WO2023281677A1 - 端末および無線通信方法 - Google Patents

端末および無線通信方法 Download PDF

Info

Publication number
WO2023281677A1
WO2023281677A1 PCT/JP2021/025704 JP2021025704W WO2023281677A1 WO 2023281677 A1 WO2023281677 A1 WO 2023281677A1 JP 2021025704 W JP2021025704 W JP 2021025704W WO 2023281677 A1 WO2023281677 A1 WO 2023281677A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
mcs
delta
information
terminal
Prior art date
Application number
PCT/JP2021/025704
Other languages
English (en)
French (fr)
Inventor
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023532965A priority Critical patent/JPWO2023281677A1/ja
Priority to PCT/JP2021/025704 priority patent/WO2023281677A1/ja
Publication of WO2023281677A1 publication Critical patent/WO2023281677A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to terminals and wireless communication methods.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • LTE-A Long Term Evolution-Advanced
  • FAA Future Radio Access
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • New-RAT Radio Access Technology
  • NR Radio
  • Non-Patent Document 1 For example, in NR, strengthening the function of feedback from terminals to base stations is under consideration in order to improve communication quality (for example, Non-Patent Document 1).
  • the priority of the information transmitted (for example, fed back) from the terminal to the base station has room for consideration.
  • One aspect of the present disclosure provides a terminal and a wireless communication method that can appropriately determine the priority of information to be transmitted (for example, fed back) from the terminal to the base station.
  • a terminal includes, in uplink transmission, a control unit that determines the priority of information related to Modulation and Coding Scheme (MCS) for feedback information of downlink data reception, and the uplink according to the determined priority and a transmission unit that performs transmission.
  • MCS Modulation and Coding Scheme
  • a terminal determines priority of information related to Modulation and Coding Scheme (MCS) with respect to feedback information of downlink data reception, and according to the determined priority, Perform uplink transmission.
  • MCS Modulation and Coding Scheme
  • FIG. 4 is a diagram illustrating an example of uplink (UL) transmission priorities
  • FIG. 10 is a diagram showing Case 1 of UL transmission
  • FIG. 10 is a diagram showing Case 2 of UL transmission
  • FIG. 2-1 of Proposal 2 is a diagram showing an example.
  • FIG. 2-2 of Proposal 2 is a diagram showing an example.
  • FIG. 1 is a diagram illustrating an example of a radio communication system according to an embodiment
  • FIG. 2 is a block diagram showing an example of the configuration of a base station according to one embodiment
  • FIG. 1 is a block diagram showing an example of a configuration of a terminal according to one embodiment
  • FIG. It is a figure which shows an example of the hardware configuration of the base station and terminal which concern on one Embodiment.
  • extension of feedback in the physical layer from the terminal to the base station will be considered.
  • UE feedback enhancements for HARQ-ACK and CSI feedback enhancements that allow more accurate (or better) MCS selection are considered.
  • HARQ is an abbreviation for automatic repeat request
  • CSI is an abbreviation for channel state information
  • HARQ-ACK is an example of information (eg, acknowledgment information) that a terminal transmits (eg, feeds back) on a UL channel in response to a downlink data channel (eg, PDSCH) signal received from a base station.
  • a downlink data channel eg, PDSCH
  • ⁇ Collision handling between uplink (UL) transmissions with same or different priority Two levels of UL transmission priority may be defined.
  • the priority may be indicated by a parameter (eg, Priority Indicator (PI) field) in the downlink control information (DCI), for example, as shown in FIG. 1, or by a higher layer (eg, Radio Resource Control (RRC )) parameters.
  • PI Priority Indicator
  • RRC Radio Resource Control
  • a terminal for example, User Equipment, UE
  • UE can identify the priority of UL transmission by indicating or setting the priority in this way.
  • delta-MCS is an example of information about MCS and indicates the difference between the current MCS and the desired MCS.
  • MCS is an abbreviation for Modulation and Coding Scheme.
  • a “desired MCS” may be, for example, an MCS desired or expected to be used in a base station or a terminal for DL transmission.
  • Case 1 (Fig. 2): delta-MCS is sent with HARQ-ACK. For example, delta-MCS may be reported in part of the extended HARQ-ACK codebook.
  • Case 2 (Fig. 3): delta-MCS is sent separately from HARQ-ACK. For example, delta-MCS may be reported in the CSI report separately from the HARQ-ACK codebook.
  • the priority of "delta-MCS” is clarified and the priority of "delta-MCS" in UL transmission is determined appropriately.
  • a "delta-MCS" may be determined, for example, based on the current MCS and the desired MCS.
  • An MCS Index defined by the MCS Index table in 3GPP TS38.214, for example, may be used to specify or identify the MCS.
  • the terminal fails to decode Physical Downlink Shared Channel (PDSCH) transmitted at a certain MCS Index (hereinafter referred to as MCS Index #i (i is an integer of 0 or more)),
  • MCS Index #i i is an integer of 0 or more
  • a desired MCS Index may be set to an MCS Index #j (j is an integer greater than or equal to 0 and less than i) that is lower than the MCS Index #i used in the failed PDSCH.
  • the terminal feeds back the difference (eg, "ji") between the MCS Index#i used in the PDSCH for which decoding has failed and the desired MCS Index#j to the base station as an example of information on the MCS. may be included in the information to be provided.
  • delta-MCS By transmitting (feeding back) "delta-MCS" to the base station, the terminal can improve the flexibility of the MCS that can be requested from the base station and reduce the bit size of the feedback information.
  • the difference between the current MCS and the desired MCS (hereinafter sometimes referred to as “delta value") is associated with an index, and “delta-MCS” is based on the index associated with “delta value”. It may be implicitly fed back to the station.
  • Delta-MCS may be information related to wireless communication quality, such as MCS or CQI, which is different from the information examples described above.
  • CQI is an abbreviation for Channel Quality Indicator.
  • delta-MCS may be replaced with other names such as “delta-CQI”, for example.
  • the priority of delta-MCS may be pre-fixed to be low or high.
  • the priority of delta-MCS is a predefined fixed value, which is a fixed value with a lower priority than the priority of HARQ-ACK, a fixed value with a higher priority, or a fixed value with an equal priority. There may be.
  • delta-MCS may be dropped. In this case, only HARQ-ACK out of delta-MCS and HARQ-ACK may be UL transmitted. By not dropping HARQ-ACKs, for example, a decrease in PDSCH throughput can be suppressed.
  • the priority of delta-MCS may be indicated by downlink control information (eg DCI) received from the base station.
  • Downlink control information eg, DCI
  • DCI may schedule a downlink data channel (eg, PDSCH), and HARQ-ACK of the corresponding downlink data channel (eg, PDSCH) may indicate the priority of delta-MCS.
  • the value of the delta-MCS priority or DCI indication field may be the same as or different from the HARQ-ACK priority.
  • the priority of delta-MCS may be indicated by the "Priority Indicator” without extension.
  • "priority indicator” is 0 bit when the upper layer parameter priorityIndicatorForDCI-Format1-X (priorityIndicatorForDCI-Format1-1, priorityIndicatorForDCI-Format1-2, etc.) is not set. Otherwise, 1 bit may indicate priority of delta-MCS and HARQ-ACK (eg, same priority or different priority).
  • the priority of delta-MCS may be indicated by the extended "Priority Indicator".
  • the bit size of the "Priority Indicator” may be increased from 1 bit to 2 bits, for example.
  • the least significant bit (LSB) may represent the priority of HARQ-ACK
  • the most significant bit (MSB) may represent the priority of delta-MCS.
  • MSB may represent the priority of HARQ-ACK
  • LSB may represent the priority of delta-MCS.
  • Which of the MSB and LSB corresponds to the priority of HARQ-ACK or the priority of delta-MCS may be defined in the standard or set by higher layer parameters (eg, RRC parameters).
  • the bit size of the new field may be, for example, 1 bit or more. Otherwise, 0 bit is acceptable.
  • DCI Format 1_1 or DCI Format 1_2 may be applied to the DCI format. However, other formats may be applied to the DCI format.
  • the priority of delta-MCS may be set by RRC.
  • Opt.3-1 The existing parameter indicating the priority of Semi-Persistent Scheduling (SPS) HARQ-ACK may indicate the priority of delta-MCS.
  • SPS Semi-Persistent Scheduling
  • HARQ-ACK Information that identifies the codebook used for HARQ ACK (eg, harq-CodebookID) is the priority of HARQ-ACK corresponding to SPS PDSCH reception, or SPS PDSCH release and May be set to indicate the priority of HARQ-ACK corresponding to delta-MCS.
  • the priority of SPS HARQ-ACK and the priority of delta-MCS may be the same.
  • Alt.1 Fixed configuration as described in the standard (e.g. configuration 0 with sps-ConfigIndex of 0)
  • Alt.2 Highest or lowest priority among multiple SPS settings
  • Alt.3 Priority value of SPS setting of SPS PDSCH corresponding to delta-MCS
  • a new parameter may be introduced to indicate the priority of delta-MCS.
  • a new parameter eg deltaMCSPriority, may be introduced as an optional parameter. If a new parameter is set, the UE identifies (determines) the priority of delta-MCS based on the parameter. Note that the priority indicated by harq-CodebookID of SPS HARQ-ACK and the priority indicated by the new parameter (eg, deltaMCSpriority) may be the same or different.
  • the priority of delta-MCS may be fixed low or high.
  • the priority of delta-MCS is a predefined fixed value, which is a fixed value with a lower priority than the priority of HARQ-ACK, a fixed value with a higher priority, or a fixed value with an equal priority. There may be.
  • the priority of delta-MCS is lower than that of HARQ-ACK, delta-MCS of HARQ-ACK and delta-MCS may be dropped and only HARQ-ACK may be UL transmitted. By not dropping HARQ-ACK, for example, it is possible to suppress a decrease in PDSCH throughput.
  • the priority of delta-MCS may be indicated by downlink control information (eg DCI).
  • DCI downlink control information
  • the priority of delta-MCS may be indicated by HARQ-ACK of the corresponding PDSCH and downlink control information (eg, DCI) for PDSCH scheduling.
  • DCI downlink control information
  • DCI Format 1_1 or DCI Format 1_2 may be applied to the DCI format. However, other formats may be applied to the DCI format.
  • the priority and indication fields may be the same or different for HARQ-ACK.
  • Priority display without extension indicates the priority of delta-MCS.
  • the extended "Priority Indicator” may indicate the priority of delta-MCS.
