WO2023021862A1 - 端末及び無線通信方法 - Google Patents

端末及び無線通信方法 Download PDF

Info

Publication number
WO2023021862A1
WO2023021862A1 PCT/JP2022/026376 JP2022026376W WO2023021862A1 WO 2023021862 A1 WO2023021862 A1 WO 2023021862A1 JP 2022026376 W JP2022026376 W JP 2022026376W WO 2023021862 A1 WO2023021862 A1 WO 2023021862A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
harq
cell
slot
terminal
Prior art date
Application number
PCT/JP2022/026376
Other languages
English (en)
French (fr)
Inventor
優元 ▲高▼橋
聡 永田
チーピン ピ
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023542253A priority Critical patent/JPWO2023021862A1/ja
Priority to EP22858185.6A priority patent/EP4391641A1/en
Priority to CN202280055498.4A priority patent/CN117813860A/zh
Publication of WO2023021862A1 publication Critical patent/WO2023021862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present disclosure relates to terminals and wireless communication methods.
  • LTE Long Term Evolution
  • FAA Future Radio Access
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • New-RAT Radio Access Technology
  • NR Radio
  • Non-Patent Document 1 For example, in NR, strengthening the function of feedback from terminals to base stations is under consideration in order to improve communication quality (for example, Non-Patent Document 1).
  • PUCCH Physical Uplink Control Channel
  • PUCCH carrier switching includes dynamic PUCCH carrier switching and semi-static PUCCH carrier switching.
  • the terminal such as Downlink control information (DCI), PUCCH carrier (cell) is indicated by control information for scheduling PUCCH, using the PUCCH carrier (cell), to dynamic scheduling Transmits a response signal for the received signal based on DCI
  • DCI Downlink control information
  • PUCCH carrier cell
  • DCI Downlink control information
  • cell PUCCH carrier
  • DCI 1_0 does not support target PUCCH cell field.
  • DCI 1_1 and DCI 1_2 it is possible to select whether or not to set the target PUCCH cell field.
  • One aspect of the present disclosure is to provide a terminal and a wireless communication method that appropriately transmit a response signal to a received signal based on dynamic scheduling.
  • a terminal includes a receiving unit that receives a control signal and a dynamically scheduled signal, and a transmission cell of a response signal in the dynamically scheduled signal is indicated by the control signal. a control unit that determines a transmission cell for the response signal according to whether or not the cell is present; and a transmission unit that transmits the response signal in the cell determined by the control unit.
  • a communication method receives a control signal and a dynamically scheduled signal, and whether or not a transmission cell of a response signal in the dynamically scheduled signal is indicated by the control signal
  • a transmission cell for the response signal is determined according to the above, and the response signal is transmitted in the determined cell.
  • FIG. 4 is a diagram showing an example of PUCCH carrier switching;
  • FIG. 4 is a diagram illustrating an outline of Type-1 HARQ-ACK CB;
  • FIG. 4 is a diagram illustrating an outline of Type-2 HARQ-ACK CB;
  • FIG. 4 is a diagram illustrating an example of generation of Type-1 HARQ-ACK CB;
  • FIG. 4 is a diagram illustrating an example of generation of Type-1 HARQ-ACK CB;
  • FIG. 4 is a diagram illustrating an example of generation of Type-1 HARQ-ACK CB;
  • FIG. 4 is a diagram illustrating an example of generation of Type-1 HARQ-ACK CB;
  • FIG. 4 is a diagram showing an example of generation of Type-1 HARQ-ACK CB;
  • FIG. 4 is a diagram showing an example of PUCCH carrier switching;
  • FIG. 4 is a diagram illustrating an outline of Type-1 HARQ-ACK CB;
  • FIG. 4 is a diagram illustrating an outline of Type-2
  • FIG. 4 is a diagram illustrating an example of HARQ-ACK ordering in Type-1 HARQ-ACK CB of SPS PDSCH; 1 is a diagram illustrating an example of Opt.1; FIG. 2 is a diagram illustrating an example of Opt.2; FIG. 1 is a diagram for explaining an operation example of Alt.1 of Proposal 1; FIG. 2 is a diagram illustrating an operation example of Alt.2 of Proposal 1; FIG. 1 is a diagram illustrating an example of Opt.1 of Proposal 2; FIG. 2-1 of Proposal 2 is a diagram illustrating an example. FIG. 2-2 of Proposal 2 is a diagram illustrating an example. FIG. 2-1 of Proposal 3 is a diagram illustrating an example. FIG.
  • FIG. 2-2 of Proposal 3 is a diagram illustrating an example.
  • FIG. 2-2 of Proposal 3 is a diagram illustrating an example.
  • FIG. 1 is a block diagram showing an example of the configuration of a base station according to this embodiment;
  • FIG. 2 is a block diagram showing an example of a configuration of a terminal according to this embodiment;
  • FIG. 1 is a diagram illustrating an example of hardware configurations of a base station and a terminal according to an embodiment of the present disclosure;
  • HARQ-ACK Hybrid Automatic Repeat request - Acknowledgment
  • HARQ-ACK is an example of information related to acknowledgment (eg, acknowledgment) for data received by the terminal.
  • PUCCH carrier switching may be called by another name such as carrier switching for control information transmission.
  • PUCCH carrier switching is a technique applied when a base station communicates through multiple cells. Dual connectivity, which is an example of communication via multiple cells, and PUCCH carrier switching will be described below.
  • FIG. 1 is a diagram illustrating an example of dual connectivity (DC).
  • base station 10-1 may be a Master Node (MN).
  • Base station 10-2 may be a secondary node (SN).
  • DC bundles carriers between different base stations.
  • the base station 10-1 communicates with the terminal 20 via a primary cell (Pcell) and a secondary cell (Scell).
  • Pcell primary cell
  • Scell secondary cell
  • terminal 20 has established an RRC connection with base station 10-1.
  • the uplink control information received by the Pcell of the base station 10-1 (for example, Uplink Control Information: UCI) is notified to the base station 10-2 via a backhaul link (for example, a wired or wireless link connecting the base station 10-1 and the base station 10-2), and Scell under the base station 10-2
  • a backhaul link for example, a wired or wireless link connecting the base station 10-1 and the base station 10-2
  • Scell under the base station 10-2 It is difficult to reflect this in the scheduling of Therefore, in the DC, in addition to the Pcell of the base station 10-1, one carrier under the control of the base station 10-2 may be set as the Primary Scell (PScell), and PUCCH transmission may be supported by the PScell.
  • PScell Primary Scell
  • terminal 20 transmits UCI to base station 10-2 via PScell.
  • the terminal 20 sets Scell in addition to Pcell for the base station 10-1. Also, the terminal 20 sets Scell in addition to PScell for the base station 10-2.
  • the terminal 20 transmits the UCI of each carrier under the control of the base station 10-1 on the PUCCH of the Pcell. Also, the terminal 20 transmits the UCI of each carrier under the control of the base station 10-2 on PUCCH of the PScell.
  • a cell group (CG) under the base station 10-1 may be called a Master Cell-Group (MCG).
  • a cell group under the base station 10-2 may be called a Secondary Cell-Group (SCG).
  • terminal 20 may transmit PUCCH via Pcell, PScell, and/or PUCCH-Scell. Generally, it is not assumed that terminal 20 transmits PUCCH via Scell other than Pcell, PScell, and PUCCH-Scell.
  • PUCCH carrier switching is being investigated as a method of reducing HARQ-ACK feedback latency in Time Division Duplex (TDD) schemes.
  • FIG. 2 is a diagram showing an example of PUCCH carrier switching.
  • the base station and the terminal are communicating via cell 1 and cell 2.
  • FIG. 2 cell 1 is Pcell and cell 2 is Scell.
  • the example of FIG. 2 also shows downlink (DL) slots and uplink (UL) slots in each cell.
  • the terminal receives data (receives Physical Downlink shared Channel (PDSCH)) at the timing of S101.
  • the terminal attempts to transmit HARQ-ACK for the data received in S101 at the timing of S102, but at the timing of S102, the cell 1 slot is a downlink (DL) slot. Therefore, when the terminal transmits HARQ-ACK in cell1, the transmission of HARQ-ACK is suspended until the transmission timing of PUCCH in the uplink (UL) slot (for example, the timing of S103 in FIG. 2).
  • HARQ-ACK transmission latency increases.
  • the PUCCH transmission timing in the uplink (UL) slot may be referred to as a PUCCH transmission opportunity.
  • the slot of cell 2 is the UL slot at the timing of S102.
  • the terminal can transmit HARQ-ACK for the data received in S101 at the PUCCH transmission opportunity of cell 2 at the timing of S102, the latency of HARQ-ACK transmission can be reduced.
  • URLLC particularly requires low delay in the radio section. Therefore, in 3GPP, as an extension of the URLLC technique, PUCCH carrier switching, in which a terminal switches the carrier for PUCCH transmission, is under consideration.
  • the "same timing" may be completely the same timing, or may be a time resource (for example, one or more symbols (a resource in time units shorter than a symbol) may be the same or overlap.
  • PUCCH carrier switching means that when the terminal attempts to transmit PUCCH at a specific transmission timing of Pcell (may be PScell or PUCCH-Scell), Pcell (may be PScell or PUCCH-Scell ) is a DL slot, the terminal selects a cell that transmits PUCCH from Pcell (may be PScell or PUCCH-Scell) from the specific transmission timing Any Scell out of one or more Scells whose timing slot is the UL slot (in the case of PScells, Scells other than PScells, and in the case of PUCCH-Scells, other than PUCCH-Scells Scell).
  • the specific transmission timing unit is not limited to the slot.
  • the specific transmission timing may be timing in units of subframes or timing in units of symbols.
  • the first method is a method in which the base station dynamically instructs the terminal of the carrier for PUCCH transmission.
  • a second method is a method in which a base station semi-statically configures a carrier for transmitting PUCCH to a terminal. It should be noted that, in the following embodiments, "transmitting PUCCH” and “transmitting PUCCH” may mean transmitting uplink control information via PUCCH.
  • the terminal may notify the base station of terminal capability information (UE capability) that defines information about the capability of the terminal regarding PUCCH transmission.
  • UE capability terminal capability information
  • switching settings for transmission of control information may be, for example, switching resources (for example, carriers or cells) used for transmission of control information. Switching resources used for transmitting control information may be referred to as "PUCCH carrier switching.” Also, as the terminal capability information of the terminal, information indicating application of dynamic PUCCH carrier switching and/or semi-static PUCCH carrier switching may be specified. .
  • the configuration operation of semi-static PUCCH carrier switching may be based on the RRC that sets the PUCCH cell timing pattern for PUCCH cells to which semi-static PUCCH carrier switching is applied. Also, configured behavior of quasi-static PUCCH carrier switching may be supported between cells of different neumerologies.
  • the PUCCH resource setting is UL BWP (Uplink Bandwidth Part) (for example, each candidate cell and its UL BWP).
  • UL BWP Uplink Bandwidth Part
  • the K1 value (offset) from PDSCH to HARQ-ACK may be interpreted based on the neumerology of the dynamically indicated target PUCCH cell.
  • the control information may be control information for scheduling PUCCH, such as Downlink control information (DCI). Numerology may also be understood as slots or Subcarrier Spacing (SCS).
  • Type-1 HARQ-ACK CB and Type-2 HARQ-ACK CB are outlined below (see 3GPP TS38.213 (Rel.16) for details).
  • Type-1 HARQ-ACK CB may also be referred to as semi-static HARQ-ACK CB.
  • a Type-2 HARQ-ACK CB may be referred to as a dynamic HARQ-ACK CB.
  • a terminal may be instructed by higher layer signaling, eg, RRC, whether to apply Type-1 HARQ-ACK CB or Type-2 HARQ-ACK CB.
  • FIG. 3 is a diagram explaining the outline of Type-1 HARQ-ACK CB. "scheduled" shown in FIG. 3 indicates a slot scheduled by DCI, for example. CC indicates Component Carrier.
  • the terminal In the Type-1 HARQ-ACK CB, the terminal generates HARQ-ACK bits for the PDSCH regardless of whether there is a scheduled slot (PDSCH). For example, the terminal may configure NACK in non-scheduled PDSCHs, as shown in the "HARQ-ACK codebook" in FIG.
  • FIG. 4 is a diagram explaining the outline of the Type-2 HARQ-ACK CB.
  • (x, y) shown in FIG. 4 indicates a slot scheduled by DCI, for example.
  • x corresponds to the C-DAI value and y corresponds to the T-DAI value.
  • DAI stands for Downlink assignment index.
  • DAI indicates, for example, a scheduled PDSCH allocation where HARQ-ACK is bundled with HARQ-ACK CB.
  • Type-2 HARQ-ACK CB the terminal generates HARQ-ACK bits for the scheduled PDSCH.
  • the terminal may set HARQ-ACK for the scheduled PDSCH as shown in the "HARQ-ACK codebook" of FIG.
  • C-DAI is counted up from 1.
  • C-DAI is repeated 1->2->3->0->... for a 2-bit field, for example.
  • C-DAI is counted up for each DCI reception opportunity of each CC for each slot, and is counted up from the final value of the previous slot even if the slot changes.
  • T-DAI indicates the final value of C-DAI for each slot.
  • Type-1 HARQ-ACK CB ⁇ Generation example of Type-1 HARQ-ACK CB> 5 6, and 7 are diagrams illustrating examples of generation of Type-1 HARQ-ACK CB.
  • the numerology of the serving cell and the PUCCH cell are the same.
  • the set of K1 offset from PDSCH to HARQ-ACK is ⁇ 1, 2, 3, 4 ⁇ .
  • the terminal may generate HARQ-ACK CB based on Step A, Step A-1, Step A-2, and Step B below.
  • the terminal determines HARQ-ACK occasions for candidate PDSCH receptions. For example, the terminal determines the n+4 slot of the PUCCH cell in FIG. For example, the terminal determines the n+5 slot of the PUCCH cell in FIG.
  • the terminal determines PDSCH slot windows based on the K1 set. For example, the terminal interprets the K1 set in the neumerology of the PUCCH cell to determine the PDSCH slot window shown in the dotted frame in FIG. 5 or FIG.
  • the terminal determines a candidate PDSCH reception occasion in each slot for each K1. For example, the terminal determines candidate PDSCH reception opportunities in each slot, as shown in FIG .
  • the candidate PDSCH reception opportunities are related to the set R (Row index) of the Time Domain Resource Allocation (TDRA) table.
  • TDRA Time Domain Resource Allocation
  • candidate PDSCH reception opportunities in the TDRA table that overlap with the UL configured by TDD-UL-DL-ConfigurationCommon and TDD-UL-DL-ConfigDedicated are excluded.
  • candidate PDSCH reception opportunities that overlap in the time domain are determined based on specific rules.
  • the terminal may determine (generate) a HARQ-ACK (HARQ-ACK information bits, HARQ-ACK CB) for each element of the determined candidate PDSCH reception opportunities. For example, the terminal may generate the following Type-1 HARQ-ACK CB in the total number of HARQ-ACK information bits O ACK .
  • the SPS HARQ-ACK CB may be regarded as the HARQ-ACK CB in the SPS PDSCH.
  • the transmission cycle is set by RRC.
  • the transmission timing (K1) of HARQ-ACK of SPS PDSCH is set by RRC, for example.
  • the SPS PDSCH is activated and deactivated/released by DCI, for example.
  • DCI that deactivates SPS PDSCH may be referred to as deactivation DCI.
  • the terminal also sends HARQ-ACK for deactivation DCI.
  • HARQ-ACKs may be ordered as follows.
  • FIG. 8 is a diagram explaining an example of HARQ-ACK ordering in Type-1 HARQ-ACK CB of SPS PDSCH.
  • HARQ-ACKs of SPS PDSCH are arranged in ascending order of DL slot numbers in each SPS configuration index of each serving cell index.
  • the SPS PDSCH HARQ-ACKs are then ordered in ascending order of SPS configuration index at each serving cell index.
  • the SPS PDSCH HARQ-ACKs are then ordered in ascending order of serving cell index.
  • HARQ-ACKs may be ordered in the same way as the Type-1 HARQ-ACK CB described above.
  • Type-2 HARQ-ACK CB when HARQ-ACK for SPS PDSCH reception is multiplexed with HARQ-ACK for dynamically scheduled PDSCH reception and/or HARQ-ACK for deactivation DCI, SPS PDSCH reception
  • the HARQ-ACK (bits) of the HARQ-ACK (bits) of the dynamically scheduled PDSCH reception and/or the HARQ-ACK (bits) of the deactivation DCI are appended (following in time).
  • HARQ-ACK ⁇ multiplexing of dynamic and/or SPS HARQ-ACK(s)>
  • a base station can indicate a target PUCCH carrier (cell) to a terminal using DCI
  • the terminal can perform dynamic HARQ-ACK in a different carrier (cell) (e.g., dynamic transmission timing determination (scheduling) using DCI).
  • HARQ-ACK) slot overlap may not be assumed. In other words, the terminal does not assume that dynamic HARQ-ACK slots in different carriers overlap.
  • overlap of SPS HARQ-ACK slots on different carriers may not be assumed. In other words, the terminal may not assume overlap between SPS HARQ-ACK slots on different carriers.
  • the terminal may multiplex and transmit dynamic HARQ-ACK and SPS HARQ-ACK, assuming overlap between the dynamic HARQ-ACK slot and the SPS HARQ-ACK slot.
  • the terminal may multiplex and transmit dynamic HARQ-ACK and SPS HARQ-ACK.
  • the terminal receives dynamic HARQ-ACK and SPS HARQ in the same slot of a carrier.
  • -ACK may be multiplexed and transmitted.
  • the terminal may perform dynamic HARQ-ACK and SPS based on the following Opt.1 or Opt.2. It may be multiplexed with HARQ-ACK and transmitted.
  • the terminal may map dynamic HARQ-ACK and SPS HARQ-ACK slots in dedicated cell slots corresponding to dynamic HARQ-ACK and SPS HARQ-ACK slots (dynamic HARQ-ACK and SPS HARQ-ACK may be multiplexed and transmitted).
  • a dedicated cell may be a default cell defined in the specifications.
  • a dedicated cell may be a Pcell, Pscell, or PUCCH-Scell.
  • a dedicated cell may be configured based on RRC.
  • the cell with the largest SCS may be selected. As a result, HARQ-ACK delay of the terminal can be suppressed.
  • FIG. 9 is a diagram explaining an example of Opt.1.
  • the neumerology of PUCCH cell #1 is different from that of PUCCH cell #2.
  • FIG. 9 shows four examples in which dynamic HARQ-ACK slots and SPS HARQ-ACK slots overlap on different carriers (PUCCH cell #1 and PUCCH cell #2). Overlapping dynamic HARQ-ACK and SPS HARQ-ACK on different carriers are mapped to slots of dedicated cells (PCell/PScell in the example of FIG. 9) corresponding to dynamic HARQ-ACK and SPS HARQ-ACK slots. may be
  • SPS HARQ-ACK may be multiplexed in corresponding dynamic HARQ-ACK slots.
  • the terminal may multiplex the SPS HARQ-ACK with the dynamic HARQ-ACK in the dynamic HARQ-ACK slot corresponding to the SPS HARQ-ACK slot and transmit.
  • the terminal performs SPS HARQ- ACK may be multiplexed with dynamic HARQ-ACK.
  • FIG. 10 is a diagram explaining an example of Opt.2.
  • the neumerology of PUCCH cell #1 is different from that of PUCCH cell #2.
  • FIG. 10 shows four examples in which dynamic HARQ-ACK slots and SPS HARQ-ACK slots overlap on different carriers (PUCCH cell #1 and PUCCH cell #2).
  • the terminal receives SPS HARQ-ACK and May be multiplexed with dynamic HARQ-ACK. Also, as indicated by arrow A2 in FIG. 10, the terminal transmits SPS HARQ-ACK in the leading dynamic HARQ-ACK slot of two dynamic HARQ-ACK slots that overlap one SPS HARQ-ACK slot. May be multiplexed in dynamic HARQ-ACK.
  • the terminal sends SPS HARQ-ACK in the dynamic HARQ-ACK slot with the smallest cell index, the largest cell index, or the closest cell index among a plurality of dynamic HARQ-ACK slots corresponding to one SPS HARQ-ACK slot. may be multiplexed into dynamic HARQ-ACK.
  • the terminal selects dynamic HARQ-ACK with the largest cell index among two dynamic HARQ-ACK slots (cell indexes #1 and #3) corresponding to one SPS HARQ-ACK slot.
  • SPS HARQ-ACK may be multiplexed with dynamic HARQ-ACK.
  • the terminal determines SPS HARQ-ACK and dynamic HARQ-ACK based on the following Alt.1 or Alt.2. and may be multiplexed.
  • a terminal may treat it as an error if multiple SPS HARQ-ACK slots overlap with the same dynamic HARQ-ACK slot.
  • the UE shall assign SPS HARQ-ACK in multiple SPS HARQ-ACK slots to dynamic HARQ-ACK in the same dynamic HARQ-ACK slot. May be multiplexed.
  • the terminal may multiplex multiple SPS HARQ-ACKs into dynamic HARQ-ACK in the same dynamic HARQ-ACK slot. Also, as indicated by arrows A4a and A4b in FIG. 10, the terminal may multiplex multiple SPS HARQ-ACKs into the dynamic HARQ-ACK of the same dynamic HARQ-ACK slot.
  • Dynamic HARQ-ACK may be multiplexed in corresponding SPS HARQ-ACK slots.
  • the terminal may multiplex the dynamic HARQ-ACK with the SPS HARQ-ACK in the SPS HARQ-ACK slot corresponding to the dynamic HARQ-ACK slot.
  • “dynamic HARQ-ACK” described in Opt.2 should be read as “SPS HARQ-ACK”
  • SPS HARQ-ACK described in Opt.2 should be read as “dynamic HARQ-ACK”. good too.
  • the carrier (cell) on which the SPS HARQ-ACK slot is transmitted may be different from the carrier on which the SPS PDSCH is transmitted (PUCCH carrier switching may occur).
  • the carrier on which the dynamic HARQ-ACK slot is transmitted may be different from the carrier on which the dynamic PDSCH (DCI-scheduled PDSCH) is transmitted (PUCCH carrier switching may occur).
  • HARQ-ACK CBs are appropriately generated in multiplexing dynamic HARQ-ACK slots and SPS HARQ-ACK slots that overlap in different cells.
  • Proposal 1 describes multiplexing of Type-2 HARQ-ACK CBs when dynamic HARQ-ACK slots and SPS HARQ-ACK slots in different PUCCH cells are multiplexed.
  • the terminal may add SPS HARQ-ACK CB following the dynamic HARQ-ACK CB.
  • the terminal may multiplex based on Alt.1 or Alt.2 below.
  • Multiple SPS HARQ-ACK CBs from different slots may be multiple SPS HARQ-ACK CBs in different slots on the same PUCCH cell (e.g., see the left diagram of FIG. 11) or different PUCCH cells
  • There may be multiple SPS HARQ-ACK CBs above see, for example, the second diagram from the left in FIG. 10, the diagram on the right side of FIG. 10).
  • the terminal may add multiple SPS HARQ-ACK CBs (multiple original SPS HARQ-ACK CBs) one by one following the dynamic HARQ-ACK CB.
  • the order of multiple SPS HARQ-ACK CBs may be determined based on the start and/or end of the original SPS HARQ-ACK slots (in chronological order and/or vice versa). Also, the order of multiple SPS HARQ-ACK CBs may be determined based on the cell index of the SPS HARQ-ACK slot.
  • Fig. 11 is a diagram explaining an operation example of Alt.1 of Proposal 1.
  • the left side of FIG. 11 shows an example of different SPS HARQ-ACK slots on the same PUCCH cell.
  • the dynamic HARQ-ACK slot shown on the left side of FIG. 11 and the two SPS HARQ-ACK slots are on different PUCCH cells.
  • SPS HARQ-ACK slot in which SPS HARQ-ACK CB#1 is sent and SPS HARQ-ACK slot in which SPS HARQ-ACK CB#2 is sent are dynamic HARQ-ACK slots in which dynamic HARQ-ACK CB is sent. It overlaps the slot.
  • the terminal sends SPS HARQ-ACK CB#1 and SPS HARQ-ACK CB#2 of the two SPS HARQ-ACK slots to the dynamic HARQ-ACK CB as shown in the diagram on the right side of FIG. You can add one by one.
  • SPS HARQ-ACK CB#1 is first added following the dynamic HARQ-ACK CB, and SPS HARQ-ACK CB#2 is added according to the chronological order of the two SPS HARQ-ACK slots. It is added following SPS HARQ-ACK CB#1.
  • the terminal rearranges (re-orders) HARQ-ACK bits of multiple SPS HARQ-ACK CBs and generates (regenerates) SPS HARQ-ACK CBs according to the ordering specified in TS38.213 of Rel.16. may
  • Fig. 12 is a diagram explaining an operation example of Alt.2 of Proposal 1.
  • SPS HARQ-ACK of SPS HARQ-ACK CB#1 and SPS HARQ-ACK CB#2 shown on the left side of Fig. 12 can be rearranged according to the ordering specified in TS38.213 of Rel.16. good. That is, the terminal may collectively rearrange the SPS HARQ-ACKs of SPS HARQ-ACK CB#1 and SPS HARQ-ACK CB#2 to generate one SPS HARQ-ACK CB. The terminal may add the generated SPS HARQ-ACK CB following the dynamic HARQ-ACK CB.
  • the dynamic HARQ-ACK CB and the SPS HARQ-ACK CB may be multiplexed in the same PUCCH cell as the dynamic HARQ-ACK slot, or may be multiplexed in the same PUCCH cell as the SPS HARQ-ACK slot.
  • the dynamic HARQ-ACK CB and SPS HARQ-ACK CB may be multiplexed in a cell different from the PUCCH cell of the dynamic HARQ-ACK slot and SPS HARQ-ACK slot.
  • SPS HARQ-ACK CB was added following dynamic HARQ-ACK CB, but it is not limited to this.
  • a dynamic HARQ-ACK CB may be added following the SPS HARQ-ACK CB.
  • Proposal 2 describes multiplexing of Type-1 HARQ-ACK CBs when dynamic HARQ-ACK slots and SPS HARQ-ACK slots in different PUCCH cells are multiplexed. Note that the dynamic HARQ-ACK slot may also be referred to as a reporting slot.
  • a target cell may be regarded as a cell that transmits PUCCH (UCI such as HARQ-ACK and/or HARQ-ACK CB).
  • ⁇ Opt.1> the determination of candidate PDSCH slot set windows may be enhanced.
  • candidate PDSCH slots corresponding to slots of other PUCCH cells (SPS HARQ-ACK cells) that overlap with the report slot are added to the candidate PDSCH slot set for Type-1 HARQ-ACK CB generation. good too.
  • FIG. 13 is a diagram explaining an example of Opt.1 of Proposal 2.
  • the terminal may determine (generate) candidate PDSCH slot sets based on the following Step 1-Step 4.
  • Step 1 The terminal determines candidate PDSCH slot sets in the dynamic HARQ-ACK slots of the target cell based on the K1 set configured for the target cell.
  • D0 be the determined PDSCH candidate slot set.
  • Step 2 The terminal searches for the SPS HARQ-ACK slot of the SPS HARQ-ACK cell that overlaps with the dynamic HARQ-ACK slot of the target cell.
  • C be the overlapping slot set on the SPS HARQ-ACK PUCCH cell.
  • i in C(i) indicates the i-th slot in the set.
  • Step 3 The terminal determines candidate PDSCH slot sets in each slot of set C based on the K1 set configured for the corresponding PUCCH cell. Let D i be the PDSCH slot set determined for slot C(i).
  • candidate PDSCH slot set D i in slot C(2) is a slot surrounded by dotted line frame A13 and is ⁇ #n+1, #n+2 ⁇ .
  • Step 4 The terminal determines the union of D 0 and each D i as the final candidate PDSCH slot set.
  • D 0 ⁇ #n+2, #n+3, #n+4, #n+5 ⁇ , D i ⁇ #n, #n+1 ⁇ , and D i ⁇ #n+1 , #n+2 ⁇ is ⁇ #n, #n+1, #n+2, #n+3, #n+4, #n+5 ⁇ . Therefore, the final candidate PDSCH slot set is ⁇ #n, #n+1, #n+2, #n+3, #n+4, #n+5 ⁇ .
  • the terminal determines candidate PDSCH reception opportunities (M A,c ) in the determined final candidate PDSCH slot set, for example, based on the rules of TS38.213 of Rel.16.
  • the terminal determines (generates) a HARQ-ACK in each element of the determined candidate PDSCH reception opportunities and generates a Type-1 HARQ-ACK CB.
  • the generated Type-1 HARQ-ACK CB may be generated in the same PUCCH cell as the dynamic HARQ-ACK slot, or may be generated in the same PUCCH cell as the SPS HARQ-ACK slot. Also, the generated Type-1 HARQ-ACK CB may be generated in a cell different from the PUCCH cell of the dynamic HARQ-ACK slot and the SPS HARQ-ACK slot.
  • SPS HARQ-ACK slots may exist in different cells.
  • slots st12 and st13 shown in FIG. 13 may exist in different cells.
  • the terminal assigns the CB of the SPS HARQ-ACK slot of another PUCCH cell that overlaps the dynamic HARQ-ACK slot of the target cell to the Type-1 HARQ-ACK CB (original Type-1 HARQ-ACK CB) of the dynamic HARQ-ACK slot of the target cell.
  • HARQ-ACK CB original Type-1 HARQ-ACK CB
  • a terminal may generate separate HARQ-ACK CBs for slots in different cells.
  • Fig. 14 is a diagram explaining an example of Option 2-1 of Proposal 2.
  • the terminal may multiplex the dynamic HARQ-ACK CB and the SPS HARQ-ACK CB based on the following Steps 1-Step 3.
  • the terminal generates a Type-1 HARQ-ACK CB (dynamic HARQ-ACK CB) for the dynamic HARQ-ACK slot of the target cell, for example, according to the rules of TS38.213 of Rel.16.
  • a Type-1 HARQ-ACK CB dynamic HARQ-ACK CB
  • the terminal generates a Type-1 HARQ-ACK CB (type 1 HARQ-ACK CB shown in FIG. 14) in the dynamic HARQ-ACK slot shown in dotted frame A21 in FIG.
  • the terminal generates an SPS HARQ-ACK CB in each SPS HARQ-ACK slot of a different cell that overlaps with the dynamic HARQ-ACK slot of the target cell.
  • the terminal generates an SPS HARQ-ACK CB (SPS HARQ-ACK CB#1 shown in FIG. 14) in the SPS HARQ-ACK slot shown in dotted frame A22 in FIG. Also, the terminal generates an SPS HARQ-ACK CB (SPS HARQ-ACK CB#1 shown in FIG. 14) in the SPS HARQ-ACK slot shown in dotted line frame A23 in FIG. Note that the HARQ-ACK ordering of the SPS HARQ-ACK CB may be performed according to the method described in FIG.
  • Step 3 The terminal adds the SPS HARQ-ACK CB generated in Step 2 to the Type-1 HARQ-ACK CB (original Type-1 HARQ-ACK CB) generated in Step 1, followed by the SPS HARQ-ACK CB generated in Step 2.
  • the terminal adds SPS HARQ-ACK CB#1 in the SPS HARQ-ACK slot shown in the dotted frame A22 following the type 1 HARQ-ACK CB shown in FIG.
  • the terminal adds SPS HARQ-ACK CB#2 in the SPS HARQ-ACK slot indicated by dotted line frame A23 following SPS HARQ-ACK CB#1 shown in FIG.
  • the order of the multiple SPSHARQ-ACK CBs depends on the SPS HARQ-ACK cell index and/or the start and/or end time of the SPS HARQ-ACK slot (in chronological order and / or vice versa).
  • SPS HARQ-ACK CB was added following Type-1 HARQ-ACK CB, but it is not limited to this.
  • Type-1 HARQ-ACK CB may be added following SPS HARQ-ACK CB.
  • the terminal adds the single SPS HARQ-ACK CB of the SPS HARQ-ACK cell (single SPSHARQ-ACK CB) to the Type-1 HARQ-ACK CB (dynamic HARQ-ACK CB) of the target PUCCH cell successively. good too.
  • Fig. 15 is a diagram explaining an example of Opt.2-2 of Proposal 2.
  • the terminal may multiplex the dynamic HARQ-ACK CB and the SPS HARQ-ACK CB based on the following Steps 1-Step 4.
  • the terminal generates a Type-1 HARQ-ACK CB for the dynamic HARQ-ACK slot of the target cell, for example, according to the rules of TS38.213 of Rel.16. For example, the terminal generates the type-1 HARQ-ACK CB shown in FIG.15.
  • the terminal determines corresponding candidate SPS PDSCH opportunities in each slot of the SPS HARQ-ACK cell that overlaps with the dynamic HARQ-ACK slot of the target cell.
  • Step 3 The terminal determines the union of the candidate SPS PDSCH opportunities determined in Step 2 and permutes the HARQ-ACK bits of the candidate SPS PDSCH opportunities within the union.
  • HARQ-ACK bits may be rearranged according to the method described in FIG. 8, for example.
  • Step 4 The terminal adds a single SPS HARQ-ACK CB (single SPS HARQ-ACK CB) generated in Step 3 following the Type-1 HARQ-ACK CB of the target PUCCH cell.
  • the terminal adds a single SPS HARQ-ACK CB following the type-1 HARQ-ACK CB shown in FIG.
  • Proposal 3 proposes a dynamic HARQ-ACK slot transmission method when dynamic PUCCH carrier switching is enabled and the target PUCCH carrier (cell) is not indicated.
  • Proposal 3-1 proposes a method of setting PUCCH carriers (cells) for dynamic HARQ-ACK slots when target PUCCH carriers (cells) are not indicated.
  • a PUCCH carrier (cell) is indicated (e.g., the "target PUCCH cell field" is set for DCI 1_1) and no PUCCH carrier (cell) is indicated ( For example, suppose the DCI format is DCI1_0).
  • K1 of the dynamic HARQ-ACK slot when no PUCCH carrier (cell) is indicated (hereinafter referred to as “dynamic HARQ-ACK slot without indication”) is K1 when the PUCCH carrier (cell) is indicated.
  • Dynamic HARQ-ACK slots (hereinafter referred to as “indicated dynamic HARQ-ACK slots”) are interpreted based on the K1 set in which the target cell (reference cell) is set and the SCS of the target cell (reference cell). good.
  • the PUCCH resource for the unindicated dynamic HARQ-ACK slot is determined on the target cell (reference cell) based on the following Opt.1 to Opt.4, and its PRI (PUCCH Resource Indicator) is the target cell (reference cell).
  • a target cell may be set by default.
  • Pcell, Pscell or PUCCH-Scell may always be set as the target cell (reference cell).
  • a target PUCCH cell indicated by the last DCI having a target PUCCH cell field detected before detection of the current DCI may be set as the target cell (reference cell).
  • a target PUCCH cell used for transmission of the last PUCCH with a reported (dynamic) HARQ-ACK slot before detection of the current DCI may be set as the target cell (reference cell).
  • the target PUCCH cell used for the transmission of the last PUCCH associated with the DCI containing the target PUCCH cell field and reported before detection of the current DCI may be set as the target cell (reference cell).
  • Proposal 3-2 proposes multiplexing of Type-2 HARQ-ACK CBs when dynamic HARQ-ACK slots on different PUCCH cells overlap.
  • DAI counters are accumulated for multiplexed dynamic HARQ-ACK CBs. That is, multiplexing of dynamic HARQ-ACKs from different PUCCH cells is taken into account when determining the DAI value.
  • the terminal generates a dynamic HARQ-ACK CB based on the DAI, for example, according to the rules of TS38.213 of Rel.16.
  • FIG. 16 shows HARQ-ACK bits for PDSCHs with DAI values (0,0) scheduled by DCI#1 and HARQ-ACK bits for PDSCHs with DAI values (2,2) scheduled by DCI#3.
  • the target cell to be transmitted is PCell, the HARQ-ACK bit for PDSCH with DAI value (1, 1) scheduled by DCI#2 and the PDSCH with DAI value (3, 3) scheduled by DCI#4 It shows the case where the target cell that transmits the HARQ-ACK bit is the SCell.
  • the terminal generates Type-2 HARQ-ACK CB (dynamic HARQ-ACK CB) individually for all HARQ-ACK bits without distinguishing by target cell.
  • all DAI values must be different regardless of the cell in which the HARQ-ACK bit is transmitted.
  • the SPS HARQ-ACK may be added after the generated dynamic HARQ-ACK CB, as in Proposal 1 above.
  • the DAI counter is accumulated for dynamic HARQ-ACK CBs per slot per PUCCH cell. That is, multiplexing of dynamic HARQ-ACKs from different PUCCH cells is not considered when determining the DAI value.
  • FIG. 17 is a diagram explaining an example of Option 2 of Proposal 3-2.
  • the terminal may multiplex multiple dynamic HARQ-ACK CBs based on the following Step 1-Step 2.
  • the terminal generates a Type-2 HARQ-ACK CB (dynamic HARQ-ACK CB) individually for each target PUCCH cell based on the DAI, for example, according to the rules of TS38.213 of Rel.16.
  • a Type-2 HARQ-ACK CB dynamic HARQ-ACK CB individually for each target PUCCH cell based on the DAI, for example, according to the rules of TS38.213 of Rel.16.
  • FIG. 17 shows HARQ-ACK bits for PDSCHs with DAI values (0,0) scheduled by DCI#1 and HARQ-ACK bits for PDSCHs with DAI values (1,1) scheduled by DCI#3.
  • the target cell to be transmitted is PCell
  • the PDSCH with DAI value (1,1) scheduled by DCI#4 It shows the case where the target cell that transmits the HARQ-ACK bit is the SCell.
  • the terminal generates Type-2 HARQ-ACK CB (dynamic HARQ-ACK CB) individually for each of PCell and SCell.
  • the same DAI value may be used as long as the cells in which the HARQ-ACK bits are transmitted are different.
  • Step 2 After dynamic HARQ-ACK CB generated for the first target PUCCH cell (HARQ-ACK CB#1 generated for slot #i_1 on cell #k_1 shown in FIG. 17), dynamic HARQ generated for other target PUCCH cells -ACK CBs (HARQ-ACK CB#n generated for slot #i_n on cell #k_n shown in FIG. 17) are sequentially concatenated.
  • Opt.2-1 to Opt.2-2 Opt.2-2A and Opt.2 -2B
  • Opt.2-1 the terminal places SPS HARQ-ACK bits between dynamic HARQ-ACK bits.
