit are not limited as long as the function executes the operation according to the present embodiment.
- FIG. 14 is a block diagram showing an example of the configuration of base station 10 according to this embodiment.
- the base station 10 includes a transmitter 101, a receiver 102, and a controller 103, for example.
- the base station 10 wirelessly communicates with the terminal 20 (see FIG. 15).
- the transmission section 101 transmits a downlink (DL) signal to the terminal 20 .
- the transmitter 101 transmits a DL signal under the control of the controller 103 .
- a DL signal may include, for example, a downlink data signal and control information (eg, Downlink Control Information (DCI)).
- DCI Downlink Control Information
- a signal containing control information may be referred to as a control signal.
- the DL signal may include information (for example, UL grant) indicating scheduling regarding signal transmission of the terminal 20 .
- the DL signal may include higher layer control information (for example, Radio Resource Control (RRC) control information).
- RRC Radio Resource Control
- higher layer signaling eg, RRC signaling or MAC CE (Media Access Control Element)
- the DL signal may include a reference signal.
- Channels used for transmitting DL signals include, for example, data channels and control channels.
- the data channel may include a PDSCH (Physical Downlink Shared Channel)
- the control channel may include a PDCCH (Physical Downlink Control Channel).
- the base station 10 transmits control information to the terminal 20 using the PDCCH, and transmits downlink data signals using the PDSCH.
- reference signals included in DL signals include demodulation reference signals (DMRS), phase tracking reference signals (PTRS), channel state information-reference signals (CSI-RS), sounding reference signals (SRS ), and Positioning Reference Signal (PRS) for position information.
- DMRS demodulation reference signals
- PTRS phase tracking reference signals
- CSI-RS channel state information-reference signals
- SRS sounding reference signals
- PRS Positioning Reference Signal
- reference signals such as DMRS and PTRS are used for demodulation of downlink data signals and transmitted using PDSCH.
- the receiving unit 102 receives an uplink (UL) signal transmitted from the terminal 20 .
- the receiver 102 receives UL signals under the control of the controller 103 .
- the control unit 103 controls the communication operation of the base station 10, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
- control unit 103 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 101 . Also, the control unit 103 outputs the data and control information received from the receiving unit 102 to the upper layer.
- control unit 103 based on the signal received from the terminal 20 (e.g., data and control information, etc.) and / or data and control information obtained from the upper layer, resource (or channel) used for transmission and reception of the DL signal and/or allocates resources used for transmission and reception of UL signals. Information about the allocated resources may be included in control information to be transmitted to the terminal 20 .
- the control unit 103 sets PUCCH resources as an example of allocation of resources used for transmission and reception of UL signals.
- Information related to PUCCH configuration such as the PUCCH cell timing pattern may be notified to the terminal 20 by RRC.
- FIG. 15 is a block diagram showing an example of the configuration of terminal 20 according to this embodiment.
- Terminal 20 includes, for example, receiver 201 , transmitter 202 , and controller 203 .
- the terminal 20 communicates with the base station 10 by radio, for example.
- the receiving unit 201 receives the DL signal transmitted from the base station 10. For example, the receiver 201 receives a DL signal under the control of the controller 203 .
- the transmission unit 202 transmits the UL signal to the base station 10.
- the transmitter 202 transmits UL signals under the control of the controller 203 .
- the UL signal may include, for example, an uplink data signal and control information (eg, UCI).
- control information eg, UCI
- information about the processing capability of terminal 20 eg, UE capability
- the UL signal may include a reference signal.
- Channels used to transmit UL signals include, for example, data channels and control channels.
- the data channel includes PUSCH (Physical Uplink Shared Channel)
- the control channel includes PUCCH (Physical Uplink Control Channel).
- the terminal 20 receives control information from the base station 10 using PUCCH, and transmits uplink data signals using PUSCH.
- the reference signal included in the UL signal may include at least one of DMRS, PTRS, CSI-RS, SRS, and PRS, for example.
- reference signals such as DMRS and PTRS are used for demodulation of uplink data signals and transmitted using an uplink channel (eg, PUSCH).
- the control unit 203 controls communication operations of the terminal 20, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
- control unit 203 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 202 . Also, the control unit 203 outputs, for example, the data and control information received from the receiving unit 201 to an upper layer.