  • the bit size of the "Priority Indicator” may be increased from 1 bit to 2 bits, for example.
  • the LSB may represent the priority of HARQ-ACK, and the MSB may represent the priority of delta-MCS. Conversely, the MSB may represent the priority of HARQ-ACK and the LSB may represent the priority of delta-MCS.
  • bit size of "Priority Indicator” is Y bits, where Y may be 2 as an example . Otherwise, like Rel-16, it can be 0 or 1 bit.
  • the priority of delta-MCS may be indicated by an individual DCI other than Opt.2-1 of Proposal 2.
  • the DCI format may be, for example, DCI Format 1_1, 1_2, 0_1, or 0_2.
  • Other formats, including group common DCI, may be applied to the format of DCI.
  • the value of the delta-MCS priority or DCI indication field may be the same as or different from the HARQ-ACK priority.
  • the existing "Priority Indicator” may indicate the priority of delta-MCS.
  • “Priority Indicator” may be 0 bits if higher layer parameters, e.g. Otherwise, 1 bit may indicate the priority of delta-MCS.
  • the priority of HARQ-ACK may be determined by the priority and indication fields. For example, the existing "Priority Indicator” field may indicate the priority of delta-MCS at one timing and the priority of HARQ-ACK at another timing.
  • the priority of delta-MCS may be indicated by the extended "Priority Indicator".
  • the bit size of the "Priority Indicator” may be increased from 1 bit to 2 bits, for example.
  • the LSB may represent the priority of HARQ-ACK, and the MSB may represent the priority of delta-MCS. Conversely, the MSB may represent the priority of HARQ-ACK and the LSB may represent the priority of delta-MCS.
  • a new upper layer parameter e.g. priorityIndicatorForDeltaMCS or priorityIndicatorForDeltaMCSForDCI-FormatX1-X2 (e.g. priorityIndicatorForDeltaMCSForDCI-Format0-1 and priorityIndicatorForDeltaMCSForDCI-Format0-2) is set, the bit size of "Priority Indicator” is Y bits (where Y is 0 or greater) ) and Y may be 2 as an example. Otherwise, like Rel-16, it can be 0 or 1 bit.
  • Opt.2-2-3 A new field that indicates the priority of Delta-MCS may be introduced separately from the "Priority Indicator". If a new higher layer parameter, e.g. priorityIndicatorForDeltaMCS, or priorityIndicatorForDeltaMCSForDCI-FormatX1-X2 (e.g. priorityIndicatorForDeltaMCSForDCI-Format0-1, priorityIndicatorForDeltaMCSForDCI-Format0-2, etc.) is set, there may be more than one bit of the new field. Otherwise, 0 bit is acceptable.
  • priorityIndicatorForDeltaMCS e.g. priorityIndicatorForDeltaMCS, or priorityIndicatorForDeltaMCSForDCI-FormatX1-X2 (e.g. priorityIndicatorForDeltaMCSForDCI-Format0-1, priorityIndicatorForDeltaMCSForDCI-Format0-2, etc.) is set, there may be more
  • Delta-MCS priority may be set by RRC.
  • the existing parameter indicating the priority of HARQ-ACK of SPS or the existing parameter indicating the priority of Configured Grant (CG) PUSCH may indicate the priority of delta-MCS.
  • Opt.3-1-1 The information identifying the codebook used for HARQ ACK (e.g., harq-CodebookID) is specified in the SPS configuration information (e.g., SPS-Config) for HARQ-ACK corresponding to SPS PDSCH reception. Priority, or may be set to indicate priority of HARQ-ACK corresponding to SPS PDSCH release and delta-MCS. For example, when the harq-CodebookID is 1, the priority of delta-MCS may be set to low priority. Also, when the harq-CodebookID is 2, the priority of delta-MCS may be set to high priority. The priority of SPS HARQ-ACK and the priority of delta-MCS may be the same or different values.
  • Alt.1 Fixed configuration as described in the standard (eg configuration 0 with sps-ConfigIndex equal to 0).
  • Alt.2 Highest or lowest priority among multiple SPS settings
  • Alt.3 Priority value of SPS setting of SPS PDSCH corresponding to delta-MCS
  • Option 3-1-2 For priority indication of Configured Grant (CG) PUSCH and delta-MCS, the configuration information about CG (e.g. ConfiguredGrantConfig) contains information about priority in the physical layer (e.g. phy-PriorityIndex) may be set. For example, when the phy-PriorityIndex is p0, the priority of delta-MCS may be set to low priority. Also, when the phy-PriorityIndex is p1, the priority of delta-MCS may be set to high priority. CG PUSCH and delta-MCS may have the same priority.
  • Alt.1 Fixed configuration as described in the standard (eg configuration 0 with configuredGrantConfigIndex equal to 0).
  • Alt.2 Highest or lowest priority among multiple CG settings
  • Alt.3 Priority value of CG setting of CG PUSCH where delta-MCS is sent
  • a new parameter indicating the priority of delta-MCS may be introduced.
  • a new parameter such as deltaMCSpriority may be introduced.
  • the UE may determine (identify) the priority of delta-MCS based on the parameter. For example, when deltaMCSpriority is p0, the priority of delta-MCS may be set to low priority. Also, when deltaMCSpriority is p1, the priority of delta-MCS may be set to high priority.
  • the priority indicated by harq-CodebookID in SPS HARQ-ACK or the priority indicated by phy-PriorityIndex in CG PUSCH and the priority indicated by the new parameter (e.g., deltaMCSpriority) may be the same or different. .
  • New parameters may be set, for example, in one or both of SPS-Config and ConfiguredGrantConfig.
  • FIG. 9 is a diagram showing an example of a wireless communication system 10 according to one embodiment.
  • the radio communication system 10 may be a radio communication system according to New Radio (NR).
  • NR New Radio
  • the wireless communication system 10 may be a wireless communication system according to a scheme called URLLC and/or Industrial Internet of Things (IIoT).
  • the radio communication system 10 may include a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200.
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • the wireless communication system 10 may be a wireless communication system that conforms to (or conforms to) a scheme called 5G, Beyond 5G, 5G Evolution, or 6G. Also, the wireless communication system 10 may be a system of a generation after 6G.
  • NG-RAN 20 includes base stations 100 (base station 100A and base station 100B).
  • the number of base stations 100 and the number of terminals 200 are not limited to the example shown in FIG.
  • the NG-RAN 20 includes multiple NG-RAN Nodes, such as gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
  • NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • the base station 100 may also be called an NG-RAN Node, ng-eNB, eNodeB (eNB), or gNodeB (gNB).
  • Terminal 200 may be called User Equipment (UE).
  • base station 100 may be regarded as a device included in a network to which terminal 200 connects.
  • the base station 100 performs wireless communication with the terminal 200.
  • the wireless communication performed complies with NR.
  • At least one of the base station 100 and the terminal 200 uses Massive MIMO (Multiple-Input Multiple-Output) to generate beams (BM) with higher directivity by controlling radio signals transmitted from a plurality of antenna elements. You can respond.
  • at least one of base station 100 and terminal 200 may support carrier aggregation (CA) in which multiple component carriers (CC) are bundled and used.
  • CA carrier aggregation
  • CC component carriers
  • at least one of the base station 100 and the terminal 200 may support dual connectivity (DC), etc., in which communication is performed between the terminal 200 and each of the plurality of base stations 100 .
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 may support multiple frequency bands.
  • wireless communication system 10 supports Frequency Ranges (FR) 1 and FR2.
  • the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
  • FR1 Sub-Carrier Spacing (SCS) of 15 kHz, 30 kHz or 60 kHz may be used, and a bandwidth (BW) of 5 MHz to 100 MHz may be used.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is, for example, a higher frequency than FR1.
  • FR2 may use an SCS of 60 kHz or 120 kHz and a bandwidth (BW) of 50 MHz to 400 MHz.
  • FR2 may include a 240 kHz SCS.
  • the wireless communication system 10 may support a frequency band higher than the FR2 frequency band.
  • the wireless communication system 10 in this embodiment can support frequency bands exceeding 52.6 GHz and up to 114.25 GHz.
  • Such high frequency bands may be referred to as "FR2x.”
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM may be applied to both uplink and downlink, or may be applied to either one.
  • a time division duplex (TDD) slot configuration pattern may be set.
  • DDDSU downlink (DL) symbol
  • S DL/uplink (UL) or guard symbol
  • U UL symbol
  • channel estimation of PUSCH can be performed using a demodulation reference signal (DMRS) for each slot.
  • DMRS demodulation reference signal
  • Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
  • Terminal 200 may transmit DMRS assigned to (spanning over) multiple slots so that base station 100 can perform joint channel estimation using DMRS.
  • an enhanced function may be added to the feedback function from the terminal 200 to the base station 100.
  • enhanced functionality of terminal feedback for HARQ-ACK and enhanced functionality of CSI feedback for more accurate MCS selection may be added.
  • base station 100 and the terminal 200 will be described.
  • the configurations of base station 100 and terminal 200 described below are examples of functions related to the present embodiment.
  • Base station 100 and terminal 200 may have functions not shown.
  • the functional division and/or the name of the functional unit are not limited as long as the function executes the operation according to the present embodiment.
  • FIG. 10 is a block diagram showing an example of the configuration of base station 100 according to this embodiment.
  • the base station 100 may include a transmitter 101, a receiver 102, and a controller 103, for example.
  • Base station 100 wirelessly communicates with terminal 200 (see FIG. 4).
  • the transmission section 101 transmits a downlink (DL) signal to the terminal 200 .
  • the transmitter 101 transmits a DL signal under the control of the controller 103 .
  • a DL signal may include, for example, a downlink data signal and control information (eg, Downlink Control Information (DCI)). Also, the DL signal may include information (for example, UL grant) indicating scheduling regarding signal transmission of terminal 200 . Also, the DL signal may include higher layer control information (for example, Radio Resource Control (RRC) control information). Also, the DL signal may include a reference signal.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • Channels used for transmitting DL signals include, for example, data channels and control channels.
  • the data channel may include a PDSCH (Physical Downlink Shared Channel)
  • the control channel may include a PDCCH (Physical Downlink Control Channel).
  • base station 100 transmits control information to terminal 200 using PDCCH, and transmits downlink data signals using PDSCH.
  • reference signals included in DL signals include demodulation reference signals (DMRS), phase tracking reference signals (PTRS), channel state information-reference signals (CSI-RS), sounding reference signals (SRS ), and Positioning Reference Signal (PRS) for position information.
