WO2023041383A1 - Batteriesystem für ein fahrzeug - Google Patents

Batteriesystem für ein fahrzeug Download PDF

Info

Publication number
WO2023041383A1
WO2023041383A1 PCT/EP2022/074763 EP2022074763W WO2023041383A1 WO 2023041383 A1 WO2023041383 A1 WO 2023041383A1 EP 2022074763 W EP2022074763 W EP 2022074763W WO 2023041383 A1 WO2023041383 A1 WO 2023041383A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
vehicle
battery system
holding
Prior art date
Application number
PCT/EP2022/074763
Other languages
English (en)
French (fr)
Inventor
Philipp Schildt
Markus SONS
Qinyin Zhang
Original Assignee
Rolls-Royce Deutschland Ltd & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls-Royce Deutschland Ltd & Co Kg filed Critical Rolls-Royce Deutschland Ltd & Co Kg
Publication of WO2023041383A1 publication Critical patent/WO2023041383A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present disclosure relates in particular to a battery system and to a vehicle with such a battery system.
  • electric batteries for driving one or more electric motors are typically built into a chassis, fuselage and/or wings.
  • the batteries can include, for example, lithium-ion storage cells and sometimes store significant amounts of energy.
  • the object of the present invention is to reduce the risks emanating from batteries in vehicle accidents.
  • a battery system for a vehicle in particular an aircraft, is provided.
  • the battery system comprises a battery module with at least one electric battery and at least one holding device for fastening the battery module to the vehicle, with a battery-side holding section fixed to the battery module and a vehicle-side holding section to be fixed to the vehicle (and fixed in the mounted state on the vehicle), the two holding sections are connected to one another via a connecting section (e.g. firmly).
  • the at least one holding device is designed such that as a result of a force acting on the battery module, the connection of the battery-side holding section to the vehicle-side holding section is released by the connecting section.
  • the battery module can thus be spatially separated from the vehicle, for example stripped off or thrown off, so that there are risks for people in or on the vehicle caused by a accidental fire of the battery module can be severely limited.
  • this solution does not require a particularly secure housing for the battery(ies), which allows improvements in the overall weight and in the use of the available installation space.
  • electrical separation can also take place, as a result of which a potential risk of electric shocks can also be greatly reduced.
  • connection section forms a predetermined breaking point. If a sufficiently high force acts on the battery module, the connection section fails at a predetermined point, namely at the predetermined breaking point. This allows a particularly simple and at the same time reliable construction.
  • the battery system it is possible for the battery system to be designed so that the disconnection takes place passively. The force acting on the battery module directly causes the mechanical separation.
  • the holding sections of the holding device are connected to one another in one piece via the connecting section. This allows a particularly simple and at the same time safe structure.
  • the at least one holding device is designed in the form of a shear pin.
  • the connecting section is designed to be tapered in relation to the holding sections.
  • the connecting portion may have a circumferential groove. Shear pins are particularly easy to produce and allow a precise setting of a threshold value of the force on the battery module from which the connection is released by the connection section.
  • the battery module can be sheared off by the force from the vehicle-side holding section.
  • the force is, for example, a shearing force and is oriented, for example, perpendicular to a main direction of extension of the holding device. In this way, the battery module itself can be separated from the vehicle in a particularly simple manner in the event of an accident or an emergency landing.
  • the battery system can also include a sensor.
  • the sensor is set up to measure a force on the battery module and/or to measure an acceleration, for example an acceleration of the battery module and/or the vehicle.
  • the sensor can be designed to detect a fire and/or a temperature.
  • the battery system includes a control unit.
  • the control unit can be operatively connected to the sensor for detecting the measured force and/or acceleration.
  • the battery system includes an explosive device with explosives.
  • the explosive charge can be arranged and set up to act on the connecting section, for example mounted on the connecting section.
  • the control unit is set up to detonate a detonator of the explosive charge in the event of a predetermined or predeterminable condition.
  • the control unit is set up to fire the igniter depending on the detected force and/or acceleration.
  • the explosive charge is designed in the form of an elongated cutting charge.
  • a particularly precise separation of the connection section can thus be achieved, with damage to the vehicle and/or the battery module being able to be avoided particularly effectively by the explosive device.
  • the explosive device can be designed as a shaped charge, in particular in the form of a projectile-forming charge.
  • the connecting section is movably mounted relative to one or both of the holding sections.
  • the control unit is optionally set up to control a drive, e.g. a motor, for moving the connecting section relative to one of the holding sections or to the holding sections as a function of the detected force and/or acceleration.
  • a drive e.g. a motor
  • Such an embodiment makes it possible to reversibly test the separation of the connection section.
  • an accident can be prevented after (or by) separating the battery module from the vehicle, it is possible to easily mount a new battery module.
  • this configuration also allows the battery module to be replaced, e.g. with a fully charged battery module.
  • the connecting section has a hook.
  • the battery system may include multiple retention devices, each of which may be configured in any manner described herein. This allows for a secure hold in normal use.
  • the battery system includes two, three or four holding devices.
  • the holding devices can be of the same design as each other.
  • the holding devices can be aligned in the same way.
  • the holders are elongated and aligned parallel to each other.
  • the battery module may include a friction layer.
  • the friction layer can have a structured surface and/or a higher coefficient of friction than a housing of the battery module that encloses the at least one electric battery. In the case of aircraft, for example, this makes it possible for the battery module to be braked particularly hard if the battery module comes into contact with the ground and is thus separated from the vehicle more quickly, e.g. sheared off.
  • the friction layer includes or consists of rubber. This is a particularly simple and inexpensive option.
  • At least one hook is optionally provided on the battery module, in particular on an underside of the battery module (in particular, many such hooks are provided).
  • a hook can develop a braking effect.
  • the hook is open towards the main direction of travel of the vehicle. The tip of the hook can thus dig into the ground to separate the battery module.
  • the at least one hook is arranged on the housing and/or in the housing of the battery module.
  • the at least one hook may be covered by the friction layer.
  • a vehicle in particular an aircraft.
  • the vehicle includes the battery system according to any configuration described herein, for example on an underside of the vehicle which is arranged at the bottom of the vehicle when the vehicle is used as intended vehicle.
  • the vehicle can also include a drive unit with an electric motor, for example a purely electrically operated drive unit or a hybrid-electrically operated drive unit, which can also generate propulsion, for example by burning a fuel. It can be provided that the electric motor is supplied with current by the battery module in order to cause the vehicle to propel itself.
  • a drive unit with an electric motor for example a purely electrically operated drive unit or a hybrid-electrically operated drive unit, which can also generate propulsion, for example by burning a fuel.
  • the electric motor is supplied with current by the battery module in order to cause the vehicle to propel itself.
  • the vehicle can be in the form of an aircraft, for example an airplane, a helicopter, an unmanned aerial vehicle or the like.
  • the battery module can be attached to the underside of the aircraft and/or to the outside of the aircraft. In this way, it can be actively and/or passively separated from the vehicle in a simple manner in the event of or as a result of an accident.
  • the aircraft is an airplane, a drone, a helicopter, an unmanned aerial vehicle.
  • it is an electrically powered aircraft that can take off and land vertically (eVTOL).
  • the vehicle is in the form of a land vehicle, for example a passenger car, truck or the like.
  • the vehicle can be designed as a watercraft.
  • Figure 1 shows an aircraft in the form of an airplane with a
  • FIG. 2 shows the battery system according to FIG. 1 with a battery module and several holding devices
  • FIG. 3A shows a holding device according to FIG. 2 in one
  • FIG. 3B shows the holding device according to FIG. 3A after a failure
  • FIG. 4 shows a holding device for the battery system according to FIG. 2 with an explosive charge
  • FIG. 5 shows an explosive device designed in the form of a cutting charge
  • FIG. 6 shows a holding device for the battery system according to FIG. 2 with the explosive charge according to FIG. 5;
  • FIG. 7 shows a holding device for the battery system according to FIG. 2 with a hook-shaped connecting section and a drive for moving the connecting section.
  • FIG. 1 shows a vehicle, specifically an aircraft 2, in the form of an electrically powered aircraft.
  • the aircraft 2 includes a fuselage 20 on which wings 21 are attached, a landing gear and a thrust-generating device, here in the form of a propeller 22 by way of example.
  • the drive unit 23 includes an electric motor 230, which can optionally also be operated as a generator.
  • the electric motor 230 draws operating current from a battery module 10, which is part of a battery system 1 explained in detail below.
  • the battery module 10 is electrically connected to the electric motor 230 .
  • the battery module 10 is fixed to an underside of the body 20 . It can be seen from FIG. 1 that the battery module 10 is attached to the outside of the fuselage 20 . In this example, the battery module 10 is located entirely outside of the fuselage 20 . Alternatively, however, it would also be possible to let the battery module 10 partially or completely into an interior space of the fuselage 20 . It should also be noted that the battery module 10 could alternatively also be mounted on or in one of the wings 21 .
  • the battery system 1 can comprise several battery modules 10, e.g. one on each of the wings 21 and/or one on the fuselage 20.
