WO2023040861A1 - 光耦合器、光芯片和光通信设备 - Google Patents

光耦合器、光芯片和光通信设备 Download PDF

Info

Publication number
WO2023040861A1
WO2023040861A1 PCT/CN2022/118590 CN2022118590W WO2023040861A1 WO 2023040861 A1 WO2023040861 A1 WO 2023040861A1 CN 2022118590 W CN2022118590 W CN 2022118590W WO 2023040861 A1 WO2023040861 A1 WO 2023040861A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical
waveguide layer
optical coupler
width
Prior art date
Application number
PCT/CN2022/118590
Other languages
English (en)
French (fr)
Inventor
桂成程
曾成
夏金松
宋小鹿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22869230.7A priority Critical patent/EP4372436A1/en
Publication of WO2023040861A1 publication Critical patent/WO2023040861A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present application relates to the field of optical communication, in particular to an optical coupler, an optical chip and an optical communication device.
  • the mode spot sizes supported by different optical devices may be different.
  • different optical components include optical fibers and optical transceiver modules.
  • the mode spot size supported by the optical transceiver module is generally less than 1 micron.
  • a standard single-mode fiber supports a mode spot size equal to approximately 10 microns. The difference between the two mode spot sizes is too large, resulting in excessive loss of direct coupling between the optical fiber and the optical transceiver module.
  • FIG. 1 is a schematic cross-sectional view of an optical coupler in the width direction.
  • the optical coupler includes a buried layer 101 , a waveguide layer 102 and an upper cladding layer 103 .
  • the Y axis is the width direction
  • the X axis is the height direction.
  • the Z axis perpendicular to the X axis and the Y axis is the conveying direction.
  • the transmission direction includes the forward direction of transmission and the reverse direction of transmission.
  • the optical coupler is used to reduce the mode spot of the reverse optical signal, and transmit the reverse optical signal after reducing the mode spot to the optical transceiver module.
  • the optical coupler is used to amplify the mode spot of the forward optical signal, and transmit the forward optical signal after the amplified mode spot to the optical fiber.
  • the refractive index of the upper cladding layer 103 is greater than that of the buried layer 101 . Therefore, as the area of the waveguide layer 102 decreases, the energy of the optical signal is mainly dispersed in the upper cladding layer 103 . At this time, the energy of the optical signal on the buried layer 101 is much smaller than the energy on the upper cladding layer 103 , resulting in greater coupling loss between the optical coupler and the optical fiber.
  • the present application provides an optical coupler, an optical chip and an optical communication device.
  • the degree of uneven energy distribution near the center of the waveguide layer can be reduced, thereby reducing the coupling loss of the optical coupler.
  • the first aspect of the present application provides an optical coupler.
  • the optical coupler includes a buried layer, a support layer, a waveguide layer and an upper cladding layer.
  • the support layer is between the buried layer and the waveguide layer.
  • the waveguide layer is between the support layer and the upper cladding layer.
  • the waveguide layer and the support layer are located inside the upper cladding layer. The materials of the waveguide layer and the support layer are different.
  • the supporting layer is located inside the upper cladding. Therefore, the support layer includes an upper cladding layer on both sides. The energy of the optical signal can be dispersed on both sides of the support layer, thereby reducing the degree of uneven energy distribution near the center of the waveguide layer and reducing the coupling loss of the optical coupler.
  • the support layer is a waveguide structure, which may be formed by etching the buried layer, or formed by deposition, or formed by epitaxy or other methods, which is not limited in this application.
  • the support layer is used to support the waveguide, but does not have the function of transmitting optical signals.
  • the waveguide layer can be symmetrically filled by the upper cladding layer, thereby reducing the coupling loss of the optical coupler.
  • the distance between the central position of the waveguide layer and the central position of the upper cladding layer is less than 50 nanometers.
  • reducing the distance between the center position of the waveguide layer and the center position of the upper cladding layer can further reduce the degree of uneven energy distribution near the center of the waveguide layer, thereby reducing the coupling loss.
  • the shape of the upper cladding layer is square or circular.
  • the square or circular upper cladding can further reduce the coupling loss.
  • the optical coupler is used to connect with the optical fiber.
  • the diameter of the fiber is b microns.
  • the width a of the square is within the interval b ⁇ 0.5 ⁇ m, or the diameter a of the circle is within the interval b ⁇ 0.5 ⁇ m.
  • the difference between a and b is less than or equal to 0.5 ⁇ m.
  • the support layer in the transport direction, includes a first end surface and a second end surface.
  • the area of the first end surface is larger than the area of the second end surface.
  • the end face that outputs the forward optical signal transmitted along the forward transmission direction is the second end face.
  • the end face that outputs the reverse optical signal transmitted in the opposite transmission direction is the first end face.
  • the width of the support layer gradually decreases along the direction from the first end surface to the second end surface.
  • the width of the support layer decreases gradually, and the cross-sectional area of the upper cladding layer in the width direction increases continuously. Therefore, the present application can further reduce the degree of uneven energy distribution near the center of the waveguide layer and reduce the coupling loss.
  • the width of the second end surface is less than 120 nanometers.
  • the smaller the width of the second end surface is the larger the cross-sectional area of the upper cladding layer is.
  • the cross-sectional area of the upper cladding layer is larger, the energy distribution near the center of the waveguide layer is more uniform.
  • the present application limits the width of the second end surface to be less than 120 nanometers, which can reduce the degree of uneven energy distribution near the center of the waveguide layer, thereby reducing the coupling loss.
  • the upper cladding layer covers the second end surface.
  • the cross-sectional area of the upper cladding layer can be further increased, the degree of uneven energy distribution near the center of the waveguide layer can be reduced, and the coupling loss can be reduced.
  • the waveguide layer in the transmission direction, has a trapezoidal structure.
  • the width of the waveguide layer decreases gradually.
  • the waveguide layer includes an upper waveguide layer and a lower waveguide layer
  • the fact that the waveguide layer has a trapezoidal structure means that the upper waveguide layer and/or the lower waveguide layer have a trapezoidal structure.
  • the waveguide layer with trapezoidal structure is conducive to dispersing the forward optical signal in the upper cladding layer, reducing the degree of uneven energy distribution near the center of the waveguide layer, thereby reducing the coupling loss.
  • the waveguide layer includes an upper waveguide layer and a lower waveguide layer.
  • the width of the lower waveguide layer is greater than the width of the upper waveguide layer.
  • the upper waveguide layer may also be called a ridge waveguide. Dividing the waveguide layer into an upper waveguide layer and a lower waveguide layer, on the one hand, is beneficial to reduce the transmission loss of the waveguide, and on the other hand, it is beneficial to expand the mode spot of the optical signal transmitted along the forward transmission direction in the height direction, thereby reducing the center of the waveguide layer. The degree to which the nearby energy is unevenly distributed, thereby reducing the coupling loss.
  • the upper waveguide layer includes a first part and a second part.
  • the first part In the direction of transmission, the first part has a rectangular structure.
  • the width of the first portion is between 400 nm and 2000 nm.
  • the second part is a trapezoidal structure. The smallest width of the trapezoidal structure is less than 120 nanometers.
  • the lower waveguide layer in the transmission direction, includes a third end face and a fourth end face.
  • the lower waveguide layer has a trapezoidal structure.
  • the width of the third end surface is larger than the width of the fourth end surface.
  • the width of the fourth end surface is less than 120 nanometers.
  • the projection of the lower waveguide layer on the buried layer coincides with the projection of the supporting layer on the buried layer.
  • the widths of the lower waveguide layer and the support layer are the same.
  • the refractive index of the material of the upper cladding layer is greater than the refractive index of the material of the supporting layer.
  • the refractive index of the material of the upper cladding layer is greater than that of the material of the support layer, in the forward direction of transmission, the energy of the forward optical signal is gradually dispersed in the upper cladding layer, which can reduce the uneven energy distribution near the center of the waveguide layer degree, thereby reducing the coupling loss.
  • the refractive index of the material of the support layer is smaller than the refractive index of the material of the waveguide layer.
  • the material of the support layer is silicon dioxide.
  • the material of the support layer is the same as that of the buried layer.
  • the support layer and the buried layer can be obtained through an etching process. Therefore, the present application can reduce the cost during processing.
  • the optical coupler further includes a substrate.
  • the buried layer is between the substrate and the support layer.
  • the optical coupler further includes a body part.
  • the body portion also includes a body buried layer, a body waveguide layer and a body upper cladding layer.
  • the body waveguide layer is between the body buried layer and the body upper cladding layer.
  • the bulk waveguide layer and the waveguide layer have the same thickness.
  • the second aspect of the present application provides an optical chip.
  • the optical chip includes a first optical device and an optical coupler.
  • the optical coupler is used for receiving the reverse optical signal from the second optical device.
  • the optical coupler is used to reduce the speckle of the reverse optical signal to obtain the speckle-reduced reverse optical signal.
  • the optical coupler is used to transmit the reverse optical signal after reducing the mold spot to the first optical device.
  • the first optical device is used for processing the reverse optical signal after reducing the mold spot.
  • the first optical device is an optical transceiver module.
  • the optical transceiver module is used to demodulate the reverse optical signal after reducing the mold spot to obtain the input electrical signal.
  • the first optical device is used to transmit the forward optical signal to the optical coupler.
  • the optical coupler is used to amplify the mode spot of the forward optical signal to obtain the forward optical signal after the amplified mode spot.
  • the optical coupler is used to output the forward optical signal after the amplified mode spot.
  • the first optical device is an optical transceiver module.
  • the optical transceiver module is used to obtain the second optical signal according to the output electrical signal.
  • the third aspect of the present application provides an optical communication device.
  • Optical communication equipment includes processors and optical chips.
  • the optical chip is used to receive the reverse optical signal, and obtain the input electrical signal according to the reverse optical signal.
  • the processor is used for data processing on the input electric signal.
  • the processor is further configured to generate an output electrical signal.
  • the optical chip is also used to obtain the forward optical signal according to the output electrical signal, and output the forward optical signal.
  • the fourth aspect of the present application provides a method for manufacturing an optical coupler.
  • the preparation method includes the following steps: providing a wafer.
  • the wafer In the height direction, the wafer includes the substrate, bottom layer and waveguide layer.
  • the bottom layer is between the waveguide layer and the substrate. Etch both sides of the wafer. The depth of etching reaches the inside of the bottom layer, and the bottom layer is divided into support layers and buried layers with different widths.
  • the support layer is between the buried layer and the waveguide layer.
  • the support layer has a width smaller than that of the buried layer.
  • the width of the etched waveguide layer is smaller than that of the buried layer.
  • An upper cladding layer is epitaxially grown on the etched wafer.
  • the preparation method includes the following steps: etching the upper cladding layer so that the shape of the upper cladding layer is a square or a circle in the width direction.
  • the etched wafer includes an upper waveguide layer and a lower waveguide layer with different widths.
  • the lower waveguide layer is between the supporting layer and the upper waveguide layer, and the width of the lower waveguide layer is greater than that of the lower waveguide.
  • Fig. 1 is a schematic cross-sectional view of an optical coupler in the width direction
  • Fig. 2a is the first three-dimensional structural schematic diagram of the optical coupler provided in the present application.
  • Fig. 2b is the front view of the optical coupler provided in the present application.
  • Fig. 2c is the first top view of the optical coupler provided in the present application.
  • Figure 2d is the first schematic cross-sectional view of the optical coupler provided in the present application.
  • Figure 2e is a second schematic cross-sectional view of the optical coupler provided in the present application.
  • Figure 2f is a third cross-sectional schematic view of the optical coupler provided in the present application.
  • Fig. 2g is the fourth cross-sectional schematic view of the optical coupler provided in the present application.
  • Fig. 2h is the fifth cross-sectional schematic diagram of the optical coupler provided in the present application.
  • Figure 3 is a schematic cross-sectional view of the circular upper waveguide layer provided in the present application.
  • Fig. 4a is the second three-dimensional structural schematic diagram of the optical coupler provided in the present application.
  • Fig. 4b is the second top view of the optical coupler provided in the present application.
  • Fig. 4c is the sixth cross-sectional schematic view of the optical coupler provided in the present application.
  • FIG. 5 is a schematic structural view of an optical coupler provided in the present application.
  • Figure 6 is a schematic structural view of the optical chip provided in this application.
