WO2021000350A1 - 硅基光耦合结构、硅基单片集成光器件及其制造方法 - Google Patents

硅基光耦合结构、硅基单片集成光器件及其制造方法 Download PDF

Info

Publication number
WO2021000350A1
WO2021000350A1 PCT/CN2019/096424 CN2019096424W WO2021000350A1 WO 2021000350 A1 WO2021000350 A1 WO 2021000350A1 CN 2019096424 W CN2019096424 W CN 2019096424W WO 2021000350 A1 WO2021000350 A1 WO 2021000350A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
optical waveguide
waveguide structure
substrate
optical
Prior art date
Application number
PCT/CN2019/096424
Other languages
English (en)
French (fr)
Inventor
汪巍
方青
涂芝娟
曾友宏
蔡艳
余明斌
Original Assignee
上海新微技术研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新微技术研发中心有限公司 filed Critical 上海新微技术研发中心有限公司
Publication of WO2021000350A1 publication Critical patent/WO2021000350A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • This application relates to the field of semiconductor technology, and in particular to a silicon-based optical coupling structure and a manufacturing method thereof, and a silicon-based monolithic integrated optical device and a manufacturing method thereof.
  • silicon photonics One of the major technical problems facing silicon photonics is the light source. Since silicon is an indirect band gap material, it has low luminous efficiency and low band-edge absorption coefficient, making it difficult to realize silicon light-emitting devices.
  • couplers to introduce light from external light sources into the chip and the use of III-V hybrid integrated lasers are currently the most mainstream methods of introducing light sources.
  • Silicon-based monolithic integrated lasers need to epitaxially grow germanium, III-V and other direct bandgap materials on silicon or silicon-on-insulator. Because of the difference in material system and material height, it is extremely challenging to achieve efficient optical field coupling between the laser and the silicon optical chip. , Is one of the important challenges facing the practical application of silicon-based monolithic integrated lasers.
  • the embodiments of the present application provide a silicon-based optical coupling structure and a manufacturing method thereof, as well as a silicon-based monolithic integrated optical device and a manufacturing method thereof.
  • the silicon-based optical coupling structure has a suspended structure, thereby enabling high efficiency of the light field. coupling.
  • a silicon-based optical coupling structure including:
  • the first groove portion is formed in the silicon of the silicon on insulator (SOI) substrate;
  • a first optical waveguide structure formed in the top silicon of the silicon on insulator (SOI) substrate;
  • a second optical waveguide structure that is connected to the first optical waveguide structure in the lateral direction and extends in the first direction in the lateral direction, and the second optical waveguide structure is located above the first groove portion;
  • the silicon-based optical coupling structure further has:
  • the supporting structure is formed in the through groove and has the same size as the through groove in the second direction, and supports the second optical waveguide structure from the second direction.
  • the second optical waveguide structure has:
  • a rectangular waveguide which is rectangular in the lateral direction and extends along the first direction;
  • a tapered waveguide which is tapered in the lateral direction, extends along the first direction, and has different widths at both ends in the first direction, wherein, in the first direction, the rectangular waveguide is The wider ends of the tapered waveguide are connected.
  • the material of the second optical waveguide structure is silicon oxide.
  • the first optical waveguide structure has an inverse tapered structure on a side close to the second optical waveguide structure.
  • At least a part of the first optical waveguide structure is located above the first groove portion.
  • a silicon-based monolithic integrated optical device which has:
  • the light-emitting layer of the laser is at the same position in the longitudinal direction as the first optical waveguide structure, and faces the second optical waveguide structure in the lateral direction,
  • the light receiving part of the silicon optical chip faces the first optical waveguide structure in the lateral direction, and the light receiving part is covered by the outer coating.
  • a method for manufacturing a silicon-based optical coupling structure including:
  • first optical waveguide structure in the top silicon of a silicon-on-insulator (SOI) substrate, and forming an outer cladding layer covering the first optical waveguide structure in the longitudinal and lateral directions;
  • SOI silicon-on-insulator
  • the substrate silicon of the silicon substrate on the insulator is etched from the outer cladding layer to form a second optical waveguide structure connected to the first optical waveguide structure in the lateral direction, and the second optical waveguide structure is Extending in the first lateral direction, and through grooves are formed on both sides of the second optical waveguide structure in the second lateral direction;
  • the refractive index of the material of the second optical waveguide structure is lower than the refractive index of the material of the first optical waveguide structure.
  • etching of the substrate silicon through the through groove to form the first groove portion includes:
  • the silicon substrate is etched using an isotropic etching method, so that the second optical waveguide structure and at least part of the first optical waveguide structure are suspended.
  • a method for manufacturing a silicon-based monolithic integrated optical device including:
  • first optical waveguide structure in the top silicon of a silicon-on-insulator (SOI) substrate, and forming an outer cladding layer covering the first optical waveguide structure in the longitudinal and lateral directions;
  • SOI silicon-on-insulator
  • a trench area is defined in the silicon-on-insulator (SOI) substrate, and the trench area is etched until the substrate silicon under the trench area is etched to a predetermined thickness to form a second groove portion ;
  • the substrate silicon is etched from the outer cladding layer between the laser and the first optical waveguide structure to the silicon substrate on the insulator to form a lateral connection to the first optical waveguide
  • a second optical waveguide structure between the structure and the laser, the second optical waveguide structure extends in the first lateral direction, and is formed on both sides of the second optical waveguide structure in the second lateral direction Through grooves;
  • the refractive index of the material of the second optical waveguide structure is lower than the refractive index of the material of the first optical waveguide structure.
  • the beneficial effect of the present application is that the silicon-based optical coupling structure has a suspended structure, thereby enabling efficient coupling of light fields.
  • FIG. 1 is a schematic cross-sectional view of a silicon-based monolithic integrated optical device having a silicon-based optical coupling structure according to Embodiment 1 of the present application;
  • FIG. 2a is a perspective view of the silicon-based optical coupling structure of Embodiment 1 of the present application.
  • FIG. 2b is a plan view of the first optical waveguide structure and the second optical waveguide structure in Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of the manufacturing method of the silicon-based optical coupling structure of Embodiment 2 of the present application.
  • FIG. 4 is a schematic diagram of a manufacturing method of a silicon-based monolithic integrated optical device according to Embodiment 2 of the present application.
  • the direction parallel to the surface of the substrate is referred to as “lateral”, and the direction perpendicular to the surface of the substrate is referred to as “longitudinal”.
  • Thinness refers to the dimension of the part in the “longitudinal” direction.
  • the direction from the substrate silicon to the top layer of silicon is called the “up” direction, and the opposite of the "up” direction is the “down” direction .
  • the embodiment of the application provides a silicon-based optical coupling structure.
  • FIG. 1 is a schematic cross-sectional view of a silicon-based monolithic integrated optical device having the silicon-based optical coupling structure of this embodiment
  • FIG. 2a is a three-dimensional schematic view of the silicon-based optical coupling structure.
  • the silicon-based optical coupling structure 1 includes: a first groove portion 11, a first optical waveguide structure 12, a second optical waveguide structure 13, and a through groove 14 (not shown in Figure 1, Figure 2a shows).
  • the first groove portion 11 is formed in the silicon 101 of the silicon on insulator (SOI) substrate 10.
  • the first optical waveguide structure 12 is formed in the top silicon 102 of the silicon-on-insulator (SOI) substrate 10, and at least a part of the first optical waveguide structure 12 may be located Above the first groove portion 11.
  • SOI silicon-on-insulator
  • the second optical waveguide structure 13 is connected to the first optical waveguide structure 12 in the lateral direction, and the second optical waveguide structure 13 extends in the first lateral direction L1. And, the second optical waveguide structure 13 is located above the first groove portion 11.
  • the second optical waveguide structure 13 may also surround a part of the first optical waveguide structure 12 in a second lateral direction L2, where the second direction L2 is perpendicular to the first direction L1.
  • the through grooves 14 may be formed on both sides of the second optical waveguide structure 13 in the second lateral direction L2, and the through grooves 14 communicate with the first groove portion 11.
  • the first optical waveguide structure 12 and the second optical waveguide structure 13 can be formed as suspended structures, thereby avoiding light leakage from the substrate and improving the efficiency of optical field coupling; in addition, the second optical waveguide structure 13 Through grooves 14 are formed on both sides to prevent light from leaking from the side of the second optical waveguide structure 13.
  • the refractive index of the material of the second optical waveguide structure 13 may be lower than the refractive index of the material of the first optical waveguide structure 12, thus, the second optical waveguide structure 13 surrounds the first optical waveguide structure 13 from the second direction. In the portion of the optical waveguide structure 12, light can be efficiently coupled from the second optical waveguide structure 13 to the first optical waveguide structure 12.
  • the first optical waveguide structure 12 is formed by using the top layer silicon 102 of the SOI substrate 10, and its material is silicon; and the second optical waveguide structure 13 may be formed by the buried oxide layer 103 of the SOI substrate 10 and covering The outer cladding layer 15 of the first optical waveguide structure 12 is formed, and the material of the second optical waveguide structure 13 may be silicon oxide, such as silicon dioxide (SiO 2 ).
  • the outer cladding layer 15 may cover the first optical waveguide structure 12 in the lateral and longitudinal directions.
  • the bottom of the first optical waveguide structure 12 may be covered by the buried oxide layer 103 of the SOI substrate 10.
  • the first optical waveguide structure 12 is surrounded by the material with a lower refractive index in the entire circumferential direction around the first direction L1, thereby reducing light leakage from the first optical waveguide structure 12.
  • the silicon-based optical coupling structure 1 may also have a supporting structure 16, which is formed in the through groove 14 and has the same size as the through groove 14 in the second direction L2.
  • the supporting structure 16 is fixedly connected between the two walls of the through groove 14 in the second direction L2, thereby supporting the second optical waveguide structure 13 from the second direction L2, and improving the structural stability of the second optical waveguide structure 13 .
  • the second optical waveguide structure 13 has: a first rectangular waveguide 131 and a tapered waveguide 132.
  • the first rectangular waveguide 131 is rectangular in the lateral direction and extends along the first direction L1;
  • the tapered waveguide 132 is tapered in the lateral direction and extends along the first direction L1, and the two ends in the first direction
  • the width is different, wherein, in the first direction L1, the wider end 132a of the tapered waveguide 132 is connected to the first rectangular waveguide 131.
  • the second optical waveguide structure 13 also has a second rectangular waveguide 133 with a narrow width, and the second rectangular waveguide 133 is connected to the narrower end of the tapered waveguide 132.
  • FIG. 2b is a schematic plan view of the first optical waveguide structure 12 and the second optical waveguide structure 13 in a plane parallel to the surface of the substrate 10 in Embodiment 1 of the present application.
  • the first optical waveguide structure 12 has an inverse tapered structure 121 in the L1 direction, wherein the inverse tapered structure 121 is located close to the first optical waveguide structure 12 in the L1 direction.
  • the inverse tapered structure 121 may be enclosed in the second optical waveguide structure 13 in the lateral direction, for example, the inverted tapered structure 121 may be enclosed in the tapered waveguide 132 and the second rectangular waveguide 133.
  • the width of the inverted tapered structure 121 in the second direction L2 may be: the width of the end of the inverted tapered structure 121 facing the first rectangular waveguide 131 is the narrowest, and the further away from the first rectangular waveguide 131 along the L1 direction gradually increase.
  • the first optical waveguide structure 12 has an inverse tapered structure 121, this inverse tapered structure 121 can increase the mode field in the first optical waveguide structure 12, and therefore, the light is flowing from the second optical waveguide structure 13 When entering the first optical waveguide structure 12, the mode field can be matched and the coupling loss can be reduced.
  • the first optical waveguide structure 12 may also have a rectangular structure 122 in the L1 direction, wherein the rectangular structure 122 is farther away from the first optical waveguide structure 122 in the L1 direction than the inverse tapered structure 121 One side of a rectangular waveguide 131.
  • the thickness of the first optical waveguide structure 12 may remain the same or different everywhere in the L1 direction.
  • the silicon-based monolithic integrated optical device 100 may have: a silicon-based optical coupling structure 1, a laser 2, and a silicon optical chip 3.
  • the laser 2 may be formed on the surface of the second groove portion 17 of the silicon 101 of the silicon-on-insulator (SOI) substrate 10, and the silicon optical chip 3 may be formed on the silicon-on-insulator (SOI) In the top silicon 102 of the substrate 10.
  • the laser 2 may be, for example, an edge-emitting laser, where the laser 2 may be prepared by stacking direct band gap materials such as III-V, Ge (Sn), etc. by epitaxy.
  • the light-emitting layer 21 of the laser 2 has the same height as the first optical waveguide structure 12, that is, the position of the light-emitting layer 21 of the laser 2 and the first optical waveguide structure 12 in the longitudinal direction is the same.
  • the light-emitting layer 21 of the laser 2 faces the second optical waveguide structure 13 in the lateral direction, and the light-emitting layer 21 may be covered by the outer cladding layer 15 in the lateral direction, whereby the light emitted by the light-emitting layer 21 can be coupled to the In the second optical waveguide structure 13.
  • the light receiving part (not shown) of the silicon optical chip 3 may face the first optical waveguide structure 12 in the lateral direction, and the upper surface of the light receiving part may be covered by the outer cover 15.
  • the light coupled into the first optical waveguide structure 12 can be coupled into the silicon optical chip 3.
  • the light emitted by the light-emitting layer 21 of the laser 2 is coupled to the second optical waveguide structure 13, and is transmitted to the first optical waveguide structure 12, and then is guided into the silicon optical chip 3.
  • the present application forms the laser 2 on the surface of the second groove portion 17 of the substrate silicon 101 of the SOI substrate 10, so that the laser 2 can be a sinking laser, which is The upper surface can be aligned with the first optical waveguide structure 12, which can effectively reduce the height difference between the light-emitting layer 21 of the laser 2 and the silicon optical chip 3, and reduce the coupling difficulty.
  • the silicon-based monolithic integrated optical device 100 has both a laser 2 and a silicon optical chip 3.
  • This embodiment may not be limited to this.
  • the laser 2 and the silicon optical chip 3 are only examples, and this embodiment may not be limited thereto.
  • the laser 2 and the silicon optical chip 3 may be other optical devices.
  • Embodiment 2 provides a method for manufacturing a silicon-based optical coupling structure for manufacturing the silicon-based optical coupling structure described in embodiment 1.
  • FIG. 3 is a schematic diagram of the manufacturing method of the silicon-based optical coupling structure of this embodiment. As shown in FIG. 3, in this embodiment, the manufacturing method may include:
  • Step 301 forming a first optical waveguide structure 12 in the top silicon 102 of a silicon-on-insulator (SOI) substrate 10, for example, forming the first optical waveguide structure 12 by photolithography and etching; and forming in the vertical and horizontal directions Cover the outer cladding layer 15 of the first optical waveguide structure, for example, depositing SiO2 material to form the outer cladding layer 15;
  • SOI silicon-on-insulator
  • Step 302 etch the substrate silicon 101 of the silicon substrate 10 on the insulator from the outer cladding layer 15 to form a second optical waveguide structure 13 connected to the first optical waveguide structure 12 in the lateral direction, and the second optical waveguide structure 13 extends in the first lateral direction, and through grooves 14 are formed on both sides of the second optical waveguide structure 13 in the second lateral direction.
  • the surface of the substrate silicon 101 is exposed to the through grooves 14, for example, using photolithography and The etching process starts from the outer cladding layer 15 and etches down to form the through groove 14 until the substrate silicon 101 is exposed, and the etching is stopped; and
  • Step 303 etch the second optical waveguide structure 13 and at least part of the substrate silicon 101 under the first optical waveguide structure 12 through the through groove 14 to form the first groove portion 11 in the substrate silicon 10.
  • the refractive index of the material of the second optical waveguide structure 13 is lower than the refractive index of the material of the first optical waveguide structure 12.
  • step 303 may include the following steps:
  • step 3031 the substrate silicon 101 is etched using an isotropic etching method, so that the second optical waveguide structure 13 and at least part of the first optical waveguide structure 12 are suspended.
  • the isotropic etching method in step 3031 is, for example, isotropic dry etching, and sulfur hexafluoride (SF6) can be used as the etching gas.
  • SF6 sulfur hexafluoride
  • step 303 may further include the following steps after step 3031:
  • Step 3032 using an anisotropic etching method to continue to etch the substrate silicon 101 to increase the depth of the first groove portion 11.
  • the anisotropic etching method in step 3032 is, for example, anisotropic dry etching, and a mixed gas of sulfur hexafluoride (SF6) and octafluorocyclobutane (C4F8) can be used as the etching gas.
  • the depth of step 3032 may be 100 microns, for example.
  • the manufacturing method of the silicon-based optical coupling structure shown in FIG. 3 can be included in the manufacturing method of the silicon-based monolithic integrated optical device, and is used to manufacture the silicon-based monolithic integrated optical device described in Embodiment 1. ⁇ 100 ⁇ Device 100.
  • FIG. 4 is a schematic diagram of the manufacturing method of the silicon-based monolithic integrated optical device of this embodiment. As shown in FIG. 4, in this embodiment, the manufacturing method may include:
  • Step 401 forming a first optical waveguide structure 12 in the top silicon 102 of a silicon-on-insulator (SOI) substrate 10, and forming an outer cladding layer 15 covering the first optical waveguide structure 12 in the longitudinal and lateral directions.
  • This step 401 may Refer to step 301 above;
  • Step 402 Define a trench area in the silicon-on-insulator (SOI) substrate 10, and etch the trench area until the substrate silicon under the trench area is etched to a predetermined thickness, for example, 2 microns, Forming a second groove portion 17;
  • SOI silicon-on-insulator
  • Step 403 A laser 2 is formed on the bottom surface of the second groove portion 17.
  • the light-emitting layer 21 of the laser 2 and the first optical waveguide structure 12 have the same longitudinal position, for example, on the silicon on the bottom surface of the second groove portion 17.
  • Epitaxial III-V group materials and Ge (Sn) and other active region materials stack, and prepare laser 2;
  • Step 404 Etch down the cladding layer 15 between the laser 2 and the first optical waveguide structure 12 to the substrate silicon 101 of the silicon substrate 10 on the insulator to form a lateral connection to the first optical waveguide structure 12 Between the second optical waveguide structure 13 and the laser 2, the second optical waveguide structure 13 extends in the first lateral direction, and through grooves 14 are formed on both sides of the second optical waveguide structure 13 in the second lateral direction ,
  • the specific implementation of step 404 can refer to step 302; and
  • Step 405 etch the second optical waveguide structure 13 and at least a part of the silicon substrate 101 under the first optical waveguide structure 12 through the through groove 14 to form the first groove portion 11 in the silicon substrate 101.
  • the details of step 404 For the implementation manner, refer to step 303.
  • the refractive index of the material of the second optical waveguide structure 13 is lower than the refractive index of the material of the first optical waveguide structure 12.
  • the outer coating 15 can be additionally deposited, so that the laser is covered in the outer coating 15, and the space between the laser 3 and the first optical waveguide structure 12 is filled Outer layer 15, to facilitate the formation of a second optical waveguide structure in step 404 13.
  • the silicon optical chip 3 may also be formed first, and the silicon optical chip may be covered on the outer coating 15.
  • the first optical waveguide structure 12 and the second optical waveguide structure 13 can be formed as a suspended structure, thereby avoiding light leakage from the substrate and improving the efficiency of optical field coupling; in addition, the second Through grooves 14 are formed on both sides of the optical waveguide structure 13 to prevent light from leaking from the side of the second optical waveguide structure 13; in addition, the laser 2 is formed on the second groove portion 17 of the silicon 101 of the SOI substrate 10 On the surface, the laser 2 can be a sinking laser, so that it can be aligned with the first optical waveguide structure 12 in the longitudinal direction, which can effectively reduce the height difference between the light-emitting layer 21 of the laser 2 and the silicon optical chip 3 and reduce the coupling difficulty.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请提供一种硅基光耦合结构、硅基单片集成光器件及其制造方法。该硅基光耦合结构包括:第一凹槽部,其形成于绝缘体上的硅(SOI)衬底的衬底硅中;第一光波导结构,其形成于所述绝缘体上的硅(SOI)衬底的顶层硅中;第二光波导结构,其在横向上与所述第一光波导结构连接,在横向的第一方向上延伸,并且,所述第二光波导结构位于所述第一凹槽部上方;以及贯通槽,其形成于所述第二光波导结构在横向的第二方向的两侧,所述第二方向与所述第一方向垂直,所述贯通槽与所述第一凹槽部连通,其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。本申请能够提高光场的耦合效率。

Description

硅基光耦合结构、硅基单片集成光器件及其制造方法 技术领域
本申请涉及半导体技术领域,尤其涉及一种硅基光耦合结构及其制造方法,以及硅基单片集成光器件及其制造方法。
背景技术
硅光子实用化面临的一大技术难题在于光源,由于硅是间接带隙材料,发光效率低,带边吸收系数低,难以实现硅发光器件。
利用耦合器将外部光源的光引入芯片和采用Ⅲ-Ⅴ族混合集成激光器是目前最主流的引入光源的方法。
除去以上方法,以英特尔(Intel)为首研究的全硅拉曼激光器和以美国麻省理工学院、美国加州大学为首研究的硅上锗、III-V量子点单片集成激光器也在近年取得了一系列突破,激光器性能逐步达到实用要求,为未来实现完全CMOS工艺兼容的硅基光互连提供了技术储备。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
硅基单片集成激光器需要在硅或绝缘体上硅上外延生长锗、III-V等直接带隙材料,因为材料体系与材料高度的差异,实现激光器与硅光芯片的高效光场耦合极具挑战,是目前硅基单片集成激光器实用化面对的重要挑战之一。
本申请实施例提供一种硅基光耦合结构及其制造方法,以及硅基单片集成光器件及其制造方法,该硅基光耦合结构具有悬空的结构,由此,能够实现光场的高效耦合。
根据本申请实施例的一个方面,提供一种硅基光耦合结构,包括:
第一凹槽部,其形成于绝缘体上的硅(SOI)衬底的衬底硅中;
第一光波导结构,其形成于所述绝缘体上的硅(SOI)衬底的顶层硅中;
第二光波导结构,其在横向上与所述第一光波导结构连接,在横向的第一方向上 延伸,并且,所述第二光波导结构位于所述第一凹槽部上方;以及
贯通槽,其形成于所述第二光波导结构在横向的第二方向的两侧,所述第二方向与所述第一方向垂直,所述贯通槽与所述第一凹槽部连通,其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。
根据本申请实施例的另一方面,其中,所述硅基光耦合结构还具有:
支撑结构,其形成于所述贯通槽中,在第二方向上与所述贯通槽尺寸相同,从所述第二方向上支撑所述第二光波导结构。
根据本申请实施例的另一方面,其中,第二光波导结构具有:
矩形波导,其在横向上为矩形,沿所述第一方向延伸;
锥形波导,其在横向上为锥形,沿所述第一方向延伸,并且在第一方向上的两端部的宽度不同,其中,在所述第一方向上,所述矩形波导与所述锥形波导的较宽的端部连接。
根据本申请实施例的另一方面,其中,所述第二光波导结构的材料是氧化硅。
根据本申请实施例的另一方面,所述第一光波导结构在靠近所述第二光波导结构的一侧具有反锥形结构。
根据本申请实施例的另一方面,其中,
所述第一光波导结构的至少一部分位于所述第一凹槽部上方。
根据本申请实施例的另一方面,提供一种硅基单片集成光器件,具有:
如上述任一方面所述的硅基光耦合结构;以及
形成于所述绝缘体上的硅(SOI)衬底的衬底硅的第二凹槽部的底面上的激光器,和/或形成于所述绝缘体上的硅(SOI)衬底的所述顶层硅中的硅光芯片,
其中,
所述激光器的发光层与所述第一光波导结构在纵向上位置相同,并在横向上朝向所述第二光波导结构,
所述硅光芯片的受光部在横向上朝向所述第一光波导结构,所述受光部被所述外包层覆盖。
根据本申请实施例的另一方面,提供一种硅基光耦合结构的制造方法,包括:
在绝缘体上的硅(SOI)衬底的顶层硅中形成第一光波导结构,并形成在纵向和横向上覆盖所述第一光波导结构的外包层;
从所述外包层刻蚀至所述绝缘体上的硅衬底的衬底硅,以形成在横向上与所述第一光波导结构连接的第二光波导结构,所述第二光波导结构在横向的第一方向上延伸,并且在所述第二光波导结构在横向的第二方向的两侧形成有贯通槽;以及
通过所述贯通槽刻蚀所述第二光波导结构和至少部分第一光波导结构下方的所述衬底硅,以在所述衬底硅中形成第一凹槽部,
其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。
根据本申请实施例的另一方面,其中,通过所述贯通槽刻蚀所述衬底硅以形成第一凹槽部,包括:
使用各向同性刻蚀法刻蚀所述衬底硅,使所述第二光波导结构和至少部分第一光波导结构悬空。
根据本申请实施例的另一方面,提供一种硅基单片集成光器件的制造方法,该方法包括:
在绝缘体上的硅(SOI)衬底的顶层硅中形成第一光波导结构,并形成在纵向和横向上覆盖所述第一光波导结构的外包层;
在所述绝缘体上的硅(SOI)衬底中定义沟槽区域,并刻蚀所述沟槽区域至所述沟槽区域下方的衬底硅被刻蚀预定厚度,以形成第二凹槽部;
在所述第二凹槽部的底面上形成激光器,所述激光器的发光层与所述第一光波导结构在纵向上位置相同;
从所述激光器与所述第一光波导结构之间的所述外包层刻蚀至所述绝缘体上的硅衬底的所述衬底硅,以形成在横向上连接于所述第一光波导结构和所述激光器之间的第二光波导结构,所述第二光波导结构在横向的第一方向上延伸,并且在所述第二光波导结构在横向的第二方向的两侧形成有贯通槽;以及
通过所述贯通槽刻蚀所述第二光波导结构和至少部分第一光波导结构下方的所述衬底硅,以在所述衬底硅中形成第一凹槽部,
其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。
本申请的有益效果在于:该硅基光耦合结构具有悬空的结构,由此,能够实现光场的高效耦合。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是具有本申请实施例1的硅基光耦合结构的硅基单片集成光器件的一个截面示意图;
图2a是本申请实施例1的硅基光耦合结构的一个立体图;
图2b是本申请实施例1中第一光波导结构和第二光波导结构的一个平面图;
图3是本申请实施例2的硅基光耦合结构的制造方法的一个示意图;
图4是本申请实施例2的硅基单片集成光器件的制造方法的一个示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请各实施例的说明中,为描述方便,将平行于衬底的表面的方向称为“横向”,将垂直于衬底的表面的方向称为“纵向”,其中,各部件的“厚度”是指该部件在“纵向”的尺寸,在“纵向”上,从衬底的衬底硅指向顶层硅的方向称为“上”方向,与“上” 方向相反的为“下”方向。
实施例1
本申请实施例提供一种硅基光耦合结构。
图1是具有本实施例的硅基光耦合结构的硅基单片集成光器件的一个截面示意图,图2a是硅基光耦合结构的一个立体示意图。
如图1和图2a所示,硅基光耦合结构1包括:第一凹槽部11,第一光波导结构12,第二光波导结构13,以及贯通槽14(图1未示出,图2a示出)。
在本实施例中,第一凹槽部11形成于绝缘体上的硅(SOI)衬底10的衬底硅101中。
在本实施例中,如图1和图2a所示,第一光波导结构12形成于绝缘体上的硅(SOI)衬底10的顶层硅102中,第一光波导结构12的至少一部分可以位于第一凹槽部11的上方。
在本实施例中,如图1和图2a所示,第二光波导结构13在横向上与第一光波导结构12连接,并且,第二光波导结构13在横向的第一方向L1上延伸,并且,第二光波导结构13位于第一凹槽部11上方。此外,如图2a所示,第二光波导结构13还可以在横向的第二方向L2上包围第一光波导结构12的一部分,其中,第二方向L2与第一方向L1垂直。
在本实施例中,如图2a所示,贯通槽14可以形成于第二光波导结构13在横向的第二方向L2的两侧,并且,贯通槽14与第一凹槽部11连通。
根据本实施例,第一光波导结构12和第二光波导结构13能够形成为悬空的结构,从而避免光从衬底泄漏,提高了光场耦合的效率;此外,第二光波导结构13的两侧形成有贯通槽14,能够避免光从第二光波导结构13的侧面泄漏。
在本实施例中,第二光波导结构13的材料的折射率可以低于第一光波导结构12的材料的折射率,由此,在第二光波导结构13从第二方向上包围第一光波导结构12的部分中,能够使光高效地从第二光波导结构13耦合到第一光波导结构12中。在本实施例中,第一光波导结构12是利用SOI衬底10的顶层硅102形成的,其材料为硅;而第二光波导结构13可以由SOI衬底10的埋氧层103以及覆盖第一光波导结构12的外包层15所形成,该第二光波导结构13的材料可以是氧化硅,例如二氧化硅 (SiO 2)。
在本实施例中,如图1所示,外包层15可以在横向和纵向上覆盖第一光波导结构12。此外,第一光波导结构12的下方可以由SOI衬底10的埋氧层103覆盖。由此,第一光波导结构12在围绕第一方向L1的整个周向上被较低折射率的材料包围,减少光从第一光波导结构12中的泄漏。
在本实施例中,如图2a所示,硅基光耦合结构1还可以具有支撑结构16,支撑结构16形成于贯通槽14中,在第二方向L2上与贯通槽14尺寸相同。支撑结构16在第二方向L2上固定连接在贯通槽14的两壁之间,由此,能够从第二方向L2上支撑第二光波导结构13,提高第二光波导结构13的结构稳定性。
在本实施例中,如图2a所示,第二光波导结构13具有:第一矩形波导131和锥形波导132。其中,第一矩形波导131在横向上为矩形,沿第一方向L1延伸;锥形波导132在横向上为锥形,沿第一方向L1延伸,并且,在第一方向上的两端部的宽度不同,其中,在第一方向L1上,锥形波导132的较宽的端部132a与第一矩形波导131连接。此外,第二光波导结构13还具有宽度较窄的第二矩形波导133,该第二矩形波导133与锥形波导132的较窄的端部连接。
图2b是本申请实施例1中第一光波导结构12和第二光波导结构13在平行于衬底10的表面的平面中的一个平面示意图。
在本实施例中,如图2b所示,第一光波导结构12在L1方向上具有反锥形结构121,其中,该反锥形结构121位于第一光波导结构12在L1方向上的靠近第二光波导结构13的一侧。
如图2b所示,反锥形结构121在横向上可以被包在第二光波导结构13中,例如,反锥形结构121可以被包在锥形波导132和第二矩形波导133中。其中,反锥形结构121在第二方向L2上的宽度可以为:反锥形结构121的朝向第一矩形波导131的一端宽度最窄,沿着L1方向越远离第一矩形波导131的位置宽度逐渐增加。
光在从SiO2波导进入硅波导中时,SiO2波导与硅波导的模场存在较大的差异,会增加耦合的损耗。而在本申请,由于第一光波导结构12具有反锥形结构121,这种反锥形结构121能够增加第一光波导结构12中的模场,因而,光在从第二光波导结构13进入第一光波导结构12时,能够实现模场的匹配,减小耦合损耗。
此外,在本实施例中,如图2b所示,第一光波导结构12在L1方向上还可以具 有矩形结构122,其中,该矩形结构122在L1方向上比反锥形结构121更远离第一矩形波导131的一侧。
此外,在本实施例中,第一光波导结构12的厚度可以在L1方向的各处保持相同或者不同。
如图1所示,硅基单片集成光器件100可以具有:硅基光耦合结构1,激光器2,以及硅光芯片3。
如图1所示,激光器2可以形成于绝缘体上的硅(SOI)衬底10的衬底硅101的第二凹槽部17表面,硅光芯片3可以形成于该绝缘体上的硅(SOI)衬底10的顶层硅102中。
在本实施例中,激光器2例如可以是边发射激光器,其中,激光器2可以通过外延III-V、Ge(Sn)等直接带隙材料堆栈制备。激光器2的发光层21与第一光波导结构12的高度相同,即,激光器2的发光层21与第一光波导结构12在纵向上的位置相同。此外,激光器2的发光层21在横向上朝向第二光波导结构13,并且,发光层21在横向上可以被外包层15覆盖,由此,发光层21发射的光可以经由外包层15耦合到第二光波导结构13中。
在本实施例中,硅光芯片3的受光部(未图示)在横向上可以朝向第一光波导结构12,并且,该受光部的上表面可以被外包层15覆盖。由此,耦合到第一光波导结构12中的光可以被耦合到硅光芯片3中。
如图1所示,在本实施例中,激光器2的发光层21发出的光耦合到第二光波导结构13,并传输到第一光波导结构12,进而被导入硅光芯片3。可见,尽管激光器2的厚度较厚,但是,本申请将激光器2形成在SOI衬底10的衬底硅101的第二凹槽部17表面,能够使激光器2成为下沉式激光器,从而在纵向上能够与第一光波导结构12对齐,可以有效降低激光器2的发光层21与硅光芯片3间的高度差,降低耦合难度。
需要说明的是,在图1中,硅基单片集成光器件100中具有激光器2和硅光芯片3这二者,本实施例可以不限于此,例如,硅基单片集成光器件100除了具有硅基光耦合结构1之外,也可以仅具有激光器2和硅光芯片3中的任一者。此外,在本实施例中,激光器2和硅光芯片3仅是举例,本实施例可以不限于此,例如,激光器2和硅光芯片3可以是其它的光器件。
实施例2
实施例2提供一种硅基光耦合结构的制造方法,用于制造实施例1所述的硅基光耦合结构。
图3是本实施例的硅基光耦合结构的制造方法的一个示意图,如图3所示,在本实施例中,该制造方法可以包括:
步骤301、在绝缘体上的硅(SOI)衬底10的顶层硅102中形成第一光波导结构12,例如,通过光刻和刻蚀形成第一光波导结构12;并且,形成在纵向和横向上覆盖所述第一光波导结构的外包层15,例如,沉积SiO2材料以形成外包层15;
步骤302、从外包层15刻蚀至绝缘体上的硅衬底10的衬底硅101,以形成在横向上与第一光波导结构12连接的第二光波导结构13,该第二光波导结构13在横向的第一方向上延伸,并且在第二光波导结构13在横向的第二方向的两侧形成有贯通槽14,衬底硅101表面暴露于贯通槽14,例如,利用光刻和刻蚀工艺,从外包层15开始向下刻蚀,形成贯通槽14,直到露出衬底硅101,停止刻蚀;以及
步骤303、通过贯通槽14刻蚀第二光波导结构13和至少部分第一光波导结构12下方的衬底硅101,以在衬底硅10中形成第一凹槽部11。
在本实施例中,第二光波导结构13的材料的折射率低于第一光波导结构12的材料的折射率。
在本实施例中,步骤303可以包括如下的步骤:
步骤3031、使用各向同性刻蚀法刻蚀衬底硅101,使第二光波导结构13和至少部分第一光波导结构12悬空。
其中,步骤3031的各向同性刻蚀法例如是各向同性干法刻蚀,可以采用六氟化硫(SF6)作为刻蚀气体。
此外,在本实施例中,步骤303还可以在步骤3031之后,进一步包括如下的步骤:
步骤3032、使用各向异性刻蚀法继续刻蚀衬底硅101,以增加第一凹槽部11的深度。
其中,步骤3032的各向异性刻蚀法例如是各向异性干法刻蚀,可以采用六氟化硫(SF6)和八氟环丁烷(C4F8)的混合气体作为刻蚀气体。此外,步骤3032德克 士深度例如可以是100微米。
在本实施例中,图3所示的硅基光耦合结构的制造方法可以被包含于硅基单片集成光器件的制造方法中,用于制造实施例1所述的硅基单片集成光器件100。
图4是本实施例的硅基单片集成光器件的制造方法的一个示意图。如图4所示,在本实施例中,该制造方法可以包括:
步骤401、在绝缘体上的硅(SOI)衬底10的顶层硅102中形成第一光波导结构12,并形成在纵向和横向上覆盖第一光波导结构12的外包层15,该步骤401可以参考上述步骤301;
步骤402、在绝缘体上的硅(SOI)衬底10中定义沟槽区域,并刻蚀沟槽区域至沟槽区域下方的衬底硅被刻蚀预定厚度,该预定厚度例如是2微米,以形成第二凹槽部17;
步骤403、在第二凹槽部17的底面上形成激光器2,激光器2的发光层21与第一光波导结构12在纵向上位置相同,例如,在第二凹槽部17的底面的硅上外延III-V族材料以及Ge(Sn)等有源区材料堆栈,并制备激光器2;
步骤404、从激光器2与第一光波导结构12之间的外包层15向下刻蚀至绝缘体上的硅衬底10的衬底硅101,以形成在横向上连接于第一光波导结构12和激光器2之间的第二光波导结构13,第二光波导结构13在横向的第一方向上延伸,并且在第二光波导结构13在横向的第二方向的两侧形成有贯通槽14,步骤404的具体实施方式可以参考步骤302;以及
步骤405、通过贯通槽14刻蚀第二光波导结构13和至少部分第一光波导结构12下方的衬底硅101,以在衬底硅101中形成第一凹槽部11,步骤404的具体实施方式可以参考步骤303。
在图4的实施方式中,第二光波导结构13的材料的折射率低于第一光波导结构12的材料的折射率。
此外,在本实施例中,在步骤403形成了激光器2之后,还可以补充沉积外包层15,从而使激光器覆盖于外包层15中,并且,在激光器3和第一光波导结构12之间填充外包层15,便于在步骤404中形成第二光波导结构13.
此外,在本实施例中,在形成第一光波导结构12之前,也可以先形成硅光芯片3,并且,该硅光芯片可以被覆盖于外包层15。
根据本实施例,根据本实施例,第一光波导结构12和第二光波导结构13能够形成为悬空的结构,从而避免光从衬底泄漏,提高了光场耦合的效率;此外,第二光波导结构13的两侧形成有贯通槽14,能够避免光从第二光波导结构13的侧面泄漏;此外,将激光器2形成在SOI衬底10的衬底硅101的第二凹槽部17表面,能够使激光器2成为下沉式激光器,从而在纵向上能够与第一光波导结构12对齐,可以有效降低激光器2的发光层21与硅光芯片3间的高度差,降低耦合难度。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。

Claims (10)

  1. 一种硅基光耦合结构,包括:
    第一凹槽部,其形成于绝缘体上的硅(SOI)衬底的衬底硅中;
    第一光波导结构,其形成于所述绝缘体上的硅(SOI)衬底的顶层硅中;
    第二光波导结构,其在横向上与所述第一光波导结构连接,在横向的第一方向上延伸,并且,所述第二光波导结构位于所述第一凹槽部上方;以及
    贯通槽,其形成于所述第二光波导结构在横向的第二方向的两侧,所述第二方向与所述第一方向垂直,所述贯通槽与所述第一凹槽部连通,
    其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。
  2. 如权利要求1所述的硅基光耦合结构,其中,所述硅基光耦合结构还具有:
    支撑结构,其形成于所述贯通槽中,在第二方向上与所述贯通槽尺寸相同,从所述第二方向上支撑所述第二光波导结构。
  3. 如权利要求1所述的硅基光耦合结构,其中,第二光波导结构具有:
    矩形波导,其在横向上为矩形,沿所述第一方向延伸;
    锥形波导,其在横向上为锥形,沿所述第一方向延伸,并且在第一方向上的两端部的宽度不同,其中,在所述第一方向上,所述矩形波导与所述锥形波导的较宽的端部连接。
  4. 如权利要求1所述的硅基光耦合结构,其中,
    所述第二光波导结构的材料是氧化硅。
  5. 如权利要求1所述的硅基光耦合结构,其中,
    所述第一光波导结构在靠近所述第二光波导结构的一侧具有反锥形结构。
  6. 如权利要求1所述的硅基光耦合结构,其中,
    所述第一光波导结构的至少一部分位于所述第一凹槽部上方。
  7. 一种硅基单片集成光器件,具有:
    如权利要求1~6中任一项所述的硅基光耦合结构;以及
    形成于所述绝缘体上的硅(SOI)衬底的衬底硅的第二凹槽部的底面上的激光器,和/或形成于所述绝缘体上的硅(SOI)衬底的所述顶层硅中的硅光芯片,
    其中,
    所述激光器的发光层与所述第一光波导结构在纵向上位置相同,并在横向上朝向所述第二光波导结构,
    所述硅光芯片的受光部在横向上朝向所述第一光波导结构,所述受光部被所述外包层覆盖。
  8. 一种硅基光耦合结构的制造方法,包括:
    在绝缘体上的硅(SOI)衬底的顶层硅中形成第一光波导结构,并形成在纵向和横向上覆盖所述第一光波导结构的外包层;
    从所述外包层刻蚀至所述绝缘体上的硅衬底的衬底硅,以形成在横向上与所述第一光波导结构连接的第二光波导结构,所述第二光波导结构在横向的第一方向上延伸,并且在所述第二光波导结构在横向的第二方向的两侧形成有贯通槽;以及
    通过所述贯通槽刻蚀所述第二光波导结构和至少部分第一光波导结构下方的所述衬底硅,以在所述衬底硅中形成第一凹槽部,
    其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。
  9. 如权利要求8所述的硅基光耦合结构的制造方法,其中,通过所述贯通槽刻蚀所述衬底硅以形成第一凹槽部,包括:
    使用各向同性刻蚀法刻蚀所述衬底硅,使所述第二光波导结构和至少部分第一光波导结构悬空。
  10. 一种硅基单片集成光器件的制造方法,该方法包括:
    在绝缘体上的硅(SOI)衬底的顶层硅中形成第一光波导结构,并形成在纵向和横向上覆盖所述第一光波导结构的外包层;
    在所述绝缘体上的硅(SOI)衬底中定义沟槽区域,并刻蚀所述沟槽区域至所述沟槽区域下方的衬底硅被刻蚀预定厚度,以形成第二凹槽部;
    在所述第二凹槽部的底面上形成激光器,所述激光器的发光层与所述第一光波导结构在纵向上位置相同;
    从所述激光器与所述第一光波导结构之间的所述外包层刻蚀至所述绝缘体上的硅衬底的所述衬底硅,以形成在横向上连接于所述第一光波导结构和所述激光器之间的第二光波导结构,所述第二光波导结构在横向的第一方向上延伸,并且在所述第二光波导结构在横向的第二方向的两侧形成有贯通槽;以及
    通过所述贯通槽刻蚀所述第二光波导结构和至少部分第一光波导结构下方的所述衬底硅,以在所述衬底硅中形成第一凹槽部,
    其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。
PCT/CN2019/096424 2019-07-04 2019-07-17 硅基光耦合结构、硅基单片集成光器件及其制造方法 WO2021000350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910600341.5A CN112180501A (zh) 2019-07-04 2019-07-04 硅基光耦合结构、硅基单片集成光器件及其制造方法
CN201910600341.5 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021000350A1 true WO2021000350A1 (zh) 2021-01-07

Family

ID=73914592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096424 WO2021000350A1 (zh) 2019-07-04 2019-07-17 硅基光耦合结构、硅基单片集成光器件及其制造方法

Country Status (2)

Country Link
CN (1) CN112180501A (zh)
WO (1) WO2021000350A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917613B (zh) * 2021-10-14 2023-03-14 中国科学院半导体研究所 一种硅波导端面耦合结构及其制备方法
CN114397730A (zh) * 2022-01-26 2022-04-26 北京邮电大学 一种用于波导耦合的双悬臂倒锥模斑转换结构
CN114594548B (zh) * 2022-03-24 2023-03-28 上海交通大学 氮化硅波导辅助悬臂梁端面耦合器
CN115755290B (zh) * 2022-11-03 2024-05-17 北京大学 边发射激光芯片与硅光芯片中光波导的耦合结构及方法
CN116840972B (zh) * 2023-08-30 2023-12-12 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备
CN116840987B (zh) * 2023-08-30 2023-12-12 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405752A (zh) * 2015-07-29 2017-02-15 财团法人工业技术研究院 光学元件
CN107561640A (zh) * 2017-08-18 2018-01-09 中国科学院半导体研究所 硅纳米线波导与光纤耦合结构及其制作方法
US10262984B1 (en) * 2018-07-05 2019-04-16 Stmicroelectronics S.R.L. Optical integrated circuit systems, devices, and methods of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405752A (zh) * 2015-07-29 2017-02-15 财团法人工业技术研究院 光学元件
CN107561640A (zh) * 2017-08-18 2018-01-09 中国科学院半导体研究所 硅纳米线波导与光纤耦合结构及其制作方法
US10262984B1 (en) * 2018-07-05 2019-04-16 Stmicroelectronics S.R.L. Optical integrated circuit systems, devices, and methods of fabrication

Also Published As

Publication number Publication date
CN112180501A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2021000350A1 (zh) 硅基光耦合结构、硅基单片集成光器件及其制造方法
CN210123484U (zh) 硅基光耦合结构、硅基单片集成光器件
CN110954998B (zh) 激光器与硅光芯片集成结构及其制备方法
WO2020062704A1 (zh) 激光器与硅光芯片集成结构
US9791641B2 (en) Inverted 45° mirror for photonic integrated circuits
KR102037759B1 (ko) 광 결합기 및 그를 구비한 광학 장치
US8437585B2 (en) Low-cost passive optical waveguide using Si substrate
CN210123485U (zh) 硅基光耦合结构、硅基单片集成光器件
US10564353B2 (en) Waveguide transition structure and fabrication method
KR20160139022A (ko) 에지 결합 장치 제조
US9435950B2 (en) Semiconductor optical device
US10641957B2 (en) Smooth waveguide structures and manufacturing methods
EP3497511B1 (en) Optical structure and method of fabricating an optical structure
WO2003050580A1 (en) Optical waveguide termination with vertical and horizontal mode shaping
US20140001493A1 (en) Integrated optoelectronic device and system with waveguide and manufacturing process thereof
WO2023065573A1 (zh) 光电探测器
CN113917613B (zh) 一种硅波导端面耦合结构及其制备方法
KR20150062231A (ko) 반도체 레이저 및 그 제조방법
US11860414B2 (en) Edge couplers including a grooved membrane
WO2020118625A1 (zh) 光耦合结构、系统及光耦合结构的制备方法
CN220040800U (zh) 边耦合器
US10585241B2 (en) Optical waveguide, fabrication methods, and applications
WO2016179869A1 (zh) 一种锥形波导及硅基芯片
CN111077607B (zh) 硅基光波导器件的制造方法
CN112180502A (zh) 硅基光耦合结构、硅基单片集成光器件及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935816

Country of ref document: EP

Kind code of ref document: A1