  • the battery module 10 can be ejected so that a possible accident-related fire in the battery module 10 No danger to pilots, passengers or other people nearby.
  • Passive and active variants are conceivable here, and a passive variant is first described below with reference to FIGS. 2 to 3B, in which the battery module 10 is separated from the fuselage 20 mechanically by shear forces.
  • Various active variants are then described with reference to FIGS. 4 to 7, in which a control signal causes the separation.
  • FIG. 2 shows a section of fuselage 20 of aircraft 2 and details of battery system 1 .
  • the battery system 1 comprises a plurality of holding devices 11A, by means of which the battery module 1 is fastened to the aircraft 2 (here to its fuselage 20).
  • Four holding devices 11A are provided here by way of example.
  • the holding devices 11A can be destroyed if a force F acts on the battery module 10 that exceeds a predetermined threshold value. This can happen, for example, if the aircraft 2 touches down so hard that the landing gear is damaged (or in the case of aircraft with stowable landing gear, if the landing gear cannot be extended), in the event of an impact with an obstacle or the like.
  • An arrow on the fuselage 20 shows the flight direction of the aircraft 2
  • an arrow on the battery module 10 shows the relative movement of the battery module 10 after the destruction of the holding devices 11A as a result of the force F.
  • the holding devices 11A are aligned in such a way that shear forces resulting from contact between the battery module 10 and the Ground during a movement of the aircraft 2 acts relative to the ground perpendicular to the main direction of extension of the holding devices 11A.
  • the battery module 10 includes a plurality of electric batteries 100 housed in a housing 101 .
  • FIG. 2 shows a portion of the batteries 100 of the battery module 10 merely by way of example.
  • the batteries 100 in this example include lithium-ion storage cells, however, it should be understood that other types of battery cells, both primary and secondary, may be used.
  • the battery module 10 at a come to rest in a different place than the aircraft 2. This makes it possible for it to no longer pose a danger to passengers or other people, even in the event of a fire.
  • Batteries 100 power electric motor 230 .
  • the batteries 100 are connected to the electric motor 230 via an electrical connection 16 .
  • the electrical connection 16 comprises, for example, a plug-in connection with two plug-in connector parts that can be plugged into one another. If the battery module 10 is separated from the aircraft 2, then the electrical connection 16 is automatically uncoupled (e.g. the connector parts are separated from one another). In this way, the risk of an electric shock at an accident site of the aircraft 2 can also be significantly reduced.
  • the holding devices 11A bridge a gap S between the battery module 10 and the aircraft 2, here the fuselage 20.
  • the holding devices 11A protrude from the fuselage 20, in the present case perpendicularly.
  • the battery module 10 comprises a friction layer 102.
  • the friction layer 102 is arranged on an underside of the battery module 10, i.e. on a side which, during normal operation of the aircraft 2 as intended, faces away from the aircraft 2 and in the direction of the floor shows.
  • the friction layer 102 is structured in such a way and/or made from such a material that strong friction occurs when the battery module 10 is dragged over a substrate (particularly as a result of an accident).
  • the friction layer 102 is here made of rubber.
  • the battery module 10 further includes a plurality of hooks 104 (or generally braking elements), also in the area of the underside of the battery module 10. These are arranged around such that they point with their open ends in the direction of movement of the vehicle in a straight-ahead movement. As a result, the hooks 104 generate an additional braking effect when they are dragged over the ground when the battery module 10 is being dragged.
  • the hooks 104 are through the friction layer 102 covered. Thus, they become active as soon as the friction layer is worn away.
  • the friction layer can be omitted and only the hooks 104 can be used for braking. In other alternatives, such braking devices can be dispensed with entirely.
  • the hooks 104 also provide cushioning upon impact with the ground. Thereby, the batteries 100 in the case 101 of the battery module 10 can be protected. As a result, a fire in the batteries 100 can be delayed or even prevented entirely.
  • the housing 101 may have one or two, e.g. opposite, inclined (e.g. relative to the bottom and/or top of the housing 101) end face(s).
  • a layer of cushioning material 103 e.g. a foam material and/or a fiber material, is arranged on the underside of the battery module 10 in order to cushion an impact.
  • the hooks 104 are embedded in the damping material 103 .
  • the cushioning material 103 is covered by the friction layer 102 .
  • FIG. 3A shows one of the holding devices 11A in the undamaged state during normal use.
  • the holding device 11A comprises a shear pin.
  • the holding device 11A has a battery-side holding section 110A fastened to the battery module 10 and a vehicle-side holding section 111A fastened to the aircraft 2 .
  • the battery-side holding portion 110A and the vehicle-side holding portion 111A are fixedly connected to each other via a connection portion 112A.
  • the connecting section 112A has a circumferential groove and is thus weakened compared to the holding sections 110A, 111A.
  • the battery-side holding portion 110A, the vehicle-side holding portion 111A, and the connecting portion 112A are formed integrally with each other.
  • the connection of the battery-side holding section 110A is released from the vehicle-side holding section 111A through the connection section 112A.
  • the connecting portion 112A is broken.
  • the battery-side holding portion 110A and am Vehicle-side holding section 111 A each have a breaking point B, see Figure 3B.
  • FIG. 4 shows a holding device 11B for the battery system 1 according to FIG. 2, which can be provided there instead of or in addition to one of the holding devices 11A.
  • the holding device 11 B has a battery-side holding section 11 OB fastened to the battery module 10 in the assembled state, and a vehicle-side holding section 111 B fastened to the aircraft 2.
  • the explosive charge 15A comprises a detonator 152.
  • the detonator 152 is connected to a control unit 13 and can be detonated by the control unit 13.
  • FIG. When the explosive device 15A is detonated, an explosion destroys the connecting portion 112B, so that the
  • the control unit 13 is caused to fire the squib 152 by a signal inputted through a user interface, for example.
  • a pilot of the lift vehicle 2 can drop the battery module 10 .
  • a sensor 12 shown in FIG. 4 is provided.
  • the sensor 12 measures a force acting on the battery module 10 and/or, as in this example, an acceleration experienced by the battery module 10 (alternatively or additionally, the temperature and/or the sensor 12 detects a fire).
  • the control unit 13 reads the sensor 12 and compares the read sensor values with predetermined threshold values. If the sensor values exceed the predetermined threshold values, then the control unit 13 detonates the explosive device 15A.
  • FIG. 5 shows an explosive charge 15B for a holding device 11C shown in FIG. 6.
  • the explosive charge 15B is designed in the form of an elongated cutting charge.
  • Explosive 151 is arranged in a shell 150 and shell 150 is closed by a cover referred to as liner 153 .
  • the liner 153 is V-shaped in cross-section perpendicular to the longitudinal axis of the explosive device 15B. When the fuze 152 is fired, the liner 153 forms a projectile, and an elongated one at that. This allows a directional, elongated cut.
  • FIG. 6 shows the already mentioned holding device 11C with the explosive device 15B according to FIG. 5.
  • the holding device 11C can be provided instead of or in addition to one of the holding devices 11A from FIG.
  • all holding devices of the battery system 1 are designed according to FIG.
  • the connecting section 112C is elongate.
  • the elongate cutting charge is configured to sever the connecting portion 112C along
  • Another explosive charge 15A, 15B is optionally provided on the holding device 11B, 11C, e.g. for reasons of redundancy.
  • the explosive charge 15A, 15B and the further explosive charge 15A, 15B are detonated simultaneously. In this way, separation can be ensured even if an explosive device 15A, 15B fails.
  • a further explosive charge 15B in the form of a further cutting charge can be arranged on the holding device 11C.
  • the two cutting charges are e.g. arranged parallel to each other, e.g. perpendicular to the holding device 11C, optionally on both sides.
  • FIG. 7 shows a further holding device 11D, which can be provided instead of or in addition to one of the holding devices 11A from FIG.
  • the holding device 11D comprises a connecting section 112D pivotably mounted on a rotation axis D.
  • the connecting section 112D is in engagement with one of the two holding sections 110D, 111D and is rotatably mounted about the axis of rotation D on the other of the two holding sections 110D, 111D.
  • Connecting portion 112D includes a hook by way of example.
  • Connection section 112 can be pivoted relative to battery module 10 by a drive 17 in the form of an electric motor. In this way, the connection can be flexibly established and released again.
  • the holding device 11D can include a Bowden cable 18 that can be actuated manually, for example, illustrated in FIG. 7 with dashed lines.
  • a Bowden cable 18 that can be actuated manually, for example, illustrated in FIG. 7 with dashed lines.
  • This allows a particularly simple design. It should be understood that the invention is not limited to the embodiments described above, and various modifications and improvements can be made without departing from the concepts described herein. Any of the features may be employed separately or in combination with any other feature, provided they are not mutually exclusive, and the disclosure extends to and encompasses all combinations and sub-combinations of one or more features described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Ein Batteriesystem (1) für ein Fahrzeug, insbesondere ein Luftfahrzeug (2), umfasst: ein Batteriemodul (10) mit mindestens einer elektrischen Batterie (100) und zumindest eine Haltevorrichtung (11A-11D) zur Befestigung des Batteriemoduls (10) am Fahrzeug, mit einem am Batteriemodul (10) festgelegten, batterieseitigen Halteabschnitt (110A-110D) und einem am Fahrzeug festzulegenden, fahrzeugseitigen Halteabschnitt (111A-111D), die über einen Verbindungsabschnitt (112A-112D) miteinander verbunden sind, wobei die zumindest eine Haltevorrichtung (11A-11D) so ausgebildet ist, dass infolge einer auf das Batteriemodul (10) wirkenden Kraft (F) die Verbindung des batterieseitigen Halteabschnitts (110A-110D) mit dem fahrzeugseitigen Halteabschnitt (111A-111D) durch den Verbindungsabschnitt (112A-112D) gelöst wird.

Description

Batteriesystem für ein Fahrzeug
Beschreibung
Die vorliegende Offenbarung bezieht sich insbesondere auf ein Batteriesystem und auf ein Fahrzeug mit einem solchen Batteriesystem.
Bei hybridelektrisch und rein elektrisch angetriebenen Fahrzeugen, insbesondere Luftfahrzeugen, werden elektrische Batterien zum Antrieb von einem oder mehreren Elektromotoren typischerweise in einem Chassis, Rumpf und/oder in Flügeln eingebaut. Die Batterien können z.B. Lithium-Ionen-Akkumulatorzellen umfassen und mitunter erhebliche Mengen an Energie speichern.
Eine Schwierigkeit im Falle eines Crashs des Fahrzeugs oder in anderen Situationen, in denen das Fahrzeug überlastet wird, beispielsweise bei einer Notlandung eines Flugzeugs auf unebenem Terrain, besteht dabei darin, dass derartige Batterien durch eine unfallbedingte Beschädigung in Brand geraten können. Ein solcher Brand ist typischerweise besonders schwierig zu löschen und birgt erhebliche Gefahren für Personen in dem Fahrzeug und für Rettungskräfte.
Aus der internen Praxis ist es der Anmelderin bekannt, Batterien in besonders crashsichere Gehäuse einzubauen, um die Brandgefahr zu reduzieren. Regelmäßig werden die Batterien ferner an einer besonders geschützten Stelle im Fahrzeug eingebaut, um die Wahrscheinlichkeit zu minimieren, dass es bei einem Unfall zu einer einen Brand verursachenden Beschädigung der Batterien kommt.
Aufgabe der vorliegenden Erfindung ist es, die von Batterien ausgehenden Risiken bei Fahrzeugunfällen zu reduzieren.
Gemäß einem Aspekt wird ein Batteriesystem für ein Fahrzeug, insbesondere ein Luftfahrzeug, bereitgestellt. Das Batteriesystem umfasst ein Batteriemodul mit mindestens einer elektrischen Batterie und zumindest eine Haltevorrichtung zur Befestigung des Batteriemoduls am Fahrzeug, mit einem am Batteriemodul festgelegten, batterieseitigen Halteabschnitt und einem am Fahrzeug festzulegenden (und im am Fahrzeug montierten Zustand festgelegten), fahrzeugseitigen Halteabschnitt, wobei die beiden Halteabschnitte über einen Verbindungsabschnitt (z.B. fest) miteinander verbunden sind. Dabei ist die zumindest eine Haltevorrichtung so ausgebildet, dass infolge einer auf das Batteriemodul wirkenden Kraft die Verbindung des batterieseitigen Halteabschnitts mit dem fahrzeugseitigen Halteabschnitt durch den Verbindungsabschnitt gelöst wird.
Bei einem Unfall, bei einem Luftfahrzeug beispielsweise eine Notlandung auf unebenem Terrain oder ohne ausgeklapptem Fahrwerk, bei einem Frontalaufprall oder dergleichen kann das Batteriemodul somit vom Fahrzeug räumlich getrennt, beispielsweise abgestreift oder abgeworfen werden, sodass Risiken für Menschen im oder am Fahrzeug, die von einem unfallbedingten Brand des Batteriemoduls ausgehen, stark begrenzt werden können. Diese Lösung erfordert zudem kein besonders gesichertes Gehäuse für die Batterie(n), was Verbesserungen im Gesamtgewicht und in der Nutzung des zur Verfügung stehenden Bauraums zulässt. Darüber hinaus kann durch die ermöglichte räumliche Trennung des Batteriemoduls vom Fahrzeug auch eine elektrische Trennung erfolgen, wodurch zusätzlich eine potentielle Gefahr durch Stromschläge stark reduziert werden kann.
Es kann vorgesehen sein, dass die Lösung der Verbindung durch den Verbindungsabschnitt irreversibel ist. Das erlaubt einen besonders einfachen Aufbau. Optional bildet der Verbindungsabschnitt eine Sollbruchstelle aus. Wirkt eine ausreichend hohe Kraft auf das Batteriemodul, versagt der Verbindungsabschnitt an einer vorherbestimmten Stelle, nämlich an der Sollbruchstelle. Das erlaubt einen besonders einfachen und zugleich verlässlichen Aufbau. Im Allgemeinen ist es möglich, dass das Batteriesystem dazu ausgebildet ist, dass die Trennung passiv erfolgt. Die auf das Batteriemodul wirkende Kraft bewirkt dabei unmittelbar die mechanische Trennung.
Optional sind die Halteabschnitte der Haltevorrichtung über den Verbindungsabschnitt einstückig miteinander verbunden. Dies erlaubt einen besonders einfachen und zugleich sicheren Aufbau.
Beispielsweise ist die zumindest eine Haltevorrichtung in Form eines Scherstifts ausgebildet. Zum Beispiel ist vorgesehen, dass der Verbindungsabschnitt gegenüber den Halteabschnitten verjüngt ausgebildet ist. Der Verbindungsabschnitt kann eine um laufende Rille aufweisen. Scherstifte sind besonders einfach herstellbar und lassen eine präzise Einstellung eines Schwellenwerts der Kraft auf das Batteriemodul zu, ab der die Verbindung durch den Verbindungsabschnitt gelöst wird.
Das Batteriemodul kann insbesondere durch die Kraft vom fahrzeugseitigen Halteabschnitt abscherbar sein. Die Kraft ist beispielsweise eine Scherkraft und z.B. senkrecht zu einer Haupterstreckungsrichtung der Haltevorrichtung ausgerichtet. So kann das Batteriemodul in besonders einfacher Weise durch einen Unfall oder eine Notlandung selbst vom Fahrzeug getrennt werden.
Das Batteriesystem kann ferner einen Sensor umfassen. Beispielsweise ist der Sensor zum Messen einer Kraft auf das Batteriemodul und/oder zum Messen einer Beschleunigung eingerichtet, beispielsweise einer Beschleunigung des Batteriemoduls und/oder des Fahrzeugs. Ferner kann der Sensor zum Detektieren eines Feuers und/oder einer Temperatur ausgebildet sein. Alternativ oder zusätzlich umfasst das Batteriesystem eine Steuerungseinheit. Die Steuerungseinheit kann zum Erfassen der gemessenen Kraft und/oder Beschleunigung mit dem Sensor operativ verbunden sein. Eine optionale aktive Trennung des Batteriemoduls vom Fahrzeug, die beispielsweise auf diese Weise umgesetzt sein kann, ermöglicht eine besonders rasche Trennung, beispielsweise noch vor dem eigentlichen Unfall oder in einer besonders frühen Phase des Unfalls.
In einer Ausgestaltung umfasst das Batteriesystem einen Sprengsatz mit Sprengstoff. Der Sprengsatz kann zum Einwirken auf den Verbindungsabschnitt angeordnet und eingerichtet sein, beispielsweise am Verbindungsabschnitt montiert sein. Optional ist die Steuerungseinheit dazu eingerichtet, einen Zünder des Sprengsatzes in Falle einer vorbestimmten oder vorbestimmbaren Bedingung zu zünden. Beispielsweise ist die Steuerungseinheit dazu eingerichtet, den Zünder in Abhängigkeit von der erfassten Kraft und/oder Beschleunigung zu zünden.
Optional ist der Sprengsatz in Form einer längserstreckten Schneidladung ausgebildet. Damit kann eine besonders präzise Trennung des Verbindungsabschnittes erzielt werden, wobei Beschädigungen des Fahrzeugs und/oder des Batteriemoduls durch den Sprengsatz besonders effektiv vermieden werden können. Im Allgemeinen kann der Sprengsatz als Hohlladung, insbesondere in Form einer projektilbildenden Ladung ausgebildet sein.