  • the HARQ-ACK bits (including dynamic HARQ-ACK bits and SPS HARQ-ACK bits) of one slot of one cell are grouped together, and the target PUCCH cell HARQ-ACK bit (dynamic HARQ-ACK CB generated for determined target PUCCH cell shown in FIG. 18) followed by HARQ-ACK bit for each PUCCH cell (shown in FIG. 18, for example, dynamic HARQ-ACK CB #1 (generated for slot #i_1 on cell #k_1) and SPS HARQ-ACK CB #1 for slot #i_1 on cell #k_1) may be added.
  • the target PUCCH cell HARQ-ACK bit dynamic HARQ-ACK CB generated for determined target PUCCH cell shown in FIG. 18
  • HARQ-ACK bit for each PUCCH cell shown in FIG. 18, for example, dynamic HARQ-ACK CB #1 (generated for slot #i_1 on cell #k_1) and SPS HARQ-ACK CB #1 for slot #i_1 on cell #k_1) may be added.
  • Opt.2-2 the terminal arranges dynamic HARQ-ACK bits and SPS HARQ-ACK bits separately.
  • the terminal simply appends multiple SPS HARQ-ACK CBs after the dynamic HARQ-ACK bits (SPS HARQ-ACK CB #1 for slot #i_1 on cell #k_1 and SPS HARQ-ACK CB #2 for slot #i_2 on cell #k_2).
  • ⁇ Opt.2-2B> The terminal reorders SPS HARQ-ACK bits from multiple SPS HARQ-ACK CBs (re-ordered SPS HARQ-ACK bits from SPS HARQ-ACK CB#1 and SPS HARQ-ACK CB#2 shown in FIG. 18). ).
  • the multiplexing condition (SPS HARQ-ACK slot and dynamic HARQ-ACK slot are overlapping or not) may be determined based on the original cell (eg, Pcell) of the SPSHARQ-ACK.
  • multiplexing conditions may be determined based on the cell after carrier switch based on the PUCCH cell timing pattern.
  • the upper layer parameters may be RRC parameters, MAC CE (Media Access Control Element), or a combination thereof.
  • Type-1 HARQ-ACK CB The processing of Proposal 1 may be applied to Type-1 HARQ-ACK CB.
  • Type-2 HARQ-ACK CB described in Proposal 1 may be read as Type-1 HARQ-ACK CB.
  • the UE capability indicating the capability of the UE may include information indicating the following capabilities of the UE. Note that the information indicating the capabilities of the UE may correspond to information defining the capabilities of the UE. - Information defining whether the UE supports PUCCH carrier switching. - Information defining whether the UE supports dynamic PUCCH carrier switching. - Information defining whether the UE overlaps and/or multiplexes dynamic HARQ-AKC slots and SPS HARQ-AKC slots on different carriers.
  • the radio communication system includes base station 10 shown in FIG.19 and terminal 20 shown in FIG.20.
  • the number of base stations 10 and the number of terminals 20 are not particularly limited.
  • the wireless communication system may be a wireless communication system according to New Radio (NR).
  • NR New Radio
  • the wireless communication system may be a wireless communication system according to a scheme called URLLC and/or IIoT.
  • the wireless communication system may be a wireless communication system that conforms to a system called 5G, Beyond 5G, 5G Evolution, or 6G.
  • the base station 10 may be called an NG-RAN Node, ng-eNB, eNodeB (eNB), or gNodeB (gNB).
  • the terminal 20 may be called User Equipment (UE).
  • the base station 10 may be regarded as a device included in the network to which the terminal 20 connects.
  • the radio communication system may include Next Generation-Radio Access Network (NG-RAN).
  • NG-RAN includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
  • 5GC 5G-compliant core network
  • NG-RAN and 5GC may be simply referred to as "networks”.
  • the base station 10 performs wireless communication with the terminal 20.
  • the wireless communication performed complies with NR.
  • At least one of the base station 10 and the terminal 20 uses Massive MIMO (Multiple-Input Multiple-Output) to generate beams (BM) with higher directivity by controlling radio signals transmitted from a plurality of antenna elements. You can respond.
  • at least one of the base station 10 and the terminal 20 may support carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle.
  • CA carrier aggregation
  • CC component carriers
  • at least one of the base station 10 and the terminal 20 may support dual connectivity (DC), etc., in which communication is performed between the terminal 20 and each of the plurality of base stations 10 .
  • a wireless communication system may support multiple frequency bands.
  • a wireless communication system supports Frequency Ranges (FR) 1 and FR2.
  • the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
  • FR1 Sub-Carrier Spacing (SCS) of 15 kHz, 30 kHz or 60 kHz may be used, and a bandwidth (BW) of 5 MHz to 100 MHz may be used.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is, for example, a higher frequency than FR1.
  • FR2 may use an SCS of 60 kHz or 120 kHz and a bandwidth (BW) of 50 MHz to 400 MHz.
  • FR2 may include a 240 kHz SCS.
  • the wireless communication system in this embodiment may support a frequency band higher than the frequency band of FR2.
  • the wireless communication system in this embodiment can support frequency bands exceeding 52.6 GHz and up to 114.25 GHz.
  • Such high frequency bands may be referred to as "FR2x.”
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM may be applied to both uplink and downlink, or may be applied to either one.
  • a time division duplex (TDD) slot configuration pattern may be set.
  • slots for transmitting downlink (DL) signals, slots for transmitting uplink (UL) signals, slots in which DL signals, UL signals and guard symbols are mixed, and signals to be transmitted are flexible
  • a pattern may be defined that indicates the order of two or more of the slots to be changed to .
  • channel estimation of PUSCH can be performed using a demodulation reference signal (DMRS) for each slot.
  • DMRS demodulation reference signal
  • Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
  • the terminal 20 may transmit the DMRS assigned to each of the multiple slots so that the base station 10 can perform joint channel estimation using DMRS.
  • an enhanced function may be added to the feedback function from the terminal 20 to the base station 10.
  • enhanced functionality of terminal feedback for HARQ-ACK may be added.
  • the configurations of the base station 10 and the terminal 20 will be explained. It should be noted that the configurations of the base station 10 and the terminal 20 described below are examples of functions related to the present embodiment.
  • the base station 10 and terminal 20 may have functions not shown. Also, the functional division and/or the name of the functional unit are not limited as long as the function executes the operation according to the present embodiment.
  • FIG. 19 is a block diagram showing an example of the configuration of base station 10 according to this embodiment.
  • the base station 10 includes a transmitter 101, a receiver 102, and a controller 103, for example.
  • the base station 10 wirelessly communicates with the terminal 20 (see FIG. 20).
  • the transmission section 101 transmits a downlink (DL) signal to the terminal 20 .
  • the transmitter 101 transmits a DL signal under the control of the controller 103 .
  • a DL signal may include, for example, a downlink data signal and control information (eg, Downlink Control Information (DCI)).
  • DCI Downlink Control Information
  • the DL signal may include information (for example, UL grant) indicating scheduling regarding signal transmission of the terminal 20 .
  • the DL signal may include higher layer control information (for example, Radio Resource Control (RRC) control information).
  • RRC Radio Resource Control
  • the DL signal may include a reference signal.
  • Channels used for transmitting DL signals include, for example, data channels and control channels.
  • the data channel may include a PDSCH (Physical Downlink Shared Channel)
  • the control channel may include a PDCCH (Physical Downlink Control Channel).
  • the base station 10 transmits control information to the terminal 20 using the PDCCH, and transmits downlink data signals using the PDSCH.
  • reference signals included in DL signals include demodulation reference signals (DMRS), phase tracking reference signals (PTRS), channel state information-reference signals (CSI-RS), sounding reference signals (SRS ), and Positioning Reference Signal (PRS) for position information.
  • DMRS demodulation reference signals
  • PTRS phase tracking reference signals
  • CSI-RS channel state information-reference signals
  • SRS sounding reference signals
  • PRS Positioning Reference Signal
  • reference signals such as DMRS and PTRS are used for demodulation of downlink data signals and transmitted using PDSCH.
  • the receiving unit 102 receives an uplink (UL) signal transmitted from the terminal 20 .
  • the receiver 102 receives UL signals under the control of the controller 103 .
  • the control unit 103 controls the communication operation of the base station 10, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
  • control unit 103 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 101 . Also, the control unit 103 outputs the data and control information received from the receiving unit 102 to the upper layer.
  • control unit 103 based on the signal received from the terminal 20 (e.g., data and control information, etc.) and / or data and control information obtained from the upper layer, resource (or channel) used for transmission and reception of the DL signal and/or allocates resources used for transmission and reception of UL signals. Information about the allocated resources may be included in control information to be transmitted to the terminal 20 .
  • the control unit 103 sets PUCCH resources as an example of allocation of resources used for transmission and reception of UL signals.
  • Information related to PUCCH configuration such as the PUCCH cell timing pattern may be notified to the terminal 20 by RRC.
  • FIG. 20 is a block diagram showing an example of the configuration of terminal 20 according to this embodiment.
  • Terminal 20 includes, for example, receiver 201 , transmitter 202 , and controller 203 .
  • the terminal 20 communicates with the base station 10 by radio, for example.
  • the receiving unit 201 receives the DL signal transmitted from the base station 10. For example, the receiver 201 receives a DL signal under the control of the controller 203 .
  • the transmission unit 202 transmits the UL signal to the base station 10.
  • the transmitter 202 transmits UL signals under the control of the controller 203 .
  • the UL signal may include, for example, an uplink data signal and control information (eg, UCI).
  • control information eg, UCI
  • information about the processing capability of terminal 20 eg, UE capability
  • the UL signal may include a reference signal.
  • Channels used to transmit UL signals include, for example, data channels and control channels.
  • the data channel includes PUSCH (Physical Uplink Shared Channel)
  • the control channel includes PUCCH (Physical Uplink Control Channel).
  • the terminal 20 receives control information from the base station 10 using PUCCH, and transmits uplink data signals using PUSCH.
  • the reference signal included in the UL signal may include at least one of DMRS, PTRS, CSI-RS, SRS, and PRS, for example.
  • reference signals such as DMRS and PTRS are used for demodulation of uplink data signals and transmitted using an uplink channel (eg, PUSCH).
  • the control unit 203 controls communication operations of the terminal 20, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
  • control unit 203 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 202 . Also, the control unit 203 outputs, for example, the data and control information received from the receiving unit 201 to an upper layer.
  • control unit 203 controls transmission of information to be fed back to the base station 10 .
  • Information fed back to the base station 10 may include, for example, HARQ-ACK, channel state information (CSI), or scheduling request (SR). good.
  • Information to be fed back to the base station 10 may be included in the UCI.
  • UCI is transmitted on PUCCH resources.
  • the control unit 203 configures PUCCH resources based on configuration information received from the base station 10 (for example, configuration information such as the PUCCH cell timing pattern notified by RRC and/or DCI).
  • Control section 203 determines PUCCH resources to be used for transmitting information to be fed back to base station 10 .
  • transmission section 202 transmits information to be fed back to base station 10 on PUCCH resources determined by control section 203 .
  • the channels used for DL signal transmission and the channels used for UL signal transmission are not limited to the above examples.
  • the channel used for DL signal transmission and the channel used for UL signal transmission may include RACH (Random Access Channel) and PBCH (Physical Broadcast Channel).
  • RACH may be used, for example, to transmit Downlink Control Information (DCI) containing Random Access Radio Network Temporary Identifier (RA-RNTI).
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the control unit 203 controls the first slot and the second slot in different uplink cells, the first CB of the response signal in the dynamically scheduled signal included in the first slot, and the first and the second CB of the response signal in the semi-statically scheduled signal included in a second slot that overlaps with the slot of .
  • the transmitting section 202 may transmit multiplexed CBs.
  • the first slot may be, for example, the dynamic HARQ-ACK slot shown in FIG.
  • the second slot may be, for example, the SPS HARQ-ACK slot shown in FIG.
  • the first CB may be, for example, the HARQ-ACK CB shown in FIG.
  • the second CB may be, for example, SPS HARQ-ACK CB#1 and SPS HARQ-ACK CB#2 shown in FIG.
  • the control unit 203 may add a second CB following (temporally) the first CB.
  • control section 203 may add SPS HARQ-ACK CB#1 and SPS HARQ-ACK CB#2 following HARQ-ACK CB shown in FIG.
  • the control unit 203 generates the response signal of the second CB and the response signal of the third CB of the response signal in the semi-statically scheduled signal included in the third slot overlapping the first slot. , may be rearranged.
  • the control section 203 may add the CB obtained by rearranging the response signals, following the first CB. For example, the control unit 203 may rearrange the SPS HARQ-ACK of SPS HARQ-ACK CB #1 and the SPS HARQ-ACK of SPS HARQ-ACK CB #2 shown in FIG.
  • the control section 203 may add the rearranged SPS HARQ-ACK CBs to the HARQ-ACK CBs shown in FIG.
  • Control section 203 selects a first candidate reception signal slot set in which HARQ-ACK is bundled in the first CB and a second candidate reception signal slot set in which HARQ-ACK is bundled in the second CB.
  • a union set of slots may be determined.
  • the control unit 203 generates a candidate PDSCH slot set (slot set of dotted line frame A11) in which HARQ-ACK is bundled in the CB included in st11 shown in FIG.
  • the slot set ( ⁇ #n,#n+1,...,#n+5 ⁇ ).
  • the control unit 203 may multiplex the CBs of st11, st12, and st13 based on the determined union slot set.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that makes transmission work is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • a base station, a terminal, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 21 is a diagram illustrating an example of hardware configurations of a base station and terminals according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 by loading predetermined software (program) onto hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs calculations and controls communication by the communication device 1004. , and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 103 and the control unit 203 described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 203 of the terminal 20 may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • FIG. Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), and RAM (Random Access Memory). may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, to realize at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting unit 101 , the receiving unit 102 , the receiving unit 201 , the transmitting unit 202 and the like described above may be implemented by the communication device 1004 .
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • Notification of information is not limited to the embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Embodiments described in the present disclosure are LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) , FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, other suitable systems and next generations based on these It may be applied to at least one of the systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to).
  • MME or S-GW network nodes other than the base station
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • ⁇ Direction of input/output> Information and the like can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be referred to as a carrier frequency, cell, frequency carrier, or the like.
  • ⁇ Name of parameter and channel> the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
  • Base station In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “"accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,” Terms such as “carrier”, “component carrier” may be used interchangeably.
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a terminal.
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side").
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the terminal 20 described above.
  • determining may encompass a wide variety of actions.
  • “Judgement”, “determining” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “decision” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that something has been "determined” or “decided”.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or connection between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may refer to the rated maximum transmit power ( the rated UE maximum transmit power).
  • One aspect of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

動的スケジューリングに基づく受信信号の応答信号を適切に送信すること。本開示の端末は、制御信号および動的にスケジューリングされた信号を受信する受信部と、前記動的にスケジューリングされた信号における応答信号の送信セルが、前記制御信号に指示されているか否かに応じて、前記応答信号の送信セルを決定する制御部と、前記制御部が決定したセルにおいて前記応答信号を送信する送信部と、を有する。前記制御部は、前記応答信号の送信セルが前記制御信号に指示されていない場合、デフォルトで設定されているターゲットセルを、前記応答信号の送信セルとして決定する。

Description

端末及び無線通信方法
 本開示は、端末及び無線通信方法に関する。
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。
 例えば、NRでは、通信品質の向上のために、端末から基地局へのフィードバックの機能を強化することが検討されている(例えば、非特許文献1)。
 端末から基地局へフィードバックする情報は、Physical Uplink Control Channel(PUCCH)のリソースにおいて送信される。3GPPのリリース17のUltra-Reliable and Low Latency Communications(URLLC)技術の拡張に関して、PUCCHキャリア切り替え(PUCCH carrier switching)をサポートすることが合意されている。
 PUCCHキャリア切り替えには、動的PUCCHキャリア切り替え(dynamic PUCCH carrier switching)と、準静的PUCCHキャリア切り替え(semi-static PUCCH carrier switching)とがある。
 動的PUCCHキャリア切り替えの場合、端末は、Downlink control information(DCI)等の、PUCCHをスケジューリングする制御情報によってPUCCHキャリア(セル)が指示され、当該PUCCHキャリア(セル)を用いて、動的スケジューリングに基づく受信信号の応答信号を送信する。
 ところが、DCIフォーマットによっては、DCIによってターゲットPUCCHキャリア(セル)を示すことができない場合がある。例えば、DCI 1_0ではターゲットPUCCHセルフィールドをサポートしていない。また、DCI 1_1およびDCI 1_2では、ターゲットPUCCHセルフィールドを設定する/しないの選択が可能となっている。
 ターゲットPUCCHキャリア(セル)が示されない場合における、動的スケジューリングに基づく受信信号の応答信号の送信方法については、検討の余地がある。
 本開示の一態様は、動的スケジューリングに基づく受信信号の応答信号を適切に送信する端末及び無線通信方法を提供することにある。
 本開示の一態様に係る端末は、制御信号および動的にスケジューリングされた信号を受信する受信部と、前記動的にスケジューリングされた信号における応答信号の送信セルが、前記制御信号に指示されているか否かに応じて、前記応答信号の送信セルを決定する制御部と、前記制御部が決定したセルにおいて前記応答信号を送信する送信部と、を有する。
 本開示の一態様に係る通信方法は、制御信号および動的にスケジューリングされた信号を受信し、前記動的にスケジューリングされた信号における応答信号の送信セルが、前記制御信号に指示されているか否かに応じて、前記応答信号の送信セルを決定し、前記決定したセルにおいて前記応答信号を送信する。
デュアルコネクティビティの例を示す図である。 PUCCHキャリア切り替えの例を示す図である。 Type-1 HARQ-ACK CBの概要を説明する図である。 Type-2 HARQ-ACK CBの概要を説明する図である。 Type-1 HARQ-ACK CBの生成例を説明する図である。 Type-1 HARQ-ACK CBの生成例を説明する図である。 Type-1 HARQ-ACK CBの生成例を説明する図である。 SPS PDSCHのType-1 HARQ-ACK CBにおけるHARQ-ACKの順序付けの一例を説明する図である。 Opt.1の一例を説明する図である。 Opt.2の一例を説明する図である。 提案1のAlt.1の動作例を説明する図である。 提案1のAlt.2の動作例を説明する図である。 提案2のOpt.1の一例を説明する図である。 提案2のOpt.2-1の一例を説明する図である。 提案2のOpt.2-2の一例を説明する図である。 提案3のOpt.2-1の一例を説明する図である。 提案3のOpt.2-2の一例を説明する図である。 提案3のOpt.2-2の一例を説明する図である。 本実施の形態に係る基地局の構成の一例を示すブロック図である。 本実施の形態に係る端末の構成の一例を示すブロック図である。 本開示の一実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。
 以下、本開示の一態様に係る実施の形態を、図面を参照して説明する。3GPPでは、Rel.17において、URLLC及びIndustrial Internet of Things(IIoT)と呼ばれる方式についての技術が検討されている。
 URLLCでは、Hybrid Automatic Repeat request - Acknowledgement(HARQ-ACK)に対する端末のフィードバックの機能強化について検討される。HARQ-ACKは、端末が受信したデータに対する確認応答(例えば、acknowledgement)に関する情報の一例である。これらのURLLCの検討事項に対して、ダイナミック及びセミスタティックなPUCCHキャリア切り替え(PUCCH carrier switching)をサポートすることが合意された。なお、PUCCHキャリア切り替えを、制御情報送信用キャリア切り替えといった他の名称で呼んでもよい。
 PUCCHキャリア切り替えは、基地局が複数のセルを介して通信する場合に適用される技術である。以下、複数のセルを介した通信の一例であるデュアルコネクティビティと、PUCCHキャリア切り替えとについて説明する。
 <デュアルコネクティビティ>
 図1は、デュアルコネクティビティ(DC)の例を示す図である。図1の例において、基地局10-1は、Master Node(MN)であってよい。基地局10-2は、Secondary Node(SN)であってよい。図1の例に示すように、DCでは、異なる基地局間のキャリアを束ねる。
 図1の例において、基地局10-1は、端末20とプライマリセル(Pcell)及びセカンダリセル(Scell)を介して通信する。図1の例において、端末20は、基地局10-1とRRCコネクションを確立している。
 DCの場合、基地局10-1と基地局10-2との間の通信の遅延が存在し得るため、基地局10-1のPcellで受信した上り制御情報(例えば、Uplink Control Information:UCI)を、バックホールリンク(例えば、基地局10-1と基地局10-2とを接続する有線又は無線リンク)を介して、基地局10-2へ通知し、基地局10-2の配下のScellのスケジューリングに反映させることは困難である。そこで、DCでは、基地局10-1のPcellに加えて、基地局10-2の配下の1つのキャリアをPrimary Scell(PScell)に設定し、PUCCH送信をPScellでサポートしてもよい。この場合、端末20は、PScellを介してUCIを基地局10-2に送信する。
 図1の例において、端末20は、基地局10-1に対し、Pcellに加えて、Scellを設定している。また、端末20は、基地局10-2に対し、PScellに加えて、Scellを設定している。端末20は、基地局10-1の配下の各キャリアのUCIをPcellのPUCCHで送信する。また、端末20は、基地局10-2の配下の各キャリアのUCIをPScellのPUCCHで送信する。図1の例において、基地局10-1配下のセルグループ(CG)は、Master Cell-Group(MCG)と称されてよい。基地局10-2配下のセルグループは、Secondary Cell-Group(SCG)と称されてよい。
 DCが行われている場合に、端末20は、Pcell、PScell、及び/又はPUCCH-Scellを介して、PUCCHの送信を行ってもよい。一般に、端末20がPcell、PScell、及びPUCCH-Scell以外のScellを介して、PUCCHの送信を行うことは想定されていない。
 <PUCCHキャリア切り替え>
 PUCCHキャリア切り替えは、Time Division Duplex(TDD)方式において、HARQ-ACKフィードバックのレイテンシの削減方法として検討されている。
 図2は、PUCCHキャリア切り替えの例を示す図である。図2の例では、基地局と端末とは、cell 1及びcell 2を介して通信を行っている。図2の例では、cell 1はPcellであり、cell 2はScellである。また、図2の例には、各セルにおける、ダウンリンク(DL)のスロットと、アップリンク(UL)のスロットとが示される。
 図2の例において、端末は、S101のタイミングにおいて、データを受信する(Physical Downlink shared Channel(PDSCH)の受信を行う)。端末は、S101で受信したデータに対するHARQ-ACKをS102のタイミングで送信しようと試みるが、S102のタイミングにおいて、cell 1のスロットは、ダウンリンク(DL)のスロットとなっている。このため、端末がcell1でHARQ-ACKを送信する場合には、アップリンク(UL)のスロットにおけるPUCCHの送信タイミング(例えば、図2のS103のタイミング)までHARQ-ACKの送信を保留するので、HARQ-ACK送信のレイテンシが増加する。なお、アップリンク(UL)のスロットにおけるPUCCHの送信タイミングは、PUCCHの送信機会と称されてもよい。
 図2の例では、S102のタイミングにおいて、cell 2のスロットは、ULスロットとなっている。図2の例において、端末がcell 2のS102のタイミングのPUCCHの送信機会においてS101で受信したデータに対するHARQ-ACKを送信することができれば、HARQ-ACK送信のレイテンシを削減することができる。URLLCでは、特に、無線区間における低遅延が要求される。このため、3GPPでは、URLLC技術の拡張として、端末がPUCCHの送信を行うキャリアを切り替えるPUCCHキャリア切り替えが検討されている。
 なお、以下の実施例において、「同じタイミング」とは、完全に同じタイミングであってもよいし、時間リソース(例えば、1又は複数のシンボル(シンボルより短い時間単位のリソースであってもよい)の全部又は一部が同じ又は重複(overlap)することであってもよい。
 PUCCHキャリア切り替えとは、端末が、PUCCHの送信をPcell(PScell又はPUCCH-Scellであってもよい)の特定の送信タイミングで行おうとする場合に、Pcell(PScell又はPUCCH-Scellであってもよい)の当該特定の送信タイミングのスロットが、DLスロットとなっているため、PUCCHの送信を行うセルを、端末が、Pcell(PScell又はPUCCH-Scellであってもよい)から、当該特定の送信タイミングと同じタイミングのスロットがULスロットとなっている1又は複数のScellのうちいずれかのScell(PScellの場合には、PScell以外のScellであり、PUCCH-Scellの場合には、PUCCH-Scell以外のScell)に切り替えることであってもよい。なお、本発明の実施例において、特定の送信タイミングの単位はスロットには限定されない。例えば、特定の送信タイミングは、サブフレームを単位とするタイミングであってもよく、シンボルを単位とするタイミングであってもよい。
 PUCCHキャリア切り替えを実現するための、2つの方法が検討されている。1つ目の方法は、基地局が端末に対して、PUCCHの送信を行うためのキャリアを動的(dynamic)に指示する方法である。2つ目の方法は、基地局が端末に対して、PUCCHの送信を行うためのキャリアを準静的(semi-static)に設定する方法である。なお、以下の実施例において、「PUCCHの送信」及び「PUCCHを送信」とは、PUCCHを介して上り制御情報を送信することであってもよい。
 端末は、PUCCH送信に関する端末の能力に関する情報を規定する端末能力情報(UE capability)を、基地局へ通知してもよい。
 例えば、端末の端末能力情報として、端末が、制御情報の送信に関する設定を切り替えることをサポートするか否かを示す情報が規定されてもよい。制御情報の送信に関する設定を切り替えることは、例えば、制御情報の送信に用いるリソース(例えば、キャリア又はセル)を切り替えることであってよい。制御情報の送信に用いるリソースを切り替えることは、「PUCCHキャリア切り替え」と称されてもよい。また、端末の端末能力情報として、動的PUCCHキャリア切り替え(dynamic PUCCH carrier switching)、及び/又は、準静的PUCCHキャリア切り替え(semi-static PUCCH carrier switching)の適用を示す情報が規定されてもよい。
 準静的PUCCHキャリア切り替えの構成動作(configuration operation)は、準静的PUCCHキャリア切り替えが適用されるPUCCHセルの、PUCCH cell timing patternを設定したRRCに基づいてもよい。また、準静的PUCCHキャリア切り替えの構成動作は、異なるニューメロロジーのセル間において、サポートされてもよい。
 PUCCHキャリア切り替えにおいて、PUCCHリソースの設定は、UL BWP(Uplink Bandwidth
 Part)ごと(例えば、候補セル及びその候補セルのUL BWPごと)であってもよい。
 制御情報の動的指示に基づくPUCCHキャリア切り替えの場合、PDSCHからHARQ-ACKへのK1値(オフセット)は、動的に指示されるターゲットPUCCHセルのニューメロロジーに基づいて解釈されてもよい。なお、制御情報は、Downlink control information(DCI)といった、PUCCHをスケジューリングする制御情報であってもよい。また、ニューメロロジーは、スロット又はSubcarrier Spacing(SCS)と捉えてもよい。
 URLLCでは、端末のHARQ-ACK Codebook(CB)フィードバックの機能強化について検討される。以下、Type-1 HARQ-ACK CB及びType-2 HARQ-ACK CBの概要を説明する(詳細は3GPP TS38.213(Rel.16)を参照)。
 なお、Type-1 HARQ-ACK CBは、semi-static HARQ-ACK CBと称されてもよい。Type-2 HARQ-ACK CBは、dynamic HARQ-ACK CBと称されてもよい。端末は、Type-1 HARQ-ACK CB及びType-2 HARQ-ACK CBのいずれを適用するかを、例えば、RRCといった上位レイヤシグナリングによって指示されてもよい。
 <Type-1 HARQ-ACK CB>
 図3は、Type-1 HARQ-ACK CBの概要を説明する図である。図3に示す「scheduled」は、例えば、DCIによってスケジューリングされたスロットを示す。CCは、Component Carrierを示す。
 Type-1 HARQ-ACK CBにおいては、端末は、スケジュールされたスロット(PDSCH)が存在するか否かに関係なく、PDSCHのHARQ-ACKビットを生成する。例えば、端末は、図3の「HARQ-ACK codebook」に示すように、スケジューリングされていないPDSCHにおいては、NACKを設定してもよい。
 <Type-2 HARQ-ACK CB>
 図4は、Type-2 HARQ-ACK CBの概要を説明する図である。図4に示す(x,y)は、例えば、DCIによってスケジューリングされたスロットを示す。xはC-DAI値に対応し、yはT-DAI値に対応する。DAIは、Downlink assignment indexの略である。DAIは、例えば、HARQ-ACK CBにHARQ-ACKがバンドルされる、スケジュールされたPDSCHの割り当てを示す。
 Type-2 HARQ-ACK CBにおいては、端末は、スケジュールされたPDSCHに対し、HARQ-ACKビットを生成する。例えば、端末は、図4の「HARQ-ACK codebook」に示すように、スケジューリングされたPDSCHに関して、HARQ-ACKを設定してもよい。
 なお、C-DAIは、1からカウントアップされる。C-DAIは、例えば、2ビットフィールドの場合、1->2->3->0->…と繰り返される。C-DAIは、スロットごとに各CCのDCI受信機会ごとにカウントアップされ、スロットが変わっても前スロットの最終値からカウントアップされる。T-DAIは、各スロットのC-DAIの最終値を示す。
 次に、Type-1 HARQ-ACK CBの生成例について説明する。
 <Type-1 HARQ-ACK CBの生成例>
 図5、図6、及び図7は、Type-1 HARQ-ACK CBの生成例を説明する図である。図5では、サービングセルのニューメロロジーと、PUCCHセルのニューメロロジーとが同じであることを想定している。図5では、K1(PDSCHからHARQ-ACKへのオフセット)のセットは、{1,2,3,4}である。
 図6では、サービングセルのニューメロロジーと、PUCCHセルのニューメロロジーとが異なることを想定している。図6では、K1のセットは、{1,2,3,4,5}である。
 端末は、下記のStep A、Step A-1、Step A-2、及びStep Bに基づいて、HARQ-ACK CBを生成してもよい。
 ・Step A
 端末は、候補PDSCH受信(candidate PDSCH reception)のHARQ-ACK機会(HARQ-ACK occasion)を決定する。例えば、端末は、図5においては、PUCCH cellのn+4のスロットを決定する。例えば、端末は、図6においては、PUCCH cellのn+5のスロットを決定する。
 ・Step A-1
 端末は、K1セットに基づいて、PDSCHスロットウィンドウを決定する。例えば、端末は、K1セットをPUCCHセルのニューメロロジーにおいて解釈し、図5又は図6の点線枠に示すPDSCHスロットウィンドウを決定する。
 ・Step A-2
 端末は、各K1に対し、各スロットにおける候補PDSCH受信機会(candidate PDSCH reception occasion)を決定する。例えば、端末は、図7のMA,cに示すように、各スロットにおける候補PDSCH受信機会を決定する。
 なお、候補PDSCH受信機会は、Time Domain Resource Allocation(TDRA)テーブルのセットR(Row index)に関連する。TDD-UL-DL-ConfigurationCommon及びTDD-UL-DL-ConfigDedicatedによって設定されたULと重複するTDRAテーブル内の候補PDSCH受信機会は除外される。時間領域においてオーバーラップする候補PDSCH受信機会においては、候補PDSCH受信機会は、特定のルールに基づいて決定される。
 ・Step B
 端末は、決定した候補PDSCH受信機会の各要素におけるHARQ-ACK(HARQ-ACK情報ビット、HARQ-ACK CB)を決定(生成)してもよい。例えば、端末は、HARQ-ACK情報ビットの総数OACKにおいて、次のType-1 HARQ-ACK CBを生成してもよい。
Figure JPOXMLDOC01-appb-M000001
 次に、SPS HARQ-ACK CBの生成例について説明する。なお、SPS HARQ-ACK CBは、SPS PDSCHにおけるHARQ-ACKのCBと捉えてもよい。SPS PDSCHは、例えば、送信周期がRRCによって設定される。また、SPS PDSCHのHARQ-ACKの送信タイミング(K1)は、例えば、RRCによって設定される。SPS PDSCHは、例えば、DCIによって活性化(activation)され、また、非活性化(deactivation/release)される。以下では、SPS PDSCHを非活性化するDCIを、deactivation DCIと称することがある。端末は、deactivation DCIに対してもHARQ-ACKを送信する。
 <Type 2 HARQ-ACK CB or type 1 HARQ-ACK CB with only SPS PDSCH receptions>
 SPS PDSCH受信のみにおけるType-1 HARQ-ACK CBにおいては、HARQ-ACKは、次のように順序付けされてもよい。
 図8は、SPS PDSCHのType-1 HARQ-ACK CBにおけるHARQ-ACKの順序付けの一例を説明する図である。SPS PDSCHのHARQ-ACKは、各サービングセルインデックスの、各SPS設定インデックス(SPS configuration index)において、DLスロット番号の昇順において並べられる。それから、SPS PDSCHのHARQ-ACKは、各サービングセルインデックスにおいて、SPS設定インデックスの昇順において並べられる。それから、SPS PDSCHのHARQ-ACKは、サービングセルインデックスの昇順において並べられる。
 SPS PDSCH受信におけるType-2 HARQ-ACK CBにおいては、HARQ-ACKは、上記したType-1 HARQ-ACK CBと同様に順序付けされてもよい。なお、Type-2 HARQ-ACK CBでは、SPS PDSCH受信のHARQ-ACKが、動的にスケジューリングされたPDSCH受信のHARQ-ACK及び/又はdeactivation DCIのHARQ-ACKと多重される場合、SPS PDSCH受信のHARQ-ACK(ビット)は、動的にスケジューリングされたPDSCH受信のHARQ-ACK(ビット)及び/又はdeactivation DCIのHARQ-ACK(ビット)に続いて(時間的に続いて)付加される。
 <multiplexing of dynamic and/or SPS HARQ-ACK(s)>
 ところで、基地局が、DCIにより、ターゲットPUCCHキャリア(セル)を端末に指示できる場合、端末において、異なるキャリア(セル)におけるdynamic HARQ-ACK(例えば、DCIによって動的に送信タイミングが決定(スケジューリング)されるHARQ-ACK)スロットのオーバーラップが想定されなくてもよい。別言すれば、端末においては、異なるキャリアにおけるdynamic HARQ-ACKスロット同士のオーバーラップが想定されない。
 また、端末において、異なるキャリアにおけるSPS HARQ-ACKスロットのオーバーラップが想定されなくてもよい。別言すれば、端末においては、異なるキャリアにおけるSPS HARQ-ACKスロット同士のオーバーラップが想定されなくてもよい。
 従って、端末は、dynamic HARQ-ACKスロットと、SPS HARQ-ACKスロットとの間のオーバーラップを想定して、dynamic HARQ-ACKとSPS HARQ-ACKとを多重し、送信してもよい。
 例えば、端末は、dynamic HARQ-ACKスロットと、SPS HARQ-ACKスロットとが、同じキャリア上においてオーバーラップする場合、dynamic HARQ-ACKとSPS HARQ-ACKとを多重して送信してもよい。具体的には、端末は、dynamic HARQ-ACKスロットと、SPS HARQ-ACKスロットとが、或るキャリアの同じスロットにおいてオーバーラップする場合、或るキャリアの同じスロットにおいて、dynamic HARQ-ACKとSPS HARQ-ACKとを多重して送信してもよい。
 また、例えば、端末は、dynamic HARQ-ACKスロットと、SPS HARQ-ACKスロットとが、異なるキャリア上においてオーバーラップする場合、次のOpt.1又はOpt.2に基づいて、dynamic HARQ-ACKとSPS HARQ-ACKとを多重し、送信してもよい。
 <Opt.1>
 端末は、dynamic HARQ-ACK及びSPS HARQ-ACKのスロットに対応する専用セルのスロットにおいて、dynamic HARQ-ACK及びSPS HARQ-ACKのスロットをマッピングしてもよい(dynamic HARQ-ACKとSPS HARQ-ACKとを多重し、送信してもよい)。
 専用セルは、仕様で定義されたデフォルトのセルであってもよい。例えば、専用セルは、Pcell、Pscell、又はPUCCH-Scellであってもよい。また、専用セルは、RRCに基づいて設定されてもよい。
 専用セルは、例えば、SCSの最も大きいセルが選択されてもよい。これにより、端末のHARQ-ACKの遅延を抑制できる。
 図9は、Opt.1の一例を説明する図である。図9において、PUCCH cell #1のニューメロロジーと、PUCCH cell #2のニューメロロジーとは異なる。図9には、dynamic HARQ-ACKスロットと、SPS HARQ-ACKスロットとが、異なるキャリア上(PUCCH cell #1及びPUCCH cell #2)においてオーバーラップする例が4つ示してある。異なるキャリア上において、オーバーラップするdynamic HARQ-ACK及びSPS HARQ-ACKは、dynamic HARQ-ACK及びSPS HARQ-ACKのスロットに対応する専用セル(図9の例では、PCell/PScell)のスロットにマッピングされてもよい。
 <Opt.2>
 SPS HARQ-ACKは、対応するdynamic HARQ-ACKスロットにおいて多重されてもよい。別言すれば、端末は、SPS HARQ-ACKを、SPS HARQ-ACKスロットに対応するdynamic HARQ-ACKスロットにおいて、dynamic HARQ-ACKと多重し、送信してもよい。
 <Opt.2-1>
 端末は、1つのSPS HARQ-ACKスロットが、複数のdynamic HARQ-ACKスロットとオーバーラップする場合、次のAlt.1又はAlt.2に基づいて、SPS HARQ-ACKとdynamic HARQ-ACKとを多重してもよい。
 <Alt.1>
 端末は、1つのSPS HARQ-ACKスロットに対応(オーバーラップ)する複数のdynamic HARQ-ACKスロットのうち、先頭のdynamic HARQ-ACKスロットにおいて、又は、後尾のdynamic HARQ-ARQスロットにおいて、SPS HARQ-ACKをdynamic HARQ-ACKに多重してもよい。
 図10は、Opt.2の一例を説明する図である。図10において、PUCCH cell #1のニューメロロジーと、PUCCH cell #2のニューメロロジーとは異なる。図10には、dynamic HARQ-ACKスロットと、SPS HARQ-ACKスロットとが、異なるキャリア上(PUCCH cell #1及びPUCCH cell #2)においてオーバーラップする例が4つ示してある。
 例えば、図10の矢印A1に示すように、端末は、1つのSPS HARQ-ACKスロットにオーバーラップする2のdynamic HARQ-ACKスロットのうち、先頭のdynamic HARQ-ACKスロットにおいて、SPS HARQ-ACKとdynamic HARQ-ACKと多重してもよい。また、図10の矢印A2に示すように、端末は、1つのSPS HARQ-ACKスロットにオーバーラップする2つのdynamic HARQ-ACKスロットのうち、先頭のdynamic HARQ-ACKスロットにおいて、SPS HARQ-ACKをdynamic HARQ-ACKに多重してもよい。
 <Alt.2>
 端末は、1つのSPS HARQ-ACKスロットに対応する複数のdynamic HARQ-ACKスロットのうち、最も小さいセルインデックス、最も大きいセルインデックス、又は最も近いセルインデックスのdynamic HARQ-ACKスロットにおいて、SPS HARQ-ACKをdynamic HARQ-ACKに多重してもよい。
 例えば、図10の矢印A2に示すように、端末は、1つのSPS HARQ-ACKスロットに対応する2つのdynamic HARQ-ACKスロット(セルインデック#1、#3)のうち、セルインデックスが最も大きいdynamic HARQ-ACKスロット(セルインデック#3)において、SPS HARQ-ACKをdynamic HARQ-ACKに多重してもよい。
 <Opt.2-2>
 端末は、複数のSPS HARQ-ACKスロットが、同じ(1つの)dynamic HARQ-ACKスロットとオーバーラップする場合、次のAlt.1又はAlt.2に基づいて、SPS HARQ-ACKとdynamic HARQ-ACKとを多重してもよい。
 <Alt.1>
 端末は、複数のSPS HARQ-ACKスロットが、同じdynamic HARQ-ACKスロットとオーバーラップする場合、エラーとして扱ってもよい。
 <Alt.2>
 端末は、複数のSPS HARQ-ACKスロットが、同じdynamic HARQ-ACKスロットとオーバーラップする場合、複数のSPS HARQ-ACKスロットのSPS HARQ-ACKを、同じdynamic HARQ-ACKスロットのdynamic HARQ-ACKに多重してもよい。
 例えば、図10の矢印A3a,A3bに示すように、端末は、複数のSPS HARQ-ACKを、同じdynamic HARQ-ACKスロットのdynamic HARQ-ACKに多重してもよい。また、図10の矢印A4a,A4bに示すように、端末は、複数のSPS HARQ-ACKを、同じdynamic HARQ-ACKスロットのdynamic HARQ-ACKに多重してもよい。
 <Opt.3>
 dynamic HARQ-ACKは、対応するSPS HARQ-ACKスロットにおいて多重されてもよい。別言すれば、端末は、dynamic HARQ-ACKを、dynamic HARQ-ACKのスロットに対応するSPS HARQ-ACKのスロットにおいて、SPS HARQ-ACKと多重してもよい。例えば、Opt.2に記載の「dynamic HARQ-ACK」は、「SPS HARQ-ACK」に読み替えられ、Opt.2に記載の「SPS HARQ-ACK」は、「dynamic HARQ-ACK」に読み替えられてもよい。
 なお、dynamic HARQ-ACKスロットとSPS HARQ-ACKスロットとの多重において、SPS HARQ-ACKスロットが送信されるキャリア(セル)と、SPS PDSCHが送信されるキャリアとは異なっていてもよい(PUCCHキャリア切り替えが行われてもよい)。dynamic HARQ-ACKスロットが送信されるキャリアと、dynamic PDSCH(DCIによってスケジューリングされるPDSCH)が送信されるキャリアとは異なっていてもよい(PUCCHキャリア切り替えが行われてもよい)。
 しかし、異なるセルにおけるdynamic HARQ-ACKスロットとSPS HARQ-ACKスロットとがオーバーラップする場合のHARQ-ACK CBの生成については、検討の余地がある。本実施の形態においては、異なるセルにおいてオーバーラップするdynamic HARQ-ACKスロットとSPS HARQ-ACKスロットとの多重において、HARQ-ACK CBを適切に生成する。
 <提案1>
 提案1では、異なるPUCCHセルにおけるdynamic HARQ-ACKスロットとSPS HARQ-ACKスロットとが多重する場合の、Type-2 HARQ-ACK CBの多重について説明する。
 Type-2 HARQ-ACK CBにおいては、端末は、dynamic HARQ-ACK CBに続けて、SPS HARQ-ACK CBを付加してもよい。
 端末は、異なるスロットからの複数のSPS HARQ-ACK CBを、dynamic HARQ-ACKスロット上の同じHARQ-ACK CBに多重する場合、次のAlt.1又はAlt.2に基づいて多重してもよい。異なるスロットからの複数のSPS HARQ-ACK CBは、同じPUCCHセル上の異なるスロットの複数のSPS HARQ-ACK CBであってもよいし(例えば、図11の左側の図を参照)、異なるPUCCHセル上の複数のSPS HARQ-ACK CBであってもよい(例えば、図10の左から2番目の図、図10の右側の図を参照)。
 <Alt.1>
 端末は、dynamic HARQ-ACK CBに続けて、複数のSPS HARQ-ACK CB(複数のオリジナルのSPS HARQ-ACK CB)を1つずつ付加してもよい。
 複数のSPS HARQ-ACK CBの順序は、元のSPS HARQ-ACKスロットの開始及び/又は終了(時間経過順及び/又はその逆)に基づいて決定されてもよい。また、複数のSPS HARQ-ACK CBの順序は、SPS HARQ-ACKスロットのセルインデックスに基づいて決定されてもよい。
 図11は、提案1のAlt.1の動作例を説明する図である。図11の左側には、同じPUCCHセル上における異なるSPS HARQ-ACKスロットの例が示してある。図11の左側に示すdynamic HARQ-ACKスロットと、2つのSPS HARQ-ACKスロットとは、異なるPUCCHセル上にある。SPS HARQ-ACK CB#1が送信されるSPS HARQ-ACKスロットと、SPS HARQ-ACK CB#2が送信されるSPS HARQ-ACKスロットとは、dynamic HARQ-ACK CBが送信されるdynamic HARQ-ACKスロットとオーバーラップしている。
 端末は、2つのSPS HARQ-ACKスロットのSPS HARQ-ACK CB#1及びSPS HARQ-ACK CB#2を、図11の右側の図に示すように、dynamic HARQ-ACK CBに続けて、1つずつ付加してもよい。図11の例では、2つのSPS HARQ-ACKスロットの時間経過順に従って、まず、SPS HARQ-ACK CB#1が、dynamic HARQ-ACK CBに続けて付加され、SPS HARQ-ACK CB#2が、SPS HARQ-ACK CB#1に続けて付加されている。
 <Alt.2>
 端末は、Rel.16のTS38.213に規定される順序付けに従って、複数のSPS HARQ-ACK CBのHARQ-ACKビットを並び替え(re-order)、SPS HARQ-ACK CBを生成(再生成)してもよい。
 図12は、提案1のAlt.2の動作例を説明する図である。Alt.2では、図12の左側に示すSPS HARQ-ACK CB#1及びSPS HARQ-ACK CB#2のSPS HARQ-ACKを、Rel.16のTS38.213に規定される順序付けに従って並び替えてもよい。すなわち、端末は、SPS HARQ-ACK CB#1及びSPS HARQ-ACK CB#2のSPS HARQ-ACKをまとめて並び替え、1つのSPS HARQ-ACK CBを生成してもよい。端末は、生成したSPS HARQ-ACK CBを、dynamic HARQ-ACK CBに続けて付加してもよい。
 なお、提案1において、dynamic HARQ-ACK CB及びSPS HARQ-ACK CBは、dynamic HARQ-ACKスロットと同じPUCCHセルにおいて、多重されてもよいし、SPS HARQ-ACKスロットと同じPUCCHセルにおいて、多重されてもよい。また、dynamic HARQ-ACK CB及びSPS HARQ-ACK CBは、dynamic HARQ-ACKスロット及びSPS HARQ-ACKスロットのPUCCHセルとは異なるセルにおいて多重されてもよい。
 また、dynamic HARQ-ACK CBに続けて、SPS HARQ-ACK CBを付加するとしたが、これに限られない。SPS HARQ-ACK CBに続けて、dynamic HARQ-ACK CBを付加してもよい。
 <提案2>
 提案2では、異なるPUCCHセルにおけるdynamic HARQ-ACKスロットとSPS HARQ-ACKスロットとが多重する場合の、Type-1 HARQ-ACK CBの多重について説明する。なお、dynamic HARQ-ACKスロットは、レポートスロット(reporting slot)と称されてもよい。ターゲットセルは、PUCCH(HARQ-ACK及び/又はHARQ-ACK CBといったUCI)を送信するセルと捉えてもよい。
 <Opt.1>
 Opt.1では、候補PDSCHスロットセットウィンドウの決定が拡張されてもよい。Opt.1では、レポートスロットと重複する他のPUCCHセル(SPS HARQ-ACKセル)のスロットに対応する候補PDSCHスロットが、Type-1 HARQ-ACK CB生成のための候補PDSCHスロットセットに追加されてもよい。
 図13は、提案2のOpt.1の一例を説明する図である。端末は、次のStep 1-Step 4に基づいて、候補PDSCHスロットセットを決定(生成)してもよい。
 ・Step 1
 端末は、ターゲットセルに設定されたK1セットに基づいて、ターゲットセルのdynamic HARQ-ACKスロットにおける候補PDSCHスロットセットを決定する。ここで、決定されたPDSCH候補スロットセットを、D0とする。
 例えば、図13において、PUCCH cell #1のdynamic HARQ-ACKスロット(図13に示すst11)における候補PDSCHスロットセットは、「K1 set = 2, 3」より、点線枠A11に囲まれたスロットとなる。従って、PDSCH候補スロットセットD0は、{#n+2, #n+3, #n+4, #n+5}となる。
 ・Step 2
 端末は、ターゲットセルのdynamic HARQ-ACKスロットとオーバーラップしているSPS HARQ-ACKセルのSPS HARQ-ACKスロットを探索する。ここで、SPS HARQ-ACK PUCCHセル上のオーバーラップするスロットセットをCとする。また、C(i)のiは、セット内のi番目のスロットを示す。
 例えば、図13において、dynamic HARQ-ACKスロットとオーバーラップしているSPS HARQ-ACKセル(PUCCH cell #2)のSPS HARQ-ACKスロットは、st12及びst13である。従って、SPS HARQ-ACK PUCCHセル上のオーバーラップするスロットセットCは、st12及びst13である。C(1) = st12であり、C(2) = st13である。
 ・Step 3
 端末は、対応するPUCCHセルに設定されたK1セットに基づいて、セットCの各スロットにおける候補PDSCHスロットセットを決定する。スロットC(i)に対して決定されたPDSCHスロットセットを、Diとする。
 例えば、図13において、セットCのPUCCHセルにおけるK1セットは、「K1 set = 7, 8」である。従って、スロットC(1)における候補PDSCHスロットセットDiは、点線枠A12に囲まれたスロットとなり、{#n, #n+1}となる。スロットC(2)における候補PDSCHスロットセットDiは、点線枠A13に囲まれたスロットとなり、{#n+1, #n+2}となる。
 ・Step 4
 端末は、D0と各Diとの和集合を、最終候補PDSCHスロットセットとして決定する。
 例えば、図13において、D0{#n+2, #n+3, #n+4, #n+5}、Di{#n, #n+1}、及びDi{#n+1, #n+2}の和集合は、{#n, #n+1, #n+2, #n+3, #n+4, #n+5}となる。従って、最終候補PDSCHスロットセットは、{#n, #n+1, #n+2, #n+3, #n+4, #n+5}となる。
 端末は、決定した最終候補PDSCHスロットセットにおいて、例えば、Rel.16のTS38.213の規則(ルール)に基づき、候補PDSCH受信機会(MA,c)を決定する。端末は、決定した候補PDSCH受信機会の各要素におけるHARQ-ACKを決定(生成)し、Type-1 HARQ-ACK CBを生成する。
 なお、生成されたType-1 HARQ-ACK CBは、dynamic HARQ-ACKスロットと同じPUCCHセルにおいて、生成されてもよいし、SPS HARQ-ACKスロットと同じPUCCHセルにおいて、生成されてもよい。また、生成されたType-1 HARQ-ACK CBは、dynamic HARQ-ACKスロット及びSPS HARQ-ACKスロットのPUCCHセルとは異なるセルにおいて生成されてもよい。
 また、SPS HARQ-ACKスロットは、異なるセルに存在してもよい。例えば、図13に示すスロットst12とst13とは、異なるセルに存在してもよい。
 <Opt.2>
 端末は、ターゲットセルのdynamic HARQ-ACKスロットとオーバーラップする他のPUCCHセルのSPS HARQ-ACKスロットのCBを、ターゲットセルのdynamic HARQ-ACKスロットのType-1 HARQ-ACK CB(original Type-1 HARQ-ACK CB)に続けて追加してもよい。
 <Opt.2-1>
 端末は、異なるセルにおけるスロットに対して、個別のHARQ-ACK CBを生成してもよい。
 図14は、提案2のOpt.2-1の一例を説明する図である。端末は、次のStep 1-Step 3に基づいて、dynamic HARQ-ACK CBとSPS HARQ-ACK CBとを多重してもよい。
 ・Step 1
 端末は、例えば、Rel.16のTS38.213の規則に従って、ターゲットセルのdynamic HARQ-ACKスロットのType-1 HARQ-ACK CB(dynamic HARQ-ACK CB)を生成する。
 例えば、端末は、図14の点線枠A21に示すdynamic HARQ-ACKスロットにおけるType-1 HARQ-ACK CB(図14に示すtype 1 HARQ-ACK CB)を生成する。
 ・Step 2
 端末は、ターゲットセルのdynamic HARQ-ACKスロットとオーバーラップする異なるセルのSPS HARQ-ACKスロット各々において、SPS HARQ-ACK CBを生成する。
 例えば、端末は、図14の点線枠A22に示すSPS HARQ-ACKスロットにおけるSPS HARQ-ACK CB(図14に示すSPS HARQ-ACK CB#1)を生成する。また、端末は、図14の点線枠A23に示すSPS HARQ-ACKスロットにおけるSPS HARQ-ACK CB(図14に示すSPS HARQ-ACK CB#1)を生成する。なお、SPS HARQ-ACK CBのHARQ-ACKの順序付けは、図8で説明した方法に従って行われてもよい。
 ・Step 3
 端末は、Step 1において生成したType-1 HARQ-ACK CB(original Type-1 HARQ-ACK CB)に続けて、Step 2において生成したSPS HARQ-ACK CBを付加する。
 例えば、端末は、図14に示すtype 1 HARQ-ACK CBに続けて、点線枠A22に示すSPS HARQ-ACKスロットにおけるSPS HARQ-ACK CB#1を付加する。端末は、図14に示すSPS HARQ-ACK CB#1に続けて、点線枠A23に示すSPS HARQ-ACKスロットにおけるSPS HARQ-ACK CB#2を付加する。
 なお、複数のSPSHARQ-ACK CBが付加される場合、複数のSPSHARQ-ACK CBの順序は、SPS HARQ-ACKセルインデックス及び/又はSPS HARQ-ACKスロットの開始及び/又は終了時間(時間経過順及び/又はその逆順)に基づいて決定されてもよい。
 また、Type-1 HARQ-ACK CBに続けて、SPS HARQ-ACK CBを付加するとしたが、これに限られない。SPS HARQ-ACK CBに続けて、Type-1 HARQ-ACK CBを付加してもよい。
 <Opt.2-2>
 端末は、SPS HARQ-ACKセルの単一のSPS HARQ-ACK CB(single SPSHARQ-ACK CB)を、ターゲットPUCCHセルのType-1 HARQ-ACK CB(dynamic HARQ-ACK CB)に続けて付加してもよい。
 図15は、提案2のOpt.2-2の一例を説明する図である。端末は、次のStep 1-Step 4に基づいて、dynamic HARQ-ACK CBとSPS HARQ-ACK CBとを多重してもよい。
 ・Step 1
 端末は、例えば、Rel.16のTS38.213の規則に従って、ターゲットセルのdynamic HARQ-ACKスロットのType-1 HARQ-ACK CBを生成する。例えば、端末は、図15に示すtype-1 HARQ-ACK CBを生成する。
 ・Step 2
 端末は、ターゲットセルのdynamic HARQ-ACKスロットとオーバーラップするSPS HARQ-ACKセルの各スロットにおいて、対応する候補SPS PDSCH機会を決定する。
 ・Step 3
 端末は、Step 2において決定した候補SPS PDSCH機会の和集合を決定し、和集合内における候補SPS PDSCH機会のHARQ-ACKビットを並べ替える。HARQ-ACKビットの並び替えは、例えば、図8で説明した方法に従って行われてもよい。
 ・Step 4
 端末は、ターゲットPUCCHセルのType-1 HARQ-ACK CBに続けて、Step 3において生成した単一のSPS HARQ-ACK CB(single SPS HARQ-ACK CB)を追加する。
 例えば、端末は、図15に示すtype-1 HARQ-ACK CBに続けて、single SPS HARQ-ACK CBを追加する。
 <提案3>
 DCIフォーマットがターゲットPUCCHセルフィールドをサポート/設定していない場合、ターゲットPUCCHキャリア(セル)は、DCIにより端末に指示されない。
 提案3では、動的PUCCHキャリア切り替えが有効で、かつ、ターゲットPUCCHキャリア(セル)が指示されない場合において、dynamic HARQ-ACKスロットの送信方法について提案する。
 <提案3-1>
 提案3-1では、ターゲットPUCCHキャリア(セル)が指示されない場合において、dynamic HARQ-ACKスロットのPUCCHキャリア(セル)の設定方法について提案する。
 動的PUCCHキャリア切り替えにおいて、PUCCHキャリア(セル)が指示される場合(例えば、「ターゲットPUCCHセルフィールド」がDCI 1_1に対して設定されている)と、PUCCHキャリア(セル)が指示されていない(例えば、DCIフォーマットがDCI1_0である)場合を想定する。
 この場合、PUCCHキャリア(セル)が指示されていない場合のdynamic HARQ-ACKスロット(以下、「指示無dynamic HARQ-ACKスロット」という)のK1は、PUCCHキャリア(セル)が指示されている場合のdynamic HARQ-ACKスロット(以下、「指示有dynamic HARQ-ACKスロット」という)の、ターゲットセル(参照セル)が設定されたK1セットと、ターゲットセル(参照セル)のSCSとに基づいて解釈されてよい。
また、指示無dynamic HARQ-ACKスロットのPUCCHリソースは、次のOpt.1乃至Opt.4に基づいてターゲットセル(参照セル)上に決定され、そのPRI(PUCCH Resource Indicator)は、ターゲットセル(参照セル)上で解釈されてよい。
 <Opt.1>
 ターゲットセル(参照セル)は、デフォルトで設定されてよい。例えば、Pcell、PscellあるいはPUCCH-Scellが、ターゲットセル(参照セル)として、常に設定されてよい。
 <Opt.2>
 現在のDCIの検出前に検出されたターゲットPUCCHセルフィールドを有する最後のDCIによって示されるターゲットPUCCHセルが、ターゲットセル(参照セル)として設定されてよい。
 <Opt.3>
 現在のDCIの検出前に報告された(dynamic)HARQ-ACKスロットを有する最後のPUCCHの送信に使用されたターゲットPUCCHセルが、ターゲットセル(参照セル)として設定されてよい。
 <Opt.4>
 ターゲットPUCCHセルフィールドを含むDCIに関連付けられた最後のPUCCHの送信に使用され、現在のDCIの検出前に報告されたターゲットPUCCHセルが、ターゲットセル(参照セル)として設定されてよい。
 <提案3-2>
 ターゲットPUCCHキャリア(セル)が指示されない場合、端末においては、異なるキャリアにおけるdynamic HARQ-ACKスロット同士のオーバーラップが想定される。
 提案3-2では、異なるPUCCHセル上にあるdynamic HARQ-ACKスロット同士がオーバーラップする場合の、Type-2 HARQ-ACK CBの多重について提案する。
 <Opt.1>
 Opt.1では、DAIカウンタが、多重化されたdynamic HARQ-ACK CBに対して蓄積される。すなわち、DAI値を決定する際に、異なるPUCCHセルからのdynamic HARQ-ACKの多重が考慮される。
 (多重されたdynamic HARQ-ACKのためのType-2 HARQ-ACK CBの生成)
 端末は、例えば、Rel.16のTS38.213の規則に従って、DAIに基づいてdynamic HARQ-ACK CBを生成する。
 図16は、DCI#1よってスケジューリングされたDAI値(0,0)のPDSCHに対するHARQ-ACKビット、および、DCI#3よってスケジューリングされたDAI値(2,2)のPDSCHに対するHARQ-ACKビットを送信するターゲットセルがPCellであり、DCI#2よってスケジューリングされたDAI値(1,1)のPDSCHに対するHARQ-ACKビット、および、DCI#4よってスケジューリングされたDAI値(3,3)のPDSCHに対するHARQ-ACKビットを送信するターゲットセルがSCellである場合を示している。
 この場合、端末は、ターゲットセルによって区別することなく、すべてのHARQ-ACKビットに対して個別にType-2 HARQ-ACK CB(dynamic HARQ-ACK CB)を生成する。なお、この場合、HARQ-ACKビットが送信されるセルによらず、すべてのDAI値は互いに異ならせる必要がある。
 なお、dynamic HARQ-ACKとともに多重されるSPS HARQ-ACKもある場合、上記提案1と同様に、SPS HARQ-ACKは、生成されたdynamic HARQ-ACK CBの後に付加されてよい。
 <Opt.2>
 Opt.2では、DAIカウンタが、PUCCHセル毎のスロット毎のdynamic HARQ-ACK CBに対して蓄積される。すなわち、DAI値を決定する際には、異なるPUCCHセルからのdynamic HARQ-ACKの多重は考慮されない。
 (多重されたdynamic HARQ-ACKのためのType-2 HARQ-ACK CBの生成)
 図17は、提案3-2のOpt.2の一例を説明する図である。端末は、次のStep 1-Step 2に基づいて、複数のdynamic HARQ-ACK CB同士を多重してもよい。
 ・Step 1
 端末は、例えば、Rel.16のTS38.213の規則に従って、DAIに基づいて、各ターゲットPUCCHセルに対して個別にType-2 HARQ-ACK CB(dynamic HARQ-ACK CB)を生成する。
 図17は、DCI#1よってスケジューリングされたDAI値(0,0)のPDSCHに対するHARQ-ACKビット、および、DCI#3よってスケジューリングされたDAI値(1,1)のPDSCHに対するHARQ-ACKビットを送信するターゲットセルがPCellであり、DCI#2よってスケジューリングされたDAI値(0,0)のPDSCHに対するHARQ-ACKビット、および、DCI#4よってスケジューリングされたDAI値(1,1)のPDSCHに対するHARQ-ACKビットを送信するターゲットセルがSCellである場合を示している。
 この場合、端末は、PCellおよびSCellそれぞれに対して個別にType-2 HARQ-ACK CB(dynamic HARQ-ACK CB)を生成する。なお、この場合、HARQ-ACKビットが送信されるセルが異なれば、同一のDAI値を用いてもよい。
 ・Step 2
 第1のターゲットPUCCHセルに生成されたdynamic HARQ-ACK CB(図17に示すHARQ-ACK CB#1 generated for slot #i_1 on cell #k_1)の後に、他のターゲットPUCCHセルに生成されたdynamic HARQ-ACK CB(図17に示すHARQ-ACK CB#n generated for slot #i_n on cell #k_n)を順次連結する。
 なお、dynamic HARQ-ACKとともに多重されるSPS HARQ-ACKもある場合、SPS HARQ-ACKの多重方法として、次のOpt.2-1乃至Opt.2-2(Opt.2-2AおよびOpt.2-2B)が考えられる。
 <Opt.2-1>
 Opt.2-1では、端末が、dynamic HARQ-ACKビットの間にSPS HARQ-ACKビットを配置する。
 例えば、図18のOption 2-1の例に示すように、1つのセルの1つのスロットのHARQ-ACKビット(dynamic HARQ-ACKビットとSPS HARQ-ACKビットを含む)をまとめ、ターゲットPUCCHセルのHARQ-ACKビット(図18に示すdynamic HARQ-ACK CB generated for determined target PUCCH cell)の後に各PUCCHセルのHARQ-ACKビット(図18に示す、例えば、dynamic HARQ-ACK CB #1 (generated for slot #i_1 on cell #k_1)とSPS HARQ-ACK CB #1 for slot #i_1 on cell #k_1のセット)を付加してもよい。
 <Opt.2-2>
 Opt.2-2では、端末が、dynamic HARQ-ACKビットとSPS HARQ-ACKビットとを分けて配置する。
 例えば、図18のOption 2-2A, Option 2-2Bの例に示すように、ターゲットPUCCHセルのdynamic HARQ-ACKビット(図18に示すdynamic HARQ-ACK CB generated for determined target PUCCH cell)の後に、各PUCCHセルのdynamic HARQ-ACKビット(図18に示すdynamic HARQ-ACK CB #1 (generated for slot #i_1 on cell #k_1)とdynamic HARQ-ACK CB #2 (generated for slot #i_2 on cell #k_2))を付加し、その後に、SPS HARQ-ACKビットを付加する。この場合、SPS HARQ-ACKビットの付加の方法として、Opt.2-2AおよびOpt.2-2Bが考えられる。
 <Opt.2-2A>
 端末は、dynamic HARQ-ACKビットの後に、複数のSPS HARQ-ACK CBを単に付加する(図18に示すSPS HARQ-ACK CB #1 for slot #i_1 on cell #k_1とSPS HARQ-ACK CB #2 for slot #i_2 on cell #k_2)。
 <Opt.2-2B>
 端末は、複数のSPS HARQ-ACK CBからのSPS HARQ-ACKビットを再び順序付けする(図18に示すre-ordered SPS HARQ-ACK bits from SPS HARQ-ACK CB#1 and SPS HARQ-ACK CB#2)。
 <バリエーション>
 複数のオプションのどれが適用されるか、及び/又は、複数の選択肢のどれが適用されるかについては、以下の方法で決定されてよい。
 ・上位レイヤのパラメータによって設定される。
 ・UEがUE capability(ies)として報告する。
 ・仕様書に記載されている。
 ・上位レイヤパラメータの設定と、報告されたUE capabilityとを基に決定される。
 ・上記の決定の2つ以上の組み合わせによって決定される。
 ・スロットは、サブスロットに置き換えられてもよい。
 ・SPS HARQ-ACKスロットは、準静的PUCCHキャリア切り替えの前又は後であってもよい。SPS HARQ-ACKとdynamic HARQ-ACKとの多重は、準静的PUCCHキャリア切り替えの前又は後に行われてもよい。端末は、SPS HARQ-ACKの準静的PUCCHキャリア切り替えの前又は後にSPS HARQ-ACKとdynamic HARQ-ACKとの多重を適用してもよい。
 例えば、SPS HARQ-ACKの準静的PUCCHキャリア切り替えの前に、SPS HARQ-ACKとdynamic HARQ-ACKとの多重を行う場合、多重化条件(SPS HARQ-ACKスロットとdynamic HARQ-ACKスロットとがオーバーラップしているかどうか)は、SPSHARQ-ACKの元のセル(例えば、Pcell)に基づいて決定されてもよい。
 また、例えば、SPS HARQ-ACKの準静的PUCCHキャリア切り替えの後に、SPS HARQ-ACKとdynamic HARQ-ACKとの多重を行う場合、多重化条件(SPS HARQ-ACKスロットとダイナミックHARQ-ACKスロットとがオーバーラップしているかどうか)は、PUCCHセルタイミングパターンに基づくキャリア切り替え後のセルに基づいて決定されてもよい。
 ・上位レイヤのパラメータとは、RRCパラメータであってもよいし、MAC CE (Media Access Control Control Element)であってもよいし、これらの組合せであってもよい。
 ・提案1の処理は、Type-1 HARQ-ACK CBに適用されてもよい。例えば、提案1に記載のType-2 HARQ-ACK CBは、Type-1 HARQ-ACK CBに読み替えられてもよい。
 ・提案3-1の場合:どのオプションを適用するかは、準静的PUCCHキャリア切り替えも有効であるかどうかにも依存する。例えば、準静的PUCCHキャリア切り替えも有効である場合、ターゲットセルはPcell/PSCell/PUCCH-Scell、すなわち提案3-1のOpt.1となる。それ以外の場合には、Opt.2乃至Opt.4が使用される。
 <UE capability>
 UEの能力を示すUE capabilityでは、以下のUEの能力を示す情報が含まれてよい。なお、UEの能力を示す情報は、UEの能力を定義する情報に相当してよい。
 ・UEがPUCCHキャリア切り替えをサポートしているか否かを定義する情報。
 ・UEが動的PUCCHキャリア切り替えをサポートしているか否かを定義する情報。
 ・UEが異なるキャリア上において、dynamic HARQ-AKCスロット及びSPS HARQ-AKCスロットのオーバーラップ及び/又は多重化をするか否かを定義する情報。
 <無線通信システムの例>
 本実施の形態に係る無線通信システムは、図19に示す基地局10と、図20に示す端末20とを含む。基地局10の数及び端末20の数は、特に限定されない。例えば、図1に示したように、2つの基地局10(基地局10-1と基地局10-2)が1つの端末20と通信を行うシステムであってもよい。無線通信システムは、New Radio(NR)に従った無線通信システムであってよい。例示的に、無線通信システムは、URLLC及び/又はIIoTと呼ばれる方式に従った無線通信システムであってよい。
 なお、無線通信システムは、5G、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 基地局10は、NG-RAN Node、ng-eNB、eNodeB(eNB)、又は、gNodeB(gNB)と呼ばれてもよい。端末20は、User Equipment(UE)と呼ばれてもよい。また、基地局10は、端末20が接続するネットワークに含まれる装置と捉えてもよい。
 無線通信システムは、Next Generation-Radio Access Network(以下、NG-RAN)を含んでもよい。NG-RANは、複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN及び5GCは、単に「ネットワーク」と表現されてもよい。
 基地局10は、端末20と無線通信を実行する。例えば、実行される無線通信は、NRに従う。基地局10及び端末20の少なくとも一方は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビーム(BM)を生成するMassive MIMO(Multiple-Input Multiple-Output)に対応してもよい。また、基地局10及び端末20の少なくとも一方は、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)に対応してもよい。また、基地局10及び端末20の少なくとも一方は、端末20と複数の基地局10それぞれとの間において通信を行うデュアルコネクティビティ(DC)などに対応してもよい。
 無線通信システムは、複数の周波数帯に対応してよい。例えば、無線通信システムは、Frequency Range(FR)1及びFR2に対応する。各FRの周波数帯は、例えば、次のとおりである。
  ・FR1:410MHz~7.125GHz
  ・FR2:24.25GHz~52.6GHz
 FR1では、15kHz、30kHz又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5MHz~100MHzの帯域幅(BW)が用いられてもよい。FR2は、例えば、FR1よりも高い周波数である。FR2では、60kHz又は120kHzのSCSが用いられ、50MHz~400MHzの帯域幅(BW)が用いられてもよい。また、FR2では、240kHzのSCSが含まれてもよい。
 本実施の形態における無線通信システムは、FR2の周波数帯よりも高い周波数帯に対応してもよい。例えば、本実施の形態における無線通信システムは、52.6GHzを超え、114.25GHzまでの周波数帯に対応し得る。このような高周波数帯は、「FR2x」と呼ばれてもよい。
 また、上述した例よりも大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンクと下りリンクとの両方に適用されてもよいし、何れか一方に適用されてもよい。
 無線通信システムでは、時分割複信(TDD)のスロット設定パータン(Slot Configuration pattern)が設定されてよい。例えば、スロット設定パータンにおいて、下りリンク(DL)信号を送信するスロット、上りリンク(UL)信号を送信するスロット、DL信号とUL信号とガードシンボルとが混在するスロット、及び、送信する信号がflexibleに変更されるスロットの中の2つ以上のスロットの順を示すパータンが、規定されてよい。
 また、無線通信システムでは、スロット毎に復調用参照信号(DMRS)を用いてPUSCH(又はPUCCH(Physical Uplink Control Channel))のチャネル推定を実行できるが、さらに、複数スロットにそれぞれ割り当てられたDMRSを用いてPUSCH(又はPUCCH)のチャネル推定を実行できる。このようなチャネル推定は、Joint channel estimationと呼ばれてもよい。或いは、cross-slot channel estimationなど、別の名称で呼ばれてもよい。
 端末20は、基地局10がDMRSを用いたJoint channel estimationを実行できるように、複数スロットにおいて、複数スロットのそれぞれに割り当てられたDMRSを送信してよい。
 また、無線通信システムでは、基地局10に対する端末20からのフィードバック機能に強化された機能が追加されてよい。例えば、HARQ-ACKに対する端末のフィードバックの強化された機能が追加されてよい。
 次に、基地局10及び端末20の構成について説明する。なお、以下に説明する基地局10及び端末20の構成は、本実施の形態に関連する機能の一例を示すものである。基地局10及び端末20には、図示しない機能を有してもよい。また、本実施の形態に係る動作を実行する機能であれば、機能区分、及び/又は、機能部の名称は限定されない。
 <基地局の構成>
 図19は、本実施の形態に係る基地局10の構成の一例を示すブロック図である。基地局10は、例えば、送信部101と、受信部102と、制御部103と、を含む。基地局10は、端末20(図20参照)と無線によって通信する。
 送信部101は、下りリンク(downlink(DL))信号を端末20へ送信する。例えば、送信部101は、制御部103による制御の下に、DL信号を送信する。
 DL信号には、例えば、下りリンクのデータ信号、及び、制御情報(例えば、Downlink Control Information(DCI))が含まれてよい。また、DL信号には、端末20の信号送信に関するスケジューリングを示す情報(例えば、ULグラント)が含まれてよい。また、DL信号には、上位レイヤの制御情報(例えば、Radio Resource Control(RRC)の制御情報)が含まれてもよい。また、DL信号には、参照信号が含まれてもよい。
 DL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PDSCH(Physical Downlink Shared Channel)が含まれ、制御チャネルには、PDCCH(Physical Downlink Control Channel)が含まれてよい。例えば、基地局10は、端末20に対して、PDCCHを用いて、制御情報を送信し、PDSCHを用いて、下りリンクのデータ信号を送信する。
 DL信号に含まれる参照信号には、例えば、復調用参照信号(Demodulation Reference Signal(DMRS))、Phase Tracking Reference Signal(PTRS)、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)のいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、下りリンクのデータ信号の復調のために使用され、PDSCHを用いて送信される。
 受信部102は、端末20から送信された上りリンク(uplink(UL))信号を受信する。例えば、受信部102は、制御部103による制御の下に、UL信号を受信する。
 制御部103は、送信部101の送信処理、及び、受信部102の受信処理を含む、基地局10の通信動作を制御する。
 例えば、制御部103は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部101へ出力する。また、制御部103は、受信部102から受信したデータ及び制御情報等を上位レイヤへ出力する。
 例えば、制御部103は、端末20から受信した信号(例えば、データ及び制御情報等)及び/又は上位レイヤから取得したデータ及び制御情報等に基づいて、DL信号の送受信に用いるリソース(又はチャネル)及び/又はUL信号の送受信に用いるリソースの割り当てを行う。割り当てたリソースに関する情報は、端末20に送信する制御情報に含まれてよい。
 制御部103は、UL信号の送受信に用いるリソースの割り当ての一例として、PUCCHリソースを設定する。PUCCHセルタイミングパターン等のPUCCHの設定に関する情報(PUCCHの設定情報)は、RRCによって端末20に通知されてよい。
 <端末の構成>
 図20は、本実施の形態に係る端末20の構成の一例を示すブロック図である。端末20は、例えば、受信部201と、送信部202と、制御部203と、を含む。端末20は、例えば、基地局10と無線によって通信する。
 受信部201は、基地局10から送信されたDL信号を受信する。例えば、受信部201は、制御部203による制御の下に、DL信号を受信する。
 送信部202は、UL信号を基地局10へ送信する。例えば、送信部202は、制御部203による制御の下に、UL信号を送信する。
 UL信号には、例えば、上りリンクのデータ信号、及び、制御情報(例えば、UCI)が含まれてよい。例えば、端末20の処理能力に関する情報(例えば、UE capability)が含まれてよい。また、UL信号には、参照信号が含まれてもよい。
 UL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PUSCH(Physical Uplink Shared Channel)が含まれ、制御チャネルには、PUCCH(Physical Uplink Control Channel)が含まれる。例えば、端末20は、基地局10から、PUCCHを用いて、制御情報を受信し、PUSCHを用いて、上りリンクのデータ信号を送信する。
 UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRS、及び、PRSのいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、上りリンクのデータ信号の復調のために使用され、上りリンクチャネル(例えば、PUSCH)を用いて送信される。
 制御部203は、受信部201における受信処理、及び、送信部202における送信処理を含む、端末20の通信動作を制御する。
 例えば、制御部203は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部202へ出力する。また、制御部203は、例えば、受信部201から受信したデータ及び制御情報等を上位レイヤへ出力する。
 例えば、制御部203は、基地局10へフィードバックする情報の送信を制御する。基地局10へフィードバックする情報は、例えば、HARQ-ACKを含んでもよいし、チャネル状態情(Channel. State Information(CSI))を含んでもよいし、スケジューリング要求(Scheduling Request(SR))を含んでもよい。基地局10へフィードバックする情報は、UCIに含まれてよい。UCIは、PUCCHのリソースにおいて送信される。
 制御部203は、基地局10から受信した設定情報(例えば、RRCによって通知されたPUCCHセルタイミングパターン等の設定情報及び/又はDCI)に基づいて、PUCCHリソースを設定する。制御部203は、基地局10へフィードバックする情報の送信に使用するPUCCHリソースを決定する。送信部202は、制御部203の制御により、制御部203が決定したPUCCHリソースにおいて、基地局10へフィードバックする情報を送信する。
 なお、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルは、上述した例に限定されない。例えば、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルには、RACH(Random Access Channel)及びPBCH(Physical Broadcast Channel)が含まれてよい。RACHは、例えば、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI)の送信に用いられてよい。
 制御部203は、異なる上りセルにおける第1のスロットと第2のスロットとであって、第1のスロットに含まれ、動的にスケジューリングされた信号における応答信号の第1のCBと、第1のスロットとオーバーラップする第2のスロットに含まれ、準静的にスケジューリングされた信号における応答信号の第2のCBと、を多重してもよい。送信部202は、多重されたCBを送信してもよい。
 第1のスロットは、例えば、図11に示すdynamic HARQ-ACKスロットであってもよい。第2のスロットは、例えば、図11に示すSPS HARQ-ACKスロットであってもよい。第1のCBは、例えば、図11に示すHARQ-ACK CBであってもよい。第2のCBは、例えば、図11に示すSPS HARQ-ACK CB#1及びSPS HARQ-ACK CB#2であってもよい。
 制御部203は、第1のCBに続けて(時間的に続けて)、第2のCBを付加してもよい。例えば、制御部203は、図11に示すHARQ-ACK CBに続けて、SPS HARQ-ACK CB#1及びSPS HARQ-ACK CB#2を付加してもよい。
 制御部203は、第2のCBの応答信号と、第1のスロットとオーバーラップする第3のスロットに含まれ、準静的にスケジューリングされた信号における応答信号の第3のCBの応答信号と、を並び替えてもよい。制御部203は、応答信号を並び替えたCBを、第1のCBに続けて、付加してもよい。例えば、制御部203は、図12に示すSPS HARQ-ACK CB #1のSPS HARQ-ACKと、SPS HARQ-ACK CB #2のSPS HARQ-ACKと、を並び替えてもよい。制御部203は、並び替えたSPS HARQ-ACKのCBを、図12に示すHARQ-ACK CBに続けて付加してもよい。
 制御部203は、第1のCBにHARQ-ACKが束ねられた第1の候補受信信号スロットセットと、第2のCBにHARQ-ACKが束ねられた第2の候補受信信号スロットセットと、の和集合のスロットセットを決定してもよい。例えば、制御部203は、図13に示すst11に含まれるCBにHARQ-ACKが束ねられた候補PDSCHスロットセット(点線枠A11のスロットセット)と、st12に含まれるCBにHARQ-ACKが束ねられた候補PDSCHスロットセット(点線枠A12のスロットセット)と、st13に含まれるCBにHARQ-ACKが束ねられた候補PDSCHスロットセット(点線枠A13のスロットセット)と、の和集合のスロットセット({#n,#n+1,…,#n+5})を決定してもよい。制御部203は、決定した和集合のスロットセットに基づいて、st11、st12、及びst13のCBを多重してもよい。
 以上、本開示について説明した。
<ハードウェア構成等>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局、端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図21は、本開示の一実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103及び制御部203などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、端末20の制御部203は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部101、受信部102、受信部201、及び送信部202などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
<情報の通知、シグナリング>
 情報の通知は、本開示において説明した実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<適用システム>
 本開示において説明した実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<入出力の方向>
 情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
<ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
<情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
<システム、ネットワーク>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
<基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
<移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
<基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の実施の形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末20が有する機能を基地局10が有する構成としてもよい。
<用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
<参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<手段>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
<最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本特許出願は、2021年8月18日に出願した日本国特許出願第2021-133720号に基づきその優先権を主張するものであり、日本国特許出願第2021-133720号の全内容を本願に援用する。
 本開示の一態様は、無線通信システムに有用である。
 10 基地局
 20 端末
 101,202 送信部
 102,201 受信部
 103,203 制御部

Claims (5)

  1.  制御信号および動的にスケジューリングされた信号を受信する受信部と、
     前記動的にスケジューリングされた信号における応答信号の送信セルが、前記制御信号に指示されているか否かに応じて、前記応答信号の送信セルを決定する制御部と、
     前記制御部が決定したセルにおいて前記応答信号を送信する送信部と、
     を有する端末。
  2.  前記制御部は、前記応答信号の送信セルが前記制御信号に指示されていない場合、デフォルトで設定されているターゲットセルを、前記応答信号の送信セルとして決定する、
     請求項1に記載の端末。
  3.  前記制御部は、前記応答信号の送信セルが前記制御信号に指示されていない場合、前記応答信号の送信セルが指示されていた直近の前記制御信号で指示されたターゲットセルを、前記応答信号の送信セルとして決定する、
     請求項1に記載の端末。
  4.  前記制御部は、前記応答信号の送信セルが前記制御信号に指示されていない場合、第1セルの第1のスロットに含まれる前記応答信号の第1のコードブックと、前記第1のスロットとは異なる上りセルのスロットであって、前記第1のスロットとオーバーラップする第2セルの第2のスロットに含まれ前記応答信号の第2のコードブックと、を多重し、
     前記送信部は、多重された前記第1のコードブックと前記第2のコードブックとを送信する、
     請求項1に記載の端末。
  5.  制御信号および動的にスケジューリングされた信号を受信し、
     前記動的にスケジューリングされた信号における応答信号の送信セルが、前記制御信号に指示されているか否かに応じて、前記応答信号の送信セルを決定し、
     前記決定したセルにおいて前記応答信号を送信する、
     無線通信方法。
PCT/JP2022/026376 2021-08-18 2022-06-30 端末及び無線通信方法 WO2023021862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023542253A JPWO2023021862A1 (ja) 2021-08-18 2022-06-30
EP22858185.6A EP4391641A1 (en) 2021-08-18 2022-06-30 Terminal, and radio communication method
CN202280055498.4A CN117813860A (zh) 2021-08-18 2022-06-30 终端以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021133720 2021-08-18
JP2021-133720 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023021862A1 true WO2023021862A1 (ja) 2023-02-23

Family

ID=85240514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026376 WO2023021862A1 (ja) 2021-08-18 2022-06-30 端末及び無線通信方法

Country Status (4)

Country Link
EP (1) EP4391641A1 (ja)
JP (1) JPWO2023021862A1 (ja)
CN (1) CN117813860A (ja)
WO (1) WO2023021862A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133720A (ja) 2020-02-25 2021-09-13 株式会社デンソー 車両制御の故障診断装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133720A (ja) 2020-02-25 2021-09-13 株式会社デンソー 車両制御の故障診断装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "HARQ-ACK Enhancements for IIoT/URLLC", 3GPP DRAFT; R1-2106678, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052037959 *
NTT DOCOMO, INC.: "Discussion on HARQ-ACK feedback enhancements for Rel.17 URLLC", 3GPP DRAFT; R1-2107851, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052033648 *
NTT DOCOMO, INC.: "Discussion on HARQ-ACK feedback enhancements for Rel.17 URLLC", 3GPP DRAFT; R1-2109671, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058612 *

Also Published As

Publication number Publication date
EP4391641A1 (en) 2024-06-26
CN117813860A (zh) 2024-04-02
JPWO2023021862A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2023007565A1 (ja) 端末および無線通信方法
US20240250782A1 (en) Terminal and communication method
WO2023021862A1 (ja) 端末及び無線通信方法
WO2023013005A1 (ja) 端末及び無線通信方法
WO2023053433A1 (ja) 端末及び通信方法
WO2023053434A1 (ja) 端末及び通信方法
WO2023012955A1 (ja) 端末及び無線通信方法
WO2023012956A1 (ja) 端末及び無線通信方法
WO2023037479A1 (ja) 端末及び無線通信方法
WO2023053232A1 (ja) 端末及び無線通信方法
WO2023017571A1 (ja) 端末及び無線通信方法
WO2023021711A1 (ja) 端末及び無線通信方法
WO2023021710A1 (ja) 端末及び無線通信方法
WO2023021712A1 (ja) 端末及び無線通信方法
WO2023053231A1 (ja) 端末及び無線通信方法
WO2023281677A1 (ja) 端末および無線通信方法
WO2023053393A1 (ja) 端末及び無線通信方法
WO2023286261A1 (ja) 端末および無線通信方法
WO2023286262A1 (ja) 端末および無線通信方法
WO2023286260A1 (ja) 端末および無線通信方法
WO2023053233A1 (ja) 端末及び無線通信方法
WO2023042355A1 (ja) 端末及び無線通信方法
WO2023281608A1 (ja) 端末および無線通信方法
WO2022249721A1 (ja) 端末、無線通信システム及び無線通信方法
WO2023286259A1 (ja) 端末および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858185

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280055498.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023542253

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022858185

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022858185

Country of ref document: EP

Effective date: 20240318