  • DMRS demodulation reference signals
  • PTRS phase tracking reference signals
  • CSI-RS channel state information-reference signals
  • SRS sounding reference signals
  • PRS Positioning Reference Signal
  • reference signals such as DMRS and PTRS are used for demodulation of downlink data signals and transmitted using PDSCH.
  • the receiving unit 102 receives an uplink (UL) signal transmitted from the terminal 200.
  • the receiving unit 102 receives the UL signal under the control of the control unit 103.
  • the control unit 103 controls the communication operation of the base station 100, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
  • control unit 103 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 101 .
  • Control section 103 also outputs the data received from receiving section 102, control information, and the like to an upper layer.
  • control unit 103 allocates resources (or channels) used for transmitting/receiving DL signals and/or resources used for transmitting/receiving UL signals. Information about allocated resources may be included in control information to be transmitted to terminal 200 .
  • the control section 103 may configure a plurality of PUCCH resource sets as an example of allocation of resources used for transmission and reception of UL signals. Information on the configured multiple PUCCH resource sets may be notified to terminal 200 by RRC.
  • FIG. 4 is a block diagram showing an example of the configuration of terminal 200 according to this embodiment.
  • the terminal 200 may include a receiver 201, a transmitter 202, and a controller 203, for example.
  • the terminal 200 wirelessly communicates with the base station 100, for example.
  • the receiving unit 201 receives the DL signal transmitted from the base station 100.
  • the receiver 201 receives a DL signal under the control of the controller 203 .
  • the transmission unit 202 transmits the UL signal to the base station 100.
  • the transmitter 202 transmits UL signals under the control of the controller 203 .
  • the UL signal may include, for example, an uplink data signal and control information (eg, UCI).
  • control information eg, UCI
  • information about the processing capability of terminal 200 eg, UE capability
  • the UL signal may include a reference signal.
  • Channels used to transmit UL signals include, for example, data channels and control channels.
  • the data channel includes PUSCH (Physical Uplink Shared Channel)
  • the control channel includes PUCCH (Physical Uplink Control Channel).
  • terminal 200 receives control information from base station 100 using PUCCH, and transmits uplink data signals using PUSCH.
  • the reference signal included in the UL signal may include at least one of DMRS, PTRS, CSI-RS, SRS, and PRS, for example.
  • reference signals such as DMRS and PTRS are used for demodulation of uplink data signals and transmitted using PUSCH.
  • the control unit 203 controls communication operations of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
  • control unit 203 acquires information such as data and control information from the upper layer and outputs it to the transmission unit 202 . Also, the control unit 203 outputs, for example, the data and control information received from the receiving unit 201 to the upper layer.
  • control unit 203 controls transmission of information to be fed back to the base station 100 .
  • Information fed back to the base station 100 may include, for example, HARQ-ACK and/or delta-MCS.
  • Information to be fed back to the base station 100 may be included in the UCI.
  • UCI is transmitted on PUCCH resources.
  • the control section 203 sets a plurality of PUCCH resource sets based on the control information received from the base station 100, and selects at least one PUCCH resource set from among the plurality of PUCCH resource sets. Then, control section 203 determines PUCCH resources to be used for transmitting information to be fed back to base station 100 from among the resources of the selected PUCCH resource set. Under the control of control section 203 , transmission section 202 transmits information to be fed back to base station 100 on the PUCCH resource determined by control section 203 .
  • control unit 203 may determine the priority of information on MCS (eg, delta-MCS) with respect to feedback information on DL data reception.
  • MCS eg, delta-MCS
  • the transmission section 202 may perform UL transmission according to the priority determined by the control section 203, for example.
  • channels used for DL transmission and the channels used for UL transmission are not limited to the above examples.
  • channels used for DL transmissions and channels used for UL transmissions may include Random Access Channel (RACH) and Physical Broadcast Channel (PBCH).
  • RACH may be used, for example, to transmit DCI including Random Access Radio Network Temporary Identifier (RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the information indicating the priority of delta-MCS is, for example, a combination of upper layer parameters such as RRC and DCI to the terminal to indicate to the UE (in other words, hybrid indication). good.
  • UL resources used for transmission of information eg, one or both of HARQ-ACK and delta-MCS
  • information eg, one or both of HARQ-ACK and delta-MCS
  • the UL resource used for feedback for example, an uplink control information (UCI) resource or a HARQ-ACK resource may be used.
  • UCI uplink control information
  • a Type1 HARQ-ACK CB may be, for example, a CB that is semi-statically allocated by configuration information (for example, RRC) that the terminal receives from the base station.
  • a Type2 HARQ-ACK CB may be, for example, a CB dynamically allocated according to control information (eg, DCI) received by the terminal from the base station.
  • control information eg, DCI
  • Feedback information may be sent using HARQ-ACK resources of both Type1 HARQ-ACK CB and Type2 HARQ-ACK CB. In other words, feedback information may be sent using HARQ-ACK resources regardless of HARQ-ACK CB Type.
  • Which HARQ-ACK CB Type of HARQ-ACK resource to use as the UL resource used to transmit feedback information may be determined by RRC settings, or may be determined by information on terminal capabilities (e.g., UE Capability). It may be defined, or may be defined by both RRC configuration and UE Capability.
  • Which HARQ-ACK CB Type of HARQ-ACK resource to use may be determined by, for example, a Medium Access Control Control Element (MAC CE) message, or may be determined in advance in the wireless communication system 10.
  • MAC CE Medium Access Control Control Element
  • the terminal's capability regarding the delta-MCS described above may be transmitted (or reported) from the terminal to the base station by UE Capability.
  • the UE capability may include any of the information exemplified below.
  • the UE When the UE transmits (or notifies) to the base station that it supports any of the above UE Capabilities, it may operate according to the delta-MCS behavior indicated in Proposal 1 or Proposal 2. For example, when the UE notifies the base station that it supports transmission of delta-MCS, the UE may transmit delta-MCS according to the determined priority of delta-MCS. Also, the UE may receive delta-MCS from the base station. If the UE notifies the base station that it supports delta-MCS prioritization, the UE may determine the delta-MCS priority according to the prioritization indicated in Proposal 1 or Proposal 2. If the UE has indicated to the base station that it supports a new field for indicating priority of delta-MCS, the UE may proceed to receive this new field.
  • the UE can appropriately determine the priority of delta-MCS for HARQ-ACK. Therefore, for example, it contributes to the improvement of reception quality of PDSCH.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • a base station, a terminal, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of hardware configurations of a base station and terminals according to an embodiment of the present disclosure.
  • the base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • base station 100 and terminal 200 can be read as a circuit, device, unit, or the like.
  • the hardware configuration of base station 100 and terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 100 and the terminal 200 is implemented by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002 so that the processor 1001 performs calculations and controls communication by the communication device 1004. , and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 103 and the control unit 203 described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 103 of the base station 100 or the control unit 203 of the terminal 200 may be implemented by a control program stored in the memory 1002 and operating in the processor 1001, and other functional blocks may be implemented in the same way. good.
  • FIG. Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, the transmitting unit 101, the receiving unit 102, the receiving unit 201, the transmitting unit 202, etc. described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 100 and the terminal 200 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), NR (New Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • Base station operation Certain operations that are described in this disclosure as being performed by a base station may also be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to).
  • MME or S-GW network nodes other than the base station
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • (input/output direction) Information and the like can be output from the upper layer (or lower layer) to the lower layer (or higher layer). It may be input and output via multiple network nodes.
  • Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signal Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system As used in this disclosure, the terms “system” and “network” are used interchangeably.
  • radio resources may be indexed.
  • Base station wireless base station
  • base station radio base station
  • radio base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • RRH indoor small base station
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • terminal In this disclosure, terms such as “Mobile Station (MS),” “user terminal,” “User Equipment (UE),” “terminal,” etc. may be used interchangeably. .
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • terminal 200 may have the functions of base station 100 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as a base station.
  • the base station 100 may have the functions that the terminal 200 described above has.
  • determining may encompass a wide variety of actions.
  • “Judgement”, “determining” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • radio frame configuration for example, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • One aspect of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末(200)は、アップリンク送信において、下りデータ受信のフィードバック情報に対する、Modulation and Coding Scheme(MCS)に関する情報の優先度を決定する制御部(203)と、決定した優先度に従って前記アップリンク送信を行う送信部(202)と、を備える。

Description

端末および無線通信方法
 本開示は、端末および無線通信方法に関する。
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。
 例えば、NRでは、通信品質の向上のために、端末から基地局へのフィードバックの機能を強化することが検討されている(例えば、非特許文献1)。
 端末から基地局へ送信(例えば、フィードバック)する情報の優先度には検討の余地がある。
 本開示の一態様は、端末から基地局へ送信(例えば、フィードバック)する情報の優先度を適切に決定できる端末および無線通信方法を提供する。
 本開示の一態様に係る端末は、アップリンク送信において、下りデータ受信のフィードバック情報に対する、Modulation and Coding Scheme(MCS)に関する情報の優先度を決定する制御部と、決定した優先度に従って前記アップリンク送信を行う送信部と、を備える。
 本開示の一態様に係る無線通信方法において、端末は、アップリンク送信において、下りデータ受信のフィードバック情報に対する、Modulation and Coding Scheme(MCS)に関する情報の優先度を決定し、決定した優先度に従って前記アップリンク送信を行う。
 本開示の一態様によれば、端末から基地局へ送信(例えば、フィードバック)する情報の優先度を適切に決定できる。
アップリンク(UL)送信の優先度の一例を示す図である。 UL送信のCase 1を示す図である。 UL送信のCase 2を示す図である。 Proposal 1のOpt.2-1の一例を示す図である。 Proposal 1のOpt.2-2の一例を示す図である。 Proposal 1のOpt.2-3の一例を示す図である。 Proposal 2のOpt.2-1の一例を示す図である。 Proposal 2のOpt.2-2の一例を示す図である。 一実施の形態に係る無線通信システムの一例を示す図である。 一実施の形態に係る基地局の構成の一例を示すブロック図である。 一実施の形態に係る端末の構成の一例を示すブロック図である。 一実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。
 特定のサービスあるいはシナリオ(例えば、Ultra-Reliable and Low Latency Communications, URLLC)に関する要求を満たす(あるいはカバーする)ために、端末から基地局に対する物理レイヤにおけるフィードバックの拡張が検討される。一例として、UE feedback enhancements for HARQ-ACKと、より正確な(あるいは適切な)MCSの選択を可能とするCSI feedback enhancementsと、が検討される。
 HARQは、automatic repeat requestの略記であり、CSIはchannel state informationの略記である。HARQ-ACKは、端末が、基地局から受信した下りデータチャネル(例えば、PDSCH)の信号に対してULチャネルにおいて送信(例えば、フィードバック)する情報(例えば、確認応答情報)の一例である。
 <同一または異なる優先度のアップリンク(UL)送信間の衝突処理>
 2レベルのUL送信の優先度が定義されてよい。優先度は、例えば図1に示すように、下りリンク制御情報(DCI)内のパラメータ(例えば、Priority Indicator(PI) field)によって指示されてもよいし、上位レイヤ(例えば、Radio Resource Control(RRC))のパラメータによって設定(configured)されてもよい。端末(例えば、User Equipment, UE)は、このように優先度が指示あるいは設定されることにより、UL送信の優先度を識別できる。
 ここで、例えば、以下のCase 1及びCase 2において、UL送信における「delta-MCS」の送信に関する優先度(priority)の決定については検討の余地がある。「delta-MCS」は、MCSに関する情報の一例であり、現在のMCSと所望のMCSとの差異を示す。「MCS」は、Modulation and Coding Schemeの略記である。「所望のMCS」とは、例えば、DL送信について使用が基地局あるいは端末において希望あるいは期待されるMCSであってよい。
 Case 1(図2):delta-MCSは、HARQ-ACKと共に送信される。例えば、delta-MCSは、拡張したHARQ-ACK codebookの一部において報告されてよい。
 Case 2(図3):delta-MCSは、HARQ-ACKとは別に送信される。例えば、delta-MCSは、HARQ-ACK codebookとは別にCSIレポートにおいて報告されてよい。
 本実施の形態においては、「delta-MCS」の優先度を明確化してUL送信における「delta-MCS」に関する優先度を適切に決定する。
 <delta-MCS>
 「delta-MCS」は、例えば、現在のMCSと所望のMCSとに基づいて決定されてよい。MCSの特定あるいは識別には、例えば、3GPP TS38.214においてMCS Index tableによって定義されるMCS Indexが用いられてよい。
 例えば、端末は、或るMCS Index(以下、MCS Index #i(iは、0以上の整数)と記載する)にて送信されたPhysical Downlink Shared Channel(PDSCH)のデコードに失敗した場合、デコードに失敗したPDSCHにおいて用いられたMCS Index#iよりも低いMCS Index#j(jは、0以上、i未満の整数)を所望のMCS Indexに設定してよい。
 端末は、デコードに失敗したPDSCHにおいて用いられたMCS Index#iと、所望のMCS Index#jとの差異(例えば、「j-i」)を、例えばMCSに関する情報の一例として、基地局へフィードバックする情報に含めてよい。
 所望のMCS Indexは、現在のMCS Indexよりも低くてもよい。例えば、端末は、MCS Index#5にて送信されたPDSCHのデコードに失敗し、所望のMCS IndexをMCS Index#2に設定した場合に、「delta-MCS」=2-5=-3を含むフィードバック情報を基地局に送信してもよい。
 端末が、「delta-MCS」を基地局へ送信(フィードバック)することで、基地局に対して要求可能なMCSの柔軟性を向上でき、フィードバック情報のビットサイズを抑制できる。なお、現在のMCSと所望のMCSとの差異(以下、「Delta value」と記載することがある)とインデックスとが関連付けられ、「Delta value」に関連付けられたインデックスによって「delta-MCS」が基地局へ暗黙的にフィードバックされてもよい。
 「delta-MCS」は、上述した情報の例と異なる、MCSあるいはCQIのような無線通信品質に関する情報であってもよい。CQIは、Channel Quality Indicatorの略記である。また、「delta-MCS」は、例えば、「delta-CQI」といった他の呼称に置き換えられてもよい。
 <Proposal 1: priority indication for Case 1>
 Opt.1:delta-MCSの優先度は、予め低いか高いかに固定されてよい。例えば、delta-MCSの優先度は予め規定された固定値で、HARQ-ACKの優先度よりも低い優先度となる固定値または高い優先度となる固定値または同等の優先度となる固定値であってもよい。例えば、delta-MCSの優先度がHARQ-ACKの優先度よりも低い場合、delta-MCSはドロップされてよい。この場合、delta-MCSおよびHARQ-ACKのうちHARQ-ACKのみがUL送信されてよい。HARQ-ACKがドロップされないことで、例えば、PDSCHのスループット低下を抑制できる。
 Opt.2:delta-MCSの優先度は、基地局から受信される下り制御情報(例えば、DCI)によって指示(indication)されてよい。下り制御情報(例えば、DCI)は下りデータチャネル(例えば、PDSCH)をスケジューリングし、対応する下りデータチャネル(例えば、PDSCH)のHARQ-ACKがdelta-MCSの優先度を示してよい。delta-MCSの優先度又はDCIの指示フィールドの値は、HARQ-ACKの優先度と同じであってもよいし異なっていてもよい。
 Opt.2-1(図4):拡張なしの「Priority Indicator」によって、delta-MCSの優先度が示されてよい。「priority indicator」は、上位レイヤパラメータであるpriorityIndicatorForDCI-Format1-X(priorityIndicatorForDCI-Format1-1、あるいはpriorityIndicatorForDCI-Format1-2など)が設定されていない場合は0ビットである。それ以外の場合は1ビットによってdelta-MCSおよびHARQ-ACKの優先度(例えば、互いに同じ優先度又は互いに異なる優先度)であることを示してよい。
 Opt.2-2(図5):拡張された「Priority Indicator」によって、delta-MCSの優先度が示されてよい。「Priority Indicator」のビットサイズは、例えば1ビットから2ビットへ増加されてよい。2ビットのPIのうち、最下位ビット(LSB)がHARQ-ACKの優先度を表し、最上位ビット(MSB)がdelta-MCSの優先度を表してよい。逆に、MSBがHARQ-ACKの優先度を表し、LSBがdelta-MCSの優先度を表すこととしてもよい。MSBおよびLSBの何れがHARQ-ACKの優先度あるいはdelta-MCSの優先度に対応するかは、規格において定義されてもよいし、上位レイヤパラメータ(例えば、RRCパラメータ)によって設定されてもよい。
 新しい上位レイヤパラメータ、例えばpriorityIndicatorForDeltaMCSまたはpriorityIndicatorForDeltaMCSForDCI-Format1-X(例えば、X=1 or 2)が設定される場合、「Priority Indicator」のビットサイズはYビット(Yは0以上の整数)であり、Yは一例として「2」であってよい。それ以外の場合は、Rel-16と同様に、「Priority Indicator」のビットサイズは、0ビットまたは1ビットとしてよい。
 Opt.2-3(図6):delta-MCSの優先度を示す新しいフィールドが「Priority Indicator」とは別に導入されてもよい。
 新しい上位レイヤパラメータ、例えばpriorityIndicatorForDeltaMCSまたはpriorityIndicatorForDeltaMCSForDCI-Format1-X(例えば、X=1 or 2)が設定される場合、新しいフィールドのビットサイズは、例えば、1ビット以上でよい。それ以外の場合は0ビットでよい。
 なお、DCIフォーマットには、DCI Format 1_1あるいはDCI Format 1_2が適用されてよい。ただし、その他のフォーマットがDCIフォーマットに適用されてもよい。
 Opt.3:delta-MCSの優先度はRRCによって設定されてよい。
 Opt.3-1:Semi-Persistent Scheduling(SPS) HARQ-ACKの優先度を示す既存のパラメータによって、delta-MCSの優先度が示されてよい。
 HARQ ACKに用いるコードブックを識別する情報(例えば、harq-CodebookID)が、SPSに関する設定情報(例えば、SPS-Config)において、SPS PDSCH受信に対応するHARQ-ACKの優先度、またはSPS PDSCHリリース及びdelta-MCSに対応するHARQ-ACKの優先度を示すために設定されてよい。SPS HARQ-ACKの優先度とdelta-MCSの優先度とは同じであってよい。
 BWP内に複数のSPS設定(configurations)がある場合、どの設定に従うかは以下の何れかに基づいて決定されてよい。
 Alt.1:規格に記載の固定された設定(例えば、sps-ConfigIndexが0のconfiguration 0)
 Alt.2:複数のSPS設定の中で最も高い優先度、または最も低い優先度
 Alt.3:delta-MCSが対応するSPS PDSCHのSPS設定の優先度値
 Opt.3-2:delta-MCSの優先度を示す新たなパラメータが導入されてもよい。
 新たなパラメータ、例えば、deltaMCSPriorityがオプションのパラメータとして導入されてよい。UEは、新たなパラメータが設定されている場合、そのパラメータを基にdelta-MCSの優先度を識別(決定)する。なお、SPS HARQ-ACKのharq-CodebookIDが示す優先度と、新しいパラメータ(例えば、deltaMCSPriority)が示す優先度とは、同じでもよいし異なってもよい。
 <Proposal 2: priority indication for Case 2>
 Opt.1:delta-MCSの優先度は低いか高いかに固定されてよい。例えば、delta-MCSの優先度は予め規定された固定値で、HARQ-ACKの優先度よりも低い優先度となる固定値または高い優先度となる固定値または同等の優先度となる固定値であってもよい。例えば、delta-MCSの優先度がHARQ-ACKの優先度よりも低い場合、HARQ-ACKおよびdelta-MCSのうち、delta-MCSはドロップされてHARQ-ACKのみがUL送信されてよい。HARQ-ACKがドロップされないことで、例えば、PDSCHのスループットの低下を抑制できる。
 Opt.2:delta-MCSの優先度は下り制御情報(例えば、DCI)によって示されてよい。
 Opt.2-1(図7):PDSCHをスケジューリングする下り制御情報(例えば、DCI)と対応するPDSCHのHARQ-ACKによって、delta-MCSの優先度が示されてよい。
 DCI フォーマットには、DCI Format 1_1あるいはDCI Format 1_2が適用されてよい。ただし、その他のフォーマットがDCIフォーマットに適用されてもよい。優先度と指示フィールドとは、HARQ-ACKに対して同じでもよいし異なってもよい。
 Opt.2-1-1: 拡張なしの「優先度表示」は、delta-MCSの優先度を示す。優先度表示」は、上位層のパラメータpriorityIndicatorForDCI-Format1-X(例えば、X=1 or 2など)が設定されていない場合、0ビットである。それ以外の場合は1ビットで、同じ優先度であるdelta-MCSとHARQ-ACKの優先度を示す。
 Opt.2-1-2:拡張された「Priority Indicator」はdelta-MCSの優先度を示してよい。「Priority Indicator」のビットサイズは、例えば1ビットから2ビットに増加されてよい。LSBによってHARQ-ACKの優先度を表し、MSBによってdelta-MCSの優先度を表すこととしてもよい。逆に、MSBによってHARQ-ACKの優先度を表し、LSBによってdelta-MCSの優先度を表してもよい。
 新しい上位レイヤパラメータ、例えばpriorityIndicatorForDeltaMCSまたはpriorityIndicatorForDeltaMCSForDCI-Format1-X(例えば、X=1 or 2)が設定される場合、「Priority Indicator」のビットサイズはYビットであり、Yは一例として2であってよい。それ以外の場合は、Rel-16と同様に、0ビットまたは1ビットであってよい。
 Opt.2-1-3:Delta-MCSの優先度を示す新しいフィールドが「Priority Indicator」とは別に導入されてよい。新しい上位レイヤパラメータ、priorityIndicatorForDeltaMCSまたはpriorityIndicatorForDeltaMCSForDCI-Format1-X(例えば、X=1 or 2など)が設定される場合、1ビット以上の新フィールドが存在してよい。それ以外の場合は0ビットでよい。
 Opt.2-2(図8):Proposal 2のOpt.2-1以外の個別のDCIによって、delta-MCSの優先度が示されてよい。DCIのフォーマットは、例えば、DCI Format 1_1, 1_2, 0_1, or 0_2であってよい。グループ共通DCIを含む他のフォーマットが、DCIのフォーマットに適用されてもよい。delta-MCSの優先度又はDCIの指示フィールドの値は、HARQ-ACKの優先度と同じでもよいし異なってもよい。
 Opt.2-2-1:既存の「Priority Indicator」によって、delta-MCSの優先度が示されてよい。「Priority Indicator」は、上位レイヤパラメータ、例えば、priorityIndicatorForDCI-FormatX1-X2(例えば、priorityIndicatorForDCI-Format0-1、あるいはpriorityIndicatorForDCI-Format0-2など)が設定されていない場合は0ビットであってよい。それ以外の場合は1ビットによってdelta-MCSの優先度が示されてよい。また、当該優先度及び指示フィールドにより、HARQ-ACKの優先度が決定されてもよい。例えば、既存の「Priority Indicator」フィールドによって、或るタイミングではdelta-MCSの優先度を示し、別のタイミングではHARQ-ACKの優先度を示すこととしてもよい。
 Opt.2-2-2:拡張された「Priority Indicator」によって、delta-MCSの優先度が示されてよい。「Priority Indicator」のビットサイズは、例えば1ビットから2ビットに増加されてよい。LSBによってHARQ-ACKの優先度を表し、MSBによってdelta-MCSの優先度を表すこととしてよい。逆に、MSBによってHARQ-ACKの優先度を表し、LSBによってdelta-MCSの優先度を表してもよい。
 新しい上位層パラメータ、例えば、priorityIndicatorForDeltaMCSまたはpriorityIndicatorForDeltaMCSForDCI-FormatX1-X2(例えば、priorityIndicatorForDeltaMCSForDCI-Format0-1およびpriorityIndicatorForDeltaMCSForDCI-Format0-2)が設定される場合、「Priority Indicator」のビットサイズはYビット(Yは0以上の整数)であり、Yは一例として2であってよい。それ以外の場合は、Rel-16と同様に、0ビットまたは1ビットであってよい。
 Opt.2-2-3:Delta-MCSの優先度を示す新しいフィールドが「Priority Indicator」とは別に導入されてよい。新しい上位レイヤパラメータ、例えば、priorityIndicatorForDeltaMCS、またはpriorityIndicatorForDeltaMCSForDCI-FormatX1-X2(例えば、priorityIndicatorForDeltaMCSForDCI-Format0-1、priorityIndicatorForDeltaMCSForDCI-Format0-2など)が設定される場合、1ビット以上の新フィールドが存在してよい。それ以外の場合は0ビットでよい。
 Opt.3:Delta-MCSの優先度は、RRCによって設定されてもよい。
 Opt.3-1:SPSのHARQ-ACKの優先度を示す既存のパラメータまたはConfigured Grant(CG) PUSCHの優先度を示す既存のパラメータによって、delta-MCSの優先度が示されてよい。
 Opt.3-1-1:HARQ ACKに用いるコードブックを識別する情報(例えば、harq-CodebookID)が、SPSの設定情報(例えば、SPS-Config)において、SPS PDSCH受信に対応するHARQ-ACKの優先度、またはSPS PDSCHリリース及びdelta-MCSに対応するHARQ-ACKの優先度を示すために設定されてよい。例えば、harq-CodebookIDが1である時、delta-MCSの優先度は低優先度に設定されてもよい。また、harq-CodebookIDが2である時、delta-MCSの優先度は高優先度に設定されてもよい。SPS HARQ-ACKの優先度とdelta-MCSの優先度とは同じであってよいし、異なる値であってもよい。
 BWP内に複数のSPS設定が存在する場合、どの設定に従うかは以下の何れかに基づいて決定されてよい。
 Alt.1:規格に記載の固定された設定(例えば、sps-ConfigIndexが0であるconfiguration 0)。
 Alt.2:複数のSPS設定の中で最も高い優先度、または最も低い優先度
 Alt.3:delta-MCSが対応するSPS PDSCHのSPS設定の優先度値
 Opt.3-1-2:Configured Grant(CG) PUSCHとdelta-MCSの優先度指示のために、CGに関する設定情報(例えば、ConfiguredGrantConfig)に物理レイヤにおける優先度に関する情報(例えば、phy-PriorityIndex)が設定されてよい。例えば、phy-PriorityIndexがp0である時、delta-MCSの優先度は低優先度に設定されてもよい。また、phy-PriorityIndexがp1である時、delta-MCSの優先度は高優先度に設定されてもよい。CG PUSCHとdelta-MCSの優先度は同じであってよい。
 BWP内に複数のCG設定が存在する場合、どの設定に従うかは以下の何れかに基づいて決定されてよい。
 Alt.1:規格に記載の固定された設定(例えば、configuredGrantConfigIndexが0であるconfiguration 0)。
 Alt.2:複数のCG設定の中で最も高い優先度、または最も低い優先度
 Alt.3:delta-MCSが送信されるCG PUSCHのCG設定の優先度値