In einer Ausgestaltung ist der Verbindungsabschnitt relativ zu einem oder beiden der Halteabschnitte bewegbar gelagert. Optional ist die Steuerungseinheit dazu eingerichtet, einen Antrieb, z.B. einen Motor, zum Bewegen des Verbindungsabschnitts relativ zu dem einen der Halteabschnitte oder zu den Halteabschnitten in Abhängigkeit von der erfassten Kraft und/oder Beschleunigung anzusteuern. Eine solche Ausgestaltung ermöglicht es, die Trennung des Verbindungsabschnittes reversibel zu testen. Falls z.B. ein Unfall nach (oder durch) die Trennung des Batteriemoduls vom Fahrzeug verhindert werden kann, ist es zudem möglich, ein neues Batteriemodul in einfacher Weise zu montieren. Ferner erlaubt diese Ausgestaltung zusätzlich den Austausch des Batteriemoduls, z.B. durch ein vollgeladenes Batteriemodul.
Optional weist der Verbindungsabschnitt einen Haken auf. Das erlaubt eine einfache und zugleich robuste Ausführung. Das Batteriesystem kann mehrere Haltevorrichtungen umfassen, die jeweils nach jeder hierin beschriebenen Weise ausgestaltet sein können. Das ermöglicht eine sichere Halterung im Normalgebrauch. Beispielsweise umfasst das Batteriesystem zwei, drei oder vier Haltevorrichtungen. Die Haltevorrichtungen können untereinander gleichartig ausgebildet sein. Die Haltevorrichtungen können gleichermaßen ausgerichtet sein. Zum Beispiel sind die Haltevorrichtungen länglich und parallel zueinander ausgerichtet.
Das Batteriemodul kann eine Reibungsschicht umfassen. Die Reibungsschicht kann eine strukturierte Oberfläche und/oder eine im Vergleich mit einem die zumindest eine elektrische Batterie einschließenden Gehäuse des Batteriemoduls höheren Reibungskoeffizienten aufweisen. Das ermöglicht es zum Beispiel bei Luftfahrzeugen, dass bei einem Kontakt des Batteriemoduls mit dem Boden das Batteriemodul besonders stark gebremst wird und so schneller vom Fahrzeug getrennt, z.B. abgeschert wird.
Beispielsweise umfasst die Reibungsschicht Gummi oder besteht daraus. Das stellt eine besonders einfache und kostengünstige Möglichkeit dar.
Optional ist zumindest ein Haken am Batteriemodul vorgesehen, insbesondere an einer Unterseite des Batteriemoduls (insbesondere sind viele derartige Haken vorgesehen). Ein solcher Haken kann eine Bremswirkung entfalten. Der Haken ist z.B. in Richtung der hauptsächlichen Fortbewegungsrichtung des Fahrzeugs geöffnet. Die Spitze des Hakens kann sich somit in den Boden krallen, um das Batteriemodul abzutrennen.
In einer Ausgestaltung ist der zumindest eine Haken am Gehäuse und/oder im Gehäuse des Batteriemoduls angeordnet. Der zumindest eine Haken kann durch die Reibungsschicht überdeckt sein.
Gemäß einem Aspekt wird ein Fahrzeug bereitgestellt, insbesondere ein Luftfahrzeug. Das Fahrzeug umfasst das Batteriesystem nach einer beliebigen, hierin beschriebenen Ausgestaltung, beispielsweise an einer im bestimmungsgemäßen Gebrauch des Fahrzeugs unten am Fahrzeug angeordneten Unterseite des Fahrzeugs.
Das Fahrzeug kann ferner ein Antriebsaggregat mit einem Elektromotor umfassen, beispielsweise ein rein elektrisch betriebenes Antriebsaggregat oder ein hybridelektrisch betriebenes Antriebsaggregat, welches auch z.B. durch Verbrennung eines Treibstoffs Vortrieb erzeugen kann. Dabei kann vorgesehen sein, dass der Elektromotor durch das Batteriemodul mit Strom versorgt wird, um einen Vortrieb des Fahrzeugs zu bewirken.
Das Fahrzeug kann als Luftfahrzeug ausgebildet sein, beispielsweise als Flugzeug, als Helikopter, als unbemanntes Luftfahrzeug oder dergleichen. Dabei kann das Batteriemodul an einer Unterseite des Luftfahrzeugs und/oder außen am Luftfahrzeug angebracht sein. So kann es in einfacher Weise bei oder infolge eines Unfalls aktiv und/oder passiv vom Fahrzeug getrennt werden. Beispielsweise handelt es sich bei dem Luftfahrzeug um ein Flugzeug, eine Drohne, einen Hubschrauber, ein unbemanntes Fluggerät. Beispielsweise handelt es sich um ein elektrisch angetriebenes Fluggerät, das senkrecht starten und landen kann (eVTOL). Alternativ dazu ist das Fahrzeug als Landfahrzeug ausgebildet, beispielsweise als Personenkraftwagen, Lastkraftwagen oder dergleichen. Ferner kann das Fahrzeug als Wasserfahrzeug ausgebildet sein.
Es werden nun beispielhaft Ausführungsformen mit Bezug auf die Figuren beschrieben; in den Figuren zeigen in schematischen Darstellungen:
Figur 1 ein Luftfahrzeug in Form eines Flugzeugs mit einem
Batteriesystem zur Stromversorgung eines Antriebsaggregats des Luftfahrzeugs;
Figur 2 das Batteriesystem gemäß Figur 1 mit einem Batteriemodul und mehreren Haltevorrichtungen;
Figur 3A eine Haltevorrichtung gemäß Figur 2 in einem
Normalgebrauchszustand;
Figur 3B die Haltevorrichtung gemäß Fig. 3A nach einem Versagen; Figur 4 eine Haltevorrichtung für das Batteriesystem gemäß Figur 2 mit einem Sprengsatz;
Figur 5 einen in Form einer Schneidladung ausgebildeten Sprengsatz;
Figur 6 eine Haltevorrichtung für das Batteriesystem gemäß Figur 2 mit dem Sprengsatz gemäß Figur 5; und
Figur 7 eine Haltevorrichtung für das Batteriesystem gemäß Figur 2 mit einem hakenförmigen Verbindungsabschnitt und einem Antrieb zum Bewegen des Verbindungsabschnitts.
Figur 1 zeigt ein Fahrzeug, und zwar ein Luftfahrzeug 2, in Form eines elektrisch angetriebenen Flugzeugs. Das Luftfahrzeug 2 umfasst einen Rumpf 20, an welchem Flügel 21 angebracht sind, ein Fahrwerk und eine Schub erzeugende Vorrichtung, hier beispielhaft in Form eines Propellers 22. Die Schub erzeugende Vorrichtung, hier der Propeller 22, ist durch ein Antriebsaggregat 23 angetrieben. Das Antriebsaggregat 23 umfasst einen Elektromotor 230, der optional auch als Generator betreibbar ist.
Der Elektromotor 230 bezieht Betriebsstrom aus einem Batteriemodul 10, welches Teil eines nachfolgend im Detail erläuterten Batteriesystems 1 ist.
Das Batteriemodul 10 ist elektrisch mit dem Elektromotor 230 verbunden. Das Batteriemodul 10 ist an einer Unterseite des Rumpfes 20 fixiert. Anhand von Figur 1 ist ersichtlich, dass das Batteriemodul 10 außen am Rumpf 20 angebracht ist. In diesem Beispiel ist das Batteriemodul 10 vollständig außerhalb des Rumpfes 20 angeordnet. Alternativ wäre es aber auch möglich, das Batteriemodul 10 teilweise oder ganz in einen Innenraum des Rumpfes 20 einzulassen. Ferner sei angemerkt, dass das Batteriemodul 10 alternativ auch an oder in einem der Flügel 21 montiert sein könnte. Ferner kann das Batteriesystem 1 mehrere Batteriemodule 10 umfassen, z.B. jeweils eines an jedem der Flügel 21 und/oder eines am Rumpf 20.
Im Falle eines Crashs oder einer Notlandung, bei der starke Kräfte wirken, durch die das Batteriemodul 10 potentiell beschädigt werden könnte, kann das Batteriemodul 10 abgeworfen werden, damit ein möglicher unfallbedingter Brand des Batteriemoduls 10 Piloten, Passagiere oder andere Menschen in der Nähe nicht gefährdet. Hierbei sind passive und aktive Varianten denkbar und nachfolgend wird zunächst mit Bezug auf die Figuren 2 bis 3B eine passive Variante beschrieben, bei der eine Trennung des Batteriemoduls 10 vom Rumpf 20 mechanisch durch Scherkräfte erfolgt. Danach werden mit Bezug auf die Figuren 4 bis 7 verschiedene aktive Varianten beschrieben, bei denen ein Steuersignal die Trennung bewirkt.
Figur 2 zeigt einen Abschnitt des Rumpfes 20 des Luftfahrzeugs 2, sowie Details des Batteriesystems 1 .
Insbesondere ist ersichtlich, dass das Batteriesystem 1 mehrere Haltevorrichtungen 11A umfasst, mittels denen das Batteriemodul 1 am Luftfahrzeug 2 (hier an dessen Rumpf 20) befestigt ist. Vorliegend sind beispielhaft vier Haltevorrichtungen 11A vorgesehen. Die Haltevorrichtungen 11A sind zerstörbar, wenn eine Kraft F auf das Batteriemodul 10 wirkt, die einen vorbestimmten Schwellenwert überschreitet. Dies kann passieren, wenn das Luftfahrzeug 2 beispielsweise so hart aufsetzt, dass das Fahrwerk Schaden nimmt (oder bei Luftfahrzeugen mit einem Verstaubaren Fahrwerk, wenn sich das Fahrwerk nicht ausfahren lässt), bei einem Aufprall gegen ein Hindernis oder dergleichen. Ein Pfeil am Rumpf 20 veranschaulicht die Flugrichtung des Luftfahrzeugs 2, ein Pfeil am Batteriemodul 10 veranschaulicht die Relativbewegung des Batteriemoduls 10 nach Zerstörung der Haltevorrichtungen 11A infolge der Kraft F. Die Haltevorrichtungen 11A sind so ausgerichtet, dass Scherkräfte infolge eines Kontakts des Batteriemoduls 10 mit dem Boden während einer Bewegung des Luftfahrzeugs 2 relativ zum Boden senkrecht zur Haupterstreckungsrichtung der Haltevorrichtungen 11A wirkt.
Das Batteriemodul 10 umfasst mehrere elektrische Batterien 100, die in einem Gehäuse 101 untergebracht sind. Fig. 2 zeigt lediglich beispielhaft einen Teil der Batterien 100 des Batteriemoduls 10. Bei einem Unfall können die Batterien 100 des Batteriemoduls 10 beschädigt werden und in Brand geraten. Die Batterien 100 umfassen in diesem Beispiel Lithium-Ionen-Akkumulatorzellen, es sei allerdings darauf hingewiesen, dass auch andere Arten von Batteriezellen eingesetzt werden können, und zwar sowohl Primär- als auch Sekundärzellen. Durch eine mechanische Trennung nach der Zerstörung der Haltevorrichtungen 11A kann das Batteriemodul 10 an einer anderen Stelle zum Liegen kommen als das Luftfahrzeug 2. So wird ermöglicht, dass es dann selbst bei einem Brand keine Gefahr mehr für Passagiere oder andere Personen darstellt.
Die Batterien 100 versorgen den Elektromotor 230 mit Strom. Hierzu sind die Batterien 100 mit dem Elektromotor 230 über einen elektrischen Anschluss 16 verbunden. Der elektrische Anschluss 16 umfasst z.B. eine Steckverbindung mit zwei ineinander steckbaren Steckverbinderteilen. Wird das Batteriemodul 10 vom Luftfahrzeug 2 getrennt, dann wird dabei automatisch der elektrische Anschluss 16 abgekoppelt (z.B. werden die Steckverbinderteile voneinander getrennt). Hierdurch kann zusätzlich die Gefahr eines elektrischen Schlages an einer Unfallstelle des Luftfahrzeuges 2 deutlich verringert werden.
Die Haltevorrichtungen 11A überbrücken einen Spalt S zwischen dem Batteriemodul 10 und dem Luftfahrzeug 2, hier dem Rumpf 20. Die Haltevorrichtungen 11A stehen vom Rumpf 20 ab, vorliegend senkrecht.
Um die passive Trennung des Batteriemoduls 10 zu erleichtern, umfasst das Batteriemodul 10 eine Reibungsschicht 102. Die Reibungsschicht 102 ist an einer Unterseite des Batteriemoduls 10 angeordnet, also an einer Seite, die im bestimmungsgemäßen Normalbetrieb des Luftfahrzeugs 2 vom Luftfahrzeug 2 weg und in Richtung des Bodens zeigt. Die Reibungsschicht 102 ist derart strukturiert und/oder aus einem solchen Material hergestellt, dass es zu einer starken Reibung kommt, wenn das Batteriemodul 10 (insbesondere unfallbedingt) über einen Untergrund geschliffen wird. Die Reibungsschicht 102 ist vorliegend aus Gummi hergestellt. Hierdurch wird das Batteriemodul 10 besonders stark abgebremst, wodurch die Haltevorrichtungen 11 A schneller zerstört werden.
Ferner umfasst das Batteriemodul 10 mehrere Haken 104 (oder im Allgemeinen Bremselemente), ebenfalls im Bereich der Unterseite des Batteriemoduls 10. Diese sind so herum angeordnet, dass sie mit ihren offenen Enden in die Bewegungsrichtung des Fahrzeugs bei einer Geradeausbewegung zeigen. Hierdurch erzeugen die Haken 104 eine weitere Bremswirkung, wenn sie beim Schleifen des Batteriemoduls 10 über den Boden gezogen werden. Die Haken 104 sind durch die Reibungsschicht 102 überdeckt. Somit werden sie aktiv, sobald die Reibungsschicht abgetragen ist. Alternativ kann auf die Reibungsschicht verzichtet werden und zur Bremsung können lediglich die Haken 104 verwendet werden. In weiteren Alternativen kann auf derartige Bremseinrichtungen gänzlich verzichtet werden.
Die Haken 104 stellen ferner eine Federung bei einem Aufprall auf den Boden bereit. Dadurch können die Batterien 100 im Gehäuse 101 des Batteriemoduls 10 geschützt werden. Hierdurch kann ein Brand der Batterien 100 zeitlich verzögert oder sogar gänzlich verhindert werden. Das Gehäuse 101 kann, wie in Fig. 2 gezeigt, eine oder zwei, z.B. gegenüberliegende, schräge (z.B. relativ zur Unterseite und/oder Oberseite des Gehäuses 101 ) Stirnfläche(n) aufweisen.
Ferner ist an der Unterseite des Batteriemoduls 10 eine Schicht aus Dämpfungsmaterial 103 angeordnet, z.B. einem Schaummaterial und/oder einem Fasermaterial, um einen Aufprall zu dämpfen. Vorliegend sind die Haken 104 in das Dämpfungsmaterial 103 eingebettet. Das Dämpfungsmaterial 103 ist durch die Reibungsschicht 102 überdeckt.
Figur 3A zeigt eine der Haltevorrichtungen 11A im unzerstörten Zustand im Normalgebrauch. Ersichtlich umfasst die Haltevorrichtung 11A einen Scherstift. Die Haltevorrichtung 11A weist einen am Batteriemodul 10 befestigten, batterieseitigen Halteabschnitt 110A auf, sowie einen am Luftfahrzeug 2 befestigten, fahrzeugseitigen Halteabschnitt 111A. Der batterieseitige Halteabschnitt 110A und der fahrzeugseitige Halteabschnitt 111A sind über einen Verbindungsabschnitt 112A fest miteinander verbunden. Der Verbindungsabschnitt 112A weist eine umlaufende Nut auf und ist dadurch gegenüber den Halteabschnitten 110A, 111A geschwächt. Im Ausgangszustand sind der batterieseitige Halteabschnitt 110A, der fahrzeugseitige Halteabschnitt 111A und der Verbindungsabschnitt 112A einstückig miteinander ausgebildet.
Infolge einer auf das Batteriemodul 10 wirkenden Kraft F wird die Verbindung des batterieseitigen Halteabschnitts 110A vom fahrzeugseitigen Halteabschnitt 111A durch den Verbindungsabschnitt 112A gelöst. Dabei bricht der Verbindungsabschnitt 112A. Hierbei entsteht am batterieseitigen Halteabschnitt 110A und am fahrzeugseitigen Halteabschnitt 111 A jeweils eine Bruchstelle B, siehe Figur 3B.
Figur 4 zeigt eine Haltevorrichtung 11 B für das Batteriesystem 1 gemäß Figur 2, welche anstelle oder zusätzlich zu einer der Haltevorrichtungen 11 A dort vorgesehen sein kann. Optional sind alle Haltevorrichtungen des Batteriesystems 1 gemäß Figur 4 ausgebildet. Die Haltevorrichtung 11 B weist einen im montierten Zustand am Batteriemodul 10 befestigten, batterieseitigen Halteabschnitt 11 OB auf, sowie einen am Luftfahrzeug 2 befestigten, fahrzeugseitigen Halteabschnitt 111 B. An einem Verbindungsabschnitt 112B, der den batterieseitigen Halteabschnitt 11 OB und den fahrzeugseitigen Halteabschnitt 111 B miteinander verbindet, ist ein Sprengsatz 15A angeordnet. Der Sprengsatz 15A umfasst einen Zünder 152. Der Zünder 152 ist an eine Steuerungseinheit 13 angeschlossen und durch die Steuerungseinheit 13 zündbar. Wird der Sprengsatz 15A gezündet, dann zerstört eine Explosion den Verbindungsabschnitt 112B, sodass der fahrzeugseitige Halteabschnitt 111 B vom batterieseitigen Halteabschnitt 11 OB getrennt wird.
Die Steuerungseinheit 13 wird z.B. durch ein über eine Benutzerschnittstelle eingegebenes Signal dazu veranlasst, den Zünder 152 zu zünden. So kann beispielsweise ein Pilot des Liftfahrzeugs 2 das Batteriemodul 10 abwerfen. Alternativ oder zusätzlich ist ein in Figur 4 gezeigter Sensor 12 vorgesehen. Der Sensor 12 misst eine auf das Batteriemodul 10 wirkende Kraft und/oder, wie in diesem Beispiel, eine durch das Batteriemodul 10 erfahrene Beschleunigung (alternativ oder zusätzlich die Temperatur und/oder der Sensor 12 detektiert ein Feuer). Die Steuerungseinheit 13 liest den Sensor 12 aus und vergleicht die ausgelesenen Sensorwerte mit vorbestimmten Schwellenwerten. Überschreiten die Sensorwerte die vorgegebenen Schwellenwerte, dann zündet die Steuerungseinheit 13 den Sprengsatz 15A.
Figur 5 zeigt einen Sprengsatz 15B für eine in Figur 6 gezeigte Haltevorrichtung 11 C. Der Sprengsatz 15B ist in Form einer längserstreckten Schneidladung ausgebildet. Dabei ist Sprengstoff 151 in einer Hülle 150 angeordnet und die Hülle 150 ist durch eine als Liner 153 bezeichnete Abdeckung verschlossen. Der Liner 153 ist im Querschnitt senkrecht zur Längsachse des Sprengsatzes 15B V-förmig. Wird der Zünder 152 gezündet, dann bildet der Liner 153 ein Projektil, und zwar ein längliches. Dieses erlaubt einen gerichteten, länglichen Schnitt. Figur 6 zeigt die bereits erwähnte Haltevorrichtung 11 C mit dem Sprengsatz 15B gemäß Figur 5. Die Haltevorrichtung 11 C kann anstelle oder zusätzlich zu einer der Haltevorrichtungen 11A aus Figur 2 vorgesehen sein. Optional sind alle Haltevorrichtungen des Batteriesystems 1 gemäß Figur 6 ausgebildet. Im Beispiel gemäß Figur 6 ist der Verbindungsabschnitt 112C länglich. Die längserstreckte Schneidladung ist dazu eingerichtet, den Verbindungsabschnitt 112C entlang seiner Länge mit einem Schnitt aufzutrennen.
Optional ist, z.B. aus Redundanzgründen, ein weiterer Sprengsatz 15A, 15B an der Haltevorrichtung 11 B, 11 C vorgesehen. Der Sprengsatz 15A, 15B und der weitere Sprengsatz 15A, 15B werden z.B. gleichzeitig gezündet. So kann eine Trennung sichergestellt werden, auch wenn ein Sprengsatz 15A, 15B versagt. Wie in Fig. 6 mit gestrichelten Linien veranschaulicht, kann insbesondere ein weiterer Sprengsatz 15B in Form einer weiteren Schneidladung an der Haltevorrichtung 11 C angeordnet sein. Die beiden Schneidladungen sind z.B. parallel zueinander angeordnet, z.B. senkrecht zur Haltevorrichtung 11 C, optional beiderseits.
Figur 7 zeigt eine weitere Haltevorrichtung 11 D, die anstelle oder zusätzlich zu einer der Haltevorrichtungen 11A aus Figur 2 vorgesehen sein kann. Optional sind alle Haltevorrichtungen des Batteriesystems 1 gemäß Figur 7 ausgebildet. Die Haltevorrichtung 11 D umfasst einen an einer Drehachse D schwenkbar gelagerten Verbindungsabschnitt 112D. Der Verbindungsabschnitt 112D steht im Eingriff mit einem der beiden Halteabschnitten 110D, 111 D und ist am anderen der beiden Halteabschnitte 110D, 111 D um die Drehachse D drehbar gelagert. Der
Verbindungsabschnitt 112D umfasst beispielhaft einen Haken. Der
Verbindungsabschnitt 112 ist durch einen Antrieb 17 in Form eines Elektromotors relativ zum Batteriemodul 10 schwenkbar. So kann die Verbindung flexibel hergestellt und wieder gelöst werden.
Alternativ oder zusätzlich zum Antrieb 17 kann die Haltevorrichtung 11 D einen z.B. manuell betätigbaren Bowdenzug 18 umfassen, in Fig. 7 mit gestrichelten Linien veranschaulicht. Das erlaubt eine besonders einfache Ausführung. Es versteht sich, dass die Erfindung nicht auf die oben beschriebenen Ausführungsformen beschränkt ist und verschiedene Modifikationen und Verbesserungen vorgenommen werden können, ohne von den hier beschriebenen Konzepten abzuweichen. Beliebige der Merkmale können separat oder in Kombination mit beliebigen anderen Merkmalen eingesetzt werden, sofern sie sich nicht gegenseitig ausschließen, und die Offenbarung dehnt sich auf alle Kombinationen und Unterkombinationen eines oder mehrerer Merkmale, die hier beschrieben werden, aus und umfasst diese.
Bezugszeichenliste
1 Batteriesystem
10 Batteriemodul 100 Batterie
101 Gehäuse
102 Reibungsschicht
103 Dämpfungsmatenal
104 Haken 11A-11 D Haltevorrichtung
110A-110D batterieseitiger Halteabschnitt
111A-111 D fahrzeugseitiger Halteabschnitt
112A-112D Verbindungsabschnitt
12 Sensor 13 Steuerungseinheit
15A; 15B Sprengsatz
150 Hülle
151 Sprengstoff
152 Zünder 153 Liner
16 elektrischer Anschluss
17 Antrieb
18 Bowdenzug
2 Luftfahrzeug 20 Rumpf
21 Flügel
22 Propeller
23 Antriebsaggregat
230 Elektromotor B Bruchstelle
D Drehachse
F Kraft
S Spalt

Claims

Ansprüche
1. Batteriesystem (1 ) für ein Fahrzeug, insbesondere ein Luftfahrzeug (2), umfassend: ein Batteriemodul (10) mit mindestens einer elektrischen Batterie (100) und zumindest eine Haltevorrichtung (11A-11 D) zur Befestigung des Batteriemoduls (10) am Fahrzeug, mit einem am Batteriemodul (10) festgelegten, batterieseitigen Halteabschnitt (110A-110D) und einem am Fahrzeug festzulegenden, fahrzeugseitigen Halteabschnitt (111 A-111 D), die über einen Verbindungsabschnitt (112A-112D) fest miteinander verbunden sind, wobei die zumindest eine Haltevorrichtung (11A-11 D) so ausgebildet ist, dass infolge einer auf das Batteriemodul (10) wirkenden Kraft (F) die Verbindung des batterieseitigen Halteabschnitts (110A-110D) mit dem fahrzeugseitigen Halteabschnitt (111A-111 D) durch den Verbindungsabschnitt (112A-112D) gelöst wird.
2. Batteriesystem (1 ) nach Anspruch 1 , wobei die Lösung der Verbindung durch den Verbindungsabschnitt (112A-112C) irreversibel ist.
3. Batteriesystem (1 ) nach Anspruch 1 oder 2, wobei der Verbindungsabschnitt (112A) eine Sollbruchstelle ausbildet.
4. Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche, wobei die Halteabschnitte (110A-110C, 111A-110C) über den Verbindungsabschnitt (112A-112C) einstückig miteinander verbunden sind.
5. Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche, wobei die zumindest eine Haltevorrichtung (11A) in Form eines Scherstifts ausgebildet ist, wobei der Verbindungsabschnitt (112A) gegenüber den Halteabschnitten (110A, 111 A) verjüngt ausgebildet ist.
6. Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche, wobei das Batteriemodul (10) durch die Kraft (F) vom fahrzeugseitigen Halteabschnitt (111 A-111 D) abscherbar ist.
7. Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche, ferner umfassend einen Sensor (12) zum Messen einer Kraft auf das Batteriemodul (10) und/oder einer Beschleunigung und eine Steuerungseinheit (13), die zum Erfassen der gemessenen Kraft und/oder Beschleunigung mit dem Sensor (12) operativ verbunden ist.
8. Batteriesystem (1 ) nach Anspruch 7, ferner umfassend zumindest einen Sprengsatz (15A; 15B) zum Einwirken auf den Verbindungsabschnitt (112B; 112C), wobei die Steuerungseinheit (13) dazu eingerichtet ist, einen Zünder (152) des Sprengsatzes (15A; 15B) in Abhängigkeit von der erfassten Kraft und/oder Beschleunigung zu zünden.
9. Batteriesystem (1 ) nach Anspruch 8, wobei der Sprengsatz (15B) in Form einer längserstreckten Schneidladung ausgebildet ist.
10. Batteriesystem (1 ) nach Anspruch 7, wobei der Verbindungsabschnitt (112D) relativ zu zumindest einem der Halteabschnitte (110D, 111 D) bewegbar gelagert ist, wobei die Steuerungseinheit (13) dazu eingerichtet ist, einen Antrieb (17) zum Bewegen des Verbindungsabschnitts (112D) relativ zu dem zumindest einen der Halteabschnitte (110D, 111 D) in Abhängigkeit von der erfassten Kraft und/oder Beschleunigung anzusteuern.
11. Batteriesystem (1 ) nach Anspruch 10, wobei der Verbindungsabschnitt (112D) einen Haken aufweist.
12. Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche, umfassend mehrere Haltevorrichtungen (11 A-11 D).
13. Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche, wobei das Batteriemodul (10) eine Reibungsschicht (102) umfasst, die einen im Vergleich - 17 - mit einem die zumindest eine elektrische Batterie (100) einschließenden Gehäuse (101 ) des Batteriemoduls (10) höheren Reibungskoeffizienten aufweist.
14. Batteriesystem (1 ) nach Anspruch 13, wobei die Reibungsschicht (102) Gummi umfasst oder daraus besteht.
15. Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche, wobei zumindest ein Haken (104) an einer Unterseite des Batteriemoduls (10) vorgesehen ist.
16. Batteriesystem (1 ) nach Anspruch 13 oder 14 und nach Anspruch 15, wobei der zumindest eine Haken (104) am und/oder im Gehäuse (101 ) des Batteriemoduls (10) angeordnet und durch die Reibungsschicht (102) überdeckt ist.
17. Fahrzeug, insbesondere Luftfahrzeug (2), umfassend das Batteriesystem (1 ) nach einem der vorhergehenden Ansprüche.
18. Fahrzeug nach Anspruch 17, ferner umfassend ein Antriebsaggregat (23) mit einem Elektromotor (230), wobei der Elektromotor (230) durch das Batteriemodul (10) mit Strom versorgt wird.
19. Fahrzeug nach Anspruch 17 oder 18, ausgebildet als Luftfahrzeug (2), wobei das Batteriemodul (10) an einer Unterseite des Luftfahrzeugs (2) außen am Luftfahrzeug (2) angebracht ist.
PCT/EP2022/074763 2021-09-17 2022-09-06 Batteriesystem für ein fahrzeug WO2023041383A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021210371.5 2021-09-17
DE102021210371.5A DE102021210371A1 (de) 2021-09-17 2021-09-17 Batteriesystem für ein Fahrzeug

Publications (1)

Publication Number Publication Date
WO2023041383A1 true WO2023041383A1 (de) 2023-03-23

Family

ID=83400722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/074763 WO2023041383A1 (de) 2021-09-17 2022-09-06 Batteriesystem für ein fahrzeug

Country Status (2)

Country Link
DE (1) DE102021210371A1 (de)
WO (1) WO2023041383A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559176A1 (de) * 1992-03-04 1993-09-08 Toyota Jidosha Kabushiki Kaisha Karosserie für ein Elektrofahrzeug
DE102009053138A1 (de) * 2009-11-05 2011-05-12 Rehau Ag + Co. Energieabsorbiervorrichtung
US20120261522A1 (en) * 2008-09-12 2012-10-18 The Boeing Company Modular externally accessible batteries for an aircraft
DE102014215513A1 (de) * 2014-08-06 2016-02-11 Robert Bosch Gmbh Batteriehalterungsvorrichtung für die Befestigung einer Fahrzeugbatterie an einer Fahrzeugkarosserie eines Fahrzeugs
DE202016103720U1 (de) * 2015-07-30 2016-08-31 Ford Global Technologies, Llc Gleitender schützender Batteriestützträger
WO2019241581A1 (en) * 2018-06-16 2019-12-19 Marinus Bernard Bosma Electrically-powered aircraft with pod-mounted batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827181A (en) 1972-03-23 1974-08-06 Mabuchi Motor Co Electrically driven model airplane
US9845158B2 (en) 2014-10-17 2017-12-19 X Development Llc Aircraft battery containment pods
US10442533B2 (en) 2015-12-14 2019-10-15 Autel Robotics Co., Ltd. Battery used for unmanned aerial vehicle and unmanned aerial vehicle
US10934013B2 (en) 2017-09-22 2021-03-02 The Boeing Company Aircraft fuselage apparatus having embedded structural batteries
DE102019201517A1 (de) 2019-02-06 2020-08-06 Rolls-Royce Deutschland Ltd & Co Kg Abwurfeinrichtung für ein bemanntes Elektroflugzeug zum Abwerfen eines elektrischen Energiespeichers sowie Elektroflugzeug
US11177515B2 (en) 2019-04-30 2021-11-16 Ampaire, Inc. System and method for maintaining a fleet of aircraft batteries located at multiple airports

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559176A1 (de) * 1992-03-04 1993-09-08 Toyota Jidosha Kabushiki Kaisha Karosserie für ein Elektrofahrzeug
US20120261522A1 (en) * 2008-09-12 2012-10-18 The Boeing Company Modular externally accessible batteries for an aircraft
DE102009053138A1 (de) * 2009-11-05 2011-05-12 Rehau Ag + Co. Energieabsorbiervorrichtung
DE102014215513A1 (de) * 2014-08-06 2016-02-11 Robert Bosch Gmbh Batteriehalterungsvorrichtung für die Befestigung einer Fahrzeugbatterie an einer Fahrzeugkarosserie eines Fahrzeugs
DE202016103720U1 (de) * 2015-07-30 2016-08-31 Ford Global Technologies, Llc Gleitender schützender Batteriestützträger
WO2019241581A1 (en) * 2018-06-16 2019-12-19 Marinus Bernard Bosma Electrically-powered aircraft with pod-mounted batteries

Also Published As

Publication number Publication date
DE102021210371A1 (de) 2023-03-23

Similar Documents

Publication Publication Date Title
EP0665566B1 (de) Elektrischer Sicherheitsschalter für Kraftfahrzeuge
EP1873058B1 (de) Vorrichtung zum Absetzen von unbemannten Flugkörpern aus einem Luftfahrzeug
DE102019001017A1 (de) Schutzsystem für Flugsysteme
EP2112065B1 (de) Verfahren zur Rettung eines bemannten oder unbemannten Fluggeräts, insbesondere einer Drohne
EP2315698B1 (de) Anbindung einer tragfläche an eine rumpfzelle eines flugzeugs
DE102013225304A1 (de) Fluggerät
DE2033309A1 (de) Vorrichtung zum Durchbrechen eines Kanzeldaches eines Flugzeuges
DE3719600A1 (de) Notlandevorrichtung
EP3348477A1 (de) Kraftfahrzeug mit einer start- und landevorrichtung für ein unbemanntes fluggerät
DE102011016208B4 (de) Flugzeug und Flugdatenschreiber für ein Flugzeug
EP0185852A1 (de) Unbemannter Flugkörper
EP3326853A1 (de) Batterie-halteanordnung
DE4421139A1 (de) Luftfahrzeug
WO2023041383A1 (de) Batteriesystem für ein fahrzeug
DE102013101602A1 (de) Flugzeug mit einem System zum Beeinflussen des Giermoments und ein Verfahren zum Beeinflussen des Giermoments eines Flugzeugs
DE694019C (de) Flugzeugrumpf
DE102014004838A1 (de) Effektor mit abwerfbarer Tarnschale
DE102010020533A1 (de) Schockabsorbierende Strukturlagerung
US3409254A (en) Safety aircraft
DE202020004437U1 (de) Schutzeinrichtung für Fahrzeuge gegen Feuer und Verletzung von Passanten bei Kollisionen
WO2017050333A1 (de) Trennbare tragfläche für ein luftfahrzeug, luftfahrzeug mit trennbarer tragfläche und verfahren zum landen eines solchen luftfahrzeugs
DE102023104248B3 (de) Terminierungssystem zum Einleiten eines Absturzes eines Luftfahrzeugs
DE102019207806A1 (de) Energieversorgungseinrichtung für ein Luftfahrzeug
EP0599437A1 (de) Luftfahrzeug mit einem Rettungssystem
DE19507069C2 (de) Vorrichtungen gegen Luftfahrzeugabstürze

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE