WO2023041818A1 - Material compuesto de construccion que comprende una resina termoestable y una carga porosa - Google Patents

Material compuesto de construccion que comprende una resina termoestable y una carga porosa Download PDF

Info

Publication number
WO2023041818A1
WO2023041818A1 PCT/ES2022/070456 ES2022070456W WO2023041818A1 WO 2023041818 A1 WO2023041818 A1 WO 2023041818A1 ES 2022070456 W ES2022070456 W ES 2022070456W WO 2023041818 A1 WO2023041818 A1 WO 2023041818A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
filler material
material according
mineral
porous
Prior art date
Application number
PCT/ES2022/070456
Other languages
English (en)
French (fr)
Other versions
WO2023041818A8 (es
Inventor
Juan Francisco Navarro Guijarro
José Pedro HUELAMO JAREÑO
Original Assignee
Clades Composites, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clades Composites, S.L. filed Critical Clades Composites, S.L.
Publication of WO2023041818A1 publication Critical patent/WO2023041818A1/es
Publication of WO2023041818A8 publication Critical patent/WO2023041818A8/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates

Definitions

  • the present invention refers to a construction composite material that has the particularity of comprising in its structure a porous filler material, such as perlite, verniculite, pumice, sepiolite and/or zeolite, together with a resin heat stable;
  • a porous filler material such as perlite, verniculite, pumice, sepiolite and/or zeolite, together with a resin heat stable;
  • This material can be used for different applications, among others: manufacture of sanitary material such as shower trays, sinks or countertops, and it can be used as polymer concrete in general.
  • This invention falls within the different types of construction materials or materials for construction and/or architectural use, and specifically is encompassed within composite materials that comprise a thermosetting resin in their composition.
  • the present invention makes it possible to obtain a composite material that is lighter than those commonly used today and with features that make it possible to achieve the physical-mechanical and aesthetic requirements of the final products to be manufactured, in addition to improving the acoustic and thermal insulation properties of materials with a similar use.
  • thermosetting resin in their structure
  • mineral fillers used in polymeric materials with a thermosetting matrix cause products with a very high weight, with densities between 1,800-2,300 kg/m3, which complicates their handling and makes transportation costs more expensive and consequently the carbon footprint of the same.
  • the high weight limits the size and shape of certain pieces to be manufactured or built by complicating their anchoring and handling.
  • the present invention is based on including in a composite material with thermosetting resins, a certain amount of porous filler material in its natural state, that is, raw or also called non-expanded, such as perlite, verniculite, pumice stone. , sepiliote or zeolite, which is known to have very specific particular characteristics, which are, for example, that they are light materials; they are materials of natural origin without high manufacturing costs and environmentally with low CO 2 emissions; they are fire resistant materials; but they have the drawback that by themselves they have physical-mechanical characteristics that are not enough to be used as construction materials.
  • thermosetting resin such as perlite in one case and vermiculite in the other case, where the use is intended to be an insulating material. or fire retardant, without resistive capacity to be used by itself as a material with a constructive use, and as in the previous case, where there is a processing of the material at high temperatures with a high carbon footprint and high production costs.
  • the material that is the object of the present invention differs from any other known in the state of the art, and allows a lower density to be obtained in comparison with currently known materials; and in turn, it includes resistance values suitable for use in construction, and improves the thermal and acoustic resistance values of other conventional materials used to date. This means that the technical problems described above are solved, and that this material can have a constructive use.
  • the present invention has as its first object, to define the composition of a new composite material that significantly improves the composites based on thermosetting resins, allowing to obtain a material that is both light and resistant that can be used for construction purposes.
  • the construction material object of the present invention is a material that comprises, among others, a thermosetting resin and a porous filler, and that has the particularity of comprising a composition in % by weight, which comprises: a 20 - 40% thermosetting resin; 15-70% porous filler material, where the porous filler material is at least one selected from perlite, verniculite, pumice, sepiolite and zeolite; 10-50% mineral filler material, where the mineral filler material is at least one selected from carbonates, dolomite, and aluminum hydroxide; 0.5-4% of a pigment; and 0.1-3% of a catalyst.
  • the average particle size of the porous filler material must be between 0.1 and 10 mm; while the average particle size of the mineral filler material must be between 5 microns and 1 cm.
  • carbonates in general can be used within the carbonates, although preferably, among others, calcium carbonates, of sodium or magnesium.
  • thermosetting resin is at least one selected from among polyester, vinylester, epoxy resin, and polyurethane.
  • the pigment used preferably for this material is titanium dioxide, which gives a whitish coloration; although another type of pigment can be used depending on the possible final use that wants to be given to the final product.
  • titanium dioxide which gives a whitish coloration
  • another type of pigment can be used depending on the possible final use that wants to be given to the final product.
  • carbon black, iron oxides or combinations of them stand out, with which shades such as green, blue, red or yellow, among others, can be obtained.
  • the catalyst used in what can be considered the preferred embodiment of the invention is methyl ketone peroxide, although any other type of catalyst with similar characteristics can be used.
  • This composition makes it possible to obtain densities below the usual 1800-2,300 kg/m 3 known in composite materials for construction use that include thermosetting resins, reaching densities of up to 2,400 kg/m 3 in polymer concretes. In this case, the densities are less than 1600 kg/m 3 , and can reach around 1050 kg/m 3 depending on the final dosage and the total proportion of porous load. In this case, the resistance results are adequate for constructive use, being in the order of 20 - 40 MPa, therefore, a resistant product is obtained that is lighter, which provides a solution to the problems derived from transport. , handling and installation of products with a density as previously indicated.
  • this material allows obtaining improved values in terms of acoustic and thermal insulation compared to others used for construction purposes.
  • the material object of the present invention for a product with a thickness of 50 mm and a density of 1447 kg/m 3 has thermal resistance results of between 0.170 - 0.187 m 2 K/W and acoustic resistance of 18.7dB; compared to 0.104 - 0.125 m 2 K/W of thermal resistance and 17.1 dB of acoustic resistance of a conventional polymeric construction material that has the same thickness and a density of 2220 kg/m 3 ; therefore, this new, lighter composition also allows obtaining better results in terms of thermal and acoustic resistance.
  • the application of paint can also be carried out initially on the mould, carrying out the casting on said paint, previously fixed to the mould.
  • the paint must be compatible with the thermosetting resin and be able to fuse with the casting material during the latter's reaction.
  • the procedure for obtaining a construction material with the composition previously defined comprises the stages of: i) homogeneous mixture of the thermosetting resin, the porous filler material and the mineral filler material in a system agitator;
  • the object of the present invention to define the possible use of a material according to the previously defined characteristics and composition for the manufacture of polymer concrete.
  • the use of a material can also be indicated according to the previously defined characteristics and composition for the manufacture of sanitary products such as shower trays, sinks or countertops.
  • the material is light, resistant and with very good heat and noise insulating characteristics.
  • a first possible embodiment of the invention consists of a material that has the particularity of comprising the following composition (in % by weight): 27% thermosetting resin which is an unsaturated polyester resin, 34.50% porous filler material which is perlite; with a particle size of between 0.5 and 1.50 mm, and that can be treated with a coating or external protection treatment; 34.50% mineral filler material, where the mineral filler material is calcium carbonate, with a particle size of between 0.1 and 1 mm; so that the ratio between porous charge and mineral charge is 1:1, the raw or non-expanded mineral charge being 2% of a pigment that is titanium dioxide to obtain a white product; and 2% of a catalyst, which is methyl ethyl ketone peroxide.
  • This material is obtained by means of an initial homogeneous mixture between the porous filler material and the mineral filler material in an agitator system; the subsequent introduction of the pigment to the mixture of the previous stage and mixing in the agitator system; the output of the homogeneous mixture resulting from the previous stage and filling of a mold; the introduction of the catalyst in the mixture filled in the mold of the previous stage, and mix it homogeneously; a curing of the mixture resulting from the previous stage for a period of 50 minutes; the final product is obtained; and after that, it can be demolded and, finally, it is subjected to a surface finish consisting of polishing.
  • This material has as a result a density of 1447 kg/m 3 and a resistance of around 30 MPa, which allows it to be used for the manufacture of sanitary products, such as a sink or a shower tray, given that even aesthetically It is a product with a white finish common in this type of product.
  • the embodiment example is compared with a conventional product based on polymeric resin, commonly used for the manufacture of sanitary products, specifically shower trays.
  • This material is made up of 75% resin and 25% mineral filler material.
  • This material has a density of 2220 Kg/m 3 , and has mechanical characteristics similar to those of the previously indicated embodiment.
  • the material object of the present invention has mechanical characteristics suitable for use in sanitary products, but it has the great advantage of being a less dense material, which makes it possible to solve the existing problems in known polymeric materials in terms of their transport and use.
  • Table 1 shows the results obtained for the determination of thermal conductivity, according to UNE-EN 12667, between a material according to an embodiment of the present invention (inventive material) and the previously indicated known material (conventional material ), where the measurement conditions in the tests are in ambient conditions of 23 e C and 60% RH, and the average temperature determination between the hot and cold plate is 20 e C.
  • Table 2 shows the results obtained for the determination of thermal insulation between a material according to an embodiment of the present invention (inventive material) and the previously indicated known material (conventional material), where for the calculation of acoustic insulation overall (D giO bai) the average of all the specific acoustic insulation of each one of the different study frequencies is made, so that a value is obtained for each material that allows its comparison, and so that the higher the value of the overall acoustic insulation of a material, the greater the acoustic insulation and/or noise absorption it presents.
  • D giO bai acoustic insulation overall
  • Table 2 This shows that the material that is the object of the present invention has an acoustic insulation characteristic that is superior to that of current polymeric materials, which is very important, for example, to reduce noise in shower trays, or to insulate a room, such as be in comparison with a polymeric concrete.
  • a possible embodiment of the material of the invention specifically 27% unsaturated polyester resin, 34.50% porous filler material that is perlite; 34.50% mineral filler which is calcium carbonate; 2% of a pigment that is titanium dioxide; and 2% of a catalyst that is methyl ethyl ketone peroxide;
  • a possible embodiment of the material of the invention specifically 27% unsaturated polyester resin, 34.50% porous filler material that is perlite; 34.50% mineral filler which is calcium carbonate; 2% of a pigment that is titanium dioxide; and 2% of a catalyst that is methyl ethyl ketone peroxide;
  • thermosetting resin for dosages with 25-35% of thermosetting resin; 30-40% porous filler material, where the porous filler material is at least one selected from perlite, verniculite, pumice, sepiolite and zeolite; 30-40% mineral filler material, where the mineral filler material is at least one selected from calcium carbonate and dolomite; 0.5-4% of a pigment; and 0.1 - 3% of a catalyst, the density obtained is between 1300 - 1600 Kg/m3, with resistance results in the environment of 36 MPa depending on the porous and mineral material, being suitable for use as polymeric concretes or in the execution of sanitary products.
  • thermosetting resin for dosages with 25-35% of thermosetting resin; 45-60% porous filler material, where the porous filler material is at least one selected from perlite, verniculite, pumice, sepiolite and zeolite; 10-25% mineral filler material, where the mineral filler material is at least one selected from calcium carbonate and dolomite; 0.5-4% of a pigment; and 0.1 - 3% of a catalyst, the density obtained is between 1050 - 1300 Kg/m3, with resistance results in the environment of 29 MPa depending on the porous and mineral material, and therefore, being suitable for use as polymer concrete or in the execution of sanitary products.
  • the present invention solves the problems of being able to have a product that is lighter and much more manageable and transportable than the polymeric materials known to date, where this new material makes it possible to achieve the resistive and aesthetic requirements. necessary to be able to manufacture sanitary products and/or be used as polymer concrete, and where, in addition, the acoustic and thermal insulation properties of materials with a similar use are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Material compuesto de construcción que comprende una resina termoestable y una carga porosa, que tiene una composición en % en peso, que comprende un 20 – 40 % de resina termoestable; un 15 – 70 % de material de carga porosa, donde el material de carga porosa es al menos uno seleccionado de entre perlita, verniculita, piedra pómez, sepiolita y zeolita; un 10 – 50 % de material de carga mineral, donde el material de carga mineral es al menos uno seleccionado de entre carbonato, dolomita e hidróxido de aluminio; un 0,5 - 4 % de un pigmento; y un 0,1 – 3 % de un catalizador; y procedimiento de obtención de dicho material para unos usos constructivos semejantes al hormigón polimérico y para la fabricación de productos sanitarios.

Description

DESCRIPCIÓN
MATERIAL COMPUESTO DE CONSTRUCCIÓN QUE COMPRENDE UNA RESINA TERMOESTABLE Y UNA CARGA POROSA
Campo del invento
La presente invención se refiere a un material compuesto de construcción que tiene la particularidad de comprender en su estructura un material de carga porosa, como es la perlita, la verniculita, la piedra pómez, la sepiolita y/o la zeolita, junto a una resina termoestable; pudiendo ser utilizado este material para diferentes aplicaciones, entre otras: fabricación de material sanitario como platos de ducha, lavabos o encimeras, y puede ser utilizado como hormigón polímero en general.
Este invento se encuadra dentro de los diferentes tipos de materiales de construcción o materiales para un uso constructivo y/o arquitéctónico, y concretamente se encuentra englobado dentro de los materiales compuestos que comprenden una resina termoestable en su composición.
La presente invención permite obtener un material compuesto más ligero que los utilizados habitualmente en la actualidad y con prestaciones que permitan alcanzar los requisitos físico-mecánicos y estéticos de los productos finales a fabricar, además de mejorar las propiedades de aislamiento acústico y térmico de materiales con un uso semejante.
Estado de la técnica del invento
Es conocida la existencia de diversos tipos de materiales que comprenden en su estructura al menos una resina termoestable. Actualmente, las cargas minerales utilizadas en materiales poliméricos de matriz termoestable, ocasionan productos con un peso muy elevado, con densidades entre 1.800-2.300 kg/m3, lo que complica su manipulación y encarece los costes de transporte y en consecuencia la huella de carbono de los mismos. Adicionalmente, el elevado peso limita el tamaño y forma de determinadas piezas a fabricar o construir al complicar el anclaje y manipulación de los mimos.
Es conocida la existencia de otros materiales ligeros, obtenidos a partir de microesferas huecas de vidrio o cerámicas o minerales sintéticos expandidos que mejoran el problema de la densidad, pero estos productos obtenidos incrementan sensiblemente el coste lo que influye en que, a pesar de las ventajas que puedan aportar, su utilización no es elevada, incluso competitiva, en comparación con los materiales estándar de densidad más elevada.
La presente invención se basa en el incluir en un material compuesto con resinas termoestables, una cantidad determinada de material de carga porosa en su estado natural, es decir, cruda o también denominada como no-expandida, como es la perlita, verniculita, piedra pómez, sepiliota o zeolita, que es conocido que tienen unas características particulares muy concretas, que son por ejemplo, que son materiales ligeros; son materiales de origen natural sin elevados costes de fabricación y medioambientalmente con bajas emisiones de CO2; son materiales resistentes al fuego; pero que tienen el inconveniente que por si solos tienen unas características físico-mecánicas que no alcanzan para ser utilizados como materiales de construcción.
En este sentido, como se indica previamente, se conocen documentos donde se divulga el uso de materiales que comprenden una parte de carga porosa.
Se conoce lo divulgado en el documento DE2726751 A1 , donde se describe una tipología de panel decorativo que en su núcleo dispone de una capa que comprende, entre otros, de una resina termoestable y de vermiculita expandida, pero donde estos paneles son muy ligeros, no tienen una capacidad resistiva y sirven para ser insertados en un bastidor. Además, este documento se refiere a un material con altas cargas minerales procesadas con tratamiento térmicos, lo que lleva a un producto con alta huella de carbono y costes elevados de producción.
También se conoce lo divulgado en los documentos CN101798195A y KR20120035628A donde se describen diferentes tipos de materiales que comprenden una resina termoestable y cargas porosas como la perlita en un caso y la vermiculita en el otro caso, donde el uso va destinado a ser un material aislante o retardante de fuego, sin capacidad resistiva para ser utilizado por si solo como material con un uso constructivo, y como en el caso anterior, donde se hay un procesamiento del material a altas temperaturas habiendo una alta huella de carbono y altos costes de producción.
Tampoco es habitual el uso de revestimientos para conseguir mejorar la procesabilidad de materiales. En este sentido, se conoce lo divulgado en el documento KR100835132B1 donde se describe el uso de un material de acabado que se utiliza para la fijación de tableros y también para el acabado de esquinas, que entre sus componentes comprende una resina termoestable y también vermiculita. En este caso, tampoco es aplicable este producto a un uso constructivo.
Teniendo en cuenta todos los argumentos previamente expuesto, se considera que es preciso desarrollar un material compuesto que siendo ligero, pueda disponer de unas características resistentes suficientes para poder ser utilizado con uso constructivo, dado que los materiales compuestos conocidos en la actualidad que comprenden una resina termoestable y una carga porosa, o son muy ligeros y tiene un uso limitado a decoración y/o aislamiento, y no alcanza los requisitos físico-mecánicos para ser utilizados con un uso constructivo; o son muy pesados, y eso hace que no sean competitivos frente a materiales convencionales. Además, el presente material al no estar basado en cargas minerales procesadas con tratamientos térmicos, sino en un producto compuesto por elementos naturales no expandidos, permite el desarrollo de un producto con menor huella de carbono y menor coste de producción frente a los conocidos e indicados previamente. En este punto cabe destacar que los antecedentes conocidos se basan en cargas minerales expandidas, es decir, productos artificiales tratados generalmente a temperaturas altas; mientras que en la presente invención se utilizan cargas minerales no expendidas, es decir, cargas crudas o deshidratadas en estado natural, donde estas cargas no han sido sometidas a tratamientos térmicos.
Habida cuenta de lo antecedentes conocidos en el estado de la técnica, el material objeto de la presente invención difiere de cualquier otro conocido en el estado de la técnica, y permite obtener una menor densidad en comparación con los materiales conocidos en la actualidad; y a su vez, comprende unos valores resistentes aptos para ser utilizados en construcción, y mejoran los valores de resistencia térmica y acústica de otros materiales convencionales utilizados hasta la fecha. Esto hace que se resuelvan los problemas técnicos descritos con anterioridad, y que este material pueda tener un uso constructivo.
Descripción del invento
La presente invención, tiene como primer objeto, el definir la composición de un nuevo material compuesto que mejore notablemente los compuestos basados en resinas termoestables, permitiendo obtener un material a la vez ligero y resistente que pueda ser utilizado con un uso constructivo. En este sentido, el material de construcción objeto de la presente invención, es un material que comprende, entre otros, una resina termoestable y una carga porosa, y que tiene la particularidad de comprenden una composición en % en peso, que comprende: un 20 - 40 % de resina termoestable; un 15 - 70% de material de carga porosa, donde el material de carga porosa es al menos uno seleccionado de entre perlita, verniculita, piedra pómez, sepiolita y zeolita; un 10 - 50 % de material de carga mineral, donde el material de carga mineral es al menos uno seleccionado de entre carbonatos, dolomita e hidróxido de aluminio; un 0,5 - 4 % de un pigmento; y un 0,1 - 3 % de un catalizador.
Entrando en el detalle de esta composición, se ha de tener en cuenta que el tamaño de partícula medio del material de carga porosa debe estar comprendido entre 0,1 y 10 mm; mientras que el tamaño de partícula medio del material de carga mineral debe estar comprendido entre 5 mieras y 1 cm.
En la carga mineral, que como se ha comentado en el apartado anterior es una cruda o no- expandida, dentro de los carbonatos se pueden utilizar los carbonatos en general, aunque de forma preferente se destacan, ente otros, los carbonatos de calcio, de sodio o magnesio.
Este material, tal como se ha indicado previamente, es un material compuesto que comprende una parte de resina termoestable, donde esta resina termoestable es al menos una seleccionada de entre poliéster, vinilester, resina epoxi y poliuretano
El pigmento utilizado de forma preferente para este material es el dióxido de titanio, que da una coloración de tonalidad blanquecina; aunque puede utilizarse otro tipo de pigmento dependiendo el posible uso final que quiera darse al producto final. Dentro de esos otros posibles pigmentos se destaca el negro de humo, óxidos de hierro o combinaciones de ellos, con los que se pueden obtener tonalidades como verde, azul, roja o amarilla, entre otras.
Por otro lado, el catalizador utilizado en la que puede ser considerada como realización preferente de la invención es el peróxido de metileticetona, aunque puede ser utilizado cualquier otro tipo de catalizador con características semejantes. Esta composición permite obtener densidades por debajo de los habituales 1800-2.300 kg/m3 conocidos en materiales compuestos de uso constructivo que comprenden resinas termoestables, llegando en los hormigones poliméricos a densidades de hasta 2.400 kg/m3. En este caso, las densidades son inferiores a 1600 kg/m3, pudiendo llegar al entorno de los 1050 kg/m3 dependiendo de la dosificación final y la proporción total de carga porosa. En este caso, los resultados de resistencia son adecuados para el uso constructivo, estando en el orden de los 20 - 40 MPa, por tanto, se obtiene un producto resistente que es más ligero, lo cual aporta una solución a los problemas derivados de transporte, manejo e instalación de productos con una densidad como la previamente indicada.
Del mismo modo, este material permite obtener unos valores mejorados en cuanto al aislamiento acústico y térmico respecto de otros utilizados para usos constructivos. Como se podrá ver más adelante, el material objeto de la presente invención, para un producto de espesor 50 mm y densidad 1447 kg/m3 tiene unos resultados de resistencia térmica de entre 0.170 - 0.187 m2 K/W y de resistencia acústica de 18.7 dB; frente a los 0.104 - 0.125 m2 K/W de resistencia térmica y 17.1 dB de resistencia acústica de un material polimérico convencional constructivo que tenga un mismo espesor y una densidad de 2220 kg/m3; por tanto, esta nueva composición más ligera permite, además obtener unos mejores resultados de resistencia térmica y acústica.
Para la obtención de un producto constructivo basado en esta composición, todos los componentes se mezclan de forma homogénea, para a continuación incorporar a dicha mezcla el catalizador. De esta forma se consigue una masa uniforme, procediéndose seguidamente al relleno de un molde, el correspondiente a la forma y tamaño previsto para la pieza a obtener. Dependiendo del polímero el curado se puede realizar en diferentes sistemas: a temperatura ambiente, altas temperaturas, aportación de microondas. Dependiendo de las características finales de la pieza, el proceso podrá requerir vacío para extraer el aire generado en la mezcla y/o vibrado. El material una vez curado podrá desmoldarse convenientemente. Dependiendo de la resina y condiciones de curado, podrá requerir un proceso de postcurado. Esta pieza puede quedar lista para su uso, a espera de componentes externos, barnizado, pintado u otros cuando proceda. En este sentido, la aplicación de pintura también puede realizarse inicialmente sobre el molde, realizando la colada sobre dicha pintura, fijada previamente al molde. En este caso la pintura del ser compatible con la resina termoestable y poder fusionarse al material de colada durante la reacción de esta última. En cualquier caso, se puede decir que el procedimiento de obtención de un material de construcción la composición previamente definida, comprende las etapas de: i) mezcla homogénea de la resina termoestable, el material de carga porosa y el material de carga mineral en un sistema agitador;
¡i) introducir el pigmento a la mezcla de la etapa anterior y mezclar en el sistema agitador; iii) salida de la mezcla homogénea resultante de la etapa anterior y llenado de un molde; iv) introducir el catalizador en la mezcla llenada en el molde de la etapa anterior, y mezclar homogéneamente; v) curado de la mezcla resultante de la etapa anterior durante un periodo de 10 a 60 minutos y a una temperatura de al menos 45eC; vi) obtención del producto final; y tras la etapa de obtención del producto final, se puede desmoldea y se puede someter a un acabado superficial seleccionado de entre barnizado, pulido, abrillantado y/o pintado.
Teniendo en cuenta lo previamente descrito, es objeto de la presente invención definir el posible uso de un material según las características y composición previamente definidas para la fabricación de hormigón polimérico. Del mismo modo, también se puede indicar el uso de un material según las características y composición previamente definidas para la fabricación de productos sanitarios como platos de ducha, lavabos o encimeras. Como se ha indicado previamente, el material es ligero, resistente y con muy buenas características aislantes de calor y ruido.
Se ha de tener en cuenta que, a lo largo de la descripción y las reivindicaciones, el término “comprende” y sus vahantes no pretenden excluir otras características técnicas o elementos adicionales.
Descripción detallada de unos modos de realización del invento
A continuación, se procede a detallar diferentes ejemplos de realización de un material compuesto tal como el descrito previamente, y que permite ser utilizado como material constructivo.
Una primera posible realización de la invención consiste en un material que tiene la particularidad de comprender la siguiente composición (en % en peso): un 27 % de resina termoestable que es una resina de poliéster insaturado, un 34,50 % de material de carga porosa que es perlita; con un tamaño de partícula de entre 0,5 y 1 ,50 mm, y que puede estar tratado con un tratamiento coating o de protección exterior; un 34,50 % de material de carga mineral, donde el material de carga mineral es carbonato de calcio, con un tamaño de partícula de entre 0,1 y 1 mm; de modo que la relación entre carga porosa y carga mineral es 1 :1 , siendo la carga mineral en crudo o no-expandida, un 2 % de un pigmento que es bióxido de titanio para obtener un producto de color blanco; y un 2 % de un catalizador, que es peróxido de metiletilcetona.
Este material es obtenido mediante una mezcla inicial homogénea entre el material de carga porosa y el material de carga mineral en un sistema agitador; la posterior introducción del pigmento a la mezcla de la etapa anterior y mezclar en el sistema agitador; la salida de la mezcla homogénea resultante de la etapa anterior y llenado de un molde; la introducción del catalizador en la mezcla llenada en el molde de la etapa anterior, y la mezclar homogéneamente; un curado de la mezcla resultante de la etapa anterior durante un periodo de 50minutos; se obtiene el producto final; y tras ello, se puede desmoldea y, finalmente, se somete a un acabado superficial consistente en un pulido.
Este material tiene como resultado una densidad de 1447 kg/m3 y una resistencia en el entorno de los 30 MPa, lo cual le permite ser utilizado para la fabricación de productos sanitarios, como un lavabo o un plato de ducha, dado que incluso estéticamente es un producto con un acabado blanco habitual en este tipo de productos.
En este punto se compara el ejemplo de realización con un producto convencional basado en resina poliméñca de los habitualmente utilizados para la fabricación de productos sanitarios, concretamente platos de ducha. Este material está constituido por 75% de resina y 25% de material de carga mineral. Este material tiene una densidad de 2220 Kg/m3, y tiene unas características mecánicas similares a las del ejemplo de realización previamente indicado.
Se puede observar que el material objeto de la presente invención dispone de unas características mecánicas aptas para su utilización en productos sanitarios, pero tiene la gran ventaja de ser un material menos denso, lo que permite solucionar los problemas existentes en los materiales poliméricos conocidos en cuanto a su transporte y utilización.
A continuación, se procede a realizar ensayos comparativos de ambos materiales para piezas que tengan un espesor similar, concretamente entre 47 y 52 mm.
En la Tabla 1 se puede observar los resultados obtenidos para la determinación de la conductividad térmica, según la UNE-EN 12667, entre un material según un ejemplo de realización de la presente invención (material invento) y el material conocido indicado previamente (material convencional), donde las condiciones de la medida en los ensayos son en condiciones ambientales de 23eC y 60% HR, y la determinación de temperatura promedio entre la placa caliente y fría es de 20eC.
Figure imgf000009_0001
Tabla 1
Esto muestra que el material objeto del presente invento tiene una característica de resistencia térmica sensiblemente superior a los de los materiales poliméricos actuales.
En la Tabla 2 se puede observar los resultados obtenidos para la determinación del aislamiento térmico entre un material según un ejemplo de realización de la presente invención (material invento) y el material conocido indicado previamente (material convencional), donde para el cálculo del aislamiento acústico global (DgiObai) se hace la media de todos los aislamientos acústicos específicos de cada una de las diferentes frecuencias de estudio, de manera que se obtiene un valor para cada material que permite su comparación, y de modo que cuanto mayor es el valor del aislamiento acústico global de un material, mayor aislamiento acústico y/o absorción de ruido presenta el mismo.
Figure imgf000009_0002
Tabla 2 Esto muestra que el material objeto del presente invento tiene una característica de aislamiento acústico superior a los de los materiales poliméricos actuales, lo cual es muy importante por ejemplo para reducir el ruido en platos de ducha, o bien para aislamiento de una estancia, como puede ser en comparación con un hormigón polimérico.
Por tanto, se puede observar que una posible realización del material del invento, concretamente un 27 % de resina de poliéster insaturado, un 34,50 % de material de carga porosa que es perlita; un 34,50 % de material de carga mineral que es carbonato de calcio; un 2 % de un pigmento que es bióxido de titanio; y un 2 % de un catalizador que es peróxido de metiletilcetona; en comparación con un material polimérico convencional, permite obtener un material mucho más ligero, con unas características resistentes similares, y mejora sensiblemente su capacidad de resistencia térmica y su aislamiento acústico.
En otras posibles realizaciones de la invención se ha visto que para dosificaciones con un 25 - 35 % de resina termoestable; un 30 - 40 % de material de carga porosa, donde el material de carga porosa es al menos uno seleccionado de entre perlita, verniculita, piedra pómez, sepiolita y zeolita; un 30 - 40 % de material de carga mineral, donde el material de carga mineral es al menos uno seleccionado de entre carbonato de calcio y dolomita; un 0,5 - 4 % de un pigmento; y un 0,1 - 3 % de un catalizador, la densidad obtenida se encuentra comprendida entre 1300 - 1600 Kg/m3, con unos resultados de resistencia en el entorno de los 36 MPa dependiendo del material poroso y mineral, siendo aptos para su uso como hormigones poliméricos o en la ejecución de productos sanitarios.
En otras posibles realizaciones de la invención se ha visto que para dosificaciones con un 25 - 35 % de resina termoestable; un 45 - 60 % de material de carga porosa, donde el material de carga porosa es al menos uno seleccionado de entre perlita, verniculita, piedra pómez, sepiolita y zeolita; un 10 - 25 % de material de carga mineral, donde el material de carga mineral es al menos uno seleccionado de entre carbonato de calcio y dolomita; un 0,5 - 4 % de un pigmento; y un 0,1 - 3 % de un catalizador, la densidad obtenida se encuentra comprendida entre 1050 - 1300 Kg/m3, con unos resultados de resistencia en el entorno de los 29 MPa dependiendo del material poroso y mineral, y por tanto, siendo aptos para su uso como hormigones poliméricos o en la ejecución de productos sanitarios.
Se puede también observar que cuanto más se aumenta la proporción de carga porosa y más se reduce la materia mineral, la densidad disminuye, aunque es importante que el material tenga una proporción mínima de carga mineral para disponer de características resistentes aptas para los usos descritos previamente.
Teniendo en cuenta todos los aspectos previos, la presente invención resuelve los problemas de poder disponer de un producto que sea más ligero y mucho más manejable y transportable que los materiales poliméricos conocidos hasta la fecha, donde este nuevo material permite alcanzar los requisitos resistivos y estéticos necesarios para poder fabricar productos sanitarios y/o ser usado como hormigón polimérico, y donde además, se mejoran las propiedades de aislamiento acústico y térmico de materiales con un uso semejante.

Claims

REIVINDICACIONES
1.- Material compuesto de construcción que comprende una resina termoestable y una carga porosa, que se caracteriza por que tiene una composición en % en peso, que comprende un 20 - 40 % de resina termoestable; un 15 - 70 % de material de carga porosa, donde el material de carga porosa es al menos uno seleccionado de entre perlita, verniculita, piedra pómez, sepiolita y zeolita; un 10 - 50 % de material de carga mineral, donde el material de carga mineral es al menos uno seleccionado de entre carbonato dolomita e hidróxido de aluminio; un 0,5 - 4 % de un pigmento; y un 0,1 - 3 % de un catalizador.
2.- Material según las características de la reivindicación 1 , donde el tamaño de partícula medio del material de carga porosa está comprendido entre 0,1 y 10 mm.
3.- Material según las características de la reivindicación 1 , donde el tamaño de partícula medio del material de carga mineral está comprendido entre 5 mieras y 1 cm.
4.- Material según las características de la reivindicación 1 , donde la carga mineral es cruda.
5.- Material según las características de la reivindicación 1 , donde la resina termoestable es al menos una seleccionada de entre poliéster, vinilester, resina epoxi y poliuretano
6.- Material según las características de la reivindicación 1 , donde el pigmento es al menos uno seleccionado de entre dióxido de titanio, negro de humo u óxidos de hierro.
7.- Material según las características de la reivindicación 1 , donde el catalizador es peróxido de metileticetona
8.- Procedimiento de obtención de un material compuesto según cualquiera de las reivindicaciones anteriores, que comprende las etapas de: i) mezcla homogénea de la resina termoestable, el material de carga porosa y el material de carga mineral en un sistema agitador;
¡i) introducir el pigmento a la mezcla de la etapa anterior y mezclar en el sistema agitador; iii) salida de la mezcla homogénea resultante de la etapa anterior y llenado de un molde; iv) introducir el catalizador en la mezcla llenada en el molde de la etapa anterior, y mezclar homogéneamente; v) curado de la mezcla resultante de la etapa anterior durante un periodo de 10 a 60 minutos, y a una temperatura de al menos 45eC; vi) obtención del producto final.
9.- Procedimiento según la reivindicación anterior donde, tras la etapa de obtención del producto final, se desmoldea y se somete a un acabado superficial seleccionado de entre barnizado, pulido, abrillantado y/o pintado.
10.- Uso de un material según una cualquiera de las reivindicaciones 1 - 7 como hormigón polimérico.
11.- Uso de un material según una cualquiera de las reivindicaciones 1 - 7 para la fabricación de productos sanitarios.
PCT/ES2022/070456 2021-09-20 2022-07-14 Material compuesto de construccion que comprende una resina termoestable y una carga porosa WO2023041818A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202130912 2021-09-20
ES202130912A ES2937645B2 (es) 2021-09-29 2021-09-29 Material compuesto de construccion que comprende una resina termoestable y una carga porosa

Publications (2)

Publication Number Publication Date
WO2023041818A1 true WO2023041818A1 (es) 2023-03-23
WO2023041818A8 WO2023041818A8 (es) 2023-05-25

Family

ID=85601907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070456 WO2023041818A1 (es) 2021-09-20 2022-07-14 Material compuesto de construccion que comprende una resina termoestable y una carga porosa

Country Status (2)

Country Link
ES (1) ES2937645B2 (es)
WO (1) WO2023041818A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408316A (en) * 1964-02-13 1968-10-29 Phillip Carey Corp Preformed thermal insulation material and binder for molding same
DE2726751A1 (de) 1977-06-14 1979-01-04 Isovolta Verfahren zur herstellung eines plattenfoermigen koerpers
CN1056296A (zh) * 1991-05-08 1991-11-20 弓秉正 塑料珍珠岩组合材料及其生产方法
KR100835132B1 (ko) 2008-01-04 2008-06-04 주식회사 케이피 경화성 수지의 발열을 이용한 일체형 코너를 갖는 마감재의제조방법.
CN101798195A (zh) 2010-03-18 2010-08-11 北京联合大学生物化学工程学院 一种热固性树脂基阻火模块
CN202136232U (zh) * 2011-01-13 2012-02-08 张海生 珍珠岩保温浴缸
KR20120035628A (ko) 2010-10-06 2012-04-16 주식회사 경동세라텍 열경화성 수지를 이용한 팽창 퍼라이트 단열재, 이의 제조방법 및 이를 이용한 제품
CN111058567A (zh) * 2019-12-28 2020-04-24 浙江晶晶绝缘材料有限公司 一种阻燃板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408316A (en) * 1964-02-13 1968-10-29 Phillip Carey Corp Preformed thermal insulation material and binder for molding same
DE2726751A1 (de) 1977-06-14 1979-01-04 Isovolta Verfahren zur herstellung eines plattenfoermigen koerpers
CN1056296A (zh) * 1991-05-08 1991-11-20 弓秉正 塑料珍珠岩组合材料及其生产方法
KR100835132B1 (ko) 2008-01-04 2008-06-04 주식회사 케이피 경화성 수지의 발열을 이용한 일체형 코너를 갖는 마감재의제조방법.
CN101798195A (zh) 2010-03-18 2010-08-11 北京联合大学生物化学工程学院 一种热固性树脂基阻火模块
KR20120035628A (ko) 2010-10-06 2012-04-16 주식회사 경동세라텍 열경화성 수지를 이용한 팽창 퍼라이트 단열재, 이의 제조방법 및 이를 이용한 제품
CN202136232U (zh) * 2011-01-13 2012-02-08 张海生 珍珠岩保温浴缸
CN111058567A (zh) * 2019-12-28 2020-04-24 浙江晶晶绝缘材料有限公司 一种阻燃板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAJI MARYA, NEKHLAOUI SOUAD, EL HASSANI IZ-EDDINE EL AMRANI, ESSASSI EL MOKHTAR, ESSABIR HAMID, RODRIGUE DENIS, BOUHFID RACHID, QA: "Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites", COMPOSITES PART B, ELSEVIER, AMSTERDAM, NL, vol. 165, 1 May 2019 (2019-05-01), AMSTERDAM, NL, pages 47 - 54, XP093050021, ISSN: 1359-8368, DOI: 10.1016/j.compositesb.2018.11.098 *

Also Published As

Publication number Publication date
ES2937645A1 (es) 2023-03-30
ES2937645B2 (es) 2023-11-02
WO2023041818A8 (es) 2023-05-25

Similar Documents

Publication Publication Date Title
ES2796828T3 (es) Elemento de construcción para suelos sobreelevados y similares y método de fabricación
US7875668B2 (en) Composite solid surface article containing loess
CN101328039A (zh) 人造石面板及其制造方法
KR100815472B1 (ko) 항균성 및 샌딩성이 우수한 인조대리석용 조성물
US4254019A (en) Mineral-resin matrix
ES2937645B2 (es) Material compuesto de construccion que comprende una resina termoestable y una carga porosa
JP2007507579A (ja) 不燃性組成物、これを用いた建築用不燃性成形品及びこれの製造方法
US4282125A (en) Polymer composition with a polyester basis and utilization thereof for the production of transparent flexible laminates with inert and/or fibrous filling materials
WO2023099800A1 (es) Material compuesto de construcción que comprende una resina termoestable y unas cargas tratadas superficialmente
CN208870327U (zh) 一种建筑外墙防火装饰板组件
WO2019240705A2 (en) Natural, light aggregate precast composite mortar with insulation properties, inorganic binding system
JP2881854B2 (ja) 人工大理石及びそのfrp補強成形品
KR20140147317A (ko) 노출 콘크리트 패널의 제조방법
KR100741756B1 (ko) 방내화칸막이용 불연성 판넬 및 그 제조방법
CN105110721A (zh) 一种新型轻质防火材料及其制备方法
ES2353294B1 (es) Procedimiento de fabricación de paneles constructivos o decorativos y panel así obtenido.
JPH11199293A (ja) 人造大理石
FI72963B (fi) Anvaendning av en bindemedelskomposition foer putsbelaeggningar.
KR20220157865A (ko) 굴패각분말의 제조방법 및 이를 함유하는 건식바닥재 조성물
CN108658555A (zh) 隔热防火芯板及其制备方法
CN101096295A (zh) 干法氟石膏与建筑石膏混合料
KR960009329B1 (ko) 건축용 인공 석재판의 조성방법
KR20000051357A (ko) 경량기포 황토보드 및 그 제조 방법
GB2283979A (en) Composite materials
KR100668802B1 (ko) 무기 불연성 내화판넬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022869469

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022869469

Country of ref document: EP

Effective date: 20240422