- control unit 203 controls transmission of information to be fed back to the base station 10 .
- Information fed back to the base station 10 may include, for example, HARQ-ACK, channel state information (CSI), or scheduling request (SR). good.
- Information to be fed back to the base station 10 may be included in the UCI.
- UCI is transmitted on PUCCH resources.
- the control unit 203 configures PUCCH resources based on configuration information received from the base station 10 (for example, configuration information such as the PUCCH cell timing pattern notified by RRC and/or DCI).
- Control section 203 determines PUCCH resources to be used for transmitting information to be fed back to base station 10 .
- transmission section 202 transmits information to be fed back to base station 10 on PUCCH resources determined by control section 203 .
- the channels used for DL signal transmission and the channels used for UL signal transmission are not limited to the above examples.
- the channel used for DL signal transmission and the channel used for UL signal transmission may include RACH (Random Access Channel) and PBCH (Physical Broadcast Channel).
- RACH may be used, for example, to transmit Downlink Control Information (DCI) containing Random Access Radio Network Temporary Identifier (RA-RNTI).
- DCI Downlink Control Information
- RA-RNTI Random Access Radio Network Temporary Identifier
- the receiving unit 201 may receive a DL control signal (DL control signal).
- the DL control signal is, for example, a signal controlling PUCCH repetition and/or deferment of SPS HARQ ACK, and may be a signal such as DCI, MAC CE, and/or RRC.
- the control unit 203 Based on the DL control signal received by the receiving unit 203, the control unit 203 repeats transmission of the UL control signal (e.g., PUCCH repetition) and postpones transmission of the UL control signal (e.g., SPS HARQ-ACK deferring) and may be controlled (determined).
- the UL control signal may be, for example, a signal included in PUCCH.
- Repeated transmissions may be slot-based repeats, sub-slot-based repeats, or dynamic repeat transmissions. More specifically, the repeated transmissions may be slot-based PUCCH repetition, sub-slot-based PUCCH repetition, or dynamic PUCCH repetition transmissions.
- the control unit 203 does not have to assume that both the repeated transmission of the UL control signal and the postponement of the transmission of the UL control signal are performed (or set/enabled) at the same time. Also, the control unit 203 may assume that both the repeated transmission of the UL control signal and the postponement of the transmission of the UL control signal are performed (or set/enabled) at the same time.
- the control unit 203 controls at least one of the repeated transmission of the UL control signal and the postponement of the transmission of the UL control signal. may control the transmission of UL control signals in accordance with the provisions of
- the control unit 203 If both the repeated transmission of the UL control signal and the postponement of the transmission of the UL control signal are enabled at the same time, the control unit 203 outputs the modified UL control signal based on the provision of the postponement of the transmission of the UL control signal.
- the transmission of UL control signals may be controlled according to the rules for repeated transmissions.
- the terminal 20 performs transmission control of the UL control signal including setting of resources for transmitting the UL control signal in a wireless system capable of repeatedly transmitting the UL control signal and deferring the transmission of the UL control signal. can work properly.
- each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
- a functional block may be implemented by combining software in the one device or the plurality of devices.
- Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
- a functional block (component) that makes transmission work is called a transmitting unit or transmitter.
- the implementation method is not particularly limited.
- a base station, a terminal, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 16 is a diagram showing an example of hardware configurations of a base station and a terminal according to this embodiment.
- the base station 10 and terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the term "apparatus” can be read as a circuit, device, unit, or the like.
- the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
- Each function of the base station 10 and the terminal 20 is performed by the processor 1001 by loading predetermined software (program) onto hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs calculations and controls communication by the communication device 1004. , and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003 .
- the processor 1001 for example, operates an operating system and controls the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
- CPU central processing unit
- the control unit 103 and the control unit 203 described above may be implemented by the processor 1001 .
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
- programs program codes
- software modules software modules
- data etc.
- the control unit 203 of the terminal 20 may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
- FIG. Processor 1001 may be implemented by one or more chips.
- the program may be transmitted from a network via an electric communication line.
- the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), and RAM (Random Access Memory). may be
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrical Erasable Programmable ROM
- RAM Random Access Memory
- the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
- the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
- Storage 1003 may also be called an auxiliary storage device.
- the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, to realize at least one of frequency division duplex (FDD) and time division duplex (TDD).
- FDD frequency division duplex
- TDD time division duplex
- the transmitting unit 101 , the receiving unit 102 , the receiving unit 201 , the transmitting unit 202 and the like described above may be implemented by the communication device 1004 .
- the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
- the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
- Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
- the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
- processor 1001 may be implemented using at least one of these pieces of hardware.
- Notification of information is not limited to the embodiments described in the present disclosure, and may be performed using other methods.
- notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
- RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
- Embodiments described in the present disclosure are LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) , FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, other suitable systems and next generations based on these It may be applied to at least one of the systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
- various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to).
- MME or S-GW network nodes other than the base station
- the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
- ⁇ Direction of input/output> Information and the like can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
- Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
- the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
- notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
- Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- the software may use wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
- wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
- wireless technology infrared, microwave, etc.
- Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
- the channel and/or symbols may be signaling.
- a signal may also be a message.
- a component carrier may also be referred to as a carrier frequency, cell, frequency carrier, or the like.
- ⁇ Name of parameter and channel> the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
- Base station In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “"accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,” Terms such as “carrier”, “component carrier” may be used interchangeably.
- a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
- a base station can accommodate one or more (eg, three) cells.
- the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
- RRH indoor small base station
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
- MS Mobile Station
- UE User Equipment
- a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
- At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
- the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
- at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read as a terminal.
- the terminal 20 may have the functions of the base station 10 described above.
- words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side").
- uplink channels, downlink channels, etc. may be read as side channels.
- a terminal in the present disclosure may be read as a base station.
- the base station 10 may have the functions of the terminal 20 described above.
- determining may encompass a wide variety of actions.
- “Judgement”, “determining” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
- "judgment” and “decision” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that something has been "determined” or “decided”.
- judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
- judgment and “decision” may include considering that some action is “judgment” and “decision”.
- judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
- connection means any direct or indirect connection or connection between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
- two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
- the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
- a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
- a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
- SCS subcarrier spacing
- TTI transmission time interval
- number of symbols per TTI radio frame structure
- transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
- a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
- a slot may be a unit of time based on numerology.
- a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
- PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
- one subframe may be called a Transmission Time Interval (TTI)
- TTI Transmission Time Interval
- multiple consecutive subframes may be called a TTI
- one slot or minislot may be called a TTI.
- TTI Transmission Time Interval
- at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum scheduling time unit in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
- a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
- TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
- the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
- the short TTI e.g., shortened TTI, etc.
- a TTI having the above TTI length may be read instead.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
- the number of subcarriers included in an RB may be determined based on neumerology.
- the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
- One TTI, one subframe, etc. may each consist of one or more resource blocks.
- One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
- PRBs physical resource blocks
- SCGs sub-carrier groups
- REGs resource element groups
- PRB pairs RB pairs, etc. may be called.
- a resource block may be composed of one or more resource elements (RE: Resource Element).
- RE Resource Element
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- a bandwidth part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good.
- the common RB may be identified by an RB index based on the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or multiple BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots and symbols described above are only examples.
- the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
- CP cyclic prefix
- Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may refer to the rated maximum transmit power ( the rated UE maximum transmit power).
- One aspect of the present disclosure is useful for wireless communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
図1は、本開示の実施の形態における無線通信システムを説明するための図である。本開示の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
図3を参照して、本開示の実施の形態における通信システムの基本的な動作例を説明する。
3GPPでは、Rel-17において、SPS HARQ-ACKの延期をサポートすることが合意された。また、3GPPでは、SPS HARQ-ACKの延期について、以下の点が合意された。
Rel.15/16のPUCCHフォーマット1/3/4において、スロットベースPUCCHレピティション(slot based PUCCH repetition)がサポートされている。例えば、端末は、基地局からの指示及び/又は設定に基づいて、PUCCHの送信を所定回数、繰り返して行う。
端末は、N_PUCCH^repeat個のスロットにわたってUCI(Uplink Control Information)を伴うPUCCH送信を繰り返す。
N_PUCCH^repeat個のスロットのそれぞれにおけるPUCCH送信は、同じ数の連続シンボルを有する。そのシンボル数は、PUCCHフォーマット1情報要素PUCCH-format1内のシンボル数情報要素nrofsymbols、又は、PUCCHフォーマット3情報要素PUCCH-format3内のシンボル数情報要素nrofsymbols、又は、PUCCHフォーマット4情報要素PUCCH-format4内のシンボル数情報要素nrofsymbols、によって提供される。
N_PUCCH^repeat個のスロットのそれぞれにおけるPUCCH送信は、同じ最初のシンボル(開始シンボルインデックス)を有する。その最初のシンボルは、PUCCHフォーマット1情報要素PUCCH-format1内の開始シンボルインデックス情報要素startingSymbolIndex、又は、PUCCHフォーマット3情報要素PUCCH-format3内の開始シンボルインデックス情報要素startingSymbolIndex、又は、PUCCHフォーマット4情報要素PUCCH-format4内の開始シンボルインデックス情報要素startingSymbolIndex、によって提供される。
3GPPのリリース16(以下、Rel.16またはRel-16と記載される場合がある)では、例えば、TS 38.213 section 9.2.6において、1より多いレピティションのPUCCHに対する衝突(collision)が規定される。このcollisionは、「direction collision」と称されてもよい。なお、衝突(collision)は、重複、または、オーバーラップと読み替えられてもよい。
Rel.17では、サブスロットベースPUCCHレピティション(sub-slot based PUCCH repetition)をサポートすることが合意されている。
上記の通り、Rel-16では、NPUCCH repeat>1のPUCCHに対して、PUCCHレピティションの後回し(PUCCH repetition postponing)がサポートされる。また、Rel-17では、SPS HARQ ACKの延期(SPS HARQ ACK deferring)の導入が検討されている。PUCCHレピティションの後回しと、SPS HARQ ACKの延期とを組み合わせた動作、及び/又は、PUCCHレピティションの後回しと、SPS HARQ ACKの延期との間の相互作用に関しては検討の余地がある。
ケース1は、イニシャルSPS HARQ-ACKビットを有し、延期されたSPS HARQ-ACKビット(deferred SPS HARQ-ACK bit(s))を有さないイニシャルスロットにおいて決定されるHARQ-ACK PUCCHであり、NPUCCH repeat>1が当該PUCCHに対して決定されるケースである。
イニシャルスロットにおけるPUCCHリソース(例えば、最初のPUCCHレピティション)がセミスタティックなDLまたはSSBシンボルと重複するケース。
イニシャルスロットにおけるPUCCHリソース(例えば、最初のPUCCHレピティション)がセミスタティックなDLまたはSSBシンボルと重複しないケースであり、かつ、最初のPUCCHレピティション以外のPUCCHレピティションの何れか1つ以上が、セミスタティックなDLまたはSSBシンボルと重複するケース。最初のPUCCHレピティション以外のPUCCHレピティションとは、例えば、最初のPUCCHレピティションよりも後のPUCCHレピティションである。
ターゲットスロットにおいて、延期されるSPS HARQ-ACKビットを有するHARQ-ACK PUCCHであり、当該ターゲットスロットにおいて、NPUCCH repeat>1が、当該PUCCHに対して決定されるケース。
提案0では、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、有効にされることが想定されない。あるいは、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、設定されることが想定されない。例えば、端末及び/又は基地局が、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、有効にされることを想定しない。あるいは、端末及び/又は基地局が、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、設定されることを想定しない。ここで、有効にするとは、「enable」することに相当する。なお、提案0では、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、設定されることが想定されるが、同時に、有効にされることが想定されなくてもよい。
提案1では、上記のケース1(ケース1-1及びケース1-2)において、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、有効にされることが想定される。あるいは、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、設定されることが想定される。
提案2では、上記のケース2において、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、有効にされることが想定される。あるいは、PUCCHレピティションと、SPS
HARQ-ACKの延期とが、同時に、設定されることが想定される。
上記のように、提案0では、PUCCHレピティションとSPS HARQ-ACKの延期が同時に有効にされること、または、設定されることを想定していない。提案0は、以下の提案0-1及び/又は提案0-2を含む。
提案0-1では、端末は、以下のAlt.1~Alt.5のいずれかの場合、対応するNPUCCH repeat>1を有するPUCCHリソースが選択されることを想定しない。別言すると、以下のAlt.1~Alt.5のいずれかの場合、端末は、PUCCHレピティションが有効にされることを想定しない。なお、以下のAlt.1~Alt.5のいずれかの場合とは、SPS HARQ-ACKの延期が有効にされている(又は設定されている)場合、SPS HARQ-ACKの延期が有効にされ得る場合、及び、SPS HARQ-ACKの延期が有効にされると想定される場合(または設定されると想定される場合)の何れかに相当してよい。
提案0-1では、延期が有効な任意のSPS設定がある場合、端末は、NPUCCH repeat>1を有するSPS HARQ-ACK PUCCHリソースが、「PUCCH-Config」に設定されていることを想定しない。例えば、端末は、SPS HARQ-ACKビットに対応する優先度が、「PUCCH-Config」に設定されていることを想定しない。別言すると、延期が有効な任意のSPS設定がある場合、端末は、PUCCHレピティションが設定されることを想定しない。
提案1では、ケース1において、PUCCHレピティションと、SPS HARQ-ACKの延期とが、同時に、有効にされることが想定される。あるいは、PUCCHレピティションとSPS HARQ-ACKの延期とが、同時に、設定されることが想定される。
ケース1は、上記のように、イニシャルSPS HARQ-ACKビットを有し、延期されるSPS HARQ-ACKビット(deferred SPS HARQ-ACK bit(s))を有さないイニシャルスロットにおいて決定されるHARQ-ACK PUCCHであり、NPUCCH repeat>1が、当該PUCCHに対して決定されるケースである。そして、ケース1-1は、ケース1において、イニシャルスロットにおけるPUCCHリソース(例えば、最初のPUCCHレピティション)がセミスタティックなDLまたはSSBシンボルと重複するケースである。
例えば、後回しの制限は、後回しされたレピティションからSPS PDSCHスロットまでのスロットのオフセットによって定義される。別言すると、後回しの制限は、後回しされたレピティションを含むスロットと、SPS PDSCHスロットとの間の間隔(又は距離)によって定義される。この間隔は、例えば、スロットの数によって表されてよい。ここで、以下では、このオフセットは、K1_repと表記される。なお、K1_repは、「K1rep」と表されてもよい。
ここで、K1_eff_maxは、最大延期限界を示す。例えば、K1_eff_maxは、Rel-17に従ってSPS設定ごとに設定されてよい。なお、延期が有効ではないSPS設定では、最大延期限界は、K1_eff_max=K1であってよい。また、Alt-Aは、K1_rep<K1_eff_maxであってもよい。
ここで、K1_eff_maxは、最大延期限界を示す。例えば、K1_eff_maxは、Rel-17に従ってSPS設定(SPS configuration)ごとに設定されてよい。なお、延期が有効ではないSPS設定では、最大延期限界は、K1_eff_max=K1であってよい。また、Alt-Bは、K1_rep<K1_eff_max+N_repであってもよい。
PUCCHレピティション(最初のPUCCHレピティション、または、最初のPUCCHレピティションを含むPUCCHレピティションそれぞれ)では、以下のOpt.AまたはOpt.Bの何れかの場合に、後回しの制限が満たされる、と判断されてよい。
後回しの制限を満たすか否かの確認/適用の対象については、以下のAlt.1及びAlt.2のバリエーションが存在する。
或るPUCCHに対してSPS HARQ-ACKの延期限界を適用する適用条件には、以下の条件が挙げられる。なお、適用条件は、以下の例に限定されない。
ケース1-2は、ケース1において、イニシャルスロットにおけるPUCCHリソース(例えば、最初のPUCCHレピティション)が無効なシンボル(例えば、セミスタティックなDLまたはSSBシンボル)と重複しないケースであり、かつ、最初のPUCCHレピティション以外のPUCCHレピティションの何れか1つ以上が、セミスタティックなDLまたはSSBシンボルと重複するケースである。
ケース2は、上記の通り、ターゲットスロットにおいて、延期されたSPS HARQ-ACKビットを有するHARQ-ACK PUCCHであり、当該ターゲットスロットにおいて、NPUCCH repeat>1が、当該PUCCHに対して決定されるケースである。
例えば、N_repは、式(1)を用いて決定される。
例えば、N_repは、式(2)を用いて決定される。
・ケース2-1:ターゲットスロットのPUCCHに新しいHARQ-ACKが含まれるケース。
・ケース2-1A:新しいHARQ-ACKは、新しいSPS HARQ-ACKのみを含む。
・ケース2-1B:新しいHARQ-ACKは、新しいダイナミックHARQ-ACKのみを含む。
・ケース2-1C:新しいHARQ-ACKは、新しいダイナミックHARQ-ACKと新しいSPS HARQ-ACKとを含む。
・ケース2-2:ターゲットスロットのHARQ-ACK PUCCH内に、延期されたSPS HARQ-ACKビットが含まれるケース。
ここで、新しいHARQ-ACKとは、延期されたHARQ-ACKではないHARQ-ACKであってもよい。
ターゲットスロットの定義により、ターゲットスロット内の最初のPUCCHレピティションが、無効なシンボル(例えば、セミスタティックDL又はSSBシンボル)と重ならないことが保証される。しかしながら、最初のPUCCHレピティションの後に続くPUCCHレピティションが無効なシンボルとオーバーラップする可能性が存在する。このような場合の端末の動作を説明する。
この場合、最初のPUCCHレピティション以外のPUCCHレピティションであって、セミスタティックDLまたはSSBシンボルとオーバーラップするPUCCHレピティションについては、PUCCHレピティションがドロップされてよい。
例えば、延期されたSPS HARQ-ACKビットを含むPUCCHが、Rel-16 PUCCHと同じように扱われる。この場合、最初のPUCCHレピティション以外のPUCCHレピティションであって、セミスタティックDLまたはSSBシンボルとオーバーラップするPUCCHレピティションは、次の利用可能なスロットに後回しにされてよい。次の利用可能なスロットとは、オーバーラップしたスロットよりも後続のスロットで、利用可能なスロットであってよい。
例えば、この場合、上述したケース1-1に対する提案1のオプション3が適用されてよい。例示的には、オプション3において示した、ポイント3に対するAlt.2を含むオプション3が適用されてよい。
本実施の形態に係る無線通信システムは、図14に示す基地局10と、図15に示す端末20とを含む。基地局10の数及び端末20の数は、特に限定されない。2つの基地局10が1つの端末20と通信を行うシステムであってもよい。無線通信システムは、New Radio(NR)に従った無線通信システムであってよい。例示的に、無線通信システムは、URLLC及び/又はIIoTと呼ばれる方式に従った無線通信システムであってよい。
・FR1:410MHz~7.125GHz
・FR2:24.25GHz~52.6GHz
図14は、本実施の形態に係る基地局10の構成の一例を示すブロック図である。基地局10は、例えば、送信部101と、受信部102と、制御部103と、を含む。基地局10は、端末20(図15参照)と無線によって通信する。
図15は、本実施の形態に係る端末20の構成の一例を示すブロック図である。端末20は、例えば、受信部201と、送信部202と、制御部203と、を含む。端末20は、例えば、基地局10と無線によって通信する。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
情報の通知は、本開示において説明した実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
本開示において説明した実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
20 端末
101,202 送信部
102,201 受信部
103,203 制御部
Claims (6)
- 下り制御信号を受信する受信部と、
前記下り制御信号に基づいて、上り制御信号の繰り返し送信と、前記上り制御信号の送信の延期とを制御する制御部と、
を有する端末。 - 前記制御部は、前記繰り返し送信と、前記送信の延期との両方が同時に行われることを想定しない、
請求項1に記載の端末。 - 前記制御部は、前記繰り返し送信と、前記送信の延期との両方が同時に行われることを想定する、
請求項1に記載の端末。 - 前記制御部は、前記繰り返し送信と、前記送信の延期との両方が同時に行われる場合、前記繰り返し送信と、前記送信の延期との少なくとも一方の規定に従って、前記上り制御信号の送信を制御する、
請求項3に記載の端末。 - 前記制御部は、前記繰り返し送信と、前記送信の延期との両方が同時に行われる場合、前記送信の延期の規定に基づいて修正された前記繰り返し送信の規定に従って、前記上り制御信号の送信を制御する、
請求項4に記載の端末。 - 端末が、
下り制御信号を受信し、
前記下り制御信号に基づいて、上り制御信号の繰り返し送信と、前記上り制御信号の送信の延期とを制御する、
無線通信方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023548044A JPWO2023042355A5 (ja) | 2021-09-16 | 端末、基地局、無線通信方法、及び、無線通信システム | |
PCT/JP2021/034183 WO2023042355A1 (ja) | 2021-09-16 | 2021-09-16 | 端末及び無線通信方法 |
CN202180102434.0A CN117941450A (zh) | 2021-09-16 | 2021-09-16 | 终端以及无线通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/034183 WO2023042355A1 (ja) | 2021-09-16 | 2021-09-16 | 端末及び無線通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023042355A1 true WO2023042355A1 (ja) | 2023-03-23 |
Family
ID=85602572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/034183 WO2023042355A1 (ja) | 2021-09-16 | 2021-09-16 | 端末及び無線通信方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117941450A (ja) |
WO (1) | WO2023042355A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020533891A (ja) * | 2017-09-11 | 2020-11-19 | ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド | 無線通信システムにおける上りリンクの伝送及び下りリンクの受信方法、装置、及びシステム |
JP2021502773A (ja) * | 2017-11-10 | 2021-01-28 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいてsrを運搬するpucchを送受信する方法及びそのための装置 |
-
2021
- 2021-09-16 CN CN202180102434.0A patent/CN117941450A/zh active Pending
- 2021-09-16 WO PCT/JP2021/034183 patent/WO2023042355A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020533891A (ja) * | 2017-09-11 | 2020-11-19 | ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド | 無線通信システムにおける上りリンクの伝送及び下りリンクの受信方法、装置、及びシステム |
JP2021502773A (ja) * | 2017-11-10 | 2021-01-28 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいてsrを運搬するpucchを送受信する方法及びそのための装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023042355A1 (ja) | 2023-03-23 |
CN117941450A (zh) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022130645A1 (ja) | 端末、基地局及び通信方法 | |
WO2023013005A1 (ja) | 端末及び無線通信方法 | |
WO2023007565A1 (ja) | 端末および無線通信方法 | |
WO2023012914A1 (ja) | 端末および無線通信方法 | |
WO2023021710A1 (ja) | 端末及び無線通信方法 | |
WO2022259556A1 (ja) | 端末及び通信方法 | |
JP7301957B2 (ja) | 端末、通信システム及び通信方法 | |
WO2023042355A1 (ja) | 端末及び無線通信方法 | |
WO2023053232A1 (ja) | 端末及び無線通信方法 | |
WO2023053233A1 (ja) | 端末及び無線通信方法 | |
WO2023053231A1 (ja) | 端末及び無線通信方法 | |
WO2023037479A1 (ja) | 端末及び無線通信方法 | |
WO2023021862A1 (ja) | 端末及び無線通信方法 | |
WO2023017571A1 (ja) | 端末及び無線通信方法 | |
WO2023012955A1 (ja) | 端末及び無線通信方法 | |
WO2023012956A1 (ja) | 端末及び無線通信方法 | |
WO2023053434A1 (ja) | 端末及び通信方法 | |
WO2023053433A1 (ja) | 端末及び通信方法 | |
WO2023053393A1 (ja) | 端末及び無線通信方法 | |
WO2023281677A1 (ja) | 端末および無線通信方法 | |
WO2023281608A1 (ja) | 端末および無線通信方法 | |
WO2023286259A1 (ja) | 端末および無線通信方法 | |
WO2023286261A1 (ja) | 端末および無線通信方法 | |
WO2023286260A1 (ja) | 端末および無線通信方法 | |
WO2023286262A1 (ja) | 端末および無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21957536 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18690940 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023548044 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180102434.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21957536 Country of ref document: EP Kind code of ref document: A1 |