  • FIG. 7 is a schematic structural diagram of an optical communication device provided in the present application.
  • FIG. 8 is a schematic structural diagram of an optical communication system provided in this application.
  • FIG. 9 is a schematic flowchart of a method for preparing an optical coupler provided in this application.
  • the present application provides an optical coupler, an optical chip and an optical communication device.
  • the degree of uneven energy distribution near the center of the waveguide layer can be reduced, thereby reducing the coupling loss of the optical coupler.
  • first, second, “forward”, “reverse” and the like used in this application are only for the purpose of distinguishing descriptions, and cannot be understood as indicating or implying relative importance, nor can they be understood To indicate or imply an order.
  • reference numerals and/or letters are repeated in the various figures of this application for the sake of brevity and clarity. Repetition does not imply a strictly limited relationship between the various embodiments and/or configurations.
  • the optical coupler in this application can be applied in the field of optical communication.
  • the mode spot sizes supported by different optical devices may be different. Therefore, the optical coupler can be used to change the mode spot size of the optical signal to realize the optical coupling of different optical devices.
  • the energy distribution of the optical signal near the center of the waveguide layer 102 is uneven, resulting in a large coupling loss of the optical coupler.
  • Fig. 2a is a schematic diagram of the first three-dimensional structure of the optical coupler provided in this application.
  • the Y axis is the width direction.
  • the X axis is the height direction.
  • the Z axis is the transmission direction.
  • the transmission direction can be divided into transmission positive direction and transmission negative direction.
  • the direction of the arrow of the Z axis in Fig. 2a is the positive direction of transmission.
  • the opposite direction of the arrow on the Z axis is the opposite direction of transmission.
  • Optical signals transmitted in the forward direction are called forward optical signals.
  • Optical signals transmitted in the opposite direction of transmission are called reverse optical signals.
  • the upper cladding layer 204 is made transparent in the three-dimensional structural diagram and top view of the optical coupler.
  • the optical coupler includes a buried layer 201 , a supporting layer 202 , a waveguide layer 203 and an upper cladding layer 204 .
  • Fig. 2b is a front view of the optical coupler provided in this application.
  • the support layer 202 is between the buried layer 201 and the waveguide layer 203 in the height direction.
  • the waveguide layer 203 is between the support layer 202 and the upper cladding layer 204 .
  • the upper cladding layer 204 covers the waveguide layer 203 and the buried layer 201 .
  • the waveguide layer 203 may include an upper waveguide layer and a lower waveguide layer.
  • the waveguide layer 203 comprises an upper waveguide layer 2032 and a lower waveguide layer 2031 .
  • the lower waveguide layer 2031 is between the support layer 202 and the upper waveguide layer 2032 .
  • the material of the buried layer 201 may be silicon dioxide, quartz or the like.
  • the material of the support layer 202 may be oxide, fluoride, or the like. Wherein, the oxide may be silicon dioxide, magnesium oxide, aluminum oxide, or the like.
  • the material of the waveguide layer 203 may be lithium niobate thin film, silicon, silicon nitride, or indium phosphide. When the waveguide layer 203 includes an upper waveguide layer 2032 and a lower waveguide layer 2031 , the materials of the upper waveguide layer 2032 and the lower waveguide layer 2031 may be the same or different.
  • the material of the upper cladding layer 204 may be silicon oxynitride, oxide, fluoride and the like.
  • the material of the buried layer 201 and the supporting layer 202 can be the same.
  • the material of the buried layer 201 and the supporting layer 202 is silicon dioxide.
  • the refractive index of the material of the upper cladding layer 204 may be greater than that of the supporting layer 202 and the buried layer 201 .
  • the refractive index of the material of the waveguide layer 203 may be greater than the refractive index of the material of the upper cladding layer 204 .
  • the optical coupler can be used to amplify the mode spot of the forward optical signal.
  • Optical couplers can also be used to reduce the speckle of the reverse optical signal. Therefore, the structure of the optocoupler can vary along the transmission direction.
  • Fig. 2c is the first top view of the optical coupler provided in this application. As shown in Figure 2c, the structure of the optical coupler is symmetrical along the center line. Sections (or end faces) 1 to 5 divide the optical coupler into 4 parts. The four sections are section 1 between section 1 and section 2, section 2 between section 2 and section 3, section 3 between section 3 and section 4, and section 4 between section 4 and section 5. Wherein, sections 1-5 are perpendicular to the transmission direction.
  • Section 1 is the cut-off section of the optical coupler.
  • Section 2 is the cut-off section of the lower waveguide layer 2031 and the support layer 202 .
  • Section 3 is the cut-off section of the upper waveguide layer 2032 .
  • Section 4 is the junction section between the first part and the second part of the upper waveguide layer 2032 .
  • Section 4 is a cut-off section of the support layer 202 .
  • Section 5 is the cut-off section of the optical coupler.
  • the four parts are described below according to the cross-sectional schematic diagrams 2d to 2h. It should be understood that the specific dimensions of the optical coupler provided in this application are just one or more examples, and should not be taken as conditions to limit the protection scope of this application.
  • FIG. 2d is a first schematic cross-sectional view of the optical coupler provided in this application.
  • FIG. 2d is a schematic cross-sectional view of Section 1.
  • the optical coupler includes a buried layer 201 and an upper cladding layer 204 .
  • the thickness of the upper cladding layer 204 is 6500 nm.
  • the width of the upper cladding layer 204 is 6500 nm.
  • the buried layer 201 has the same width as the upper cladding layer 204 .
  • the thickness of the buried layer 201 is 1700 nm.
  • FIG. 2e is a second schematic cross-sectional view of the optical coupler provided in this application.
  • FIG. 2 e is a schematic cross-sectional view of section 2 .
  • Figure 2e can also be referred to as a left side view of an optocoupler.
  • the optical coupler includes a buried layer 201 , a supporting layer 202 , a lower waveguide layer 2031 and an upper cladding layer 204 .
  • the thickness of the lower waveguide layer 2031 is 250 nm.
  • the width of the lower waveguide layer 2031 is 100 nanometers.
  • the width of the supporting layer 202 is the same as that of the lower waveguide layer 2031 .
  • the thickness of the support layer 202 is 3000 nm.
  • the distance from section 1 to section 2 is equal to 500 microns. From Section 1 to Section 2, the thickness and width of the upper cladding layer 204 and the buried layer 201 in Section 1 do not change. The cross-sectional area of the upper cladding layer 204 does not change.
  • FIG. 2f is a third schematic cross-sectional view of the optical coupler provided in this application.
  • FIG. 2f is a schematic cross-sectional view of Section 3.
  • the optical coupler includes a buried layer 201 , a supporting layer 202 , a lower waveguide layer 2031 , an upper waveguide layer 2032 and an upper cladding layer 204 .
  • the upper waveguide layer 2032 has a thickness of 250 nm.
  • the upper waveguide layer 2032 has a width of 100 nanometers.
  • the width of the lower waveguide layer 2031 is 1200 nanometers.
  • the width of the support layer 202 is 1200 nanometers.
  • the distance from section 2 to section 3 is equal to 100 microns.
  • the thickness and width of the upper cladding layer 204 in section 2 does not change.
  • the cross-sectional area of the upper cladding layer 204 gradually decreases.
  • the thickness and width of the buried layer 201 did not change.
  • the thicknesses of the support layer 202 and the lower waveguide layer 2031 are unchanged.
  • the widths of the support layer 202 and the lower waveguide layer 2031 gradually increase.
  • FIG. 2g is a fourth schematic cross-sectional view of the optical coupler provided in this application.
  • FIG. 2 g is a schematic cross-sectional view of section 4 .
  • the optical coupler includes a buried layer 201 , a supporting layer 202 , a lower waveguide layer 2031 , an upper waveguide layer 2032 and an upper cladding layer 204 .
  • the upper waveguide layer 2032 has a width of 1200 nanometers.
  • the width of the lower waveguide layer 2031 is 2600 nm.
  • the support layer 202 has a width of 2600 nm.
  • the distance from section 3 to section 4 is equal to 100 microns.
  • the thickness and width of the upper cladding layer 204 in section 3 does not change.
  • the cross-sectional area of the upper cladding layer 204 gradually decreases.
  • the thickness and width of the buried layer 201 did not change.
  • the thicknesses of the support layer 202 and the lower waveguide layer 2031 are unchanged.
  • the widths of the support layer 202 and the upper waveguide layer 2032 gradually increase.
  • the thickness of the upper waveguide layer 2032 and the lower waveguide layer 2031 does not change.
  • the width of the lower waveguide layer 2031 gradually increases.
  • FIG. 2h is a fifth cross-sectional schematic view of the optical coupler provided in this application.
  • FIG. 2h is a schematic cross-sectional view of section 5 .
  • Figure 2h can also be referred to as the right side view of the optocoupler.
  • the optical coupler includes a buried layer 201 , a supporting layer 202 , a lower waveguide layer 2031 , an upper waveguide layer 2032 and an upper cladding layer 204 .
  • the width of the lower waveguide layer 2031 is 4000 nm.
  • the support layer 202 has a width of 4000 nm.
  • the distance from section 4 to section 5 is equal to 100 microns.
  • the thickness and width of the upper cladding layer 204 in section 4 did not change.
  • the cross-sectional area of the upper cladding layer 204 gradually decreases.
  • the thickness and width of the buried layer 201 did not change.
  • the width of the upper waveguide layer 2032 does not change.
  • the thicknesses of the support layer 202 and the lower waveguide layer 2031 are unchanged.
  • the widths of the support layer 202 and the lower waveguide layer 2031 gradually increase.
  • both sides of the support layer 202 include an upper cladding layer. Therefore, the energy of the optical signal can be dispersed on both sides of the support layer 202, thereby reducing the degree of uneven energy distribution near the center of the waveguide layer 203, thereby reducing the coupling loss of the optical coupler.
  • optical couplers shown in Figures 2a-2h are only one or more examples provided in this application. In practical applications, those skilled in the art can make adaptive modifications to the optical coupler according to requirements. After the adaptive modification, if the optical coupler includes a supporting layer, it should still belong to the protection scope of the present application. Adaptive modifications include, but are not limited to, one or more of the following.
  • the shape of the upper cladding layer 204 is a square.
  • the upper cladding layer 204 may also be rectangular or circular.
  • FIG. 3 is a schematic cross-sectional view of the circular upper waveguide layer provided in this application.
  • the optical coupler includes a buried layer 201 , a support layer 202 , a lower waveguide layer 2031 , an upper waveguide layer 2032 and an upper cladding layer 204 .
  • the shape of the upper cladding layer 204 is circular.
  • the thickness and width of the upper cladding layer 204 are 6.5 microns.
  • the side length a of the upper cladding layer 204 may be within the interval b ⁇ 0.5 ⁇ m.
  • b is the mode field diameter of the fiber connected to the optical coupler. b can be equal to 10.4 microns, 6.5 microns or 3.2 microns.
  • the diameter a of the circle may be within the interval b ⁇ 0.5 ⁇ m.
  • the center position of the upper cladding layer 204 is the intersection of the diagonal lines connecting the upper cladding layers 204 .
  • the coordinates (Y, X) of the center position of the upper cladding layer 204 are (3.25, 4.95).
  • the central position of the waveguide layer 203 is the midpoint of the boundary line between the upper waveguide layer 2032 and the lower waveguide layer 2031 .
  • the coordinates (Y, X) of the center position of the waveguide layer 203 (referred to as the center of the waveguide layer 203 for short) are (3.25, 4.95).
  • the center position of the waveguide layer 203 coincides with the center position of the upper cladding layer 204 , that is, the distance between the center position of the waveguide layer 203 and the center position of the upper cladding layer 204 is equal to zero.
  • the distance between the central position of the waveguide layer 203 and the central position of the upper cladding layer 204 may not be equal to zero.
  • the distance is equal to 40 nanometers.
  • the distance between the center of the waveguide layer 203 and the center of the upper cladding layer 204 may be limited to less than 50 nanometers.
  • the central position of the waveguide layer 203 may also be the center of gravity of the waveguide layer 203 .
  • the center of the waveguide layer 203 may also be the center of gravity of the upper waveguide layer 2032 .
  • the center of the waveguide layer 203 may also be the center of gravity of the lower waveguide layer 2031 .
  • the width of the support layer 202 is equal to the width of the lower waveguide layer 2031 .
  • the projection of the lower waveguide layer 2031 on the buried layer 201 coincides with the projection of the support layer 202 on the buried layer 201 .
  • the width of the support layer 202 may be larger or smaller than the width of the lower waveguide layer 2031 .
  • the supporting layer 202 has a trapezoidal structure.
  • the trapezoidal structure includes a first end surface and a second end surface.
  • the first end face is on section 5 .
  • the second end face is on section 2 .
  • the area of the first end surface is larger than the area of the second end surface.
  • the width of the supporting layer 202 gradually decreases.
  • the supporting layer 202 may be a rectangular structure. At this time, the areas of the first end surface and the second end surface of the supporting layer 202 are the same. Along the direction from the first end surface to the second end surface, the width of the supporting layer 202 is constant.
  • the width of the second end face of the support layer 202 is equal to 100 nanometers.
  • the width of the second end surface can also be other values. For example, 110 nanometers, 120 nanometers, etc.
  • the cross-sectional area of the upper cladding layer 204 is larger, the energy distribution near the center of the waveguide layer 203 is more uniform. Therefore, the present application may define that the width of the second end surface is less than 120 nanometers.
  • the upper waveguide layer 2032 includes a first part and a second part.
  • the first part is a rectangular structure.