 Opt.3-2:delta-MCSの優先度を示す新たなパラメータが導入されてもよい。パラメータとして、例えば、deltaMCSPriorityといった新しいパラメータが導入されてよい。UEは、新しいパラメータが設定されている場合、そのパラメータを基にdelta-MCSの優先度を決定(識別)してよい。例えば、deltaMCSPriorityがp0である時、delta-MCSの優先度は低優先度に設定されてもよい。また、deltaMCSPriorityがp1である時、delta-MCSの優先度は高優先度に設定されてもよい。
 SPS HARQ-ACKのharq-CodebookIDによって示される優先度またはCG PUSCHのphy-PriorityIndexによって示される優先度と、新しいパラメータ(例えば、deltaMCSPriority)によって示される優先度とは、同じでもよいし異なってもよい。
 新しいパラメータは、例えば、SPS-ConfigおよびConfiguredGrantConfigの一方又は双方において設定されてよい。
 <無線通信システムの例>
 図9は、一実施の形態に係る無線通信システム10の一例を示す図である。無線通信システム10は、New Radio(NR)に従った無線通信システムであってよい。例示的に、無線通信システム10は、URLLC及び/又はIndustrial Internet of Things(IIoT)と呼ばれる方式に従った無線通信システムであってよい。無線通信システム10は、Next Generation-Radio Access Network20(以下、NG-RAN20)、及び、端末200を含んでよい。
 なお、無線通信システム10は、5G、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った(あるいは準拠した)無線通信システムでもよい。また、無線通信システム10は、6Gよりも後の世代のシステムであってもよい。
 NG-RAN20は、基地局100(基地局100Aと基地局100B)を含む。基地局100の数及び端末200の数は、図1に示した例に限定されない。
 NG-RAN20は、複数のNG-RAN Node、例えば、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。NG-RAN20および5GCは、単に「ネットワーク」と表現されてもよい。
 基地局100は、NG-RAN Node、ng-eNB、eNodeB(eNB)、又は、gNodeB(gNB)と呼ばれてもよい。端末200は、User Equipment(UE)と呼ばれてもよい。また、基地局100は、端末200が接続するネットワークに含まれる装置と捉えてもよい。
 基地局100は、端末200と無線通信を実行する。例えば、実行される無線通信は、NRに従う。基地局100及び端末200の少なくとも一方は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビーム(BM)を生成するMassive MIMO(Multiple-Input Multiple-Output)に対応してもよい。また、基地局100及び端末200の少なくとも一方は、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)に対応してもよい。また、基地局100及び端末200の少なくとも一方は、端末200と複数の基地局100それぞれとの間において通信を行うデュアルコネクティビティ(DC)などに対応してもよい。
 無線通信システム10は、複数の周波数帯に対応してよい。例えば、無線通信システム10は、Frequency Range(FR)1及びFR2に対応する。各FRの周波数帯は、例えば、次のとおりである。
  ・FR1:410MHz~7.125GHz
  ・FR2:24.25GHz~52.6GHz
 FR1では、15kHz、30kHzまたは60kHzのSub-Carrier Spacing(SCS)が用いられ、5MHz~100MHzの帯域幅(BW)が用いられてもよい。FR2は、例えば、FR1よりも高い周波数である。FR2では、60kHzまたは120kHzのSCSが用いられ、50MHz~400MHzの帯域幅(BW)が用いられてもよい。また、FR2では、240kHzのSCSが含まれてもよい。
 本実施の形態における無線通信システム10は、FR2の周波数帯よりも高い周波数帯に対応してもよい。例えば、本実施の形態における無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応し得る。このような高周波数帯は、「FR2x」と呼ばれてもよい。
 また、上述した例よりも大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンクと下りリンクとの両方に適用されてもよいし、何れか一方に適用されてもよい。
 無線通信システム10では、時分割複信(TDD)のスロット設定パターン(Slot Configuration pattern)が設定されてよい。例えば、DDDSU(D:下りリンク(DL)シンボル、S:DL/上りリンク(UL)またはガードシンボル、U:ULシンボル)が規定(3GPP TS38.101-4参照)されてよい。
 また、無線通信システム10では、スロット毎に復調用参照信号(DMRS)を用いてPUSCH(またはPUCCH(Physical Uplink Control Channel))のチャネル推定を実行できるが、さらに、複数スロットにそれぞれ割り当てられたDMRSを用いてPUSCH(またはPUCCH)のチャネル推定を実行できる。このようなチャネル推定は、Joint channel estimationと呼ばれてもよい。或いは、cross-slot channel estimationなど、別の名称で呼ばれてもよい。
 端末200は、基地局100がDMRSを用いたJoint channel estimationを実行できるように、複数スロットに割り当てられた(跨がった)DMRSを送信してよい。
 また、無線通信システム10では、基地局100に対する端末200からのフィードバック機能に強化された機能が追加されてよい。例えば、HARQ-ACKに対する端末のフィードバックの強化された機能、及び、より正確なMCS選択に対するCSIフィードバックの強化された機能が追加されてよい。
 次に、基地局100及び端末200の構成について説明する。なお、以下に説明する基地局100および端末200の構成は、本実施の形態に関連する機能の一例を示すものである。基地局100および端末200には、図示しない機能を有してもよい。また、本実施の形態に係る動作を実行する機能であれば、機能区分、および/または、機能部の名称は限定されない。
 <基地局の構成>
 図10は、本実施の形態に係る基地局100の構成の一例を示すブロック図である。基地局100は、例えば、送信部101と、受信部102と、制御部103と、を含んでよい。基地局100は、端末200(図4参照)と無線によって通信する。
 送信部101は、下りリンク(downlink(DL))信号を端末200へ送信する。例えば、送信部101は、制御部103による制御の下に、DL信号を送信する。
 DL信号には、例えば、下りリンクのデータ信号、及び、制御情報(例えば、Downlink Control Information(DCI))が含まれてよい。また、DL信号には、端末200の信号送信に関するスケジューリングを示す情報(例えば、ULグラント)が含まれてよい。また、DL信号には、上位レイヤの制御情報(例えば、Radio Resource Control(RRC)の制御情報)が含まれてもよい。また、DL信号には、参照信号が含まれてもよい。
 DL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PDSCH(Physical Downlink Shared Channel)が含まれ、制御チャネルには、PDCCH(Physical Downlink Control Channel)が含まれてよい。例えば、基地局100は、端末200に対して、PDCCHを用いて、制御情報を送信し、PDSCHを用いて、下りリンクのデータ信号を送信する。
 DL信号に含まれる参照信号には、例えば、復調用参照信号(Demodulation Reference Signal(DMRS))、Phase Tracking Reference Signal(PTRS)、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)のいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、下りリンクのデータ信号の復調のために使用され、PDSCHを用いて送信される。
 受信部102は、端末200から送信された上りリンク(uplink(UL)信号を受信する。例えば、受信部102は、制御部103による制御の下に、UL信号を受信する。
 制御部103は、送信部101の送信処理、及び、受信部102の受信処理を含む、基地局100の通信動作を制御する。
 例えば、制御部103は、上位レイヤからデータおよび制御情報といった情報を取得し、送信部101へ出力する。また、制御部103は、受信部102から受信したデータおよび制御情報等を上位レイヤへ出力する。
 例えば、制御部103は、DL信号の送受信に用いるリソース(又はチャネル)及び/又はUL信号の送受信に用いるリソースの割り当てを行う。割り当てたリソースに関する情報は、端末200に送信する制御情報に含まれてよい。
 制御部103は、UL信号の送受信に用いるリソースの割り当ての一例として、複数のPUCCHリソースセットを設定してよい。設定した複数のPUCCHリソースセットに関する情報は、RRCによって端末200に通知されてよい。
 <端末の構成>
 図4は、本実施の形態に係る端末200の構成の一例を示すブロック図である。端末200は、例えば、受信部201と、送信部202と、制御部203と、を含んでよい。端末200は、例えば、基地局100と無線によって通信する。
 受信部201は、基地局100から送信されたDL信号を受信する。例えば、受信部201は、制御部203による制御の下に、DL信号を受信する。
 送信部202は、UL信号を基地局100へ送信する。例えば、送信部202は、制御部203による制御の下に、UL信号を送信する。
 UL信号には、例えば、上りリンクのデータ信号、及び、制御情報(例えば、UCI)が含まれてよい。例えば、端末200の処理能力に関する情報(例えば、UE capability)が含まれてよい。また、UL信号には、参照信号が含まれてもよい。
 UL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PUSCH(Physical Uplink Shared Channel)が含まれ、制御チャネルには、PUCCH(Physical Uplink Control Channel)が含まれる。例えば、端末200は、基地局100から、PUCCHを用いて、制御情報を受信し、PUSCHを用いて、上りリンクのデータ信号を送信する。
 UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRS、及び、PRSのいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、上りリンクのデータ信号の復調のために使用され、PUSCHを用いて送信される。
 制御部203は、受信部201における受信処理、及び、送信部202における送信処理を含む、端末200の通信動作を制御する。
 例えば、制御部203は、上位レイヤからデータおよび制御情報といった情報を取得し、送信部202へ出力する。また、制御部203は、例えば、受信部201から受信したデータおよび制御情報等を上位レイヤへ出力する。
 例えば、制御部203は、基地局100へフィードバックする情報の送信を制御する。基地局100へフィードバックする情報には、例えば、HARQ-ACK及び/又はdelta-MCSが含まれてよい。基地局100へフィードバックする情報は、UCIに含まれてよい。UCIは、PUCCHのリソースにおいて送信される。
 制御部203は、基地局100から受信した制御情報に基づいて、複数のPUCCHリソースセットを設定し、複数のPUCCHリソースセットの中から、少なくとも1つのPUCCHリソースセットを選択する。そして、制御部203は、選択したPUCCHリソースセットのリソースの中から、基地局100へフィードバックする情報の送信に使用するPUCCHリソースを決定する。送信部202は、制御部203の制御により、制御部203が決定したPUCCHリソースにおいて、基地局100へフィードバックする情報を送信する。
 また、制御部203は、例えば、UL送信において、DLデータ受信のフィードバック情報に対する、MCSに関する情報(例えば、delta-MCS)の優先度を決定してよい。送信部202は、例えば、制御部203において決定した優先度に従ってUL送信を行ってよい。
 なお、DL送信に使用されるチャネル及びUL送信に使用されるチャネルは、上述した例に限定されない。例えば、DL送信に使用されるチャネル及びUL送信に使用されるチャネルには、Random Access Channel(RACH)及びPhysical Broadcast Channel(PBCH)が含まれてよい。RACHは、例えば、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDCIの送信に用いられてよい。
 上述した実施の形態において、delta-MCSの優先度を示す情報は、例えば、RRCのような上位レイヤのパラメータとDCIとの組み合わせによって端末にUEに指示(別言すると、ハイブリッド指示)されてもよい。
 <フィードバックのリソース>
 端末が基地局へ送信(例えば、フィードバック)する情報(例えば、HARQ-ACK及びdelta-MCSの一方又は双方)の送信に用いるULリソースについて説明する。フィードバックに用いるULリソースには、例えば、上りリンク制御情報(UCI)のリソースが用いられてもよいし、HARQ-ACKのリソースが用いられてもよい。
 HARQ-ACKのリソースとしては、以下に示すオプションが考えられる。
 ・フィードバック情報は、Type1 HARQ-ACK Code Book(CB)のHARQ-ACKリソースを用いて送信されてよい。Type1HARQ-ACK CBは、例えば、端末が基地局から受信する設定情報(例えば、RRC)によって準静的に割り当てられるCBであってもよい。
 ・フィードバック情報は、Type2 HARQ-ACK CBのHARQ-ACKリソースを用いて送信されてもよい。Type2 HARQ-ACK CBは、例えば、端末が基地局から受信する制御情報(例えば、DCI)によって動的に割り当てられるCBであってもよい。
 ・フィードバック情報は、Type1 HARQ-ACK CB及びType2 HARQ-ACK CBの双方のHARQ-ACKリソースを用いて送信されてもよい。言い換えると、フィードバック情報は、HARQ-ACK CB Typeに依らずに、HARQ-ACKリソースを用いて送信されてもよい。
 フィードバック情報の送信に使用するULリソースとして、何れのHARQ-ACK CB TypeのHARQ-ACKリソースを用いるかは、RRC設定によって定められてもよいし、端末の能力に関する情報(例えば、UE Capability)によって定められてもよいし、RRC設定及びUE Capabilityの双方によって定められてもよい。
 何れのHARQ-ACK CB TypeのHARQ-ACKリソースを用いるかについては、例えば、Medium Access Control Control Element(MAC CE)メッセージによって定められてもよく、無線通信システム10において予め定められてもよい。
 <delta-MCSに関するUE Capability>
 上述したdelta-MCSに関する端末の能力が、UE Capabilityによって端末から基地局に送信(あるいは報告)されてよい。例えば、UE capabilityには、以下に例示する情報の何れかが含まれてよい。
 ・UEがdelta-MCSの送信をサポートするか否かを示す情報
 ・UEがdelta-MCSの優先度決定をサポートするか否かを示す情報(例えば、サポートしない場合、delta-MCSの優先度は低いあるいは高いとしてよい)
 ・delta-MCSの優先度を指示するための新しいフィールドをUEがサポートするか否かを示す情報
 ・UEがdelta-MCSの優先度を示すための新しいRRCパラメータをサポートするか否かを示す情報
 UEは、上述のUE Capabilityの何れかをサポートすることを基地局へ送信(あるいは通知)した場合、Proposal 1あるいはProposal 2において示したdelta-MCSに関する動作に従って動作してよい。例えば、UEがdelta-MCSの送信をサポートすることを基地局に通知した場合、UEは、決定したdelta-MCSの優先度に従ってdelta-MCSの送信を行ってよい。また、UEは、基地局からdelta-MCSを受信してもよい。UEがdelta-MCSの優先度決定をサポートすることを基地局に通知した場合、UEは、Proposal 1あるいはProposal 2において示した優先度決定に従ってdelta-MCSの優先度を決定してよい。delta-MCSの優先度を指示するための新しいフィールドをUEがサポートすることを基地局に通知した場合、UEは、当該新しいフィールドの受信を行ってよい。
 以上説明した本実施の形態によれば、例えば、UEは、HARQ-ACKに対するdelta-MCSの優先度を適切に決定できる。したがって、例えば、PDSCHの受信品質向上に寄与する。
 (ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局、端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、本開示の一実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。上述の基地局100及び端末200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及び端末200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局100及び端末200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103および制御部203などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局100の制御部103または端末200の制御部203は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部101、受信部102、受信部201および送信部202などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局100及び端末200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (情報の通知、シグナリング)
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適用システム)
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(New Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 (処理手順等)
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の動作)
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 (入出力の方向)
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 (基地局(無線基地局))
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 (端末)
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 (基地局/移動局)
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局100が有する機能を端末200が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末200が有する機能を基地局100が有する構成としてもよい。
 (用語の意味、解釈)
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 (参照信号)
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 (「に基づいて」の意味)
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 (「第1の」、「第2の」)
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 (手段)
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 (オープン形式)
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 (TTI等の時間単位、RBなどの周波数単位、無線フレーム構成)
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 (態様のバリエーション等)
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 本開示の一態様は、無線通信システムに有用である。
 10 無線通信システム
 20 NG-RAN
 100 基地局
 200 端末
 101,202 送信部
 102,201 受信部
 103,203 制御部

Claims (6)

  1.  アップリンク送信において、下りデータ受信のフィードバック情報に対する、Modulation and Coding Scheme(MCS)に関する情報の優先度を決定する制御部と、
     決定した優先度に従って前記アップリンク送信を行う送信部と、
     を備えた、端末。
  2.  前記MCSに関する情報は、現在のMCSと使用が期待されるMCSとの差異を示す情報である、
     請求項1に記載の端末。
  3.  前記優先度は、規格において定義される、
     請求項1に記載の端末。
  4.  前記優先度は、下りリンク制御情報によって指示される、
     請求項1に記載の端末。
  5.  前記優先度は、上位レイヤパラメータによって指示される、
     請求項1に記載の端末。
  6.  端末は、
     アップリンク送信において、下りデータ受信のフィードバック情報に対する、Modulation and Coding Scheme(MCS)に関する情報の優先度を決定し、
     決定した優先度に従って前記アップリンク送信を行う、
     無線通信方法。
PCT/JP2021/025704 2021-07-07 2021-07-07 端末および無線通信方法 WO2023281677A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023532965A JPWO2023281677A1 (ja) 2021-07-07 2021-07-07
PCT/JP2021/025704 WO2023281677A1 (ja) 2021-07-07 2021-07-07 端末および無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025704 WO2023281677A1 (ja) 2021-07-07 2021-07-07 端末および無線通信方法

Publications (1)

Publication Number Publication Date
WO2023281677A1 true WO2023281677A1 (ja) 2023-01-12

Family

ID=84801493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025704 WO2023281677A1 (ja) 2021-07-07 2021-07-07 端末および無線通信方法

Country Status (2)

Country Link
JP (1) JPWO2023281677A1 (ja)
WO (1) WO2023281677A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210068195A1 (en) * 2019-08-27 2021-03-04 Qualcomm Incorporated Uplink preemption indication on multiplexed uplink channels
JP2021510015A (ja) * 2018-01-04 2021-04-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ユーザ装置、基地局、および無線通信の方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510015A (ja) * 2018-01-04 2021-04-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ユーザ装置、基地局、および無線通信の方法
US20210068195A1 (en) * 2019-08-27 2021-03-04 Qualcomm Incorporated Uplink preemption indication on multiplexed uplink channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (INTERDIGITAL, INC.): "Feature lead summary #4 on CSI feedback enhancements for enhanced URLLC/IIoT", 3GPP DRAFT; R1-2106177, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 28 May 2021 (2021-05-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052015738 *

Also Published As

Publication number Publication date
JPWO2023281677A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2020066025A1 (ja) ユーザ端末及び無線通信方法
WO2022163559A1 (ja) 端末、無線通信方法及び基地局
WO2023007565A1 (ja) 端末および無線通信方法
WO2023012914A1 (ja) 端末および無線通信方法
JP7301957B2 (ja) 端末、通信システム及び通信方法
WO2023281677A1 (ja) 端末および無線通信方法
WO2023281608A1 (ja) 端末および無線通信方法
WO2023017571A1 (ja) 端末及び無線通信方法
WO2023286262A1 (ja) 端末および無線通信方法
WO2023286261A1 (ja) 端末および無線通信方法
WO2023286260A1 (ja) 端末および無線通信方法
WO2023007564A1 (ja) 端末及び無線通信方法
WO2023286284A1 (ja) 端末及び通信方法
WO2023007563A1 (ja) 端末及び無線通信方法
WO2023021712A1 (ja) 端末及び無線通信方法
WO2023021710A1 (ja) 端末及び無線通信方法
WO2023021711A1 (ja) 端末及び無線通信方法
WO2023012956A1 (ja) 端末及び無線通信方法
WO2023012955A1 (ja) 端末及び無線通信方法
WO2023053433A1 (ja) 端末及び通信方法
WO2023013005A1 (ja) 端末及び無線通信方法
WO2023286259A1 (ja) 端末および無線通信方法
WO2023037479A1 (ja) 端末及び無線通信方法
WO2023053393A1 (ja) 端末及び無線通信方法
WO2023053434A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532965

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE