WO2023065573A1 - 光电探测器 - Google Patents

光电探测器 Download PDF

Info

Publication number
WO2023065573A1
WO2023065573A1 PCT/CN2022/075716 CN2022075716W WO2023065573A1 WO 2023065573 A1 WO2023065573 A1 WO 2023065573A1 CN 2022075716 W CN2022075716 W CN 2022075716W WO 2023065573 A1 WO2023065573 A1 WO 2023065573A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide
thickness
photodetector
limiting
Prior art date
Application number
PCT/CN2022/075716
Other languages
English (en)
French (fr)
Inventor
陈代高
肖希
王磊
刘敏
周佩奇
胡晓
张宇光
余少华
Original Assignee
武汉光谷信息光电子创新中心有限公司
武汉邮电科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光谷信息光电子创新中心有限公司, 武汉邮电科学研究院有限公司 filed Critical 武汉光谷信息光电子创新中心有限公司
Publication of WO2023065573A1 publication Critical patent/WO2023065573A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of semiconductors, and in particular, to a photodetector.
  • Photonic chips have the characteristics of low cost, small size, low power consumption, flexible expansion and high reliability.
  • active devices such as modulators, photodetectors, etc.
  • optical waveguide devices such as splitters/condensers, etc.
  • Photonic chips have the characteristics of low cost, small size, low power consumption, flexible expansion and high reliability.
  • silicon-based photonic chips are considered by the industry to be the most promising photonic chips.
  • the use of silicon-based photonic chips can combine microelectronics and optoelectronics, and give full play to the advantages of advanced and mature process technology, high integration, and low cost of silicon-based microelectronics. , has broad market prospects.
  • Silicon-based photonic chips have the advantages of compatibility with standard semiconductor processes, low cost, and high integration, and are gradually being widely used in the industry.
  • Silicon-based photonic chips usually use an optical waveguide formed of Si1icon On Insulator (SOI) material.
  • SOI Si1icon On Insulator
  • the optical waveguide is formed by a Si core layer and a SiO 2 cladding layer.
  • the large refractive index difference between the core layer and the cladding layer has a strong influence on the optical field.
  • the confinement effect can realize the waveguide bending radius as small as micron, thus providing the basis for the miniaturization and high-density integration of silicon-based photonic chips.
  • silicon-based silicon waveguide photodetectors are often used at the receiving end of silicon-based photonic chips.
  • the silicon germanium waveguide photodetector is a device that converts high-speed optical signals into current signals, and is a key device for silicon-based photonic chips.
  • the germanium-silicon waveguide photodetector mainly relies on the absorption of light by the germanium material to generate photocurrent. In the related art, it is necessary to further improve the responsivity of the photodetector while taking into account the bandwidth of the photodetector.
  • the embodiments of the present disclosure wish to provide a photodetector.
  • the photodetector includes: a waveguide structure, a light-limiting structure, and an absorption structure; wherein,
  • the waveguide structure extends into the light confinement structure, and the first side where the first sidewall of the waveguide structure is located is tangent to the second side where the second sidewall of the light confinement structure is located; the waveguide The structure is used to guide the incident light into the light-limiting structure in a direction tangential to the first side; the imported light is confined in the light-limiting structure by total reflection of the sidewall of the light-limiting structure for circular transmission, and Coupling the imported light into the absorbing structure through the light-confining structure;
  • the absorption structure is located on the light confinement structure; the coupled light is confined in the absorption structure for circular transmission through the total reflection of the side wall of the absorption structure, and the coupled light is converted into electrons and holes.
  • the shape of the projection of the waveguide structure on the preset plane includes a strip shape
  • the shape of the projection of the light-limiting structure on the preset plane includes a closed figure formed by at least one straight line and/or at least one curve, and the second side and the third side where the second side wall of the light-limiting structure is located
  • the angle formed by the third side where the side wall is located is an obtuse angle
  • the preset plane is perpendicular to the direction of the thickness of the light-limiting structure; the third sidewall is the sidewall where the incident light is reflected for the first time after entering the light-limiting structure.
  • the shape of the projection of the light-limiting structure on the preset plane includes one of the following:
  • Circle a closed shape formed by the connection of multiple curves; a closed shape formed by the connection of multiple straight lines and multiple curves; polygon.
  • the polygon includes a regular polygon and the number of sides is greater than or equal to 6.
  • the projection of the light limiting structure on the preset plane covers the projection of the absorbing structure on the preset plane.
  • the photodetector further includes a flat plate structure, a first doped structure, a first doped region, a second doped region, a first electrode, and a second electrode; wherein,
  • the slab structure surrounds the waveguide structure and the light-limiting structure; the thickness of the waveguide structure is greater than the thickness of the slab structure;
  • the first doped structure is located in the flat plate structure and surrounds the light confinement structure
  • the first doped region is located on the surface of the first doped structure and a region at a certain depth downward;
  • the second doped region is located on the surface of the absorption structure and a region at a certain depth downward;
  • the first electrode is located on the first doped region and is used to collect structure, the first doped structure, and electrons or holes transported by the first doped region;
  • the second electrode is located on the second doped region, and is used for collecting electrons or holes transported sequentially along the absorption structure and the second doped region.
  • the thickness of the waveguide structure is the same as that of the light limiting structure, and the thickness of the waveguide structure is greater than the thickness of the flat plate structure.
  • the photodetector further includes a second doped structure and a recessed structure; wherein,
  • the second doping structure is located between the flat plate structure and the light confinement structure; the thickness of the second doping structure is less than the thickness of the light confinement structure, and the thickness of the second doping structure is less than The thickness of the first doped structure; the thickness of the waveguide structure is the same as the thickness of the light limiting structure;
  • the concave structure is located between the flat plate structure and the waveguide structure; the thickness of the concave structure is smaller than the thickness of the flat plate structure, and the thickness of the concave structure is smaller than the thickness of the waveguide structure;
  • the first electrode is also used to collect the electrons or holes transported sequentially along the absorption structure, the light confinement structure, the second doping structure, the first doping structure and the first doping region. hole.
  • the doping concentration of the first doping structure is greater than or equal to the doping concentration in the second doping structure; the doping concentration in the second doping structure is greater than or equal to the light limiting The doping concentration of the structure.
  • the photodetector provided by an embodiment of the present disclosure includes: a waveguide structure, a light confinement structure, and an absorption structure; wherein, the waveguide structure extends into the light confinement structure, and the first sidewall of the waveguide structure is located One side is tangent to the second side where the second side wall of the light-limiting structure is located; the waveguide structure is used to guide the incident light into the light-limiting structure in a direction tangent to the first side; through the The total reflection of the side wall of the light-limiting structure confines the imported light in the light-limiting structure for circular transmission, and couples the imported light into the absorption structure through the light-limiting structure; the absorption structure is located on the light-limiting structure; Through the total reflection of the side wall of the absorption structure, the coupled light is confined in the absorption structure for circular transmission, and the coupled light is converted into electrons and holes.
  • the incident light enters the light confinement structure tangentially to the second side where the second side wall of the light confinement structure is located through the waveguide structure, and couples the incident light to the light confinement structure through the light confinement structure.
  • absorbed by the absorbing structure the light-limiting structure and the absorbing structure adopt, for example, a circular, optimized deformation-like circular or polygonal structure, which can confine light in a closed structure for stable transmission, and at the same time reduce the impact of the incident light on the light-limiting structure and the absorbing structure.
  • the high-order mode is excited, so that the leakage of light can be reduced, thereby improving the responsivity of the photodetector.
  • the incident light cannot escape from the light-confining structure in the first direction due to the total reflection of the sidewall in the light-confining structure, and is finally coupled into the absorbing structure along the second direction.
  • the total reflection effect of the incident light will be confined in the absorbing structure, that is, the incident light propagates circularly in the light confining structure and the absorbing structure until it is completely absorbed, and the circular propagation can reduce the size requirements of the light confining structure and the absorbing structure, That is, the size requirement of the photodetector can be reduced, and the smaller photodetector size can lead to smaller parasitic parameters of the photodetector, so that the photodetector has a higher bandwidth. Therefore, the photodetector provided by the embodiments of the present disclosure can take into account both high bandwidth and high responsivity.
  • FIG. 1 is a schematic top view of a photodetector provided by an embodiment of the present disclosure
  • FIG. 2 is a second schematic top view of a photodetector provided by an embodiment of the present disclosure
  • FIG. 3 is a top view schematic diagram 3 of a photodetector provided by an embodiment of the present disclosure
  • Fig. 4 is a sectional view along the A1-A1 direction in Fig. 1, Fig. 2 and Fig. 3;
  • Fig. 5 is a sectional view along the B1-B1 direction in Fig. 1, Fig. 2 and Fig. 3;
  • FIG. 6 is a top view schematic diagram 4 of a photodetector provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic top view five of a photodetector provided by an embodiment of the present disclosure.
  • FIG. 8 is a top view schematic diagram VI of a photodetector provided by an embodiment of the present disclosure.
  • Fig. 9 is a sectional view along the A2-A2 direction in Fig. 5, Fig. 6 and Fig. 7;
  • Fig. 10 is a cross-sectional view along the direction B2-B2 in Fig. 5, Fig. 6 and Fig. 7 .
  • orientations or positional relationships indicated by the terms “length”, “width”, “depth”, “upper”, “lower”, “outer” etc. are based on those shown in the accompanying drawings.
  • the orientation or positional relationship is only for the convenience of describing the present disclosure and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus cannot be construed as limiting the present disclosure.
  • the term "substrate” refers to a material on which subsequent layers of material are added.
  • the substrate itself can be patterned.
  • the material added on top of the substrate may be patterned or may remain unpatterned.
  • the substrate may include various semiconductor materials, such as silicon, germanium, arsenide, indium phosphide, and the like.
  • the substrate can be made of a non-conductive material such as glass, plastic or a sapphire wafer.
  • the term "layer" refers to a portion of material comprising a region having a thickness.
  • a layer may extend over the entirety of the underlying or overlying structure, or may have an extent that is less than the extent of the underlying or overlying structure.
  • a layer may be a region of a homogeneous or heterogeneous continuous structure with a thickness less than that of the continuous structure.
  • a layer may be located between the top and bottom surfaces of the continuous structure, or a layer may be between any horizontal faces at the top and bottom surfaces of the continuous structure.
  • Layers may extend horizontally, vertically and/or along sloped surfaces.
  • Layers can include multiple sublayers.
  • an interconnect layer may include one or more conductor and contact sublayers (in which interconnect lines and/or via contacts are formed), and one or more dielectric sublayers.
  • the silicon germanium waveguide photodetector generally adopts a square structure, and the light enters from one end of the light-limiting structure, exits from the corresponding other end, and undergoes one-way absorption.
  • the size of the photodetector needs to be increased to obtain a larger responsivity;
  • the size of the photodetector increases, the Increase the parasitic parameters of the photodetector, so that the photoelectric bandwidth of the photodetector decreases. It can be seen from the above that there is a mutual restrictive relationship between the responsivity of the photodetector and the photoelectric bandwidth.
  • embodiments of the present disclosure aim to provide a photodetector with both high responsivity and high bandwidth.
  • the incident light is connected to the second The second side where the side wall is located enters the light confining structure tangentially, and through the light confining structure, the incident light is coupled to the absorbing structure along the second direction to be absorbed.
  • the light-limiting structure and the absorbing structure adopt, for example, circular, optimized deformation-like circular or polygonal structures, which can confine light in a closed structure for stable transmission, and reduce the incidence of incident light during the propagation process of the light-limiting structure.
  • Higher-order mode excitation in this way, can reduce light leakage, thereby improving the responsivity of the photodetector.
  • the incident light cannot escape from the light-confining structure in the first direction due to the total reflection of the sidewall in the light-confining structure, and is finally coupled into the absorbing structure along the second direction.
  • the total reflection effect of the incident light will be confined in the absorbing structure, that is to say, the incident light propagates circularly in the light confining structure and the absorbing structure, and the circular propagation can reduce the size requirements of the light confining structure and the absorbing structure, that is, it can reduce
  • the photodetector size is required, and a smaller photodetector size can bring smaller photodetector parasitic parameters, so that the photodetector has a higher bandwidth. Therefore, the photodetector provided by the embodiments of the present disclosure can take into account both high bandwidth and high responsivity.
  • An embodiment of the present disclosure provides a photodetector, including: a waveguide structure, a light-limiting structure, and an absorption structure; wherein,
  • the waveguide structure extends into the light confinement structure, and the first side where the first sidewall of the waveguide structure is located is tangent to the second side where the second sidewall of the light confinement structure is located; the waveguide The structure is used to guide the incident light into the light-limiting structure in a direction tangential to the first side; the imported light is confined in the light-limiting structure by total reflection of the sidewall of the light-limiting structure for circular transmission, and The imported light is coupled into the absorbing structure through the light-limiting structure; the absorbing structure is located on the light-limiting structure; the coupled light is confined in the absorbing structure for circular transmission through the total reflection of the side wall of the absorbing structure, and convert the coupled light into electrons and holes.
  • the waveguide structure is used to propagate incident light, and the incident light enters the light-limiting structure through the waveguide structure.
  • the waveguide structure may be a silicon waveguide formed of a silicon (Si) core and a silicon dioxide (SiO 2 ) cladding.
  • the light-limiting structure is used to confine the imported light in the coupling structure in the first direction through the total reflection of the side wall for circular transmission, and at the same time confine the imported light in the second direction perpendicular to the first direction.
  • the light is fully coupled into the absorbing structure.
  • the light confinement structure may include lightly doped silicon. It should be noted that, in the embodiment of the present disclosure, the light confining structure couples all the light introduced into the absorbing structure in the second direction perpendicular to the first direction, which can be understood as theoretically designed to enter the light confining structure The light can propagate in a circular path through the total reflection of the side wall of the light-limiting structure, so that 100% of it enters the absorbing structure. The absorption of the impurity region cannot completely reach 100% into the absorbing structure, and the light loss caused by the above is not included in the above-mentioned meaning of "all".
  • the first direction is perpendicular to the stacking direction
  • the second direction is the stacking direction. It can be understood that, when the light-limiting structure and the absorbing structure are vertically stacked, the first direction is a horizontal direction, and the second direction is a vertical direction.
  • the waveguide structure may include a plurality of sidewalls, wherein at least one sidewall is located on a straight side; specifically, the first side on which the first sidewall of the waveguide structure is located is a straight side.
  • the light-limiting structure may include a plurality of sidewalls, wherein a side where one sidewall is located is a curve; a first side where the first sidewall of the waveguide structure is located is tangent to the curve.
  • the light-limiting structure may include a plurality of side walls, and the side where one side wall is located is a straight line; specifically, the second side where the second side wall of the light-limiting structure is located is a straight line, so The first side where the first sidewall of the waveguide structure is located is tangent to the straight line.
  • the shape of the projection of the waveguide structure on the preset plane includes a strip shape; the shape of the projection of the light-limiting structure on the preset plane includes at least one section of straight line and/or at least one section of curve , and the angle formed by the second side where the second sidewall of the light-limiting structure is located and the third side where the third sidewall is located is an obtuse angle; wherein, the preset plane is perpendicular to the light-limiting structure The direction of thickness; the third side wall is the side wall where the incident light is reflected for the first time after entering the light-limiting structure.
  • the projection of one sidewall of the light-limiting structure on the preset plane is a curve
  • the first side where the first sidewall of the waveguide structure is located is tangent to the curve
  • the projection of the optical structure on the preset plane is a straight line
  • the first side where the first side wall of the waveguide structure is located is tangent to the straight line.
  • the incident light can be introduced into the light confinement structure in a direction tangent to the side wall of the waveguide structure, so as to reduce the propagation of the incident light in the waveguide structure and the light confinement structure.
  • the sudden change of the light can reduce the high-order mode excited by the light during the propagation process, improve the stability of the incident light during the propagation process, reduce the light leakage, and improve the responsivity of the photodetector.
  • the side where the sidewall of the light-limiting structure is located includes at least one arc, and the first side where the first sidewall of the waveguide structure is located is tangent to one of the arcs.
  • the side where the side wall of the light-limiting structure is located includes at least one straight line and at least one curved line, and the first side where the first side wall of the waveguide structure is located is tangent to the at least one straight line or to the The above curve is tangent.
  • the side where the sidewall of the light-limiting structure is located includes a plurality of straight lines, and the first side where the first sidewall of the waveguide structure is located is tangent to one of the straight lines.
  • the angle formed by the second side where the second sidewall is located and the third side where the third sidewall is located of the light-limiting structure is an obtuse angle.
  • the angle formed by the second side where the second sidewall of the light-limiting structure is located and the third side where the third sidewall is located is an obtuse angle;
  • the side where the sidewall of the light confinement structure includes at least one curve the second side where the second sidewall and the third side where the third sidewall of the light confinement structure is located can both be regarded as the side where the curve is.
  • a curve can be regarded as a graph composed of countless straight lines. It can be understood that, after the incident light enters the light-limiting structure, the reflection angle at the first reflection is not equal to 0 degrees. That is to say, after the incident light enters the light-limiting structure, it will not be directly reflected back from the entrance of the incident light, thereby preventing light from leaking from the entrance of the incident light.
  • the absorbing structure is located on the light confinement structure for converting the coupled light into electrons and holes.
  • the absorber structure may include a germanium absorber region.
  • the waveguide structure enters the light confinement structure tangentially to the second side where the second side wall of the light confinement structure is located, and couples the incident light along the second direction through the light confinement structure. to the absorbent structure to be absorbed.
  • the light-limiting structure and the absorbing structure adopt, for example, circular, optimized deformation-like circular or polygonal structures, which can confine light in a closed structure for stable transmission, and reduce the incidence of incident light during the propagation process of the light-limiting structure. Higher-order mode excitation, in this way, can reduce light leakage, thereby improving the responsivity of the photodetector.
  • the incident light cannot escape from the light-confining structure in the first direction due to the total reflection of the sidewall in the light-confining structure, and is finally coupled into the absorbing structure along the second direction.
  • the total reflection effect of the incident light will be confined in the absorbing structure, that is to say, the incident light propagates circularly in the light confining structure and the absorbing structure, and the circular propagation can reduce the size requirements of the light confining structure and the absorbing structure, that is, it can reduce
  • the photodetector size is required, and a smaller photodetector size can bring smaller photodetector parasitic parameters, so that the photodetector has a higher bandwidth. Therefore, the photodetector provided by the embodiments of the present disclosure can take into account both high bandwidth and high responsivity.
  • the solutions provided by the embodiments of the present disclosure are applicable to silicon-germanium waveguide photodetectors.
  • Photodetectors of semiconductor material systems such as gallium nitride (GaN) and silicon carbide (SiC) are also applicable.
  • the photodetector includes a waveguide type photodetector including an incident waveguide.
  • the incident waveguide is used for propagating incident light, and the incident light enters the light confining structure through the incident waveguide and is coupled into the absorbing structure.
  • the incident waveguide includes at least a waveguide structure.
  • the specific structure of the incident waveguide is not limited.
  • photodetectors in embodiments of the present disclosure may include ridge waveguides as well as waveguides of other shapes.
  • the solution provided by the embodiments of the present disclosure will be described exemplarily below only by using a SiGe waveguide photodetector with a ridge waveguide.
  • the photodetector includes a flat plate structure 1, a waveguide structure 8, a light limiting structure 2, an absorption structure 3, a first electrode 4-1, a second electrode 4-2, a first doped Structure 5 , first doped region 6 , second doped region 7 .
  • the flat plate structure 1 and the waveguide structure 8 form a ridge waveguide, and the ridge waveguide is a silicon waveguide for propagating incident light;
  • the light-limiting structure 2 is used for receiving the incident light propagated by the ridge waveguide and Confine the imported light in the coupling structure in the first direction through the total reflection of the side wall for circular transmission, and at the same time couple the imported light into the absorption structure 3 through the light confinement structure in the second direction perpendicular to the first direction
  • the absorption structure 3 is located on the light-limiting structure 2, and is used for confining the coupled light in the first direction in the absorption structure through the total reflection of the side wall for circular transmission and converting the coupled light into electrons and space hole.
  • the waveguide structure 8 extends into the light confinement structure 2, and the first side where the first sidewall of the waveguide structure 8 is located is tangent to the second side where the second sidewall of the light confinement structure 2 is located or overlap; the waveguide structure 8 is used to guide the incident light into the light-limiting structure 2 in a direction tangential to the first side.
  • the light confinement structure 2 is used to receive the incident light propagated by the ridge waveguide and confine the introduced light in the coupling structure in the first direction through the total reflection of the side wall for circular transmission.
  • the introduced light is coupled into the absorption structure 3 through the light-limiting structure.
  • the incident light is confined in the coupling structure in the first direction by the total reflection effect of the sidewall of the light confinement structure 2 for circular transmission, and at the same time passes through it in the second direction perpendicular to the first direction.
  • the light-limiting structure is coupled into the absorbing structure 3 and then completely absorbed by the absorbing structure 3 .
  • the first doped structure 5 is located in the flat plate structure 1 and surrounds the light-limiting structure 2; the first doped region 6 is located on the surface of the first doped structure 5 and a region at a certain depth downward ; the second doped region 7 is located on the surface of the absorption structure 3 and a region of a certain depth downward; the first electrode 4-1 is located on the first doped region 6 for collecting The electrons or holes transported by the absorption structure 3, the light-limiting structure 2, the first doped structure 5, and the first doped region 6; the second electrode 4-2 is located in the second doped The region 7 is used to collect electrons or holes transported sequentially along the absorption structure 3 and the second doped region 7 .
  • the light confinement structure 2 and the first doped structure 5 respectively include a lightly doped silicon region
  • the absorption structure 3 includes a germanium absorption region
  • the first doped region 6 includes a heavily doped silicon region
  • the second doped region 7 includes a germanium doped region
  • the first electrode 4-1 is located on the heavily doped silicon region
  • the second electrode 4-2 is located on the germanium doped region.
  • the electrons or holes entering the lightly doped silicon region enter the heavily doped silicon region under the action of an electric field, and are then collected by the first electrode 4-1 on the heavily doped silicon region; and enter the germanium doped region The holes or electrons are collected by the second electrode 4-2 on the germanium doped region.
  • the thickness of the waveguide structure 8 is greater than the thickness of the flat plate structure 1 .
  • the thickness of the waveguide structure 8 is the same as that of the light-limiting structure 2 , so that the reflection and refraction of light entering the entrance of the light-limiting structure 2 from the waveguide structure 8 can be reduced, thereby reducing light leakage.
  • the doping concentration of the lightly doped silicon region in the first doping structure 5 is greater than that of the lightly doped silicon region in the light confinement structure 2 .
  • the doping concentration of the lightly doped silicon region in the first doping structure 5 is equal to the concentration of the lightly doped silicon region in the light confinement structure 2 .
  • the shape of the projection of the light-limiting structure on the preset plane includes one of the following:
  • the shape of the projection of the light-limiting structure 2 on the preset plane is circular.
  • the waveguide structure 8 extends into the light confinement structure 2 , and the first edge where the first sidewall of the waveguide structure 8 is located is tangent to the circular edge of the light confinement structure 2 .
  • the incident light propagates circularly in the circular light-limiting structure 2 , so the size of the photodetector can be reduced, thereby reducing the parasitic parameters of the photodetector, so that the photodetector has a higher bandwidth.
  • the preset plane is perpendicular to the thickness direction of the light-limiting structure, and the plane where the flat plate structure 1 is located is parallel to the preset plane.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by connecting multiple curves.
  • the waveguide structure 8 extends into the light-limiting structure 2, and the first side where the first sidewall of the waveguide structure 8 is located is tangent to one of the multiple curves, and one of the curves is at The radius of curvature at the point of tangency approaches infinity.
  • each section of curves in the multi-section curves includes the same first sub-curve and second sub-curve; the radius of curvature of the first sub-curve approaches infinity at the first end point and the first sub-curve The radius of curvature of the curve gradually decreases from the first end point to the second end point connected to the second sub-curve.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by connecting four identical curves.
  • the bending angle of the curve is 90 degrees, and each section of the curve is divided into two identical sub-curves by a 45-degree bisector.
  • the radius of curvature of any section of the sub-curve gradually decreases when approaching the 45-degree bisector from the sub-curve endpoint far away from the 45-degree bisector, and the curvature radius decreases to a certain level when reaching the 45-degree bisector. value.
  • the radius of curvature of the projected shape of the light-limiting structure 2 on the preset plane changes gradually, thereby avoiding the generation of more high-order modes when light propagates in the light-limiting structure 2 , which is beneficial to reducing light leakage.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by connecting four identical curves.
  • the bending angle of the curve is 90 degrees, and the curve has a 45 degree bisector.
  • each section of the curve is sequentially divided into a third sub-curve, a fourth sub-curve and a fifth sub-curve from the first end point to the second end point, and the third sub-curve and the fifth sub-curve respectively start from the When the first endpoint and the second endpoint approach the 45-degree equisector, the radius of curvature gradually decreases, and when they do not reach the 45-degree equisector, they are connected by the fourth sub-curve.
  • the radius of curvature at the two endpoints of the fourth sub-curve is respectively equal to the radius of curvature at the endpoint of the third sub-curve near the 45-degree equisector and the radius of curvature at the end of the fifth sub-curve near the 45-degree equisector.
  • the shape of the projection of the light-limiting structure 2 on the preset plane has a uniform curvature radius, thereby avoiding the generation of more high-order modes when light propagates in the light-limiting structure 2 , which is beneficial to reducing light leakage.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by connecting multiple straight lines and multiple curved lines.
  • the waveguide structure 8 extends into the light-limiting structure 2 , and the first side where the first sidewall of the waveguide structure 8 is located coincides with one of the straight lines of the closed shape.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by alternately connecting multiple straight lines and multiple curved lines.
  • Each section of curves in the multi-section curves includes the same sixth sub-curve and seventh sub-curve; wherein, the radius of curvature of the sixth sub-curve is from the first end point tangent to the straight line to the first end point tangent to the first sub-curve. The second endpoint where the seven sub-curves are connected gradually decreases.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by alternating connection of four identical straight lines and four identical curved lines.
  • the waveguide structure 8 extends into the light-limiting structure 2 , and the first side where the first sidewall of the waveguide structure 8 is located coincides with one of the straight lines of the closed shape. It can be understood that when the incident light enters the light-limiting structure 2, it propagates at least along one of the straight sides, and then propagates circularly in the light-limiting structure 2 formed by the closed shape.
  • the middle-excited high-order mode reduces light leakage and improves the responsivity of the photodetector.
  • the size of the photodetector can be reduced, thereby reducing the parasitic parameters of the photodetector, so that the photodetector has a higher bandwidth.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by alternating connection of four identical straight lines and four identical curved lines.
  • the bending angle of the curve is 90 degrees, and each section of the curve is divided into two identical sub-curves by a 45-degree bisector.
  • the radius of curvature of any section of the sub-curve gradually decreases when approaching the 45-degree bisector from the sub-curve endpoint far away from the 45-degree bisector, and the curvature radius decreases to a certain level when reaching the 45-degree bisector. value.
  • the radius of curvature of the projected shape of the light-limiting structure 2 on the preset plane changes gradually, thereby avoiding the generation of more high-order modes when light propagates in the light-limiting structure 2 , which is beneficial to reducing light leakage.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a closed shape formed by alternating connection of four identical straight lines and four identical curved lines.
  • the bending angle of the curve is 90 degrees, and the curve has a 45 degree bisector.
  • each section of the curve is sequentially divided into the eighth sub-curve, the ninth sub-curve and the tenth sub-curve from the first end point to the second end point, and the eighth sub-curve and the tenth sub-curve respectively start from the When the first end point and the second end point approach the 45-degree equisector, the radius of curvature gradually decreases, and when they do not reach the 45-degree equisector, they are connected by the ninth sub-curve.
  • the radius of curvature at the two endpoints of the ninth sub-curve is equal to the radius of curvature at the endpoint of the eighth sub-curve near the 45-degree equisector and the radius of curvature at the endpoint of the tenth sub-curve near the 45-degree equisector.
  • the shape of the projection of the light-limiting structure 2 on the preset plane has a uniform curvature radius, thereby avoiding the generation of more high-order modes when light propagates in the light-limiting structure 2 , which is beneficial to reducing light leakage.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is polygonal.
  • the waveguide structure 8 extends into the light-limiting structure 2 , and the first side where the first sidewall of the waveguide structure 8 is located coincides with one side of the polygon.
  • the angle formed by the second side where the second side wall of the light limiting structure 2 is located and the third side where the third side wall is located is an obtuse angle; the third side wall is an obtuse angle for the incident light entering the light limiting structure 2 After the first reflection occurs on the side wall.
  • the reflection angle at the first reflection is not equal to 0 degree. That is to say, after the incident light enters the light-limiting structure 2 , it will not be reflected back from the entrance of the incident light, thereby avoiding the leakage of light from the entrance of the incident light.
  • the polygon includes a regular polygon and the number of sides is greater than or equal to 6.
  • the shape of the projection of the light-limiting structure 2 on the preset plane is a regular octagon.
  • the waveguide structure 8 extends into the light-limiting structure 2 , and the first side where the first sidewall of the waveguide structure 8 is located is tangent to one side of the regular octagon.
  • the incident light enters the light-limiting structure 2 from the waveguide structure 8 and propagates along the regular octagonal ring.
  • the projection shape of the light-limiting structure 2 on the preset plane is the same as the projection shape of the absorption structure 3 on the preset plane.
  • the incident light propagates circularly in the light-limiting structure 2 and the germanium absorption region. Since the size of the light-limiting structure 2 and the germanium absorption region can be small and still meet the requirements of propagation, based on this, the size of the photodetector can also be small, and the photodetector The parasitic parameters will be very small, so that the silicon germanium waveguide photodetector has a relatively high bandwidth. Therefore, the silicon germanium waveguide photodetector can take into account both high bandwidth and high responsivity, which has obvious advantages. It should be noted that the projected shape of the light-limiting structure 2 on the preset plane may be different from the projected shape of the absorbing structure 3 on the preset plane.
  • the projection of the light-limiting structure 2 on the preset plane covers the projection of the absorbing structure 3 on the preset plane.
  • the area of the light-limiting structure 2 is larger than that of the absorption structure 3 , which can better provide a growth platform for the absorption structure 3 .
  • the photodetector further includes a second doped structure 9, and the ridge waveguide further includes a concave structure 10; wherein, the second doped structure 9 Located between the flat plate structure 1 and the light confining structure 2; the thickness of the second doping structure 9 is smaller than the thickness of the light confining structure 2, and the thickness of the second doping structure 9 is smaller than the The thickness of the first doped structure 5; the thickness of the waveguide structure 8 is the same as the thickness of the light-limiting structure 2; the concave structure 10 is located between the flat plate structure 1 and the waveguide structure 8; the depression The thickness of the structure 10 is smaller than the thickness of the flat plate structure 1, and the thickness of the concave structure 10 is smaller than the thickness of the waveguide structure 8; the first electrode 4-1 is also used to collect Electrons or holes transported by the light limiting structure 2 , the second doping structure 9 , the first doping structure 5 and the first doping region 6 .
  • the second doping structure 9 surrounds the light confining structure 2 and forms a recessed region between the first doping structure 5 and the light confining structure 2 .
  • the recessed area formed by the second doping structure 9 can reflect part of the leaked light back to the light confinement structure 2 and then enter the absorption structure 3 to be absorbed, further improving the responsivity of the photodetector.
  • the thickness of the second doped structure 9 is the same as that of the recessed structure 10 .
  • the doping concentration of the first doping structure 5 is greater than or equal to the doping concentration in the second doping structure 9; the doping concentration in the second doping structure 9 is greater than or equal to the light limiting structure 2 doping concentration.
  • the photodetector provided by an embodiment of the present disclosure includes: a waveguide structure, a light confinement structure, and an absorption structure; wherein, the waveguide structure extends into the light confinement structure, and the first sidewall of the waveguide structure is located One side is tangent to the second side where the second sidewall of the light-limiting structure is located; the waveguide structure is used to guide incident light into the light-limiting structure in a direction tangent to the first side; by The total reflection of the side wall of the light-limiting structure confines the imported light in the light-limiting structure for circular transmission, and couples the imported light into the absorption structure through the light-limiting structure; the absorption structure is located on the light-limiting structure ; Confining the coupled light in the absorption structure in the horizontal direction through the total reflection of the side wall of the absorption structure for circular transmission, and converting the coupled light into electrons and holes.
  • the incident light enters the light confinement structure tangentially to the second side where the second side wall of the light confinement structure is located through the waveguide structure, and the incident light is transmitted along the The second direction is coupled to the absorbing structure to be absorbed.
  • the light-limiting structure and the absorbing structure adopt, for example, circular, optimized deformation-like circular or polygonal structures, which can confine light in a closed structure for stable transmission, and reduce the incidence of incident light during the propagation process of the light-limiting structure. Higher-order mode excitation, in this way, can reduce light leakage, thereby improving the responsivity of the photodetector.
  • the incident light cannot escape from the light-limiting structure in the first direction due to the total reflection of the sidewall in the light-limiting structure, and finally all of it is coupled into the absorption structure through the light-limiting structure along the second direction, that is to say, the incident light
  • the circular propagation can reduce the size requirements of the light confinement structure and absorption structure, that is, the photodetector size requirement can be reduced, and the smaller photodetector size can bring smaller The parasitic parameters of the photodetector, so that the photodetector has a higher bandwidth. Therefore, the photodetector provided by the embodiments of the present disclosure can take into account both high bandwidth and high responsivity.
  • the incident light enters the light confinement structure tangentially to the second side where the second side wall of the light confinement structure is located through the waveguide structure, and couples the incident light to the light confinement structure through the light confinement structure.
  • absorbed by the absorbing structure the light-limiting structure and the absorbing structure adopt, for example, a circular, optimized deformation-like circular or polygonal structure, which can confine light in a closed structure for stable transmission, and at the same time reduce the impact of the incident light on the light-limiting structure and the absorbing structure.
  • the high-order mode is excited, so that the leakage of light can be reduced, thereby improving the responsivity of the photodetector.
  • the incident light cannot escape from the light-confining structure in the first direction due to the total reflection of the sidewall in the light-confining structure, and is finally coupled into the absorbing structure along the second direction.
  • the total reflection effect of the incident light will be confined in the absorbing structure, that is, the incident light propagates circularly in the light confining structure and the absorbing structure until it is completely absorbed, and the circular propagation can reduce the size requirements of the light confining structure and the absorbing structure, That is, the size requirement of the photodetector can be reduced, and the smaller photodetector size can lead to smaller parasitic parameters of the photodetector, so that the photodetector has a higher bandwidth. Therefore, the photodetector provided by the embodiments of the present disclosure can take into account both high bandwidth and high responsivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本公开实施例提供的光电探测器,包括:波导结构、限光结构及吸收结构;其中,所述波导结构延伸至所述限光结构中,且所述波导结构的第一侧壁所在的第一边与所述限光结构的第二侧壁所在的第二边相切;所述波导结构用于将入射光以与所述第一边相切的方向导入所述限光结构中;通过所述限光结构侧壁的全反射将导入的光限制在限光结构内进行环形传输,并通过限光结构将导入的光耦合到吸收结构中;所述吸收结构位于所述限光结构上;通过所述吸收结构侧壁的全反射将耦合的光在水平方向上限制在吸收结构内做进行环形传输,并将耦合的光转化为电子和空穴。

Description

光电探测器
相关申请的交叉引用
本公开基于申请号为202111210578.6、申请日为2021年10月18日、发明名称为“光电探测器”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及半导体技术领域,具体地,涉及一种光电探测器。
背景技术
借鉴于大规模集成电路的发展路线,国内外正在开展研究将有源器件(例如调制器、光电探测器等)和光波导器件(例如分光器/稠合器等)集成到一个衬底上,以实现具有类似大规模集成电路的优点的光子芯片。光子芯片具有低成本、小尺寸、低功耗、灵活扩展和高可靠性等特点。目前硅基光子芯片被业界认为是最有前景的光子芯片,采用硅基光子芯片可以将微电子和光电子结合起来,充分发挥硅基微电子先进成熟的工艺技术、高度集成化、低成本等优势,具有广泛的市场前景。
硅基光子芯片具备与标准半导体工艺兼容,成本低,集成度高的优点,逐渐被业界广泛采用。硅基光子芯片通常采用Si1icon On Insulator(SOI)材料形成的光波导,光波导由Si芯层和SiO 2包层形成,芯层和包层间较大的折射率差异对光场有很强的限制作用,可实现小到微米量级的波导弯曲半径,从而为硅基光子芯片小型化和高密度集成化提供了实现的基础。
在光通信领域,硅基光子芯片的接收端常使用的器件为锗硅波导型光电探测器。锗硅波导型光电探测器是一种将高速光信号转化为电流信 号的器件,是硅基光子芯片的关键器件。锗硅波导型光电探测器主要依靠锗材料对光的吸收产生光电流。相关技术中,需要兼顾光电探测器带宽的同时进一步提高光电探测器的响应度。
发明内容
有鉴于此,本公开实施例期望提供一种光电探测器。
为达到上述目的,本公开的技术方案是这样实现的:
所述光电探测器包括:波导结构、限光结构及吸收结构;其中,
所述波导结构延伸至所述限光结构中,且所述波导结构的第一侧壁所在的第一边与所述限光结构的第二侧壁所在的第二边相切;所述波导结构用于将入射光与所述第一边相切的方向导入所述限光结构中;通过所述限光结构侧壁的全反射将导入的光限制在限光结构内进行环形传输,并通过限光结构将导入的光耦合到吸收结构中;
所述吸收结构位于所述限光结构上;通过所述吸收结构侧壁的全反射将耦合的光限制在吸收结构内进行环形传输,并将耦合的光转化为电子和空穴。
上述方案中,所述波导结构在预设平面的投影的形状包括长条状;
所述限光结构在所述预设平面的投影的形状包括由至少一段直线和/或至少一段曲线形成的封闭图形,且所述限光结构的第二侧壁所在的第二边和第三侧壁所在的第三边形成的角度为钝角;
其中,所述预设平面垂直于所述限光结构厚度的方向;所述第三侧壁为所述入射光进入所述限光结构后第一次发生反射处的侧壁。
上述方案中,所述限光结构在所述预设平面的投影的形状包括以下之一:
圆形;多段曲线连接形成的封闭形状;多段直线和多段曲线连接形成的封闭形状;多边形。
上述方案中,所述多边形包括正多边形且边数大于等于6。
上述方案中,所述限光结构在所述预设平面的投影覆盖所述吸收结构在所述预设平面的投影。
上述方案中,所述光电探测器还包括平板结构、第一掺杂结构、第一掺杂区、第二掺杂区、第一电极及第二电极;其中,
所述平板结构包围所述波导结构和限光结构;所述波导结构的厚度大于所述平板结构的厚度;
所述第一掺杂结构位于所述平板结构中,且包围所述限光结构;
所述第一掺杂区位于所述第一掺杂结构表面及向下一定深度的区域;
所述第二掺杂区位于所述吸收结构表面及向下一定深度的区域;所述第一电极位于所述第一掺杂区上,用于收集依次沿所述吸收结构、所述限光结构、所述第一掺杂结构以及所述第一掺杂区传输的电子或空穴;
所述第二电极位于所述第二掺杂区上,用于收集依次沿所述吸收结构及所述第二掺杂区传输的电子或空穴。
上述方案中,所述波导结构的厚度与所述限光结构的厚度相同,所述波导结构的厚度大于所述平板结构的厚度。
上述方案中,所述光电探测器还包括第二掺杂结构和凹陷结构;其中,
所述第二掺杂结构位于所述平板结构与所述限光结构之间;所述第二掺杂结构的厚度小于所述限光结构的厚度,且所述第二掺杂结构的厚度小于所述第一掺杂结构的厚度;所述波导结构的厚度与所述限光结构的厚度相同;
所述凹陷结构位于所述平板结构与所述波导结构之间;所述凹陷结构的厚度小于所述平板结构的厚度,且所述凹陷结构的厚度小于所述波导结构的厚度;
所述第一电极还用于收集依次沿所述吸收结构、所述限光结构、所述第二掺杂结构、所述第一掺杂结构以及所述第一掺杂区传输的电子或空穴。
上述方案中,所述第一掺杂结构的掺杂浓度大于或等于所述第二掺杂结构中的掺杂浓度;所述第二掺杂结构中的掺杂浓度大于或等于所述限光结构的掺杂浓度。
本公开实施例提供的光电探测器,包括:波导结构、限光结构及吸收结构;其中,所述波导结构延伸至所述限光结构中,且所述波导结构的第一侧壁所在的第一边与所述限光结构的第二侧壁所在的第二边相切;所述波导结构用于将入射光与所述第一边相切的方向导入所述限光结构中;通过所述限光结构侧壁的全反射将导入的光限制在限光结构内进行环形传输,并通过限光结构将导入的光耦合到吸收结构中;所述吸收结构位于所述限光结构上;通过所述吸收结构侧壁的全反射将耦合的光限制在吸收结构内做进行环形传输,并将耦合的光转化为电子和空穴。本公开实施例提供的光电探测器,通过波导结构将入射光沿与所述限光结构的第二侧壁所在的第二边相切地进入限光结构并通过限光结构将入射光耦合到吸收结构而被吸收。同时,限光结构和吸收结构采用例如圆形、优化变形的类圆形或多边形结构,这种结构能够将光限制在封闭结构内稳定传输,同时减少所述入射光在限光结构和吸收结构传播过程中向高阶模激发,如此,能够减少光的泄露,从而提高光电探测器的响应度。同时,所述入射光在限光结构中由于侧壁的全反射作用在第一方向无法逃离限光结构,最后全部沿第二方向耦合到吸收结构中,而在吸收结构中也将由于侧壁的全反射作用入射光将被限制在吸收结构中,也就是说,入射光在限光结构和吸收结构中呈环形传播直至被完全吸收,环形传播可以减少限光结构和吸收结构的尺寸需求,即可以减小光电探测器尺寸需求,而较小的光电探测器尺寸可以带来较小的光电探测器的寄生参数,从而使得所述光电探测器具有较高带宽。因此,本公开实施例提供的光电探测器可以同时兼顾高带宽和高响应度。
附图说明
图1为本公开实施例提供的一种光电探测器的俯视示意图一;
图2为本公开实施例提供的一种光电探测器的俯视示意图二;
图3为本公开实施例提供的一种光电探测器的俯视示意图三;
图4为图1、图2、图3中沿A1-A1方向的截面图;
图5为图1、图2、图3中沿B1-B1方向的截面图;
图6为本公开实施例提供的一种光电探测器的俯视示意图四;
图7为本公开实施例提供的一种光电探测器的俯视示意图五;
图8为本公开实施例提供的一种光电探测器的俯视示意图六;
图9为图5、图6、图7中沿A2-A2方向的截面图;
图10为图5、图6、图7中沿B2-B2方向的截面图。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步的详细阐述。
在本公开的描述中,需要理解的是,术语“长度”、“宽度”、“深度”、“上”、“下”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开实施例中,术语“衬底”是指在其上添加后续材料层的材料。衬底本身可以被图案化。被添加在衬底顶部的材料可以被图案化或者可以保持未被图案化。此外,衬底可以包括多种半导体材料,例如硅、锗、砷化嫁、磷化铟等。替代地,衬底可以由非导电材料制成,例如玻璃、塑料或蓝宝石晶圆。
在本公开实施例中,术语“层”是指包括具有厚度的区域的材料部分。 层可以在下方或上方结构的整体之上延伸,或者可以具有小于下方或上方结构范围的范围。此外,层可以是厚度小于连续结构厚度的均质或非均质连续结构的区域。例如,层可位于连续结构的顶表面和底表面之间,或者层可在连续结构顶表面和底表面处的任何水平面对之间。层可以水平、垂直和/或沿倾斜表面延伸。层可以包括多个子层。例如,互连层可包括一个或多个导体和接触子层(其中形成互连线和/或过孔触点)、以及一个或多个电介质子层。
在本公开实施例中,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
需要说明的是,本公开实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
锗硅波导型光电探测器一般采用方形结构,光从限光结构一端入射,从对应的另一端出射,经历单程吸收。一方面,为提高光电探测器的响应度,需要尽可能多的吸收光,从而需要增加光电探测器的尺寸,以获得较大的响应度;另一方面,当光电探测器尺寸增加时,会增加光电探测器的寄生参数,从而使光电探测器的光电带宽下降。以上可以看出,目前光电探测器的响应度和光电带宽之间存在相互制约的关系。
基于此,本公开实施例中旨在提供一种兼顾高响应度和高带宽的光电探测器,在本公开的各实施例中,通过波导结构将入射光沿与所述限光结构的第二侧壁所在的第二边相切地进入限光结构并通过限光结构将入射光沿第二方向耦合到吸收结构而被吸收。同时,限光结构和吸收结构采用例如圆形、优化变形的类圆形或多边形结构,这种结构能够将光限制在封闭结构内稳定传输,减少所述入射光在限光结构传播过程中向高阶模激发,如此,能够减少光的泄露,从而提高光电探测器的响应度。同时,所述入射光在限光结构中由于侧壁的全反射作用在第一方向无法逃离限光结构,最后全部沿第二方向耦合到吸收结构中,而在吸收结构中也将由于侧壁的 全反射作用入射光将被限制在吸收结构中,也就是说,入射光在限光结构和吸收结构中呈环形传播,环形传播可以减少限光结构和吸收结构的尺寸需求,即可以减小光电探测器尺寸需求,而较小的光电探测器尺寸可以带来较小的光电探测器的寄生参数,从而使得所述光电探测器具有较高带宽。因此,本公开实施例提供的光电探测器可以同时兼顾高带宽和高响应度。
本公开实施例提供一种光电探测器,包括:波导结构、限光结构及吸收结构;其中,
所述波导结构延伸至所述限光结构中,且所述波导结构的第一侧壁所在的第一边与所述限光结构的第二侧壁所在的第二边相切;所述波导结构用于将入射光与所述第一边相切的方向导入所述限光结构中;通过所述限光结构侧壁的全反射将导入的光限制在限光结构内进行环形传输,并通过限光结构将导入的光耦合到吸收结构中;所述吸收结构位于所述限光结构上;通过所述吸收结构侧壁的全反射将耦合的光限制在吸收结构内做进行环形传输,并将耦合的光转化为电子和空穴。
这里,实际应用中,所述波导结构用于传播入射光,所述入射光通过波导结构进入限光结构。所述波导结构可以为硅波导,由硅(Si)芯层和二氧化硅(SiO 2)包层形成。
实际应用中,所述限光结构用于通过侧壁的全反射将导入的光在第一方向上限制在耦合结构内进行环形传输,同时在垂直于第一方向的第二方向上将导入的光全部耦合到吸收结构中。所述限光结构可以包括轻掺杂硅。需要说明的是,在本公开实施例中,所述限光结构在垂直于第一方向的第二方向上将导入的光全部耦合到吸收结构中可以理解为,从理论设计上进入限光结构的光可以通过限光结构侧壁的全反射以环形路径进行传播,从而100%地进入吸收结构中,但实际应用中,由于工艺等因素,如反射面不可避免的存在极少量的散射、掺杂区的吸收,从而不能完全到达100%地进入到吸收结构中,以上造成的光损失未包括在上述的“全部”的含义中。
需要说明的是,当所述限光结构与所述吸收结构堆叠设置时,所述第一方向垂直于所述堆叠方向,所述第二方向为所述堆叠方向。可以理解的是,当所述限光结构与所述吸收结构竖直堆叠设置时,所述第一方向为水平方向,所述第二方向为垂直方向。
这里,所述波导结构可以包括多个侧壁,其中至少一个侧壁所在的边为直边;具体地,所述波导结构的第一侧壁所在的第一边为直边。
在一实施例中,所述限光结构可以包括多个侧壁,其中一个侧壁所在的边为曲线;所述波导结构的第一侧壁所在的第一边与所述曲线相切。
在一实施例中,所述限光结构可以包括多个侧壁,其中一个侧壁所在的边为直线;具体地,所述限光结构的第二侧壁所在的第二边为直线,所述波导结构的第一侧壁所在的第一边与所述直线相切。
在一实施例中,所述波导结构在预设平面的投影的形状包括长条状;所述限光结构在所述预设平面的投影的形状包括由至少一段直线和/或至少一段曲线形成的封闭图形,且所述限光结构的第二侧壁所在的第二边和第三侧壁所在的第三边形成的角度为钝角;其中,所述预设平面垂直于所述限光结构厚度的方向;所述第三侧壁为所述入射光进入所述限光结构后第一次发生反射处的侧壁。实际应用中,所述限光结构的一个侧壁在所述预设平面上的投影为曲线时,所述波导结构的第一侧壁所在的第一边与所述曲线相切;所述限光结构的在所述预设平面上的投影为直线时,所述波导结构的第一侧壁所在的第一边与所述直线相切。
可以理解的是,通过所述波导结构可以将入射光以与所述波导结构侧壁相切的方向导入所述限光结构中,减少所述入射光在波导结构和限光结构中传播过程中的突变,从而减少光在传播过程中激发的高阶模,提高入射光在传播过程中的稳定性,减少光的泄露,进而提高光电探测器的响应度。
在一实施例中,所述限光结构侧壁所在的边包括至少一条弧线,所述 波导结构的第一侧壁所在的第一边与其中一段弧线相切。
在一实施例中,所述限光结构侧壁所在的边包括至少一条直线与至少一条曲线,所述波导结构的第一侧壁所在的第一边与所述至少一条直线相切或者与所述曲线相切。
在一实施例中,所述限光结构侧壁所在的边包括多段直线,所述波导结构的第一侧壁所在的第一边与其中一段直线相切。实际应用中,所述限光结构的第二侧壁所在的第二边和第三侧壁所在的第三边形成的角度为钝角。这里,所述限光结构侧壁所在的边包括多段直线时,所述限光结构的第二侧壁所在的第二边和第三侧壁所在的第三边形成的角度为钝角;所述限光结构侧壁所在的边包括至少一条曲线时,所述限光结构的第二侧壁所在的第二边和第三侧壁所在的第三边均可以看作是曲线所在的边。需要说明的是,曲线可以看作是无数段直线组成的图形。可以理解的是,入射光进入所述限光结构后第一次发生反射处的反射角不等于0度。也就是说,入射光进入所述限光结构后并不会从所述入射光入口处直接反射回去,从而避免了光从入射光入口处泄露。
实际应用中,所述吸收结构位于所述限光结构上,用于将耦合的光转化为电子和空穴。所述吸收结构可以包括锗吸收区。
在上述实施例中,所述波导结构将入射光沿与所述限光结构的第二侧壁所在的第二边相切地进入限光结构并通过限光结构将入射光沿第二方向耦合到吸收结构而被吸收。同时,限光结构和吸收结构采用例如圆形、优化变形的类圆形或多边形结构,这种结构能够将光限制在封闭结构内稳定传输,减少所述入射光在限光结构传播过程中向高阶模激发,如此,能够减少光的泄露,从而提高光电探测器的响应度。同时,所述入射光在限光结构中由于侧壁的全反射作用在第一方向无法逃离限光结构,最后全部沿第二方向耦合到吸收结构中,而在吸收结构中也将由于侧壁的全反射作用入射光将被限制在吸收结构中,也就是说,入射光在限光结构和吸收结构 中呈环形传播,环形传播可以减少限光结构和吸收结构的尺寸需求,即可以减小光电探测器尺寸需求,而较小的光电探测器尺寸可以带来较小的光电探测器的寄生参数,从而使得所述光电探测器具有较高带宽。因此,本公开实施例提供的光电探测器可以同时兼顾高带宽和高响应度。
需要说明的是,本公开实施例提供的方案适用于锗硅波导型光电探测器,同时铟镓砷/铟磷(InGaAs/InP)系材料、铝镓砷/镓铝(AlGaAs/GaAl)系材料、氮化镓(GaN)系材料、碳化硅(SiC)等半导体材料体系的光电探测器亦可适用。这里,所述光电探测器包括波导型光电探测器,所述波导型光电探测器包括入射波导。所述入射波导用于传播入射光,所述入射光通过入射波导进入限光结构并耦合进入吸收结构。实际应用中,所述入射波导至少包括波导结构。
在本公开实施例中,不对入射波导的具体结构进行限制。具体来说,本公开实施例中的光电探测器可以包括脊形波导以及其它形状的波导。以下仅以具有脊形波导的锗硅波导型光电探测器对本公开实施例提供的方案进行示例性描述。
如图1至图5所示,所述光电探测器包括平板结构1、波导结构8、限光结构2、吸收结构3、第一电极4-1、第二电极4-2、第一掺杂结构5、第一掺杂区6、第二掺杂区7。
这里,所述平板结构1和波导结构8构成脊形波导,所述脊形波导为硅波导,用于传播入射光;所述限光结构2用于接收所述脊形波导传播的入射光并通过侧壁的全反射将导入的光在第一方向上限制在耦合结构内进行环形传输,同时在垂直于第一方向的第二方向上将导入的光通过限光结构耦合到吸收结构3中;所述吸收结构3位于所述限光结构2上,用于通过侧壁的全反射将耦合的光在第一方向上限制在吸收结构内进行环形传输并将耦合的光转化为电子和空穴。所述波导结构8延伸至所述限光结构2中,且所述波导结构8的第一侧壁所在的第一边与所述限光结构2的第二 侧壁所在的第二边相切或重合;所述波导结构8用于将入射光以与所述第一边相切的方向导入所述限光结构2中。
需要说明的是,所述限光结构2用于接收所述脊型波导传播的入射光并通过侧壁的全反射将导入的光在第一方向上限制在耦合结构内进行环形传输,同时在垂直于第一方向的第二方向上将导入的光通过限光结构耦合到吸收结构3中。可以理解的是,所述入射光通过所述限光结构2侧壁的全反射作用在第一方向上限制在耦合结构内进行环形传输,同时在垂直于第一方向的第二方向上全部通过限光结构耦合到吸收结构3中,然后被所述吸收结构3全部吸收。
接下来,请继续参考图1至图5。所述第一掺杂结构5位于所述平板结构1中,且包围所述限光结构2;所述第一掺杂区6位于所述第一掺杂结构5表面及向下一定深度的区域;所述第二掺杂区7位于所述吸收结构3表面及向下一定深度的区域;所述第一电极4-1位于所述第一掺杂区6上,用于收集依次沿所述吸收结构3、所述限光结构2、所述第一掺杂结构5以及所述第一掺杂区6传输的电子或空穴;所述第二电极4-2位于所述第二掺杂区7上,用于收集依次沿所述吸收结构3及所述第二掺杂区7传输的电子或空穴。
这里,所述限光结构2、所述第一掺杂结构5分别包括轻掺杂硅区,所述吸收结构3包括锗吸收区,所述第一掺杂区6包括重掺杂硅区,所述第二掺杂区7包括锗掺杂区,所述第一电极4-1位于所述重掺杂硅区上,所述第二电极4-2位于所述锗掺杂区上。入射光被所述锗吸收区吸收后,生成电子和空穴。所述电子和空穴在电场作用下分别进入所述轻掺杂硅区和所述锗掺杂区。其中进入所述轻掺杂硅区的电子或空穴在电场作用下进入所述重掺杂硅区,然后被重掺杂硅区上的第一电极4-1收集;而进入锗掺杂区的空穴或者电子,被锗掺杂区上的第二电极4-2收集。
如图4、图5所示,所述波导结构8的厚度大于所述平板结构1的厚度。 所述波导结构8的厚度与所述限光结构2的厚度相同,如此,可以减少光从波导结构8进入限光结构2入口处光的反射及折射,从而减少光的泄露。
在一实施例中,所述第一掺杂结构5中轻掺杂硅区的掺杂浓度大于所述限光结构2中轻掺杂硅区的浓度。
在一实施例中,所述第一掺杂结构5中轻掺杂硅区的掺杂浓度等于所述限光结构2中轻掺杂硅区的浓度。在一些实施例中,所述限光结构在所述预设平面的投影的形状包括以下之一:
圆形;
多段曲线连接形成的封闭形状;
多段直线和多段曲线连接形成的封闭形状;
多边形。
在一实施例中,参考图1,所述限光结构2在所述预设平面的投影的形状为圆形。所述波导结构8延伸至所述限光结构2中,且所述波导结构8的第一侧壁所在的第一边与所述限光结构2的圆边相切。入射光在所述圆形限光结构2中环形传播,因而可以减小光电探测器尺寸,从而减小光电探测器的寄生参数,使得所述光电探测器具有较高带宽。这里,所述预设平面垂直于所述限光结构厚度的方向,所述平板结构1所在的平面与预设平面平行。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为多段曲线连接形成的封闭形状。所述波导结构8延伸至所述限光结构2中,且所述波导结构8的第一侧壁所在的第一边与所述多段曲线中的其中一条曲线相切,所述其中一条曲线在切点处的曲率半径趋近于无穷大。其中,所述多段曲线中的每一段曲线均包括相同的第一子曲线和第二子曲线;所述第一子曲线的曲率半径在第一端点处趋近于无穷大且所述第一子曲线的曲率半径从第一端点处至与所述第二子曲线相连的第二端点处逐渐减小。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为四段 相同曲线连接形成的封闭形状。所述曲线弯曲角度为90度,每一段所述曲线被45度等分线分为相同的两段子曲线。其中,任一段子曲线从远离所述45度等分线的子曲线端点向所述45度等分线靠近时曲率半径逐渐减小,到达所述45度等分线时曲率半径减小到一定值。所述限光结构2在所述预设平面的投影的形状的曲率半径逐渐变化,从而避免了光在限光结构2中传播时产生较多的高阶模,有利于减少光泄露。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为四段相同曲线连接形成的封闭形状。所述曲线弯曲角度为90度,所述曲线具有45度等分线。其中,每一段所述曲线从第一端点至第二端点顺次分为第三子曲线、第四子曲线及第五子曲线,所述第三子曲线、第五子曲线分别从所述第一端点、第二端点向所述45度等分线靠近时曲率半径逐渐减小,未到达所述45度等分线时由所述第四子曲线连接。所述第四子曲线两个端点处的曲率半径分别与第三子曲线靠近45度等分线的端点处的曲率半径、第五子曲线靠近45度等分线的端点处的曲率半径相等。所述限光结构2在所述预设平面的投影的形状,曲率半径均匀变化,从而避免了光在限光结构2中传播时产生较多的高阶模,有利于减少光泄露。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为多段直线和多段曲线连接形成的封闭形状。所述波导结构8延伸至所述限光结构2中,且所述波导结构8的第一侧壁所在的第一边与所述封闭形状的其中一条直线重合。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为多段直线和多段曲线交替连接形成的封闭形状。所述多段曲线中的每一段曲线均包括相同的第六子曲线和第七子曲线;其中,所述第六子曲线的曲率半径从与直线相切的第一端点处至与所述第七子曲线相连的第二端点处逐渐减小。
在一实施例中,参考图2,所述限光结构2在所述预设平面的投影的形 状为四段相同直线和四段相同曲线交替连接形成的封闭形状。所述波导结构8延伸至所述限光结构2中,且所述波导结构8的第一侧壁所在的第一边与所述封闭形状的其中一条直线重合。可以理解的是,入射光进入所述限光结构2时至少沿其中一条直边直线传播,随后在所述封闭形状构成的限光结构2中环形传播,因此,一方面可以减少光在传播过程中激发的高阶模,减少光的泄露,提高光电探测器的响应度,另一方面可以减小光电探测器尺寸,从而减小光电探测器的寄生参数,使得所述光电探测器具有较高带宽。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为四段相同直线和四段相同曲线交替连接形成的封闭形状。所述曲线弯曲角度为90度,每一段所述曲线被45度等分线分为相同的两段子曲线。其中,任一段子曲线从远离所述45度等分线的子曲线端点向所述45度等分线靠近时曲率半径逐渐减小,到达所述45度等分线时曲率半径减小到一定值。所述限光结构2在所述预设平面的投影的形状的曲率半径逐渐变化,从而避免了光在限光结构2中传播时产生较多的高阶模,有利于减少光泄露。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为四段相同直线和四段相同曲线交替连接形成的封闭形状。所述曲线弯曲角度为90度,所述曲线具有45度等分线。其中,每一段所述曲线从第一端点至第二端点顺次分为第八子曲线、第九子曲线及第十子曲线,所述第八子曲线、第十子曲线分别从所述第一端点、第二端点向所述45度等分线靠近时曲率半径逐渐减小,未到达所述45度等分线时由所述第九子曲线连接。所述第九子曲线两个端点处的曲率半径分别与第八子曲线靠近45度等分线的端点处的曲率半径、第十子曲线靠近45度等分线的端点处的曲率半径相等。所述限光结构2在所述预设平面的投影的形状,曲率半径均匀变化,从而避免了光在限光结构2中传播时产生较多的高阶模,有利于减少光泄露。
在一实施例中,所述限光结构2在所述预设平面的投影的形状为多边 形。所述波导结构8延伸至所述限光结构2中,且所述波导结构8的第一侧壁所在的第一边与所述多边形的其中一边重合。所述限光结构2的第二侧壁所在的第二边和第三侧壁所在的第三边形成的角度为钝角;所述第三侧壁为所述入射光进入所述限光结构2后第一次发生反射处的侧壁。可以理解的是,入射光进入所述限光结构2后第一次发生反射处的反射角不等于0度。也就是说,入射光进入所述限光结构2后并不会从所述入射光入口处反射回去,从而避免了光从入射光入口处泄露。
在一实施例中,所述多边形包括正多边形且边数大于等于6。
在一实施例中,参考图3,所述限光结构2在所述预设平面的投影的形状为正八边形。所述波导结构8延伸至所述限光结构2中,且所述波导结构8的第一侧壁所在的第一边与所述正八边形的其中一边相切。入射光从所述波导结构8进入所述限光结构2后沿所述正八边形环形传播。
在一实施例中,如图1至图3所示,所述限光结构2在所述预设平面投影的形状与所述吸收结构3在所述预设平面投影的形状相同。入射光在限光结构2和锗吸收区环形传播,由于限光结构2和锗吸收区的尺寸可以很小且依然满足传播的需求,基于此,光电探测器尺寸也可以很小,光电探测器寄生参数就会很小,从而使得所述锗硅波导型光电探测器具有较高带宽,因此,使得所述锗硅波导型光电探测器可以同时兼顾高带宽和高响应度,具有明显优势。需要说明的是,所述限光结构2在所述预设平面投影的形状与所述吸收结构3在所述预设平面投影的形状可以不同。
在一实施例中,如图1至图3所示,所述限光结构2在所述预设平面的投影覆盖所述吸收结构3在所述预设平面的投影。所述限光结构2的面积大于所述吸收结构3的面积,可以更好地为所述吸收结构3提供生长平台。
在一实施例中,如图6至图10所示,所述光电探测器还包括第二掺杂结构9,所述脊形波导还包括凹陷结构10;其中,所述第二掺杂结构9位 于所述平板结构1与所述限光结构2之间;所述第二掺杂结构9的厚度小于所述限光结构2的厚度,且所述第二掺杂结构9的厚度小于所述第一掺杂结构5的厚度;所述波导结构8的厚度与所述限光结构2的厚度相同;所述凹陷结构10位于所述平板结构1与所述波导结构8之间;所述凹陷结构10的厚度小于所述平板结构1的厚度,且所述凹陷结构10的厚度小于所述波导结构8的厚度;所述第一电极4-1还用于收集依次沿所述吸收结构3、所述限光结构2、所述第二掺杂结构9、所述第一掺杂结构5以及所述第一掺杂区6传输的电子或空穴。
可以理解的是,上述实施例中,所述第二掺杂结构9包围所述限光结构2并且在第一掺杂结构5和所述限光结构2之间形成凹陷区域。所述第二掺杂结构9形成的凹陷区域可以将部分泄露光反射回限光结构2进而进入吸收结构3被吸收,进一步提高光电探测器的响应度。
在一实施例中,所述第二掺杂结构9的厚度与所述凹陷结构10的厚度相同。所述第一掺杂结构5的掺杂浓度大于或等于所述第二掺杂结构9中的掺杂浓度;所述第二掺杂结构9中的掺杂浓度大于或等于所述限光结构2的掺杂浓度。
本公开实施例提供的光电探测器,包括:波导结构、限光结构及吸收结构;其中,所述波导结构延伸至所述限光结构中,且所述波导结构的第一侧壁所在的第一边与所述限光结构的第二侧壁所在的第二边相切;所述波导结构用于将入射光以与所述第一边相切的方向导入所述限光结构中;通过所述限光结构侧壁的全反射将导入的光限制在限光结构内进行环形传输,并通过限光结构将导入的光耦合到吸收结构中;所述吸收结构位于所述限光结构上;通过所述吸收结构侧壁的全反射将耦合的光在水平方向上限制在吸收结构内做进行环形传输,并将耦合的光转化为电子和空穴。本公开实施例提供的光电探测器,通过波导结构将入射光沿与所述限光结构的第二侧壁所在的第二边相切地入射进入限光结构并通过限光结构将入射 光沿第二方向耦合到吸收结构而被吸收。同时,限光结构和吸收结构采用例如圆形、优化变形的类圆形或多边形结构,这种结构能够将光限制在封闭结构内稳定传输,减少所述入射光在限光结构传播过程中向高阶模激发,如此,能够减少光的泄露,从而提高光电探测器的响应度。同时,所述入射光在限光结构中由于侧壁的全反射作用在第一方向无法逃离限光结构,最后全部沿第二方向通过限光结构耦合到吸收结构中,也就是说,入射光在限光结构和吸收结构中呈环形传播,环形传播可以减少限光结构和吸收结构的尺寸需求,即可以减小光电探测器尺寸需求,而较小的光电探测器尺寸可以带来较小的光电探测器的寄生参数,从而使得所述光电探测器具有较高带宽。因此,本公开实施例提供的光电探测器可以同时兼顾高带宽和高响应度。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
工业实用性
本公开实施例提供的光电探测器,通过波导结构将入射光沿与所述限光结构的第二侧壁所在的第二边相切地进入限光结构并通过限光结构将入射光耦合到吸收结构而被吸收。同时,限光结构和吸收结构采用例如圆形、优化变形的类圆形或多边形结构,这种结构能够将光限制在封闭结构内稳定传输,同时减少所述入射光在限光结构和吸收结构传播过程中向高阶模激发,如此,能够减少光的泄露,从而提高光电探测器的响应度。同时,所述入射光在限光结构中由于侧壁的全反射作用在第一方向无法逃离限光结构,最后全部沿第二方向耦合到吸收结构中,而在吸收结构中也将由于侧壁的全反射作用入射光将被限制在吸收结构中,也就是说,入射光在限 光结构和吸收结构中呈环形传播直至被完全吸收,环形传播可以减少限光结构和吸收结构的尺寸需求,即可以减小光电探测器尺寸需求,而较小的光电探测器尺寸可以带来较小的光电探测器的寄生参数,从而使得所述光电探测器具有较高带宽。因此,本公开实施例提供的光电探测器可以同时兼顾高带宽和高响应度。

Claims (9)

  1. 一种光电探测器,包括:波导结构、限光结构及吸收结构;其中,
    所述波导结构延伸至所述限光结构中,且所述波导结构的第一侧壁所在的第一边与所述限光结构的第二侧壁所在的第二边相切;所述波导结构用于将入射光以与所述第一边相切的方向导入所述限光结构中;
    通过所述限光结构侧壁的全反射将导入的光限制在限光结构内进行环形传输,并通过限光结构将导入的光耦合到吸收结构中;
    所述吸收结构位于所述限光结构上;通过所述吸收结构侧壁的全反射将耦合的光限制在吸收结构内进行环形传输,并将耦合的光转化为电子和空穴。
  2. 根据权利要求1所述的光电探测器,其中,所述波导结构在预设平面的投影的形状包括长条状;
    所述限光结构在所述预设平面的投影的形状包括由至少一段直线和/或至少一段曲线形成的封闭图形,且所述限光结构的第二侧壁所在的第二边和第三侧壁所在的第三边形成的角度为钝角;
    其中,所述预设平面垂直于所述限光结构厚度的方向;所述第三侧壁为所述入射光进入所述限光结构后第一次发生反射处的侧壁。
  3. 根据权利要求2所述的光电探测器,其中,所述限光结构在所述预设平面的投影的形状包括以下之一:
    圆形;
    多段曲线连接形成的封闭形状;
    多段直线和多段曲线连接形成的封闭形状;
    多边形。
  4. 根据权利要求3所述的光电探测器,其中,所述多边形包括正多边形且边数大于等于6。
  5. 根据权利要求2所述的光电探测器,其中,所述限光结构在所述预设平面的投影覆盖所述吸收结构在所述预设平面的投影。
  6. 根据权利要求1所述的光电探测器,其中,所述光电探测器还包括平板结构、第一掺杂结构、第一掺杂区、第二掺杂区、第一电极及第二电极;其中,
    所述平板结构包围所述波导结构和限光结构;所述波导结构的厚度大于所述平板结构的厚度;
    所述第一掺杂结构位于所述平板结构中,且包围所述限光结构;
    所述第一掺杂区位于所述第一掺杂结构表面及向下一定深度的区域;
    所述第二掺杂区位于所述吸收结构表面及向下一定深度的区域;
    所述第一电极位于所述第一掺杂区上,用于收集依次沿所述吸收结构、所述限光结构、所述第一掺杂结构以及所述第一掺杂区传输的电子或空穴;
    所述第二电极位于所述第二掺杂区上,用于收集依次沿所述吸收结构及所述第二掺杂区传输的电子或空穴。
  7. 根据权利要求6所述的光电探测器,其中,所述波导结构的厚度与所述限光结构的厚度相同,所述波导结构的厚度大于所述平板结构的厚度。
  8. 根据权利要求6所述的光电探测器,其中,所述光电探测器还包括第二掺杂结构和凹陷结构;其中,
    所述第二掺杂结构位于所述平板结构与所述限光结构之间;所述第二掺杂结构的厚度小于所述限光结构的厚度,且所述第二掺杂结构的厚度小于所述第一掺杂结构的厚度;所述波导结构的厚度与所述限光结构的厚度相同;
    所述凹陷结构位于所述平板结构与所述波导结构之间;所述凹陷结构的厚度小于所述平板结构的厚度,且所述凹陷结构的厚度小于所述波导结构的厚度;
    所述第一电极还用于收集依次沿所述吸收结构、所述限光结构、所述 第二掺杂结构、所述第一掺杂结构以及所述第一掺杂区传输的电子或空穴。
  9. 根据权利要求8所述的光电探测器,其中,所述第一掺杂结构的掺杂浓度大于或等于所述第二掺杂结构中的掺杂浓度;所述第二掺杂结构中的掺杂浓度大于或等于所述限光结构的掺杂浓度。
PCT/CN2022/075716 2021-10-18 2022-02-09 光电探测器 WO2023065573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111210578.6A CN114068736B (zh) 2021-10-18 2021-10-18 光电探测器
CN202111210578.6 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023065573A1 true WO2023065573A1 (zh) 2023-04-27

Family

ID=80234768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075716 WO2023065573A1 (zh) 2021-10-18 2022-02-09 光电探测器

Country Status (2)

Country Link
CN (1) CN114068736B (zh)
WO (1) WO2023065573A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609377B2 (en) * 2021-05-03 2023-03-21 Globalfoundries U.S. Inc. Photodetectors and terminators having a curved shape
CN116759471B (zh) * 2023-06-25 2024-05-24 无锡芯光互连技术研究院有限公司 一种光电探测器、光电探测器芯片以及硅基光子芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443312A (zh) * 2000-05-20 2003-09-17 秦内蒂克有限公司 水平入口半导体光检测器
CN1877933A (zh) * 2005-06-09 2006-12-13 中国科学院半导体研究所 脊形波导与二维光子晶体相结合的硅基拉曼激光器结构
CN208923553U (zh) * 2018-10-17 2019-05-31 江苏华兴激光科技有限公司 一种基于直波导全反射耦合连接的微结构面上光源装置
CN111048606A (zh) * 2019-12-25 2020-04-21 武汉邮电科学研究院有限公司 一种高带宽高响应度的锗硅光电探测器
US20200124792A1 (en) * 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Photonic integrated circuit devices and methods of forming same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661137B (zh) * 2008-08-27 2010-12-22 中国科学院半导体研究所 制作用于1.55微米通信波段硅波导光电转换器的方法
US10901150B2 (en) * 2019-06-12 2021-01-26 Elenion Technologies, Llc Metal contact free photodetector with sidewall doping
CN111029422B (zh) * 2019-12-25 2021-07-06 武汉邮电科学研究院有限公司 一种基于高阶模的光电探测器
CN112349803B (zh) * 2020-10-30 2022-09-09 武汉光谷信息光电子创新中心有限公司 一种锗硅光电探测器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443312A (zh) * 2000-05-20 2003-09-17 秦内蒂克有限公司 水平入口半导体光检测器
CN1877933A (zh) * 2005-06-09 2006-12-13 中国科学院半导体研究所 脊形波导与二维光子晶体相结合的硅基拉曼激光器结构
CN208923553U (zh) * 2018-10-17 2019-05-31 江苏华兴激光科技有限公司 一种基于直波导全反射耦合连接的微结构面上光源装置
US20200124792A1 (en) * 2018-10-19 2020-04-23 Samsung Electronics Co., Ltd. Photonic integrated circuit devices and methods of forming same
CN111048606A (zh) * 2019-12-25 2020-04-21 武汉邮电科学研究院有限公司 一种高带宽高响应度的锗硅光电探测器

Also Published As

Publication number Publication date
CN114068736A (zh) 2022-02-18
CN114068736B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2023065573A1 (zh) 光电探测器
US20150316723A1 (en) Fiber Optic Coupler Array
WO2020062704A1 (zh) 激光器与硅光芯片集成结构
CN103489953B (zh) 一种双步消逝场耦合的雪崩光电探测器
CN210123484U (zh) 硅基光耦合结构、硅基单片集成光器件
CN110880539B (zh) 波导集成雪崩光电二极管
JP2017524961A (ja) 光結合器
CN210123485U (zh) 硅基光耦合结构、硅基单片集成光器件
WO2020103395A1 (zh) 一种波导型光电探测器及其制造方法
EP2839327B1 (en) Method and apparatus providing a waveguide and an evanescent field coupled photonic detector
CN111711074B (zh) 激光器及其制作方法
CN112180501A (zh) 硅基光耦合结构、硅基单片集成光器件及其制造方法
CN113552669A (zh) 一种端面耦合器及其制备方法
CN115857091A (zh) 一种铌酸锂薄膜mmi起偏分束器
CN215678846U (zh) 一种端面耦合器
CN112014925B (zh) 一种用于硅光芯片的模斑转换器
WO2023108857A1 (zh) 光电探测器
CN210072135U (zh) 基于狭缝波导的锥形偏振分束器
Yin et al. High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on silicon-on-insulator waveguide circuits
CN115933051A (zh) 具有限制特征的边缘耦合器
JP4158197B2 (ja) 受光素子
Wang et al. Monolithic Waveguide Group IV Multiple-Quantum-Well Photodetectors and Modulators on 300-mm Si Substrates for 2-μm Wavelength Optoelectronic Integrated Circuit
US20210223473A1 (en) Waveguide absorbers
CN219609274U (zh) 一种基于硅波导的模斑转换器
US11841533B2 (en) Photonic integrated circuit structure with coupler for interlayer waveguide coupling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882199

Country of ref document: EP

Kind code of ref document: A1