  • the first part is between section 5 and section 4 .
  • the width of the first portion is between 400 nm and 2000 nm.
  • the second part is a trapezoidal structure.
  • the second part is between section 4 and section 3 .
  • the smallest width of the trapezoidal structure is less than 120 nanometers.
  • the minimum width of the trapezoidal structure is on section 3.
  • the minimum width of the trapezoidal structure is equal to 100 nanometers.
  • the upper waveguide layer 2032 may have a trapezoidal structure. Along the forward direction of transmission, the width of the trapezoidal structure decreases gradually.
  • the lower waveguide layer 2031 has a trapezoidal structure.
  • the trapezoidal structure includes a third end surface and a fourth end surface.
  • the third end face is on section 5 .
  • the fourth end surface is on section 2 .
  • the width of the third end surface is larger than the width of the fourth end surface.
  • the width of the fourth end surface is less than 120 nanometers.
  • the lower waveguide layer 2031 may include a third part and a fourth part.
  • the third part is between section 4 and section 5.
  • the third part is a rectangular structure.
  • the fourth part is between section 4 and section 2.
  • the fourth part is a trapezoidal structure.
  • an optocoupler may also include a substrate.
  • the buried layer 201 is between the substrate and the support layer 202 .
  • Substrate material can be high resistance silicon, low resistance silicon or quartz lamp
  • an optical coupler may also include a body portion.
  • Fig. 4a is a second three-dimensional schematic diagram of the optical coupler provided in this application.
  • the optical coupler includes a protruding part (a part with a filled pattern in the figure) and a local part (a part without a filled pattern in the figure).
  • the protrusion includes a substrate 400 , a buried layer 201 , a support layer 202 , a waveguide layer 203 and an upper waveguide layer 204 .
  • FIGS. 2a to 2h and FIG. 3 For the relevant description of the protruding part, reference may be made to the description of the above-mentioned FIGS. 2a to 2h and FIG. 3 .
  • the body part includes a substrate 400, a body buried layer 401, a body waveguide layer 403 and a body upper cladding layer 402.
  • the body waveguide layer 403 is between the body buried layer 401 and the body upper cladding layer 402 .
  • the bulk buried layer 401 is between the bulk waveguide layer 403 and the substrate 400 .
  • the thickness of the bulk buried layer 401 is equal to the sum of the thicknesses of the buried layer 201 and the supporting layer 202 .
  • the body waveguide layer 403 includes a body upper waveguide layer 4032 and a body lower waveguide layer 4031 .
  • the thickness of the upper body waveguide layer 4032 is equal to the thickness of the upper waveguide layer 2032 .
  • the thickness of the bulk lower waveguide layer 4031 is equal to the thickness of the lower waveguide layer 2031 .
  • the width of the bulk lower waveguide layer 4031 is equal to the width of the lower waveguide layer 2031 .
  • the material of the bulk upper cladding layer 402 may be silicon oxynitride, oxide, or fluoride.
  • the material of the bulk buried layer 401 may be oxide, fluoride, or the like.
  • Fig. 4b is a second top view of the optical coupler provided in this application.
  • the optocoupler includes a protruding portion and a local portion.
  • the protrusion is between section 1 and section 5.
  • the body part is between section 5 and section 6 .
  • Section 5 is a cut-off section of the support layer 202 .
  • Section 6 is the cut-off section of the optical coupler.
  • Fig. 4c is a sixth cross-sectional schematic view of the optical coupler provided in this application.
  • FIG. 4c is a schematic cross-sectional view of section 6 .
  • Figure 4c can also be referred to as the right side view of the optocoupler.
  • the optical coupler includes a substrate 400 , a body buried layer 401 , a body waveguide layer 403 and a body upper cladding layer 402 .
  • the body waveguide layer 403 includes a body upper waveguide layer 4032 and a body lower waveguide layer 4031 .
  • the body upper cladding layer 402 covers the body upper waveguide layer 4032 and the body lower waveguide layer 4031 .
  • FIG. 5 is a schematic structural diagram of an optical coupler provided in this application.
  • the optocoupler includes a local section 500 .
  • Three protrusions are connected to the side of the main body. The three protrusions are respectively protrusion 501 , protrusion 502 and protrusion 503 .
  • FIG. 6 is a schematic structural diagram of an optical chip provided in this application.
  • an optical chip 600 includes an optical coupler 601 and a first optical device 602 .
  • the optical coupler 601 is used for receiving a reverse optical signal from the second optical device 603 .
  • the optical coupler 601 is used to reduce the speckle of the reverse optical signal to obtain the speckle-reduced reverse optical signal.
  • the second optical device 603 is an optical fiber.
  • the optical fiber is coupled to the left end surface (section 1 ) of the optical coupler 601 .
  • the center of the optical fiber is aligned with the center of the waveguide layer 203 in the optical coupler 601 .
  • the optical coupler 601 receives the reverse optical signal from the left end face. As the reverse optical signal is transmitted in the opposite direction of transmission in the optical coupler 601 , the energy of the reverse optical signal is gradually concentrated in the waveguide layer 203 , so that the mode speckle of the reverse optical signal gradually decreases.
  • the optical coupler 601 is also used to transmit the reverse optical signal after reducing the speckle to the first optical device 602 .
  • the first optical device 602 is used for processing the reverse optical signal.
  • the first optical device 602 is an optical transceiver module.
  • the optical transceiver module is used to demodulate the reverse optical signal to obtain the input electrical signal.
  • the first optical device 602 may also be a wavelength division multiplexer, a wavelength division multiplexer, an optical switch, a speckle converter, a multiplexer, or a beam splitter.
  • the first optical device 602 may also be used to transmit forward optical signals to the optical coupler 601 .
  • the first optical device 602 is an optical transceiver module.
  • the optical transceiver module is used to obtain the forward optical signal by modulating the output electrical signal.
  • the optical transceiver module is used to transmit forward optical signals to the optical coupler 601 .
  • the optical coupler 601 is used to amplify the mode speckle of the forward optical signal to obtain the forward optical signal after the amplified mode spot.
  • the first optical device 602 is coupled to the right end surface (section 5 ) of the optical coupler 601 .
  • the optical coupler 601 receives the forward optical signal from the right end face.
  • the optical coupler 601 As the forward optical signal is transmitted in the forward direction in the optical coupler 601 , the energy of the forward optical signal is gradually dispersed in the upper cladding layer 204 , so that the mode speckle of the forward optical signal is gradually enlarged.
  • the optical coupler 601 is used to transmit the forward optical signal after the amplified mold spot to the second optical device 603 .
  • the optical coupler 601 when the optical coupler 601 is the optical coupler shown in FIG. 5 , the optical coupler includes a plurality of protrusions.
  • the optical coupler 601 can be connected with multiple second optical devices. There is a one-to-one correspondence between the plurality of second optical devices and the plurality of protrusions.
  • the multiple optical signals transmitted in the multiple protrusions may have the same wavelength or different wavelengths. For example, when the first optical device 602 is a beam splitter, the multiple optical signals have the same wavelength. When the first optical device 602 is a wavelength splitter, the multiple optical signals have different wavelengths.
  • the second optical device 603 is also an optical switch, or a speckle converter.
  • the second optical device 603 may be integrated on the optical chip 600 , that is, the optical chip 600 may further include the second optical device 603 .
  • an optical communication device 700 includes an optical chip 701 and a processor 702 .
  • the optical chip 701 is used to receive the reverse optical signal, and obtain an input electrical signal according to the reverse optical signal.
  • the optical chip 701 includes an optical coupler and an optical transceiver module.
  • the optical coupler 601 is used to reduce the speckle of the reverse optical signal to obtain the speckle-reduced reverse optical signal.
  • the optical transceiver module is used to demodulate the reverse optical signal to obtain the input electrical signal.
  • the processor 702 is used for performing data processing on the input electric signal.
  • the processor 702 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 702 may further include a hardware chip or other general-purpose processors.
  • the aforementioned hardware chip may be an application specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the processor 702 can also be used to generate output electrical signals.
  • the optical chip 701 is also used to obtain the forward optical signal according to the output electrical signal, and output the forward optical signal.
  • the optical chip 701 is an optical transceiver module.
  • the optical transceiver module is used to modulate the output electrical signal to obtain the forward optical signal.
  • the optical coupler is used to amplify the mode spot of the forward optical signal to obtain the forward optical signal after the amplified mode spot.
  • the optical coupler is used to output the forward optical signal after the amplified mode spot.
  • FIG. 8 is a schematic structural diagram of an optical communication system provided in this application.
  • the optical communication system includes a first optical communication device 801 and a second optical communication device 802 .
  • the first optical communication device 801 and the second optical communication device 802 are connected through an optical fiber.
  • the first optical communication device 801 includes an optical chip and a processor.
  • the processor is configured to generate an output electrical signal according to the user.
  • the optical chip is used to obtain the forward optical signal according to the output electrical signal.
  • the optical chip includes an optical coupler and an optical transceiver module.
  • the optical transceiver module is used to obtain the forward optical signal by modulating the output electrical signal.
  • the optical coupler is used to amplify the mode spot of the forward optical signal to obtain the forward optical signal after the amplified mode spot.
  • the optical coupler is used to output the forward optical signal after the amplified mode spot to the optical fiber.
  • the forward optical signal sent by the first optical communication device 801 is used as the reverse optical signal of the second optical communication device 802 .
  • the second optical communication device 802 is configured to receive a reverse optical signal through an optical fiber.
  • the second optical communication device 802 includes an optical chip and a processor.
  • the optical chip is used to receive the reverse optical signal, and obtain the input electrical signal according to the reverse optical signal.
  • the optical chip includes an optical coupler and an optical transceiver module.
  • the optical coupler is used to reduce the speckle of the reverse optical signal to obtain the speckle-reduced reverse optical signal.
  • the optical transceiver module is used to demodulate the reverse optical signal to obtain the input electrical signal.
  • the processor is used for data processing on the input electric signal.
  • the second optical communication device 802 may send a forward optical signal to the first optical communication device 801 through an optical fiber.
  • the forward optical signal sent by the second optical communication device 802 is used as the reverse optical signal of the first optical communication device 801 .
  • the first optical communication device 801 receives the reverse optical signal.
  • FIG. 9 is a schematic flowchart of a method for preparing an optical coupler provided in this application. As shown in Fig. 9, the preparation method of the optical coupler includes the following steps.
  • a wafer is provided.
  • the wafer includes the substrate, bottom layer and waveguide layer.
  • the bottom layer is between the waveguide layer and the substrate.
  • both sides of the wafer are etched, the etching depth reaches the inside of the bottom layer, and the bottom layer is divided into support parts and buried layers with different widths.
  • the support parts are between the buried layer and the waveguide layer .
  • the support layer has a width smaller than that of the buried layer.
  • the width of the etched waveguide layer is smaller than that of the buried layer.
  • a layer of chromium can be plated as a hard mask on the wafer with the substrate, bottom layer and waveguide layer. Then the photoresist is spin-coated, and the pattern of the waveguide layer is exposed by using a photolithography machine or an electron beam exposure machine.
  • Metal chromium was dry etched using photoresist as a mask.
  • the wafer is dry-etched using metal chromium as a mask, and the etching depth is the thickness of the waveguide layer and the supporting part. After etching, the hard mask is removed by wet etching.
  • an upper cladding layer is epitaxially grown on the etched wafer.
  • a plasma enhanced chemical vapor deposition (PECVD) device may be used to grow an upper cladding layer on the etched wafer.
  • a pattern mask of the upper cladding layer waveguide can be fabricated by using chromium plating film, photolithography and dry etching process.
  • the upper cladding layer is dry-etched by using metal chromium as a mask, so that the shape of the upper cladding layer is square or circular in the width direction.
  • the waveguide layer and the support layer are obtained by the same etching.
  • the upper waveguide layer and the lower waveguide layer with different widths can be formed by etching by increasing the number of times of etching.
  • the lower waveguide layer is between the supporting layer and the upper waveguide layer, and the width of the lower waveguide layer is greater than the width of the lower waveguide.
  • an optocoupler also includes a substrate.
  • the support layer has a trapezoidal structure.
  • the width of the trapezoidal structure decreases gradually.
  • an optocoupler also includes a local section.
  • the upper waveguide layer includes a first portion and a second portion. In the direction of transmission, the first part is a rectangular structure, and the second part is a trapezoidal structure. Along the forward direction of transmission, the width of the trapezoidal structure decreases gradually.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光耦合器,应用于光通信领域。光耦合器包括掩埋层(201)、支撑层(202)、波导层(203)和上包层(204)。在高度方向上,支撑层(202)在掩埋层(201)和波导层(203)之间。波导层(203)在支撑层(202)和上包层(204)之间。在宽度方向上,波导层(203)和支撑层(202)位于上包层(204)内部。波导层(203)和支撑层(202)的材料不同。支撑层(202)在上包层(204)内部,因此,支撑层(202)两侧包括上包层(204)。光信号的能量可以分散在支撑层(202)的两侧,从而降低波导层(203)中心附近的能量分布不均的程度,降低光耦合器的耦合损耗。

Description

光耦合器、光芯片和光通信设备
本申请要求于2021年09月15日提交中国专利局、申请号为202111081500.9、发明名称为“光耦合器、光芯片和光通信设备”及2021年12月17日提交中国专利局、申请号为202111552746.X、发明名称为“光耦合器、光芯片和光通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及光耦合器、光芯片和光通信设备。
背景技术
在光通信领域中,不同光器件支持的模斑尺寸可能不同。例如,不同光器件包括光纤和光收发模块。光收发模块支持的模斑尺寸一般小于1微米。标准的单模光纤支持的模斑尺寸约等于10微米。两者的模斑尺寸差距过大,导致光纤和光收发模块直接耦合的损耗过大。
为此,可以通过光耦合器改变光信号的模斑大小,实现不同光器件的光耦合。例如,图1为光耦合器在宽度方向上的截面示意图。如图1所示,光耦合器包括掩埋层101、波导层102和上包层103。在图1中,Y轴为宽度方向,X轴为高度方向。垂直于X轴和Y轴的Z轴为传输方向。传输方向包括传输正方向和传输反方向。沿着传输正方向,波导层102的面积不断减小,上包层103的面积不断增大,掩埋层101的面积不变。光信号沿传输方向传输。对于来自光纤的沿传输反方向传输的反向光信号,光耦合器用于缩小反向光信号的模斑,向光收发模块传输缩小模斑后的反向光信号。对于来自光收发模块的沿传输正方向传输的正向光信号,光耦合器用于放大正向光信号的模斑,向光纤传输放大模斑后的正向光信号。其中,在实现光耦合的过程中,光纤的中心对准波导层102的中心。
在实际应用中,上包层103的折射率大于掩埋层101的折射率。因此,随着波导层102的面积不断减小,光信号的能量主要分散在上包层103。此时,光信号在掩埋层101上的能量远小于在上包层103上的能量,造成光耦合器和光纤耦合的损耗较大。
发明内容
本申请提供了一种光耦合器、光芯片和光通信设备,通过增加支撑层,可以降低波导层中心附近的能量分布不均的程度,进而降低光耦合器的耦合损耗。
本申请第一方面提供了一种光耦合器。光耦合器包括掩埋层、支撑层、波导层和上包层。其中,在高度方向上,支撑层在掩埋层和波导层之间。波导层在支撑层和上包层之间。在宽度方向上,波导层和支撑层位于上包层内部。波导层和支撑层的材料不同。
本申请中,支撑层位于上包层内部。因此,支撑层两侧包括上包层。光信号的能量可以分散在支撑层的两侧,从而降低波导层中心附近的能量分布不均的程度,降低光耦合器的耦合损耗。
本申请中,支撑层是一种波导结构,可以是刻蚀掩埋层形成的波导,也可以是沉积形成的波导,还可以是外延或者其他方式形成的,本申请不限制。支撑层用于支撑波导,但不具 备传输光信号的作用。
由于支撑层波导的形状与波导层渐变形状一样,处于波导层的下方,使得波导层可以被上包层对称填充,进而降低光耦合器的耦合损耗。
在本申请第一方面的一种可选方式中,在宽度方向上,波导层的中心位置和上包层的中心位置的距离小于50纳米。其中,减小波导层的中心位置和上包层的中心位置的距离,可以进一步降低波导层中心附近的能量分布不均的程度,从而降低耦合损耗。
在本申请第一方面的一种可选方式中,在宽度方向上,上包层的形状为正方形或圆形。其中,当光耦合器与光纤耦合时,正方形或圆形的上包层可以进一步降低耦合损耗。
在本申请第一方面的一种可选方式中,光耦合器用于与光纤相连。光纤的直径为b微米。正方形的宽度a在区间b±0.5微米内,或,圆形的直径a在区间b±0.5微米内。此时,a和b的差值小于或等于0.5微米。其中,当上包层的直径或宽度接近光纤的直径时,可以进一步降低耦合损耗。
在本申请第一方面的一种可选方式中,在传输方向上,支撑层包括第一端面和第二端面。第一端面的面积大于第二端面的面积。其中,输出沿传输正方向传输的正向光信号的端面为第二端面。输出沿传输反方向传输的反向光信号的端面为第一端面。当第二端面的面积较小时,可以有效降低第二端面上波导层中心附近的能量分布不均的程度,从而降低损耗。
在本申请第一方面的一种可选方式中,沿第一端面到第二端面的方向上,支撑层的宽度逐渐减小。其中,支撑层的宽度逐渐减小,上包层在宽度方向上的截面面积不断增大。因此,本申请可以进一步降低波导层中心附近的能量分布不均的程度,降低耦合损耗。
在本申请第一方面的一种可选方式中,第二端面的宽度小于120纳米。其中,第二端面的宽度越小,上包层的截面面积越大。当上包层的截面面积越大时,波导层中心附近的能量分布越均匀。本申请限定第二端面的宽度小于120纳米,可以降低波导层中心附近的能量分布不均的程度,从而降低耦合损耗。
在本申请第一方面的一种可选方式中,在传输方向上,上包层覆盖第二端面。其中,通过覆盖第二端面,可以进一步提高上包层的截面面积,降低波导层中心附近的能量分布不均的程度,降低耦合损耗。
在本申请第一方面的一种可选方式中,在传输方向上,波导层为梯形结构。其中,沿传输正方向,波导层的宽度逐渐减小。当波导层包括上波导层和下波导层时,波导层为梯形结构是指上波导层和/或下波导层为梯形结构。在传输正方向,梯形结构的波导层有利于将正向光信号分散在上包层中,降低波导层中心附近的能量分布不均的程度,从而降低耦合损耗。
在本申请第一方面的一种可选方式中,波导层包括上波导层和下波导层。在宽度方向上,下波导层的宽度大于上波导层的宽度。其中,上波导层也可以称为脊波导。将波导层分为上波导层和下波导层,一方面有利于降低波导的传输损耗,另一方面有利于在高度方向上扩大沿传输正方向传输的光信号的模斑,从而降低波导层中心附近的能量分布不均的程度,从而降低耦合损耗。
在本申请第一方面的一种可选方式中,上波导层包括第一部分和第二部分。在传输方向上,第一部分为矩形结构。第一部分的宽度在400纳米到2000纳米之间。第二部分为梯形结构。梯形结构最小的宽度小于120纳米。
在本申请第一方面的一种可选方式中,在传输方向上,下波导层包括第三端面和第四端 面。下波导层为梯形结构。第三端面的宽度大于第四端面的宽度。第四端面的宽度小于120纳米。其中,梯形结构的下波导层有利于将光信号分散在上包层中,降低波导层中心附近的能量分布不均的程度,从而降低耦合损耗。
在本申请第一方面的一种可选方式中,在传输方向上,下波导层在掩埋层上的投影和支撑层在掩埋层上的投影重合。其中,当下波导层在掩埋层上的投影和支撑层在掩埋层上的投影重合时,下波导层和支撑层的宽度相同。下波导层和支撑层的宽度相同时,可以减小加工过程中的工艺步骤。因此,本申请可以降低加工过程中的成本。
在本申请第一方面的一种可选方式中,上包层的材料的折射率大于支撑层的材料的折射率。其中,当上包层的材料的折射率大于支撑层的材料的折射率时,在传输正方向上,正向光信号的能量逐渐分散在上包层,可以降低波导层中心附近的能量分布不均的程度,从而降低耦合损耗。
在本申请第一方面的一种可选方式中,支撑层的材料的折射率小于波导层的材料的折射率。其中,当支撑层的材料的折射率小于波导层的材料的折射率时,在传输反方向上,反向光信号的能量逐渐集中在波导层上,从而降低耦合损耗。
在本申请第一方面的一种可选方式中,支撑层的材料为二氧化硅。
在本申请第一方面的一种可选方式中,支撑层的材料和掩埋层的材料相同。其中,当支撑层的材料和掩埋层的材料相同时,可以通过刻蚀工艺得到支撑层和掩埋层。因此,本申请可以降低加工过程中的成本。
在本申请第一方面的一种可选方式中,光耦合器还包括衬底。在高度方向上,掩埋层在衬底和支撑层之间。
在本申请第一方面的一种可选方式中,光耦合器还包括本体部。本体部还包括本体掩埋层、本体波导层和本体上包层。本体波导层在本体掩埋层和本体上包层之间。本体波导层和波导层的厚度相同。
本申请第二方面提供了一种光芯片。光芯片包括第一光器件和光耦合器。光耦合器用于从第二光器件接收反向光信号。光耦合器用于缩小反向光信号的模斑,得到缩小模斑后的反向光信号。光耦合器用于向第一光器件传输缩小模斑后的反向光信号。第一光器件器件用于对缩小模斑后的反向光信号进行处理。
在本申请第二方面的一种可选方式中,第一光器件为光收发模块。光收发模块用于解调缩小模斑后的反向光信号,得到输入电信号。
在本申请第二方面的一种可选方式中,第一光器件用于向光耦合器传输正向光信号。光耦合器用于放大正向光信号的模斑,得到放大模斑后的正向光信号。光耦合器用于输出放大模斑后的正向光信号。
在本申请第二方面的一种可选方式中,第一光器件为光收发模块。光收发模块用于根据输出电信号得到第二光信号。
本申请第三方面提供了一种光通信设备。光通信设备包括处理器和光芯片。光芯片用于接收反向光信号,根据反向光信号得到输入电信号。处理器用于对输入电信号进行数据处理。
在本申请第三方面的一种可选方式中,处理器还用于生成输出电信号。光芯片还用于根据输出电信号得到正向光信号,输出正向光信号。
本申请第四方面提供了一种光耦合器的制备方法。制备方法包括以下步骤:提供晶圆。 在高度方向上,晶圆包括衬底、底层和波导层。底层在波导层和衬底之间。刻蚀晶圆的两侧。刻蚀的深度到达底层的内部,将底层分为宽度不同的支撑层和掩埋层。其中,在高度方向上,支撑层在掩埋层和波导层之间。支撑层的宽度小于掩埋层的宽度。刻蚀后的波导层的宽度小于掩埋层的宽度。在刻蚀后的晶圆上外延生长上包层。
在本申请第四方面的一种可选方式中,制备方法包括以下步骤:刻蚀上包层,使得在宽度方向上,上包层的形状为正方形或圆形。
在本申请第四方面的一种可选方式中,刻蚀后的晶圆包括宽度不同的上波导层和下波导层。在高度方向上,下波导层在支撑层和上波导层之间,下波导层的宽度大于下波导的宽度。
附图说明
图1为光耦合器在宽度方向上的截面示意图;
图2a为本申请中提供的光耦合器的第一个三维结构示意图;
图2b为本申请中提供的光耦合器的主视图;
图2c为本申请中提供的光耦合器的第一个俯视图;
图2d为本申请中提供的光耦合器的第一个截面示意图;
图2e为本申请中提供的光耦合器的第二个截面示意图;
图2f为本申请中提供的光耦合器的第三个截面示意图;
图2g为本申请中提供的光耦合器的第四个截面示意图;
图2h为本申请中提供的光耦合器的第五个截面示意图;
图3为本申请中提供的圆形上波导层的截面示意图;
图4a为本申请中提供的光耦合器的第二个三维结构示意图;
图4b为本申请中提供的光耦合器的第二个俯视图;
图4c为本申请中提供的光耦合器的第六个截面示意图;
图5为本申请中提供的光耦合器的结构示意图;
图6为本申请中提供的光芯片的结构示意图;
图7为本申请中提供的光通信设备的结构示意图;
图8为本申请中提供的光通信系统的结构示意图;
图9为本申请中提供的光耦合器的制备方法的流程示意图。
具体实施方式
本申请提供了一种光耦合器、光芯片和光通信设备,通过增加支撑层,可以降低波导层中心附近的能量分布不均的程度,进而降低光耦合器的耦合损耗。应理解,本申请中使用的“第一”、“第二”、“正向”、“反向”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。另外,为了简明和清楚,本申请多个附图中重复参考编号和/或字母。重复并不表明各种实施例和/或配置之间存在严格的限定关系。
本申请中的光耦合器可以应用于光通信领域。在光通信领域中,不同光器件支持的模斑尺寸可能不同。为此,可以通过光耦合器改变光信号的模斑大小,实现不同光器件的光耦合。但是,在图1所示的光耦合器中,光信号在波导层102的中心附近的能量分布不均,导致光耦合器的耦合损耗较大。
为此,本申请中提供了一种光耦合器。图2a为本申请中提供的光耦合器的第一个三维结构示意图。在图2a中,Y轴为宽度方向。X轴为高度方向。Z轴为传输方向。传输方向可以分为传输正方向和传输负方向。图2a中Z轴的箭头方向为传输正方向。Z轴的箭头反方向为传输反方向。沿传输正方向传输的光信号称为正向光信号。沿传输反方向传输的光信号称为反向光信号。
本申请中,为了方便展示光耦合器的内部结构,在光耦合器的三维结构示意图和俯视图中对上包层204做透明化处理。如图2a所示,光耦合器包括掩埋层201、支撑层202、波导层203和上包层204。图2b为本申请中提供的光耦合器的主视图。如图2b所示,在高度方向上,支撑层202在掩埋层201和波导层203之间。波导层203在支撑层202和上包层204之间。波导层203和掩埋层201上覆盖有上包层204。为了扩大光信号在高度方向上的模斑,波导层203可以包括上波导层和下波导层。例如,在图2b中,波导层203包括上波导层2032和下波导层2031。下波导层2031在支撑层202和上波导层2032之间。
掩埋层201的材料可以为二氧化硅、或石英等。支撑层202的材料可以为氧化物、或氟化物等。其中,氧化物可以是二氧化硅、氧化镁或氧化铝等。波导层203的材料可以为铌酸锂薄膜、硅、氮化硅、或磷化铟等。当波导层203包括上波导层2032和下波导层2031时,上波导层2032和下波导层2031的材料可以相同,也可以不同。上包层204的材料可以为氮氧化硅、氧化物、氟化物等。为了降低加工过程中的成本,掩埋层201和支撑层202的材料可以相同。例如,掩埋层201和支撑层202的材料为二氧化硅。为了让正向光信号的能量主要分散在上包层204中,上包层204的材料的折射率可以大于支撑层202和掩埋层201的材料的折射率。为了让反向光信号的能量主要集中在波导层203中,波导层203材料的折射率可以大于上包层204的材料的折射率。
在本申请中,光耦合器可以用于放大正向光信号的模斑。光耦合器还可以用于缩小反向光信号的模斑。因此,光耦合器的结构可以沿传输方向发生变化。例如,图2c为本申请中提供的光耦合器的第一个俯视图。如图2c所示,光耦合器的结构沿中心线对称。截面(或端面)1~5将光耦合器分为4个部分。4个部分分别为截面1到截面2之间的部分1、截面2到截面3之间的部分2、截面3到截面4之间的部分3、截面4到截面5之间的部分4。其中,截面1~5垂直于传输方向。截面1为光耦合器的截止截面。截面2为下波导层2031和支撑层202的截止截面。截面3为上波导层2032的截止截面。截面4为上波导层2032的第一部分和第二部分的交界截面。截面4为支撑层202的截止截面。截面5为光耦合器的截止截面。下面根据截面示意图2d~2h对4个部分分别进行描述。应理解,本申请中提供的光耦合器的具体尺寸只是一个或多个示例,不应当作为限制本申请的保护范围的条件。
图2d为本申请中提供的光耦合器的第一个截面示意图。图2d为截面1的截面示意图。如图2d所示,光耦合器包括掩埋层201和上包层204。上包层204的厚度为6500纳米。上包层204的宽度为6500纳米。掩埋层201的宽度和上包层204的宽度相同。掩埋层201的厚度为1700纳米。
图2e为本申请中提供的光耦合器的第二个截面示意图。图2e为截面2的截面示意图。图2e也可以称为光耦合器的左视图。如图2e所示,光耦合器包括掩埋层201、支撑层202、下波导层2031和上包层204。下波导层2031的厚度为250纳米。下波导层2031的宽度为100纳米。支撑层202的宽度和下波导层2031的宽度相同。支撑层202的厚度为3000纳米。截 面1到截面2的距离等于500微米。从截面1到截面2,部分1中的上包层204和掩埋层201的厚度和宽度未发生变化。上包层204的截面面积未发生变化。
图2f为本申请中提供的光耦合器的第三个截面示意图。图2f为截面3的截面示意图。如图2f示,光耦合器包括掩埋层201、支撑层202、下波导层2031、上波导层2032和上包层204。上波导层2032的厚度为250纳米。上波导层2032的宽度为100纳米。下波导层2031的宽度为1200纳米。支撑层202的宽度为1200纳米。截面2到截面3的距离等于100微米。从截面2到截面3,部分2中的上包层204的厚度和宽度未发生变化。上包层204的截面面积逐渐减小。掩埋层201的厚度和宽度未发生变化。支撑层202和下波导层2031的厚度未发生变化。支撑层202和下波导层2031的宽度的逐渐增加。
图2g为本申请中提供的光耦合器的第四个截面示意图。图2g为截面4的截面示意图。如图2g示,光耦合器包括掩埋层201、支撑层202、下波导层2031、上波导层2032和上包层204。上波导层2032的宽度为1200纳米。下波导层2031的宽度为2600纳米。支撑层202宽度为2600纳米。截面3到截面4的距离等于100微米。从截面3到截面4,部分3中的上包层204的厚度和宽度未发生变化。上包层204的截面面积逐渐减小。掩埋层201的厚度和宽度未发生变化。支撑层202和下波导层2031的厚度未发生变化。支撑层202和上波导层2032的宽度逐渐增加。上波导层2032和下波导层2031的厚度未发生变化。下波导层2031的宽度的逐渐增加。
图2h为本申请中提供的光耦合器的第五个截面示意图。图2h为截面5的截面示意图。图2h也可以称为光耦合器的右视图。如图2h示,光耦合器包括掩埋层201、支撑层202、下波导层2031、上波导层2032和上包层204。下波导层2031的宽度为4000纳米。支撑层202宽度为4000纳米。截面4到截面5的距离等于100微米。部分4中的上包层204的厚度和宽度未发生变化。上包层204的截面面积逐渐减小。掩埋层201的厚度和宽度未发生变化。上波导层2032的宽度未发生变化。支撑层202和下波导层2031的厚度未发生变化。支撑层202和下波导层2031的宽度的逐渐增加。
在本申请中,根据图2e~图2h可知,支撑层202的两侧包括上包层。因此,光信号的能量可以分散在支撑层202的两侧,从而降低波导层203中心附近的能量分布不均的程度,进而降低光耦合器的耦合损耗。
应理解,图2a~图2h所示的光耦合器只是本申请中提供的一个或多个实例。在实际应用中,本领域技术人员可以根据需求对光耦合器进行适应性的修改。在适应性的修改后,若光耦合器包括支撑层,则仍应当属于本申请的保护范围。适应性的修改包括但不仅限于以下的一项或多项内容。
例如,在前述图2d~图2h中,上包层204的形状为正方形。在实际应用中,上包层204还可以是矩形或圆形。例如,图3为本申请中提供的圆形上波导层的截面示意图。如图3所示,光耦合器包括掩埋层201、支撑层202、下波导层2031、上波导层2032和上包层204。上包层204的形状为圆形。
例如,在前述图2d~图2h中,上包层204的厚度和宽度为6.5微米。在实际应用中,上包层204的边长a可以在区间b±0.5微米内。b为与光耦合器相连的光纤的模场直径。b可以等于10.4微米、6.5微米或3.2微米。类似地,当上包层204的形状为圆形时,圆形的直径a可以在区间b±0.5微米内。
例如,在前述图2d~图2h中,上包层204的中心位置为上包层204对角连线的交点。以光耦合器的左下角为坐标原点,上包层204的中心位置的坐标(Y,X)为(3.25,4.95)。波导层203的中心位置为上波导层2032和下波导层2031交界线的中点。波导层203的中心位置(简称为波导层203的中心)的坐标(Y,X)为(3.25,4.95)。此时,波导层203的中心位置和上包层204的中心位置重合,即波导层203的中心位置和上包层204的中心位置的距离等于0。在实际应用中,波导层203的中心位置和上包层204的中心位置的距离可以不等于0。例如距离等于40纳米。但是,为了尽量降低波导层203中心附近的能量分布不均的程度,可以限定波导层203的中心位置和上包层204的中心位置的距离小于50纳米。应理解,波导层203的中心位置还可以是波导层203的重心。当上波导层2032的厚度大于下波导层2031的厚度时,波导层203的中心位置还可以是上波导层2032的重心。当上波导层2032的厚度小于下波导层2031的厚度时,波导层203的中心位置还还可以是下波导层2031的重心。
例如,在前述图2e~图2h中,支撑层202的宽度等于下波导层2031的宽度。下波导层2031在掩埋层201上的投影和支撑层202在掩埋层201上的投影重合。在实际应用中,支撑层202的宽度可以大于或小于下波导层2031的宽度。在前述图2c中,支撑层202为梯形结构。梯形结构包括第一端面和第二端面。第一端面在截面5上。第二端面在截面2上。第一端面的面积大于第二端面的面积。沿第一端面到第二端面的方向上,支撑层202的宽度逐渐减小。在实际应用中,支撑层202可以为矩形结构。此时,支撑层202的第一端面和第二端面的面积相同。沿第一端面到第二端面的方向上,支撑层202的宽度不变。
例如,在前述图2e中,支撑层202的第二端面的宽度等于100纳米。在实际应用中,第二端面的宽度还可以是其它的数值。例如110纳米、120纳米等。但是,第二端面的宽度越小,上包层204的截面面积越大。当上包层204的截面面积越大时,波导层203中心附近的能量分布越均匀。因此,本申请可以限定第二端面的宽度小于120纳米。
例如,在前述图2c中,上波导层2032包括第一部分和第二部分。第一部分为矩形结构。第一部分在截面5到截面4之间。第一部分的宽度在400纳米到2000纳米之间。第二部分为梯形结构。第二部分在截面4到截面3之间。梯形结构最小的宽度小于120纳米。梯形结构最小的宽度在截面3上。梯形结构最小的宽度等于100纳米。在实际应用中,上波导层2032可以为梯形结构。沿传输正方向,梯形结构的宽度逐渐减小。
例如,在前述图2e中,下波导层2031为梯形结构。梯形结构包括第三端面和第四端面。第三端面在截面5上。第四端面在截面2上。第三端面的宽度大于第四端面的宽度。第四端面的宽度小于120纳米。在实际应用中,下波导层2031可以包括第三部分和第四部分。第三部分在截面4到截面5之间。第三部分为矩形结构。第四部分在截面4到截面2之间。第四部分为梯形结构。
例如,光耦合器还可以包括衬底。在高度方向上,掩埋层201在衬底和支撑层202之间。衬底的材料可以是高阻硅、低阻硅或者石英灯
例如,光耦合器还可以包括本体部。图4a为本申请中提供的光耦合器的第二个三维结构示意图。如图4a所示,光耦合器包括凸出部(图中有填充图案的部分)和本地部(图中未填充图案的部分)。凸出部包括衬底400、掩埋层201、支撑层202、波导层203和上波导层204。凸出部的相关描述可以参考前述图2a~图2h和图3的描述。本体部包括衬底400、本体掩埋 层401、本体波导层403和本体上包层402。在高度方向上,本体波导层403在本体掩埋层401和本体上包层402之间。本体掩埋层401在本体波导层403和衬底400之间。本体掩埋层401的厚度等于掩埋层201和支撑层202的厚度之和。本体波导层403包括本体上波导层4032和本体下波导层4031。本体上波导层4032的厚度等于上波导层2032的厚度。本体下波导层4031的厚度等于下波导层2031的厚度。本体下波导层4031的宽度等于下波导层2031的宽度。本体上包层402的材料可以是氮氧化硅、氧化物、或氟化物等。本体掩埋层401的材料可以是氧化物、或氟化物等。
图4b为本申请中提供的光耦合器的第二个俯视图。如图4b所示,光耦合器包括凸出部和本地部。凸出部在截面1至截面5之间。关于凸出部的描述可以参考前述图2c中的相关描述。本体部在截面5和截面6之间。截面5为支撑层202的截止截面。截面6为光耦合器的截止截面。图4c为本申请中提供的光耦合器的第六个截面示意图。图4c为截面6的截面示意图。图4c也可以称为光耦合器的右视图。如图4c所示,光耦合器包括衬底400、本体掩埋层401、本体波导层403和本体上包层402。本体波导层403包括本体上波导层4032和本体下波导层4031。本体上波导层4032和本体下波导层4031上覆盖有本体上包层402。
在图4a中的光耦合器中,本体部的宽度等于凸出部的宽度。在实际应用中,本体部的宽度可以大于凸出部的宽度。此时,本体部可以连接多个凸出部。例如,图5为本申请中提供的光耦合器的结构示意图。如图5所示,光耦合器包括本地部500。本体部的侧边连接有三个凸出部。三个凸出部分别为凸出部501、凸出部502和凸出部503。
前面对本申请中的光耦合器进行描述,下面对本申请中的光芯片进行描述。图6为本申请中提供的光芯片的结构示意图。如图6所示,光芯片600包括光耦合器601和第一光器件602。关于光耦合器601的描述可以参考前述图2a~图2h和图3~图5中的描述。光耦合器601用于从第二光器件603接收反向光信号。光耦合器601用于缩小反向光信号的模斑,得到缩小模斑后的反向光信号。例如,第二光器件603为光纤。在图2a~图2c中,光纤与光耦合器601的左端面(截面1)耦合。光纤的中心对准光耦合器601中波导层203的中心。光耦合器601从左端面接收反向光信号。随着反向光信号在光耦合器601中沿传输反方向传输,反向光信号的能量逐渐集中在波导层203,使得反向光信号的模斑逐渐减小。光耦合器601还用于向第一光器件602传输缩小模斑后的反向光信号。第一光器件602用于对反向光信号进行处理。例如,第一光器件602为光收发模块。光收发模块用于解调反向光信号,得到输入电信号。应理解,第一光器件602还可以是波分复用器、波分解复用器、光开关、模斑转换器、合波器、或分束器等。
在实际应用中,第一光器件602还可以用于向光耦合器601传输正向光信号。例如,第一光器件602是光收发模块。光收发模块用于通过调制输出电信号得到正向光信号。光收发模块用于向光耦合器601传输正向光信号。光耦合器601用于放大正向光信号的模斑,得到放大模斑后的正向光信号。例如,在图2a~图2c中,第一光器件602与光耦合器601的右端面(截面5)耦合。光耦合器601从右端面接收正向光信号。随着正向光信号在光耦合器601中沿传输正方向传输,正向光信号的能量逐渐分散在上包层204,使得正向光信号的模斑逐渐放大。光耦合器601用于向第二光器件603传输放大模斑后的正向光信号。
其中,当光耦合器601为图5所示的光耦合器时,光耦合器包括多个凸出部。光耦合器601可以与多个第二光器件相连。多个第二光器件和多个凸出部一一对应。多个凸出部中传 输的多个光信号可以是相同的波长,也可以是不同的波长。例如,当第一光器件602是分束器时,多个光信号具有相同的波长。当第一光器件602是分波器时,多个光信号具有不同的波长。
在实际应用中,第二光器件603还是光开关、或模斑转换器等。此时,第二光器件603可以集成在光芯片600上,即光芯片600还可以包括第二光器件603。
前面对本申请中的光芯片进行描述,下面对本申请中的光通信设备进行描述。图7为本申请中提供的光通信设备的结构示意图。如图7所示,光通信设备700包括光芯片701和处理器702。关于光芯片701的描述可以参考前述6中的描述。光芯片701用于接收反向光信号,根据反向光信号得到输入电信号。具体地,光芯片701包括光耦合器和光收发模块。光耦合器601用于缩小反向光信号的模斑,得到缩小模斑后的反向光信号。光收发模块用于解调反向光信号,得到输入电信号。处理器702用于对输入电信号进行数据处理。
处理器702可以是可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器702还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在其它实施例中,处理器702还可以用于生成输出电信号。光芯片701还用于根据输出电信号得到正向光信号,输出正向光信号。例如,光芯片701是光收发模块。光收发模块用于调制输出电信号,得到正向光信号。光耦合器用于放大正向光信号的模斑,得到放大模斑后的正向光信号。光耦合器用于输出放大模斑后的正向光信号。
前面对本申请中的光通信设备进行描述,下面对本申请中的光通信系统进行描述。图8为本申请中提供的光通信系统的结构示意图。如图8所示,光通信系统包括第一光通信设备801和第二光通信设备802。第一光通信设备801和第二光通信设备802通过光纤相连。第一光通信设备801和第二光通信设备802可以参考前述图7中光通信设备700的相关描述。
第一光通信设备801包括光芯片和处理器。处理器用于根据用于生成输出电信号。光芯片用于根据输出电信号得到正向光信号。具体地,光芯片包括光耦合器和光收发模块。光收发模块用于通过调制输出电信号得到正向光信号。光耦合器用于放大正向光信号的模斑,得到放大模斑后的正向光信号。光耦合器用于向光纤输出放大模斑后的正向光信号。
第一光通信设备801发送的正向光信号作为第二光通信设备802的反向光信号。第二光通信设备802用于通过光纤接收反向光信号。第二光通信设备802包括光芯片和处理器。光芯片用于接收反向光信号号,根据反向光信号得到输入电信号。具体地,光芯片包括光耦合器和光收发模块。光耦合器用于缩小反向光信号的模斑,得到缩小模斑后的反向光信号。光收发模块用于解调反向光信号,得到输入电信号。处理器用于对输入电信号进行数据处理。
类似地,在实际应用中,第二光通信设备802可以通过光纤向第一光通信设备801发送正向光信号。第二光通信设备802发送的正向光信号作为第一光通信设备801的反向光信号。第一光通信设备801接收反向光信号。
前面对本申请中的光通信系统进行描述,下面对本申请中光耦合器的制备方法进行描述。图9为本申请中提供的光耦合器的制备方法的流程示意图。如图9所示,光耦合器的制备方法包括以下步骤。
在步骤901中,提供提供晶圆。在高度方向上,晶圆包括衬底、底层和波导层。底层在波导层和衬底之间。
在步骤902中,刻蚀晶圆的两侧,刻蚀的深度到达底层的内部,将底层分为宽度不同的支撑部和掩埋层,在高度方向上,支撑部在掩埋层和波导层之间。支撑层的宽度小于掩埋层的宽度。刻蚀后的波导层的宽度小于掩埋层的宽度。例如,可以在带有衬底、底层和波导层的晶圆上镀一层铬作为硬掩膜。然后旋涂光刻胶,使用光刻机或电子束曝光机曝上波导层图形。以光刻胶为掩膜干法刻蚀金属铬。以金属铬作为掩膜干法刻蚀晶圆,刻蚀深度为波导层和支撑部的厚度。在刻蚀后,通过湿法腐蚀去除硬掩膜。
在步骤903中,在刻蚀后的晶圆上外延生长上包层。例如,可以使用等离子体增强化学气相沉积法(plasma enhanced chemical vapor deposition,PECVD)设备在刻蚀后的晶圆上生长上包层。
在生长上包层后,可以使用镀铬膜、光刻及干法刻蚀工艺制作上包层波导的图形掩膜。用金属铬作为掩膜干法刻蚀上包层,使得在宽度方向上,上包层的形状为正方形或圆形。
在前述步骤902中,同一次刻蚀得到了波导层和支撑层。在实际应用中,可以通过增加刻蚀的次数,刻蚀形成宽度不同的上波导层和下波导层。此时,在高度方向上,下波导层在支撑层和上波导层之间,下波导层的宽度大于下波导的宽度。
应理解,关于光耦合器的制备方法的描述,可以参考前述对光耦合器的描述。例如,光耦合器还包括衬底。例如,在传输方向上,支撑层为梯形结构。沿传输正方向,梯形结构的宽度逐渐减小。例如,光耦合器还包括本地部。例如,上波导层包括第一部分和第二部分。在传输方向上,第一部分为矩形结构,第二部分为梯形结构。沿传输正方向,梯形结构的宽度逐渐减小。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (26)

  1. 一种光耦合器,其特征在于,包括:
    掩埋层、支撑层、波导层和上包层;
    其中,在高度方向上,所述支撑层在所述掩埋层和所述波导层之间,所述波导层在所述支撑层和所述上包层之间;
    在宽度方向上,所述波导层和所述支撑层位于所述上包层内部,所述波导层和所述支撑层的材料不同。
  2. 根据权利要求1所述的光耦合器,其特征在于,在宽度方向上,所述波导层的中心位置和所述上包层的中心位置的距离小于50纳米。
  3. 根据权利要求1或2所述的光耦合器,其特征在于,在宽度方向上,所述上包层的形状为正方形或圆形。
  4. 根据权利要求3所述的光耦合器,其特征在于,所述光耦合器用于与光纤相连,所述光纤的直径为b微米;
    其中,所述正方形的宽度a在区间b±0.5微米内,或,所述圆形的直径a在区间b±0.5微米内。
  5. 根据权利要求1至4中任意一项所述的光耦合器,其特征在于,在传输方向上,所述支撑层包括第一端面和第二端面,所述第一端面的面积大于所述第二端面的面积。
  6. 根据权利要求5所述的光耦合器,其特征在于,沿所述第一端面到所述第二端面的方向上,所述支撑层的宽度逐渐减小。
  7. 根据权利要求5或6所述的光耦合器,其特征在于,所述第二端面的宽度小于120纳米。
  8. 根据权利要求5至7中任意一项所述的光耦合器,其特征在于,在传输方向上,所述上包层覆盖所述第二端面。
  9. 根据权利要求1至8中任意一项所述的波导层,其特征在于,在传输方向上,所述波导层为梯形结构。
  10. 根据权利要求1至9中任意一项所述的光耦合器,其特征在于,所述波导层包括上波导层和下波导层,在宽度方向上,所述下波导层的宽度大于所述上波导层的宽度。
  11. 根据权利要求10所述的光耦合器,其特征值在于,所述上波导层包括第一部分和第二部分,在传输方向上,所述第一部分为矩形结构,所述第一部分的宽度在400纳米到2000纳米之间,所述第二部分为梯形结构,所述梯形结构最小的宽度小于120纳米。
  12. 根据权利要求10或11所述的光耦合器,其特征值在于,在传输方向上,所述下波导层包括第三端面和第四端面,所述下波导层为梯形结构,其中,所述第三端面的宽度大于所述第四端面的宽度,所述第四端面的宽度小于120纳米。
  13. 根据权利要求10至12中任意一项所述的光耦合器,其特征在于,在传输方向上,所述下波导层在所述掩埋层上的投影和所述支撑层在所述掩埋层上的投影重合。
  14. 根据权利要求1至13中任意一项所述的光耦合器,其特征在于,所述上包层的材料的折射率大于所述支撑层的材料的折射率。
  15. 根据权利要求1至14中任意一项所述的光耦合器,其特征在于,所述支撑层的材料的折射率小于所述波导层的材料的折射率。
  16. 根据权利要求1至15中任意一项所述的光耦合器,其特征在于,所述支撑层的材料为二氧化硅。
  17. 根据权利要求1至16中任意一项所述的光耦合器,其特征在于,所述支撑层的材料和所述掩埋层的材料相同。
  18. 根据权利要求1至17中任意一项所述的光耦合器,其特征在于,所述光耦合器还包括衬底,在高度方向上,所述掩埋层在所述衬底和所述支撑层之间。
  19. 根据权利要求1至18中任意一项所述的光耦合器,其特征在于,所述光耦合器还包括本体部;
    所述本体部还包括本体掩埋层、本体波导层和本体上包层,所述本体波导层在所述本体掩埋层和所述本体上包层之间,所述本体波导层和所述波导层的厚度相同。
  20. 一种光芯片,其特征在于,包括第一光器件和前述权利要求1至19中任意一项所述的光耦合器;
    所述光耦合器用于接收反向光信号,缩小所述反向光信号的模斑,得到缩小模斑后的所述反向光信号,向所述第一光器件传输缩小模斑后的所述反向光信号;
    所述第一光器件用于接收缩小模斑后的所述反向光信号,对所述反向光信号进行处理。
  21. 根据权利要求20所述的光芯片,其特征在于,
    所述第一光器件还用于向所述光耦合器传输正向光信号;
    所述光耦合器用于放大所述正向光信号的模斑,输出放大模斑后的所述正向光信号。
  22. 一种光通信设备,其特征在于,包括处理器和前述前述权利要求20或21所述的光芯片;
    所述光芯片用于接收反向光信号,根据所述反向光信号得到输入电信号;
    所述处理器用于对所述输入电信号进行数据处理。
  23. 根据权利要求22所述的光通信设备,其特征在于,
    所述处理器还用于生成输出电信号,向所述光芯片传输所述输出电信号;
    所述光芯片还用于根据所述输出电信号得到正向光信号,输出所述正向光信号。
  24. 一种光耦合器的制备方法,其特征在于,包括:
    提供晶圆,在高度方向上,所述晶圆包括衬底、底层和波导层,所述底层在所述波导层和所述衬底之间;
    刻蚀所述晶圆的两侧,刻蚀的深度到达所述底层的内部,将所述底层分为宽度不同的支撑层和掩埋层,其中,在高度方向上,所述支撑层在所述掩埋层和所述波导层之间,所述支撑层的宽度小于所述掩埋层的宽度,刻蚀后的所述波导层的宽度小于所述掩埋层的宽度;
    在刻蚀后的所述晶圆上外延生长上包层。
  25. 根据权利要求24所述的制备方法,其特征在于,所述方法还包括:
    刻蚀所述上包层,使得在宽度方向上,所述上包层的形状为正方形或圆形。
  26. 根据权利要求24或25所述的制备方法,其特征在于,刻蚀后的所述晶圆包括宽度不同的上波导层和下波导层,在高度方向上,所述下波导层在所述支撑层和所述上波导层之间,所述下波导层的宽度大于所述下波导的宽度。
PCT/CN2022/118590 2021-09-15 2022-09-14 光耦合器、光芯片和光通信设备 WO2023040861A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22869230.7A EP4372436A1 (en) 2021-09-15 2022-09-14 Optical coupler, optical chip and optical communication device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111081500 2021-09-15
CN202111081500.9 2021-09-15
CN202111552746.XA CN115808736A (zh) 2021-09-15 2021-12-17 光耦合器、光芯片和光通信设备
CN202111552746.X 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023040861A1 true WO2023040861A1 (zh) 2023-03-23

Family

ID=85482158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118590 WO2023040861A1 (zh) 2021-09-15 2022-09-14 光耦合器、光芯片和光通信设备

Country Status (3)

Country Link
EP (1) EP4372436A1 (zh)
CN (1) CN115808736A (zh)
WO (1) WO2023040861A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141682A1 (en) * 2001-04-02 2002-10-03 Sang-Wan Ryu Spot-size converter integratrd laser diode and method for fabricating the same
US20050123244A1 (en) * 2003-12-03 2005-06-09 Block Bruce A. Embedded optical waveguide coupler
CN103033881A (zh) * 2012-12-31 2013-04-10 东南大学 片上周期变化折射率透镜光子芯片立体耦合器及制备方法
CN103487883A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 InP基的无源线波导的光纤光斑转换耦合器及制备方法
JP2016018191A (ja) * 2014-07-11 2016-02-01 沖電気工業株式会社 スポットサイズ変換器及びその製造方法
CN107329208A (zh) * 2017-07-10 2017-11-07 昆明理工大学 一种折射率梯度变化的硅光子模斑转换器
CN207457539U (zh) * 2017-07-10 2018-06-05 昆明理工大学 一种折射率梯度变化的硅光子模斑转换器
CN108132499A (zh) * 2018-02-02 2018-06-08 苏州易缆微光电技术有限公司 基于多层聚合物结构的硅波导模斑转换器及其制备方法
CN113777711A (zh) * 2021-08-04 2021-12-10 华中科技大学 一种基于铌酸锂薄膜的大模斑水平端面耦合器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141682A1 (en) * 2001-04-02 2002-10-03 Sang-Wan Ryu Spot-size converter integratrd laser diode and method for fabricating the same
US20050123244A1 (en) * 2003-12-03 2005-06-09 Block Bruce A. Embedded optical waveguide coupler
CN103033881A (zh) * 2012-12-31 2013-04-10 东南大学 片上周期变化折射率透镜光子芯片立体耦合器及制备方法
CN103487883A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 InP基的无源线波导的光纤光斑转换耦合器及制备方法
JP2016018191A (ja) * 2014-07-11 2016-02-01 沖電気工業株式会社 スポットサイズ変換器及びその製造方法
CN107329208A (zh) * 2017-07-10 2017-11-07 昆明理工大学 一种折射率梯度变化的硅光子模斑转换器
CN207457539U (zh) * 2017-07-10 2018-06-05 昆明理工大学 一种折射率梯度变化的硅光子模斑转换器
CN108132499A (zh) * 2018-02-02 2018-06-08 苏州易缆微光电技术有限公司 基于多层聚合物结构的硅波导模斑转换器及其制备方法
CN113777711A (zh) * 2021-08-04 2021-12-10 华中科技大学 一种基于铌酸锂薄膜的大模斑水平端面耦合器

Also Published As

Publication number Publication date
CN115808736A (zh) 2023-03-17
EP4372436A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
US10156678B2 (en) Edge coupler
KR102208468B1 (ko) 광 커플러
US8873906B2 (en) Optical conversion element and optical conversion element manufacturing method
KR101591847B1 (ko) 효율적인 실리콘-온-인슐레이터 격자 결합기
US9726821B2 (en) Adiabatic elliptical optical coupler device
US5078516A (en) Tapered rib waveguides
KR0179988B1 (ko) 비대칭 광 비임을 가진 디바이스에 광섬유를 결합시키는 집적형 광 패키지
US6571039B1 (en) Optical waveguide having a weakly-confining waveguide section and a strongly-confining waveguide section optically coupled by a tapered neck
CN106908914A (zh) 光子芯片光栅耦合器
CN102694050B (zh) 光接收器
JP2015191112A (ja) 光導波路結合器及びその製造方法
CN105180917A (zh) 一种硅基混合集成单轴光纤陀螺光学芯片及其制备方法
US20150277043A1 (en) Optical integrated circuit and manufacturing method thereof
WO2022222599A1 (zh) 模斑转换器和光子器件
CN210123485U (zh) 硅基光耦合结构、硅基单片集成光器件
CN109407229A (zh) 一种端面耦合器
CN109814202A (zh) 一种基于pt对称的非互易偏振分束器
WO2023065573A1 (zh) 光电探测器
WO2023040861A1 (zh) 光耦合器、光芯片和光通信设备
WO2021143910A1 (zh) 一种光发端器件、光发端器件的制备方法及光通信设备
Brenner et al. Vertically tapered InGaAsP/InP waveguides for highly efficient coupling to flat‐end single‐mode fibers
US20190107672A1 (en) Non-planar waveguide structures
CN112014925A (zh) 一种用于硅光芯片的模斑转换器
WO2023092291A1 (zh) 一种芯片中光波导结构的刻蚀方法、芯片以及光通信设备
Suzuki et al. Highly efficient double-taper-type coupler between III–V/silicon-on-insulator hybrid device and silicon waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022869230

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869230

Country of ref document: EP

Effective date: 20240212

NENP Non-entry into the national phase

Ref country code: DE