WO2023040478A1 - 一种单纤四向光收发装置及光模块 - Google Patents

一种单纤四向光收发装置及光模块 Download PDF

Info

Publication number
WO2023040478A1
WO2023040478A1 PCT/CN2022/108329 CN2022108329W WO2023040478A1 WO 2023040478 A1 WO2023040478 A1 WO 2023040478A1 CN 2022108329 W CN2022108329 W CN 2022108329W WO 2023040478 A1 WO2023040478 A1 WO 2023040478A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
filter
wavelength signal
optical wavelength
signal
Prior art date
Application number
PCT/CN2022/108329
Other languages
English (en)
French (fr)
Inventor
雷星宇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023040478A1 publication Critical patent/WO2023040478A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present application relates to the technical field of optical fiber communication, for example, to a single-fiber four-way optical transceiver device and an optical module.
  • the single-fiber four-way optical transceiver device is favored by users.
  • the more common ones in the market are 10Gbps low-speed optical transceivers with one fiber and multiple wavelengths, such as single-fiber four-way small SFP+10G COMBO PON OLT optical transceivers in TO package.
  • optical configuration solution that does not use the TO packaging solution, but it has the following disadvantages: a total of two optical ports are required for the transmitting unit and the receiving unit.
  • the transmitting unit is equipped with a WDM prism combining prism group, and the combined optical signal is output through an optical port.
  • the receiving unit inputs the optical wavelength signal from another optical port and is equipped with a WDM prism demultiplexing prism group to complete the demultiplexing. If this structure is used to realize single-fiber transmission and reception, an additional WDM multiplexer/demultiplexer component needs to be installed at the two optical ports, which not only complicates the structure, but also requires the optical fiber coiling operation in the device, so the process requirements are also increased. .
  • the purpose of the embodiment of the present application is to solve at least one of the technical problems in the related art, and provide a single-fiber four-way optical transceiver device and an optical module, aiming at realizing miniaturized packaging of the single-fiber four-way high-speed optical transceiver device.
  • the embodiment of the first aspect of the present application provides a single-fiber four-way optical transceiver.
  • the single-fiber four-way optical transceiver includes: an optical port, which is used to install a single-port optical fiber; a transmitting module, which includes a first module for receiving an electrical signal and converting it into a third optical wavelength signal A laser component also includes a second laser component for receiving an electrical signal and converting it into a signal of a fourth optical wavelength;
  • the third optical wavelength signal and the fourth optical wavelength signal are combined and emitted to the optical port, and used to separate the optical signal entering from the optical port into a first optical wavelength signal and a second optical wavelength signal a receiving module
  • the receiving module includes a first detector assembly for receiving the first optical wavelength signal and converting it into an electrical signal, and also includes a first detector assembly for receiving the second optical wavelength signal and converting it into an electrical signal
  • the second detector assembly and a circuit processing unit, the circuit processing unit is communicatively connected to both the transmitting module and the receiving module;
  • the embodiment of the second aspect of the present application further provides an optical module.
  • the optical module includes: the single-fiber four-way optical transceiver device described in any one of the embodiments of the first aspect of the present application; a single-port optical fiber, the end of the single-port optical fiber is located at the optical port, and the single-port optical fiber Connect with the optical module.
  • Figure 1(a) is a schematic diagram of the structural layout of a low-rate two-receiver and two-light emitting transceiver device in the related art
  • Figure 1(b) is a schematic diagram of the structural layout of a high-speed two-receiver and two-light emitting transceiver device in the related art
  • Fig. 2 is a schematic diagram of the principle of a kind of optical transceiver device with two optical ports for two receiving and two sending in the related art
  • Fig. 3 is a schematic diagram of the principle of another optical transceiver device with dual optical ports for two receiving and two sending in the related art
  • FIG. 4 is a schematic diagram of the principle of a single-fiber four-way optical transceiver device in an embodiment of the present application
  • Fig. 5 is a schematic diagram of the structural layout of a single-fiber four-way optical transceiver device in some embodiments of the present application;
  • FIG. 6 is a schematic diagram of the structural arrangement of the optical modules in the single-fiber four-way optical transceiver device in some embodiments of the present application;
  • Fig. 7 is a schematic diagram of the structural arrangement of the optical modules in the single-fiber four-way optical transceiver device in other embodiments of the present application;
  • Fig. 8 is a schematic diagram of the structural arrangement of the optical modules in the single-fiber four-way optical transceiver device in some other embodiments of the present application;
  • Fig. 9 is a schematic diagram of the optical path principle of Fig. 8 (in the dotted line box are the transmitting end and the multiplex optical assembly of the single-fiber four-way optical transceiver device);
  • FIG. 10 is a schematic view of the optical paths of the 45-degree right-angle prism, the first 45-degree parallelogram prism, and the second 45-degree parallelogram prism in FIGS. 8 and 9 .
  • “several” means one or more, “multiple” means at least two, and “above”, “below” and “within” are understood to include the number. If there is a description of "first” or “second” for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The sequence of technical features.
  • the embodiment of the first aspect of the present application provides a single-fiber four-way optical transceiver.
  • Fig. 4 shows the principle of the single-fiber four-way optical transceiver device
  • Fig. 5 shows a form of the structural arrangement of the single-fiber four-way optical transceiver device.
  • the single-fiber four-way optical transceiver device includes an optical port, a transmitting module, an optical module 11 , a receiving module and a circuit processing unit.
  • the optical port is used to install a single-port optical fiber.
  • the external optical signal can enter the optical module 11 through the optical port, and the optical signal converted from the external electrical signal propagates to the outside through the optical module 11 and the optical port in sequence.
  • the optical port is correspondingly formed with an optical channel, and "optical channel” refers to a propagation path of an optical signal passing through the optical port. It is not difficult to understand that the optical channel has an extension direction.
  • the transmitting module serves as the transmitting end and includes two laser components, namely the first laser component 15 and the second laser component 14 .
  • the first laser component 15 is used to receive an electrical signal and convert it into a third optical wavelength signal ⁇ 3
  • the second laser component 14 is used to receive an electrical signal and convert it into a fourth optical wavelength signal ⁇ 4 .
  • Lasers are capable of electrical-optical conversion, generating optical signals after receiving electrical signals.
  • the first laser component 15 and the second laser component 14 can send out optical signals of different wavelengths to the optical module 11 , and the optical module 11 can combine the optical signals. After the optical signal is combined, it can be sent to the optical port, and the optical fiber at the optical port propagates optical signals of different wavelengths outward.
  • the optical module 11 has a wavelength-multiplexing-demultiplexing optical path structure. After the optical signal is processed by splitting and/or multiplexing in the optical module 11, the third optical wavelength signal ⁇ 3 and the fourth optical wavelength signal ⁇ 4 from the transmitting end are multiplexed and sent to the optical port, and the optical signal is transmitted to the optical port.
  • the external optical signal received by the optical port is demultiplexed, that is, separated into the first optical wavelength signal ⁇ 1 and the second optical wavelength signal ⁇ 2 , and the first optical wavelength signal ⁇ 1 and the second optical wavelength signal ⁇ 2 obtained by demultiplexing
  • the optical wavelength signal ⁇ 2 can be detected by the receiving end of the single-fiber four-way optical transceiver device.
  • the receiving module serves as the receiving end and includes a first detector assembly 13 and a second detector assembly 12 .
  • the first detector assembly 13 is used to receive the first optical wavelength signal ⁇ 1 and convert it into an electrical signal
  • the second detector assembly 12 is used to receive the second optical wavelength signal ⁇ 2 and convert it into an electrical signal.
  • the electrical signals converted by the first detector assembly 13 and the second detector assembly 12 are sent to the circuit processing unit for further signal processing.
  • the first detector assembly 13 and the second detector assembly 12 are capable of receiving light reception signals of different wavelengths.
  • the optical signal received by the optical port is propagated to the optical module, and the optical module can separate the optical signal received by the optical port.
  • the separated optical signals are respectively detected by the first detector assembly 13 and the second detector assembly 12 .
  • the receiving positions of each detector assembly are respectively provided with converging lenses, and the received light signals can be converged on the main optical axis after passing through the converging lenses, so that each detector assembly can fully collect the light quantity of the optical signal.
  • the circuit processing unit is communicatively connected with the transmitting module and the receiving module.
  • the circuit processing unit can convert and process the externally input electrical signal and send it to the transmitting module, and convert and process the electrical signal obtained by the photoelectric conversion of the receiving module.
  • the first laser assembly 15 and the second laser assembly 14 are at least arranged at intervals along the first direction n1
  • the first detector assembly 13 and the second detector assembly 12 are at least arranged at intervals along the second direction n2 , thereby facilitating the installation of each laser Components and each detector component.
  • FIG. 1(a) shows that the feasible length dimension of the optical transceiver in this case is A, and the standard limit dimension is B.
  • the 2.5G rate downlink transmission unit is upgraded to a 50G rate transmission unit, it is necessary to increase the TEC temperature control function and place the isolator vertically.
  • adding the TEC temperature control function will lead to an increase in the height and size of the optical transceiver, and the vertical placement of the isolator will increase the
  • Figure 1(b) if the existing single-fiber four-way optical transceiver device adds a TEC temperature control function, that is, adding a TEC temperature control function to TX2, it will result in a single-fiber four-way optical transceiver The device exceeds the original size in the height direction, so that miniaturized packaging cannot be realized; and the laser components and the detector components are arranged at intervals in two directions, even if the TEC temperature control function is added (for example, on a certain laser component) It is also difficult to increase the size of the single-fiber
  • the main difficulty in the miniaturized packaging of single-fiber four-way optical transceivers is how to keep the size in the height direction from exceeding the standard.
  • adding a TEC temperature control function to a certain laser component will not obviously cause The overall size of the single-fiber four-way optical transceiver device is increased.
  • the circuit processing unit includes a first receiving circuit, a second receiving circuit and a conversion circuit.
  • the first receiving circuit is used to receive the electrical signal input from the outside, and the second receiving circuit is used to receive the electrical signal obtained by the photoelectric conversion of the receiving module.
  • the first receiving circuit is connected in communication with the two laser components, and the second receiving circuit is connected in communication with the two detector components.
  • the conversion circuit is used to convert the externally input electrical signal into the first downlink electrical signal and the second downlink electrical signal and then send it to the transmitting module, and is used to convert the electrical signal obtained by the photoelectric conversion of the receiving module into the first uplink electrical signal. signal and the second uplink electrical signal and output them externally.
  • the transmitting module respectively generates a third optical wavelength signal ⁇ 3 and a fourth optical wavelength signal ⁇ 4 according to the first downlink electrical signal and the second downlink electrical signal.
  • the extending direction n of the optical channel is parallel to one of the first direction n1 and the second direction n2 .
  • the extending direction n of the optical channel is parallel to the first direction n1 , or the extending direction n of the optical channel is parallel to the second direction n2 , which can make the structure of the single-fiber four-way optical transceiver more compact.
  • the first direction n 1 is perpendicular to the second direction n 2
  • the first detector assembly 13 and the second detector assembly 12 are both arranged at intervals along the first direction n 1 and along the second direction n 2 Interval arrangement.
  • the first direction n 1 is perpendicular to the second direction n 2
  • the second direction n 2 is parallel to the extending direction n of the optical channel.
  • the first detector assembly 13 and the second detector assembly 12 are located on opposite sides of the optical module 11, and at the same time, the first detector assembly 13 and the second detector assembly 12 are still misplaced and spaced apart, so that they are both along the first The spaced arrangement in direction n1 is also spaced along the second direction n2 .
  • the first detector assembly 13 and the second detector assembly 12 are misplaced and spaced apart, which is beneficial for the optical module 11 to be equipped with enough reflectors to change the propagation direction of the optical signal.
  • FIG. 5 shows that the first detector assembly 13 is farther away from the first laser assembly 15 than the second detector assembly 12 . It can be understood that the first detector assembly 13 may also be closer to the first laser assembly 15 than the second detector assembly 12 .
  • the optical module 11 includes a collimator lens 1020, the optical axis direction of the collimator lens 1020 is parallel to the extension direction n of the optical path channel, so that the optical signal after beam shaping by the collimator lens Able to shoot out at the light port.
  • the optical module 11 further includes a first demultiplexing filter 1017 , a first isolation filter 1019 and a second isolation filter 1016 .
  • the first demultiplexing filter 1017 splits the parallel light beam shaped by the collimating lens 1020 into the first optical wavelength signal ⁇ 1 reflected by the first demultiplexing filter 1017 and the second optical wavelength signal ⁇ 1 transmitted by the first demultiplexing filter 1017.
  • Optical wavelength signal ⁇ 2 the first isolation filter 1019 only allows the transmission of the first optical wavelength signal ⁇ 1 , and the first optical wavelength signal ⁇ 1 transmitted through the first isolation filter 1019 can be received by the first detector assembly 13;
  • the second isolation filter 1016 only allows the second optical wavelength signal ⁇ 2 to transmit, and the second optical wavelength signal ⁇ 2 transmitted through the second isolation filter 1016 can be received by the second detector assembly 12.
  • the optical signal entering through the optical port is shaped by the collimator lens, and then directed to the first demultiplexing filter 1017 to be demultiplexed into a first optical wavelength signal ⁇ 1 and a second optical wavelength signal ⁇ 2 . Subsequently, only the first optical wavelength signal ⁇ 1 is transmitted through the first isolation filter 1019, and only the second optical wavelength signal ⁇ 2 is transmitted through the second isolation filter 1016.
  • the optical signal received by the optical port is subjected to demultiplexing processing to form two separate optical signals, which are respectively detected by the first detector assembly 13 and the second detector assembly 12 .
  • Fig. 6, Fig. 7 and Fig. 8 present at least three optical configuration schemes of the wave splitting optical components. 7 and FIG. 8 involve the same optical configuration schemes related to wave splitting, that is, the first detector assembly 13 is closer to the first laser assembly 15 than the second detector assembly 12, and the direction of the first wave splitting filter 1017 is the same as that of the two The wiring directions of the two detector components are similar.
  • the first detector assembly 13 is farther away from the first laser assembly 15 than the second detector assembly 12 , and the direction of the first wavelength-dividing filter 1017 is also similar to the connection direction of the two detector assemblies.
  • the optical module 11 also includes a first reflection filter 1018 and a second demultiplexing filter 1015, and the first reflection filter 1018 is used to make the reflected
  • the first optical wavelength signal ⁇ 1 is reflected again, and the first isolation filter 1019 only allows the first optical wavelength signal ⁇ 1 reflected by the first reflection filter 1018 to transmit;
  • the second optical wavelength signal ⁇ 2 transmitted by the first wavelength-division filter 1017 is reflected, and the second isolation filter 1016 only allows the second optical wavelength signal ⁇ 2 reflected by the second wavelength-division filter 1015 to transmit.
  • the function of the first reflective filter 1018 and the second demultiplexing filter 1015 is to make the respective propagation directions of the first optical wavelength signal ⁇ 1 and the second optical wavelength signal ⁇ 2 separated by the first demultiplexing filter 1017 pass through The way of reflection is changed, so that the relevant devices at the transmitting end and receiving end are arranged more reasonably, and the compact structure of the single-fiber four-way optical transceiver device becomes possible.
  • the first reflective filter 1018 makes the propagation direction of the first optical wavelength signal ⁇ 1 perpendicular to the extension direction n of the optical path channel
  • the second demultiplexing filter 1015 makes the second optical wavelength
  • the propagation direction of the signal ⁇ 2 is perpendicular to the extension direction n of the optical path channel, so that the two detector components at the receiving end and the two laser components at the transmitting end can be arranged on the short side and long side of the rectangular frame of the single-fiber four-way optical transceiver device side, the layout is compact and reasonable.
  • the optical module 11 also includes a multiplexing optical component.
  • Figure 6 shows the wave combining optics of some embodiments.
  • the multiplexing optical component includes a fifth reflective filter 1014 and a first multiplexing filter 1013 .
  • the fifth reflective filter 1014 is used to reflect the fourth optical wavelength signal ⁇ 4 , so that the propagation direction of the fourth optical wavelength signal ⁇ 4 is perpendicular to the extension direction n of the optical path channel;
  • the first multiplexing filter 1013 is used to transmit the third light
  • the wavelength signal ⁇ 3 reflects the four optical wavelength signals ⁇ 4 , and the transmitted third optical wavelength signal ⁇ 3 and the reflected fourth optical wavelength signal ⁇ 4 are combined.
  • the propagation direction of the fourth optical wavelength signal ⁇ 4 is perpendicular to the extension direction n of the optical channel.
  • Figure 6 also shows that the multiplex optical assembly of the optical module 11 also includes a third reflective filter 1011 and a fourth reflective filter 1012, and the third optical wavelength signal ⁇ 3 passes through the third reflective filter 1011 and the fourth reflective filter in sequence. After being reflected twice by the filter 1012 , it is transmitted through the first multiplexing filter 1013 . Through two reflections of the third reflective filter 1011 and the fourth reflective filter 1012, the propagation direction of the third optical wavelength signal ⁇ 3 after the two reflections can be parallel to the propagation of the third optical wavelength signal ⁇ 3 before the reflection direction, but the propagation paths of the third optical wavelength signal ⁇ 3 and the fourth optical wavelength signal ⁇ 4 are closer to each other, making the structural layout of the single-fiber four-way optical transceiver device more reasonable.
  • FIG. 7 shows wave combining optical components of other embodiments different from those in FIG. 6 .
  • the multiplex optical component includes a sixth reflective filter 1022 and a first multiplex reflective filter 1021 .
  • the sixth reflective filter 1022 is used to reflect the fourth optical wavelength signal ⁇ 4 , so that the propagation direction of the fourth optical wavelength signal ⁇ 4 is perpendicular to the extension direction n of the optical path; the first multiplex reflective filter 1021 is used to transmit the third
  • the optical wavelength signal ⁇ 3 reflects the fourth optical wavelength signal ⁇ 4 , and the transmitted third optical wavelength signal ⁇ 3 and the reflected fourth optical wavelength signal ⁇ 4 are combined.
  • Figure 7 also shows that the multiplex optical assembly of the optical module 11 also includes a second multiplex reflective filter 1023 and a third multiplex reflective filter 1024, the third optical wavelength signal ⁇ 3 and the fourth optical wavelength multiplex signal ⁇ 4 is reflected twice by the second multiplex reflective filter 1023 and the third multiplex reflective filter 1024 respectively, and then is parallel to the extending direction n of the optical channel again.
  • the propagation direction of the third optical wavelength signal ⁇ 3 after the two reflections can be parallel to the third optical wavelength signal before the reflection
  • the propagation direction of ⁇ 3 but the propagation paths of the third optical wavelength signal ⁇ 3 and the fourth optical wavelength signal ⁇ 4 are closer to each other, which makes the structural layout of the single-fiber four-way optical transceiver device more reasonable.
  • FIG. 8 shows the wave combining optical components of some other embodiments different from those in FIG. 6 and FIG. 7 .
  • the wave combining optical assembly includes a 45-degree right-angle prism 1031, a first 45-degree parallelogram prism 1032 and a second 45-degree parallelogram prism 1033.
  • the 45-degree right-angle prism 1031 has two straight sides face and a hypotenuse face;
  • the first 45-degree parallelogram prism 1032 has two parallel first prism faces 10321 and two parallel second prism faces, and the included angle between the first prism face 10321 and the second prism face is 45° degree;
  • the second 45 degree parallelogram prism 1033 has two parallel third prism faces 10333 and 10334 and two parallel fourth prism faces, the angle between the third prism face 10333 and the fourth prism face is 45 degrees;
  • the hypotenuse face of prism 1031 is cemented with the first prism face 10321 of the first 45 degree parallelogram prism 1032, and the second prism face of the first 45 degree parallelogram prism 1032 is connected with the fourth prism of the second 45 degree parallelogram prism.
  • the mirrors are glued together, and the first prism face 10321 is perpendicular to the third prism face 10333 .
  • the combination of the third optical wavelength signal ⁇ 3 and the fourth optical wavelength signal ⁇ 4 can be achieved. wave, and the structural layout of the single-fiber four-way optical transceiver device is more reasonable.
  • the receiving end of the single-fiber four-way optical transceiver device the optical signal is transmitted to the inside of the optical module 11 through the single-port optical fiber.
  • the optical signal is shaped into a parallel light beam by the collimating lens 1020, when it propagates to the first wavelength division filter 1017, the first optical wavelength signal ⁇ 1 is reflected by the first wavelength division filter 1017, and the second optical wavelength signal ⁇ 2 is reflected by the first wavelength division filter 1017.
  • the first demultiplexing filter 1017 transmits.
  • the first optical wavelength signal ⁇ 1 For the first optical wavelength signal ⁇ 1 , it is reflected again when it propagates to the first reflective filter 1018, and the propagation direction of the reflected light is perpendicular to the extending direction n of the optical channel.
  • the first optical wavelength signal ⁇ 1 is received by the first detector assembly 13 after being transmitted through the first isolation filter 1019, wherein the first isolation filter 1019 only allows the first optical wavelength signal ⁇ 1 to pass through, and the optical signals of other wavelengths are isolated;
  • the second optical wavelength signal ⁇ 2 After being transmitted by the first wavelength-division filter 1017, it is reflected by the second wavelength-division filter 1015, and the propagation direction of the reflected light is perpendicular to the extension direction n of the optical path channel.
  • the propagation direction of the light formed after the second optical wavelength signal ⁇ 2 is reflected by the second wavelength-dividing filter 1015, and the propagation direction of the light formed by the first optical wavelength signal ⁇ 1 after the first reflection filter 1018 is reflected, both away from each other.
  • the second optical wavelength signal ⁇ 2 is received by the second detector assembly 12 after being transmitted through the second isolation filter 1016, wherein the second isolation filter 1016 only allows the second optical wavelength signal ⁇ 2 to pass through, and the optical signals of other wavelengths are isolated.
  • the first detector assembly 13 and the second detector assembly 12 are respectively located on opposite sides of the single-fiber four-way optical transceiver.
  • the transmitting end of the single-fiber four-way optical transceiver device for the first laser component 15, it generates the third optical wavelength signal ⁇ 3 , the optical axis direction of the first laser component 15 and the light of the optical port
  • the axis directions are parallel but not coincident.
  • the third optical wavelength signal ⁇ 3 passes through the third reflective filter 1011, and its propagation direction is changed to be perpendicular to the extending direction n of the optical channel.
  • the third optical wavelength signal ⁇ 3 is reflected again by the fourth reflective filter 1012, and the propagation direction is adjusted to be parallel to (even coincident with) the extension direction n of the optical channel.
  • the third optical wavelength signal ⁇ 3 is transmitted through the second demultiplexing filter 1015 and the first demultiplexing filter 1017 in turn, and finally is shaped into a parallel beam by the collimating lens 1020, thereby coupling into the optical fiber for transmission to the outside;
  • the optical axis direction of the second laser component 14 is parallel to but not coincident with the optical axis direction of the optical port.
  • the fourth optical wavelength signal ⁇ 4 passes through the fifth reflective filter 1014, and its propagation direction is changed to be perpendicular to the extending direction n of the optical channel.
  • the fourth optical wavelength signal ⁇ 4 is reflected by the first multiplexing filter 1013, the fourth optical wavelength signal ⁇ 4 is multiplexed with the third optical wavelength signal ⁇ 3 .
  • the fourth optical wavelength signal ⁇ 4 is transmitted through the second demultiplexing filter 1015 and the first demultiplexing filter 1017 in sequence, and finally shaped into a parallel beam by the collimator lens 1020, and then coupled into the optical fiber for transmission to the outside.
  • the receiving end of the single-fiber four-way optical transceiver device the optical signal is transmitted to the inside of the optical module 11 through the single-port optical fiber.
  • the optical signal is shaped into a parallel light beam by the collimating lens 1020, when it propagates to the first wavelength division filter 1017, the first optical wavelength signal ⁇ 1 is reflected by the first wavelength division filter 1017, and the second optical wavelength signal ⁇ 2 is reflected by the first wavelength division filter 1017.
  • the first demultiplexing filter 1017 transmits.
  • the propagation direction evolution of the two can refer to the receiving end of the single-fiber four-way optical transceiver device of the embodiment shown in Figure 6 described above text description.
  • the transmitting end of the single-fiber four-way optical transceiver device for the first laser component 15, it generates the third optical wavelength signal ⁇ 3 , the optical axis direction of the first laser component 15 and the light of the optical port
  • the axis directions are parallel but not coincident.
  • the third optical wavelength signal ⁇ 3 is transmitted through the first multiplex reflective filter 1021, then reflected by the second multiplex reflective filter 1023, and then reflected by the third multiplex reflective filter 1024, and its propagation direction is adjusted to be parallel to (even coincident) the extension direction n of the optical path channel.
  • the third optical wavelength signal ⁇ 3 is transmitted through the second wave-dividing filter 1015 and the first wave-dividing filter 1017 in sequence, and finally shaped into a parallel beam by the collimator lens 1020, so as to be coupled into the optical fiber for external transmission;
  • the optical axis direction of the second laser component 14 is parallel to but not coincident with the optical axis direction of the optical port.
  • the fourth optical wavelength signal ⁇ 4 passes through the sixth reflective filter 1022, and its propagation direction is changed to be perpendicular to the extending direction n of the optical channel. After the fourth optical wavelength signal ⁇ 4 is reflected by the first multiplexing reflection filter 1021, the fourth optical wavelength signal ⁇ 4 is multiplexed with the third optical wavelength signal ⁇ 3 .
  • both the fourth optical wavelength signal ⁇ 4 and the third optical wavelength signal ⁇ 3 are reflected by the second multiplex reflective filter 1023, and then reflected by the third multiplex reflective filter 1024 to adjust their propagation direction to be parallel to (even coincident) the extension direction n of the optical path channel.
  • Both the fourth optical wavelength signal ⁇ 4 and the third optical wavelength signal ⁇ 3 are transmitted through the second demultiplexing filter 1015 and the first demultiplexing filter 1017 in sequence, and are finally shaped into parallel beams by the collimator lens 1020, thereby coupling to Optical fiber for transmission to the outside.
  • the receiving end of the single-fiber four-way optical transceiver device the optical signal is transmitted to the inside of the optical module 11 through the single-port optical fiber.
  • the optical signal is shaped into a parallel light beam by the collimating lens 1020, when it propagates to the first wavelength division filter 1017, the first optical wavelength signal ⁇ 1 is reflected by the first wavelength division filter 1017, and the second optical wavelength signal ⁇ 2 is reflected by the first wavelength division filter 1017.
  • the first demultiplexing filter 1017 transmits.
  • the propagation direction evolution of the two can refer to the receiving end of the single-fiber four-way optical transceiver device of the embodiment shown in Figure 6 described above text description.
  • the transmitting end of the single-fiber four-way optical transceiver for the first laser component 15, it generates the third optical wavelength signal ⁇ 3 , the optical axis direction of the first laser component 15 and the light
  • the directions of the optical axes of the ports are parallel but not coincident.
  • the third light wavelength signal ⁇ 3 is transmitted through the 45-degree right-angle prism 1031, and encounters the glued surface of the 45-degree right-angle prism 1031 and the first 45-degree parallelogram prism 1032 (the glued surface is for the third light wavelength signal ⁇ 3 and the first 45-degree parallelogram prism 1032)
  • Four optical wavelength signals ⁇ 4 are transmitted).
  • the third optical wavelength signal ⁇ 3 is transmitted through the glued surface and then transmitted into the first 45-degree parallelogram prism 1032 .
  • the third optical wavelength signal ⁇ 3 passes through the glued surface of the first 45-degree parallelogram prism 1032 and the second 45-degree parallelogram prism 1033 (this glued surface is for the third optical wavelength signal ⁇ 3 and the fourth optical wavelength signal ⁇ 4 is the total transmission effect), and the transmission enters the second 45-degree parallelogram prism 1033.
  • the third optical wavelength signal ⁇ 3 is totally reflected by the third prism surface 10333 of the second 45-degree parallelogram prism 1033, and the propagation direction of the third optical wavelength signal ⁇ 3 is changed to be perpendicular to the extension direction n of the optical channel.
  • the third optical wavelength signal ⁇ 3 encounters another third prism surface 10334 of the second 45-degree parallelogram prism 1033 and is totally reflected again, and emits the second 45-degree parallelogram along the extension direction n parallel to (even coincident with) the optical path passage
  • the third optical wavelength signal ⁇ 3 of the prism 1033 is transmitted through the second wave-division filter 1015 and the first wave-division filter 1017 in sequence, and finally shaped into a parallel beam by the collimator lens 1020, thereby being coupled into an optical fiber for external transmission;
  • the optical axis direction of the second laser component 14 is parallel to but not coincident with the optical axis direction of the optical port.
  • the fourth optical wavelength signal ⁇ 4 encounters another first prism surface 10321 of the first 45-degree parallelogram prism 1032 for total reflection, and the propagation direction of the fourth optical wavelength signal ⁇ 4 is changed to be perpendicular to the extension direction n of the optical channel.
  • the fourth optical wavelength signal ⁇ 4 encounters the glued surface of the 45-degree rectangular prism 1031 and the first 45-degree parallelogram prism 1032 to generate total reflection again, and is multiplexed with the third optical wavelength signal ⁇ 3 .
  • the fourth optical wavelength signal ⁇ 4 is transmitted through the glued surface of the first 45-degree parallelogram prism 1032 and the second 45-degree parallelogram prism 1033 , and enters the second 45-degree parallelogram prism 1033 .
  • the propagation direction of the fourth optical wavelength signal ⁇ 4 is changed to be parallel to (or even coincide with) the extension direction n of the optical path channel .
  • the propagation direction evolution of the fourth optical wavelength signal ⁇ 4 refer to the above description about the third optical wavelength signal ⁇ 3 .
  • the embodiment of the second aspect of the present application provides an optical module.
  • the optical module includes a single-port optical fiber and a single-fiber four-way optical transceiver device as shown in the above-mentioned embodiments, the end of the single-port optical fiber is located at the optical port, the end of the single-port optical fiber is located at the optical port, and the single-port optical fiber and the optical module 11 phase connections.
  • the optical signal received by the single-port optical fiber enters the optical module 11 of the single-fiber four-way optical transceiver device through the optical port, and the optical signal received by the single-port optical fiber can propagate along the optical path; After multiplexing, the optical signal can also be sent to the optical port through the optical channel.
  • the single-fiber four-way optical transceiver device and optical module provided in the embodiment of the present application have at least the following beneficial effects: through the optical path structure of the multiplexer and splitter inside the optical module, a single optical port can realize two-receive and two-transmit four-way light Requirements for sending and receiving; the first laser component and the second laser component are at least arranged at intervals along the first direction, and the first detector assembly and the second detector assembly are at least arranged at intervals along the second direction, so that the single fiber Even if the TEC temperature control function is added to the four-way optical transceiver device, the overall size of the optical transceiver device will not be greatly increased, which is conducive to miniaturized packaging under high-speed transmission requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例提供了一种单纤四向光收发装置及光模块,其中,所述单纤四向光收发装置包括光口、发射模组、光学模组、接收模组及电路处理单元;所述发射模组包括第一激光器组件及第二激光器组件,所述接收模组包括第一探测器组件及第二探测器组件;所述光学模组用于将第三光波长信号及第四光波长信号合波并射向光口,以及用于将从光口进入的光信号分离为第一光波长信号及第二光波长信号;第一激光器组件及第二激光器组件至少沿第一方向间隔布置,第一探测器组件及第二探测器组件至少沿第二方向间隔布置。

Description

一种单纤四向光收发装置及光模块
相关申请的交叉引用
本申请基于申请号为202111083973.2、申请日为2021年9月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光纤通讯技术领域,例如涉及一种单纤四向光收发装置及光模块。
背景技术
随着5G的发展,用户对于带宽的要求越来越高,因而光纤资源较为紧张。作为能够节省光纤铺设的装置,单纤四向光收发装置受到了用户的青睐。目前市场上较为常见的是一纤多波长的10Gbps低速率光收发器,例如TO封装形式的单纤四向小型SFP+10G COMBO PON OLT光收发器。
然而,随着用户对于高速率光收发器的需求,若继续采用目前已有的光学配置方案,则势必无法实现单纤四向高速率光收发装置的小型化封装,原因如下:
(1).若沿用传统的TO封装方案,将导致单纤四向光收发装置的高度尺寸增加,从而无法满足SFP+。
(2).除了传统TO封装方案,还存在不采用TO封装方案的光学配置方案,但是其有以下弊端:发射单元及接收单元一共需要两个光口完成。发射单元附带了WDM棱镜合波棱镜组,合波后的光信号由一光口输出。接收单元从另一光口输入光波长信号并附带WDM棱镜分波棱镜组,完成分波。如果沿用此种结构实现单纤收发合一,则需要在两光口处额外安置一WDM合分波器组件,不仅结构复杂,还需要在装置中进行光纤的盘纤操作,因而工艺要求也提升。
发明内容
本申请实施例的目的在于至少解决相关技术中存在的技术问题之一,提供一种单纤四向光收发装置及光模块,旨在实现单纤四向高速率光收发装置的小型化封装。
为实现上述目的,本申请第一方面的实施例提供了一种单纤四向光收发装置。所述单纤四向光收发装置,包括:光口,所述光口用于安装单口光纤;发射模组,所述发射模组包括 用于接收电信号并转换为第三光波长信号的第一激光器组件,还包括用于接收电信号并转换为第四光波长信号的第二激光器组件;光学模组,所述光学模组具有合分波光路结构,所述光学模组用于将所述第三光波长信号及所述第四光波长信号合波并射向所述光口,以及用于将从所述光口进入的光信号分离为第一光波长信号以及第二光波长信号;接收模组,所述接收模组包括用于接收所述第一光波长信号并转换为电信号的第一探测器组件,还包括用于接收所述第二光波长信号并转换为电信号的第二探测器组件;以及电路处理单元,所述电路处理单元与所述发射模组以及所述接收模组均通信连接;其中,所述第一激光器组件以及所述第二激光器组件至少沿第一方向间隔布置,所述第一探测器组件以及所述第二探测器组件至少沿第二方向间隔布置。
为实现上述目的,本申请第二方面实施例还提出了一种光模块。所述光模块包括:前述本申请第一方面实施例的任一项所述的单纤四向光收发装置;单口光纤,所述单口光纤的端部位于所述光口,且所述单口光纤与所述光学模组相连接。
本申请的其它特征和优点将在随后的说明书中阐述,并且部分地将从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其它优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
说明书附图用于提供对本申请技术方案的进一步理解,并且构成说明书的一部分。说明书附图与本申请的实施例一同用于解释本申请的技术方案,但是不构成对本申请技术方案的限制。
图1(a)是相关技术中的低速率两收两发光收发装置的结构布置示意图;
图1(b)是相关技术中的高速率两收两发光收发装置的结构布置示意图;
图2是相关技术中具有双光口的两收两发的一种光收发装置的原理示意图;
图3是相关技术中具有双光口的两收两发的另一种光收发装置的原理示意图;
图4是本申请实施例中的单纤四向光收发装置的原理示意图;
图5是本申请一些实施例中的单纤四向光收发装置的结构布置示意图;
图6是本申请一些实施例中的单纤四向光收发装置中光学模组的结构布置示意图;
图7是本申请另一些实施例中的单纤四向光收发装置中光学模组的结构布置示意图;
图8是本申请又一些实施例中的单纤四向光收发装置中光学模组的结构布置示意图;
图9是图8的光路原理示意图(虚线方框中为单纤四向光收发装置的发射端及合波光学组件);
图10是图8及图9中的45度直角棱镜、第一45度平行四边形棱镜以及第二45度平行四边形棱镜三者的光路示意图。
具体实施方式
本部分将详细描述本申请的具体实施例,本申请之若干实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本申请的每个技术特征和整体技术方案,但其不能理解为对本申请保护范围的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如“上”、“下”、“前”、“后”、“左”以及“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请实施例的描述中,“若干”的含义是一个或者多个,“多个”的含义是至少两个,“以上”、“以下”以及“以内”等理解为包括本数。如果有描述到“第一”或“第二”只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请实施例的描述中,除非另有明确的限定,“设置”、“安装”以及“连接”等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
本申请第一方面实施例提供了一种单纤四向光收发装置。图4示出了该单纤四向光收发装置的原理,图5则示出了该单纤四向光收发装置的结构布置的一种形式。请参阅图4及图5,该单纤四向光收发装置包括光口、发射模组、光学模组11、接收模组以及电路处理单元。
光口用于安装单口光纤。外部光信号能够通过光口进入光学模组11,而将外部电信号转换而成的光信号依次经过光学模组11及光口向外部传播。光口对应地形成有光路通道,“光路通道”是指光信号通过光口时的传播路径。不难理解,光路通道具有延伸方向。
对于单纤四向光收发装置而言,发射模组作为发射端,包括两个激光器组件,即第一激光器组件15及第二激光器组件14。第一激光器组件15用于接收电信号并转换为第三光波长信号λ 3,第二激光器组件14用于接收电信号并转换为第四光波长信号λ 4。激光器能够实现电光转换,在接收到电信号后能够生成光信号。第一激光器组件15及第二激光器组件14能够发出不同波长的光信号至光学模组11,光学模组11能够合波各光信号。光信号合波后可射向光口,位于光口的光纤从而向外传播不同波长的光信号。
光学模组11具有合分波光路结构。光信号在光学模组11内经过分波和/或合波的处理后, 源自发射端的第三光波长信号λ 3以及第四光波长信号λ 4被合波并射向光口,由光口传播出去;而光口接收的外部光信号被分波,即被分离为第一光波长信号λ 1以及第二光波长信号λ 2,分波得到的第一光波长信号λ 1以及第二光波长信号λ 2能够被该单纤四向光收发装置的接收端探测得到。
对于单纤四向光收发装置而言,接收模组作为接收端,包括第一探测器组件13以及第二探测器组件12。第一探测器组件13用于接收第一光波长信号λ 1并转换为电信号,第二探测器组件12用于接收第二光波长信号λ 2并转换为电信号。经过第一探测器组件13以及第二探测器组件12转换得到的电信号被传送至电路处理单元进行进一步的信号处理。第一探测器组件13以及第二探测器组件12能够接收不同波长的光接收信号。光口接收的光信号被传播至光学模组,光学模组能够分离由光口接收的光信号。被分离后的各光信号分别被第一探测器组件13以及第二探测器组件12探测得到。各探测器组件的接收位置分别设有汇聚透镜,光接收信号通过汇聚透镜后能够汇聚在主光轴传播,从而各探测器组件能够全面收集光信号的光量。
电路处理单元与发射模组以及接收模组均通信连接。电路处理单元能够将外部输入的电信号转换处理后发送至发射模组,以及将接收模组光电转换得到的电信号进行转换处理。
第一激光器组件15以及第二激光器组件14至少沿第一方向n 1间隔布置,第一探测器组件13以及第二探测器组件12至少沿第二方向n 2间隔布置,由此便于安装各激光器组件及各探测器组件。
请对比图1(a)-(b)及图5,以已有的10G COMBO PON OLT光收发器为例,通常是10G速率下行发射单元带有TEC温控功能,而2.5G速率下行发射单元不带有TEC温控功能(如图1(a)所示,其中TX1为10G速率下行的第一发射单元,TX2为2.5G速率下行的第二发射单元,RX1以及RX2分别为第一接收单元及第二接收单元)。图1(a)示出,这种情况下的光收发器的可行长度尺寸为A,标准限制尺寸为B。如果将2.5G速率下行发射单元升级为50G速率的发射单元,则需要增加TEC温控功能并纵向放置隔离器。然而,对于50G速率的TO-CAN而言,沿用10G COMBO PON OLT光收发器的光学配置方案,增加TEC温控功能将导致光收发器的高度尺寸增加,而隔离器纵向放置将增加光收发器的宽度尺寸,例如如图1(b)所示,已有的单纤四向光收发装置如果增加TEC温控功能,即在TX2上增加TEC温控功能,则将导致单纤四向光收发装置在高度方向上超出原有尺寸,从而无法实现小型化封装;而将各激光器组件与各探测器组件分别沿两个方向间隔布置,即使增加TEC温控 功能(例如,在某一激光器组件上安装TEC温控元件)也很难导致单纤四向光收发装置在高度方向上尺寸的增加。通常单纤四向光收发装置小型化封装的主要难点在于如何使其高度方向尺寸不致超标。采用本申请实施例的单纤四向光收发装置结构布置方案,在由低速率发射单元向高速率发射单元升级的应用场景中,对于某一激光器组件增加TEC温控功能,不会明显地导致单纤四向光收发装置整体尺寸的增加。
除了传统TO封装方案,目前市面上的单纤四向光收发装置多数采用一发一收两个光口结构或外置环形器或WDM光纤盘纤于收发器装置中,如图2及图3所示。请对比图2、图3及图4,本申请实施例的单纤四向光收发装置的另一优势在于其不需要采用两个光模块外置合分波器而占用两个光口资源,进一步地使得整个单纤四向光收发装置的框架尺寸保持不变,有利于小型化。采用单一光口,还能够降低生产成本,简化结构,以及降低对于生产工艺的要求。
电路处理单元包括第一接收电路、第二接收电路以及转换电路。第一接收电路用于接收外部输入的电信号,第二接收电路用于接收由接收模组光电转换得到的电信号。第一接收电路与两个激光器组件通信连接,第二接收电路与两个探测器组件通信连接。
转换电路用于将外部输入的电信号转换为第一下行电信号以及第二下行电信号后发送至发射模组,以及用于将接收模组光电转换得到的电信号转换为第一上行电信号以及第二上行电信号并向外输出。发射模组根据第一下行电信号以及第二下行电信号分别生成第三光波长信号λ 3以及第四光波长信号λ 4
光路通道的延伸方向n与第一方向n 1及第二方向n 2两者之一平行。光路通道的延伸方向n与第一方向n 1平行,或者光路通道的延伸方向n与第二方向n 2平行,能够使得单纤四向光收发装置的结构更为紧凑。
请继续参阅图5,第一方向n 1垂直于第二方向n 2,第一探测器组件13以及第二探测器组件12两者既沿第一方向n 1间隔布置也沿第二方向n 2间隔布置。如图5所示,第一方向n 1垂直于第二方向n 2,第二方向n 2平行于光路通道的延伸方向n。第一探测器组件13以及第二探测器组件12位于光学模组11的相对两侧,同时第一探测器组件13以及第二探测器组件12两者还是错位相隔,因而两者既沿第一方向n 1间隔布置也沿第二方向n 2间隔布置。第一探测器组件13以及第二探测器组件12两者错位相隔,有利于光学模组11配置足够的反射镜片,从而改变光信号的传播方向。应当指出,图5示出,第一探测器组件13相对于第二探测器组件12,更加远离第一激光器组件15。可以理解的是,第一探测器组件13相对于第二探测器 组件12,也可以为更加靠近第一激光器组件15。
请参阅图6、图7及图8,光学模组11包括准直透镜1020,准直透镜1020的光轴方向平行于光路通道的延伸方向n,使得经过准直透镜进行光束整形后的光信号能够对准光口射出。
请参阅图6、图7及图8,光学模组11还包括第一分波滤波片1017、第一隔离滤波片1019以及第二隔离滤波片1016。第一分波滤波片1017使得经准直透镜1020整形后的平行光束分离为被第一分波滤波片1017反射的第一光波长信号λ 1以及被第一分波滤波片1017透射的第二光波长信号λ 2;第一隔离滤波片1019仅允许第一光波长信号λ 1透射,透射通过第一隔离滤波片1019后的第一光波长信号λ 1能够被第一探测器组件13接收;第二隔离滤波片1016仅允许第二光波长信号λ 2透射,透射通过第二隔离滤波片1016后的第二光波长信号λ 2能够被第二探测器组件12接收。通过光口进入的光信号经过准直透镜的光束整形后,射向第一分波滤波片1017而被分波为第一光波长信号λ 1以及第二光波长信号λ 2。随后,仅有第一光波长信号λ 1透射通过第一隔离滤波片1019,仅有第二光波长信号λ 2透射通过第二隔离滤波片1016。
通过这样的光学配置方案,光口接收得到的光信号经过分波处理,形成分离的两路光信号而分别被第一探测器组件13以及第二探测器组件12探测得到。不难看出,图6、图7及图8至少给出了分波光学组件的三种光学配置方案。图7以及图8中涉及分波的光学配置方案相同,都是第一探测器组件13相对于第二探测器组件12更加靠近第一激光器组件15,第一分波滤波片1017的指向与两个探测器组件的连线方向相似。图6中,第一探测器组件13相对于第二探测器组件12更加远离第一激光器组件15,第一分波滤波片1017的指向同样与两个探测器组件的连线方向相似。
请参阅图6、图7及图8,光学模组11还包括第一反射滤波片1018及第二分波滤波片1015,第一反射滤波片1018用于使得经过第一分波滤波片1017反射的第一光波长信号λ 1再次被反射,第一隔离滤波片1019仅允许被第一反射滤波片1018反射的第一光波长信号λ 1透射;第二分波滤波片1015用于使得经过第一分波滤波片1017透射的第二光波长信号λ 2被反射,第二隔离滤波片1016仅允许被第二分波滤波片1015反射的第二光波长信号λ 2透射。第一反射滤波片1018及第二分波滤波片1015的作用在于,使得被第一分波滤波片1017分离后的第一光波长信号λ 1以及第二光波长信号λ 2各自的传播方向通过反射的方式而被改变,从而 更加合理地布置发射端及接收端的相关器件,进而使得单纤四向光收发装置的结构紧凑成为可能。
请继续参阅图6、图7及图8,第一反射滤波片1018使得第一光波长信号λ 1的传播方向垂直于光路通道的延伸方向n,第二分波滤波片1015使得第二光波长信号λ 2的传播方向垂直于光路通道的延伸方向n,从而接收端的两个探测器组件与发射端的两个激光器组件能够布置在单纤四向光收发装置的矩形框架的短边侧与长边侧,布局紧凑合理。
光学模组11还包括合波光学组件。图6给出了一些实施例的合波光学组件。请参阅图6,合波光学组件包括第五反射滤波片1014以及第一合波滤波片1013。第五反射滤波片1014用于反射第四光波长信号λ 4,使得第四光波长信号λ 4的传播方向垂直于光路通道的延伸方向n;第一合波滤波片1013用于透射第三光波长信号λ 3并反射四光波长信号λ 4,经过透射的第三光波长信号λ 3以及经过反射的第四光波长信号λ 4两者被合波。具体地,如图6所示,第四光波长信号λ 4的传播方向垂直于光路通道的延伸方向n。
图6还示出,光学模组11的合波光学组件还包括第三反射滤波片1011以及第四反射滤波片1012,第三光波长信号λ 3依次经过第三反射滤波片1011以及第四反射滤波片1012的两次反射后再透射通过第一合波滤波片1013。通过第三反射滤波片1011以及第四反射滤波片1012的两次反射,能够实现两次反射后的第三光波长信号λ 3的传播方向平行于反射之前的第三光波长信号λ 3的传播方向,但是第三光波长信号λ 3以及第四光波长信号λ 4的传播路径彼此更加靠近,使得单纤四向光收发装置的结构布局更为合理。
图7给出了不同于图6的另一些实施例的合波光学组件。请参阅图7,合波光学组件包括第六反射滤波片1022以及第一合波反射滤波片1021。第六反射滤波片1022用于反射第四光波长信号λ 4,使得第四光波长信号λ 4的传播方向垂直于光路通道的延伸方向n;第一合波反射滤波片1021用于透射第三光波长信号λ 3并反射第四光波长信号λ 4,经过透射的第三光波长信号λ 3以及经过反射的第四光波长信号λ 4两者被合波。
图7还示出,光学模组11的合波光学组件还包括第二合波反射滤波片1023以及第三合波反射滤波片1024,第三光波长信号λ 3及第四光波长合波信号λ 4分别经过第二合波反射滤光片1023及第三合波反射滤光片1024的两次反射后再次与光路通道的延伸方向n平行。通过第二合波反射滤波片1023以及第三合波反射滤波片1024的两次反射,能够实现两次反射后 的第三光波长信号λ 3的传播方向平行于反射之前的第三光波长信号λ 3的传播方向,但是第三光波长信号λ 3以及第四光波长信号λ 4的传播路径彼此更加靠近,使得单纤四向光收发装置的结构布局更为合理。
图8给出了不同于图6及图7的又一些实施例的合波光学组件。请参考图8、图9及图10,合波光学组件包括45度直角棱镜1031、第一45度平行四边形棱镜1032以及第二45度平行四边形棱镜1033。45度直角棱镜1031具有两个直边面与一个斜边面;第一45度平行四边形棱镜1032具有两个平行的第一棱镜面10321与两个平行的第二棱镜面,第一棱镜面10321与第二棱镜面的夹角为45度;第二45度平行四边形棱镜1033具有两个平行的第三棱镜面10333及10334与两个平行的第四棱镜面,第三棱镜面10333与第四棱镜面的夹角为45度;45度直角棱镜1031的斜边面与第一45度平行四边形棱镜1032的第一棱镜面10321胶合粘结,第一45度平行四边形棱镜1032的第二棱镜面与第二45度平行四边形棱的第四棱镜面镜胶合粘结,第一棱镜面10321与第三棱镜面10333垂直。借助于45度直角棱镜1031、第一45度平行四边形棱镜1032以及第二45度平行四边形棱镜1033三者的配合,第三光波长信号λ 3以及第四光波长信号λ 4两者得以实现合波,并且单纤四向光收发装置的结构布局更为合理。
以下结合图6、图7、图8及图9,描述三种光学配置方案的光信号的收发过程。
如图6所示,单纤四向光收发装置的接收端:光信号通过单光口光纤传播至光学模组11内部。光信号经过准直透镜1020被整形成为平行光束后,传播至第一分波滤波片1017时,第一光波长信号λ 1被第一分波滤波片1017反射,第二光波长信号λ 2被第一分波滤波片1017透射。
对于第一光波长信号λ 1而言,其传播至第一反射滤波片1018时被再次反射,反射后形成的光的传播方向垂直于光路通道的延伸方向n。第一光波长信号λ 1透射通过第一隔离滤波片1019后被第一探测器组件13接收,其中第一隔离滤波片1019仅允许第一光波长信号λ 1透射通过,对其它波长的光信号均隔离;
对于第二光波长信号λ 2而言,其被第一分波滤波片1017透射后,经过第二分波滤波片1015反射,反射后形成的光的传播方向垂直于光路通道的延伸方向n。第二光波长信号λ 2经过第二分波滤波片1015反射后形成的光的传播方向,与第一光波长信号经过λ 1第一反射滤波片1018反射后形成的光的传播方向,两者彼此背离。第二光波长信号λ 2透射通过第二隔 离滤波片1016后被第二探测器组件12接收,其中第二隔离滤波片1016仅允许第二光波长信号λ 2透射通过,对其它波长的光信号均隔离。第一探测器组件13以及第二探测器组件12分别位于单纤四向光收发装置的相对两侧。
如图6所示,单纤四向光收发装置的发射端:对于第一激光器组件15而言,其产生第三光波长信号λ 3,第一激光器组件15的光轴方向与光口的光轴方向平行但不重合。第三光波长信号λ 3经过第三反射滤波片1011,其传播方向转变为垂直于光路通道的延伸方向n。第三光波长信号λ 3通过第四反射滤波片1012再次反射,将传播方向调整至平行于(甚至重合)光路通道的延伸方向n。经过第一合波滤波片1013透射后,第三光波长信号λ 3依次经过第二分波滤波片1015及第一分波滤波片1017透射,最后通过准直透镜1020整形成为平行光束,从而耦合至光纤中以向外部传输;
对于第二激光器组件14而言,其产生第四光波长信号λ 4,第二激光器组件14的光轴方向与光口的光轴方向平行但不重合。第四光波长信号λ 4经过第五反射滤波片1014,其传播方向转变为垂直于光路通道的延伸方向n。
第四光波长信号λ 4经过第一合波滤波片1013反射后,第四光波长信号λ 4与第三光波长信号λ 3合波。第四光波长信号λ 4依次经过第二分波滤波片1015及第一分波滤波片1017透射,最后通过准直透镜1020整形成为平行光束,从而耦合至光纤中以向外部传输。
如图7所示,单纤四向光收发装置的接收端:光信号通过单光口光纤传播至光学模组11内部。光信号经过准直透镜1020被整形成为平行光束后,传播至第一分波滤波片1017时,第一光波长信号λ 1被第一分波滤波片1017反射,第二光波长信号λ 2被第一分波滤波片1017透射。
对于第一光波长信号λ 1而言以及第二光波长信号λ 2而言,两者的传播方向演变可参考上文描述的图6所示实施例的单纤四向光收发装置的接收端的文字说明。
如图7所示,单纤四向光收发装置的发射端:对于第一激光器组件15而言,其产生第三光波长信号λ 3,第一激光器组件15的光轴方向与光口的光轴方向平行但不重合。第三光波长信号λ 3透射经过第一合波反射滤波片1021,而后经第二合波反射滤波片1023反射,再经第三合波反射滤波片1024反射,将其传播方向调整至平行于(甚至重合)光路通道的延伸方向n。第三光波长信号λ 3依次经过第二分波滤波片1015及第一分波滤波片1017透射,最后 通过准直透镜1020整形成为平行光束,从而耦合至光纤中以向外部传输;
对于第二激光器组件14而言,其产生第四光波长信号λ 4,第二激光器组件14的光轴方向与光口的光轴方向平行但不重合。第四光波长信号λ 4经过第六反射滤波片1022,其传播方向转变为垂直于光路通道的延伸方向n。第四光波长信号λ 4经过第一合波反射滤波片1021反射后,第四光波长信号λ 4与第三光波长信号λ 3合波。而后,第四光波长信号λ 4与第三光波长信号λ 3两者经第二合波反射滤波片1023反射,再经第三合波反射滤波片1024反射,将其传播方向调整至平行于(甚至重合)光路通道的延伸方向n。第四光波长信号λ 4与第三光波长信号λ 3两者依次经过第二分波滤波片1015及第一分波滤波片1017透射,最后通过准直透镜1020整形成为平行光束,从而耦合至光纤中以向外部传输。
如图8及图9所示,单纤四向光收发装置的接收端:光信号通过单光口光纤传播至光学模组11内部。光信号经过准直透镜1020被整形成为平行光束后,传播至第一分波滤波片1017时,第一光波长信号λ 1被第一分波滤波片1017反射,第二光波长信号λ 2被第一分波滤波片1017透射。
对于第一光波长信号λ 1而言以及第二光波长信号λ 2而言,两者的传播方向演变可参考上文描述的图6所示实施例的单纤四向光收发装置的接收端的文字说明。
如图8及图9所示,单纤四向光收发装置的发射端:对于第一激光器组件15而言,其产生第三光波长信号λ 3,第一激光器组件15的光轴方向与光口的光轴方向平行但不重合。
第三光波长信号λ 3透射经过45度直角棱镜1031,遇到45度直角棱镜1031与第一45度平行四边形棱镜1032两者的胶合面(该胶合面对于第三光波长信号λ 3以及第四光波长信号λ 4都透射)。第三光波长信号λ 3经过胶合面透射后透射进入第一45度平行四边形棱镜1032。而后,第三光波长信号λ 3经过第一45度平行四边形棱镜1032与第二45度平行四边形棱镜1033两者的胶合面(此胶合面对于第三光波长信号λ 3以及第四光波长信号λ 4为全透射作用),透射进入第二45度平行四边形棱镜1033。第三光波长信号λ 3被第二45度平行四边形棱镜1033的第三棱镜面10333全反射,第三光波长信号λ 3的传播方向转变为垂直于光路通道的延伸方向n。第三光波长信号λ 3遇到第二45度平行四边形棱镜1033的另一个第三棱镜面10334再次发生全反射,沿着平行于(甚至重合)光路通道的延伸方向n射出第二45度平行四边形棱 镜1033第三光波长信号λ 3依次经过第二分波滤波片1015及第一分波滤波片1017透射,最后通过准直透镜1020整形成为平行光束,从而耦合至光纤中以向外部传输;
对于第二激光器组件14而言,其产生第四光波长信号λ 4,第二激光器组件14的光轴方向与光口的光轴方向平行但不重合。第四光波长信号λ 4遇到第一45度平行四边形棱镜1032的另一个第一棱镜面10321发生全反射,第四光波长信号λ 4的传播方向转变为垂直于光路通道的延伸方向n。第四光波长信号λ 4遇到45度直角棱镜1031与第一45度平行四边形棱镜1032的胶合面再次产生全反射,并且与第三光波长信号λ 3合波。第四光波长信号λ 4通过第一45度平行四边形棱镜1032与第二45度平行四边形棱镜1033两者的胶合面透射过去,并且进入第二45度平行四边形棱镜1033内。第四光波长信号λ 4分别被第三棱镜面10333及第三棱镜面10334两次全反射变换光路后,第四光波长信号λ 4的传播方向转变为平行于(甚至重合)光路通道的延伸方向n。此后,第四光波长信号λ 4的传播方向演变参考上文关于第三光波长信号λ 3的描述。
本申请第二方面实施例提供了一种光模块。该光模块包括单口光纤以及如上述各实施例中所示的单纤四向光收发装置,单口光纤的端部位于在光口,单口光纤的端部位于光口,且单口光纤与光学模组11相连接。单口光纤接收的光信号通过光口进入单纤四向光收发装置的光学模组11中,单口光纤接收的光信号可沿光路通道传播;同理,单纤四向光收发装置的发射模块产生的光信号在经过合波后,也可经过光路通道射向光口。
本申请实施例提供的单纤四向光收发装置及光模块,至少具有如下有益效果:通过光学模组内部的合分波光路结构,使得单一光口即可实现两收两发的四向光收发需求;所述第一激光器组件及所述第二激光器组件至少沿第一方向间隔布置,所述第一探测器组件及所述第二探测器组件至少沿第二方向间隔布置,使得单纤四向光收发装置即使增加TEC温控功能,也不会大幅地增大光收发装置的整体尺寸,从而有利于高速率传输需求下的小型化封装。
以上是对本申请的若干实施方式进行了具体说明,但本申请创造并不限于所述实施例,熟悉本领域的技术人员在不违背本申请本质的前提下还可做出等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (14)

  1. 一种单纤四向光收发装置,包括:
    光口,所述光口用于安装单口光纤;
    发射模组,所述发射模组包括用于接收电信号并转换为第三光波长信号的第一激光器组件,还包括用于接收电信号并转换为第四光波长信号的第二激光器组件;
    光学模组,所述光学模组具有合分波光路结构,所述光学模组用于将所述第三光波长信号及所述第四光波长信号合波并射向所述光口,以及用于将从所述光口进入的光信号分离为第一光波长信号以及第二光波长信号;
    接收模组,所述接收模组包括用于接收所述第一光波长信号并转换为电信号的第一探测器组件,还包括用于接收所述第二光波长信号并转换为电信号的第二探测器组件;以及
    电路处理单元,所述电路处理单元与所述发射模组以及所述接收模组均通信连接;
    其中,所述第一激光器组件以及所述第二激光器组件至少沿第一方向间隔布置,所述第一探测器组件以及所述第二探测器组件至少沿第二方向间隔布置。
  2. 根据权利要求1所述的单纤四向光收发装置,其中:所述光口对应形成有光路通道,所述光路通道的延伸方向与所述第一方向及所述第二方向两者之一平行。
  3. 根据权利要求2所述的单纤四向光收发装置,其中:所述第一方向垂直于所述第二方向,所述第一探测器组件以及所述第二探测器组件两者既沿所述第一方向间隔布置也沿所述第二方向间隔布置。
  4. 根据权利要求2所述的单纤四向光收发装置,其中:所述光学模组包括准直透镜,所述准直透镜的光轴方向平行于所述光路通道的延伸方向。
  5. 根据权利要求4所述的单纤四向光收发装置,其中:所述光学模组还包括:
    第一分波滤波片,所述第一分波滤波片使得经所述准直透镜整形后的平行光束分离为被所述第一分波滤波片反射的所述第一光波长信号以及被所述第一分波滤波片透射的所述第二光波长信号;
    第一隔离滤波片,所述第一隔离滤波片仅允许所述第一光波长信号透射,透射通过所述第一隔离滤波片后的所述第一光波长信号能够被所述第一探测器组件接收;以及
    第二隔离滤波片,所述第二隔离滤波片仅允许所述第二光波长信号透射,透射通过所述第二隔离滤波片后的所述第二光波长信号能够被所述第二探测器组件接收。
  6. 根据权利要求5所述的单纤四向光收发装置,其中:所述光学模组还包括第一反射滤波片及第二分波滤波片,所述第一反射滤波片用于使得经过所述第一分波滤波片反射的所述 第一光波长信号再次被反射,所述第一隔离滤波片仅允许被所述第一反射滤波片反射的所述第一光波长信号透射;所述第二分波滤波片用于使得经过所述第一分波滤波片透射的所述第二光波长信号被反射,所述第二隔离滤波片仅允许被所述第二分波滤波片反射的所述第二光波长信号透射。
  7. 根据权利要求6所述的单纤四向光收发装置,其中:所述第一反射滤波片使得所述第一光波长信号的传播方向垂直于所述光路通道的延伸方向,所述第二分波滤波片使得所述第二光波长信号的传播方向垂直于所述光路通道的延伸方向。
  8. 根据权利要求5所述的单纤四向光收发装置,其中:所述光学模组还包括:
    第五反射滤波片,所述第五反射滤波片用于反射所述第四光波长信号,使得所述第四光波长信号的传播方向垂直于所述光路通道的延伸方向;以及
    第一合波滤波片,所述第一合波滤波片用于透射所述第三光波长信号并反射所述第四光波长信号,经过透射的所述第三光波长信号以及经过反射的所述第四光波长信号两者被合波。
  9. 根据权利要求8所述的单纤四向光收发装置,其中:所述光学模组还包括第三反射滤波片以及第四反射滤波片,所述第三光波长信号依次经过所述第三反射滤波片以及所述第四反射滤波片两次反射后再透射通过所述第一合波滤波片。
  10. 根据权利要求5所述的单纤四向光收发装置,其中:所述光学模组还包括:
    第六反射滤波片,所述第六反射滤波片用于反射所述第四光波长信号,使得所述第四光波长信号的传播方向垂直于所述光路通道的延伸方向;以及
    第一合波反射滤波片,所述第一合波反射滤波片用于透射所述第三光波长信号并反射所述第四光波长信号,经过透射的所述第三光波长信号以及经过反射的所述第四光波长信号两者被合波。
  11. 根据权利要求10所述的单纤四向光收发装置,其中:所述光学模组还包括第二合波反射滤波片以及第三合波反射滤波片,所述第三光波长及所述第四光波长合波信号分别经过所述第二合波反射滤光片及所述第三合波反射滤光片的两次反射后再次与所述光路通道的延伸方向平行。
  12. 根据权利要求5所述的单纤四向光收发装置,其中:所述光学模组还包括:
    45度直角棱镜,所述45度直角棱镜具有两个直边面与一个斜边面;
    第一45度平行四边形棱镜,所述第一45度平行四边形棱镜具有两个平行的第一棱镜面与两个平行的第二棱镜面,所述第一棱镜面与所述第二棱镜面的夹角为45度;以及
    第二45度平行四边形棱镜,所述第二45度平行四边形棱镜具有两个平行的第三棱镜面与两个平行的第四棱镜面,所述第三棱镜面与所述第四棱镜面的夹角为45度;
    其中,所述45度直角棱镜的斜边面与所述第一45度平行四边形棱镜的所述第一棱镜面胶合粘结,所述第一45度平行四边形棱镜的所述第二棱镜面与所述第二45度平行四边形棱的所述第四棱镜面镜胶合粘结,所述第一棱镜面与所述第三棱镜面垂直。
  13. 根据权利要求1至12中任一项所述的单纤四向光收发装置,其中,所述电路处理单元包括:
    第一接收电路,所述第一接收电路用于接收外部输入的电信号;
    第二接收电路,所述第二接收电路用于接收所述接收模组光电转换得到的电信号;
    转换电路,所述转换电路用于将外部输入的电信号转换为第一下行电信号以及第二下行电信号后发送至所述发射模组,以及用于将所述接收模组光电转换得到的电信号转换为第一上行电信号以及第二上行电信号。
  14. 一种光模块,包括:
    根据权利要求1至13中任一项所述的单纤四向光收发装置;
    单口光纤,所述单口光纤的端部位于所述光口,且所述单口光纤与所述光学模组相连接。
PCT/CN2022/108329 2021-09-14 2022-07-27 一种单纤四向光收发装置及光模块 WO2023040478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111083973.2 2021-09-14
CN202111083973.2A CN115811363A (zh) 2021-09-14 2021-09-14 一种单纤四向光收发装置及光模块

Publications (1)

Publication Number Publication Date
WO2023040478A1 true WO2023040478A1 (zh) 2023-03-23

Family

ID=85482035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108329 WO2023040478A1 (zh) 2021-09-14 2022-07-27 一种单纤四向光收发装置及光模块

Country Status (2)

Country Link
CN (1) CN115811363A (zh)
WO (1) WO2023040478A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174414A (ja) * 2001-12-05 2003-06-20 Nippon Telegr & Teleph Corp <Ntt> 波長多重光伝送モジュール
CN104518831A (zh) * 2013-09-30 2015-04-15 中兴通讯股份有限公司 一种支持两种无源光网络共存的光组件及方法
CN107360481A (zh) * 2017-08-09 2017-11-17 苏州易锐光电科技有限公司 光组件和光线路终端
CN108508547A (zh) * 2018-03-27 2018-09-07 西安奇芯光电科技有限公司 一种基于无源plc光波导技术的combo pon光组件
CN110850533A (zh) * 2019-11-29 2020-02-28 深圳市力子光电科技有限公司 单纤四向光组件及光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174414A (ja) * 2001-12-05 2003-06-20 Nippon Telegr & Teleph Corp <Ntt> 波長多重光伝送モジュール
CN104518831A (zh) * 2013-09-30 2015-04-15 中兴通讯股份有限公司 一种支持两种无源光网络共存的光组件及方法
CN107360481A (zh) * 2017-08-09 2017-11-17 苏州易锐光电科技有限公司 光组件和光线路终端
CN108508547A (zh) * 2018-03-27 2018-09-07 西安奇芯光电科技有限公司 一种基于无源plc光波导技术的combo pon光组件
CN110850533A (zh) * 2019-11-29 2020-02-28 深圳市力子光电科技有限公司 单纤四向光组件及光模块

Also Published As

Publication number Publication date
CN115811363A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN105717589B (zh) 一种单光口多路并行光发射组件
US11405108B2 (en) Multi-channel, bi-directional optical communication module
CN203301489U (zh) 具有多路波长通道的光发射器件、光接收器件及光模块
WO2018170828A1 (zh) 双向光组件、光网络单元、光线路终端和无源光网络系统
US10763987B2 (en) Transceiver with multi-wavelength coexistence
WO2019105113A1 (zh) 光收发器件
CN217639658U (zh) 光收发模块
WO2015023164A1 (ko) 파장 가변형 파장 선택성 필터가 내장되는 광수신 모듈
CN208421302U (zh) 一种单纤双向多波长光收发组件
WO2018098858A1 (zh) 一种用于高速光模块的光分波合波器光口装置
US9910218B2 (en) Optical module and optical network system
CN108732684A (zh) 一种单纤双向多波长光收发组件
JP2022500970A (ja) 単芯双方向光送受信アセンブリ
WO2022057352A1 (zh) 一种单纤双向多通道传输光模块系统
CN206270551U (zh) 一种高速光发射器件
CN109581597A (zh) 一种单纤双向光模块组成的波分复用光传输系统
CN112272927A (zh) 光接收、组合收发组件、组合光模块、通讯装置及pon系统
CN108535820A (zh) 一种多波长共存光模块
CN116243435A (zh) 一种双向光组件及光模块
CN108551372B (zh) 一种多波长空间错位分合波模块
CN104823392B (zh) 一种双向光组件
WO2023040536A1 (zh) 一种单纤多向光收发装置及光模块
WO2023040478A1 (zh) 一种单纤四向光收发装置及光模块
CN109416446A (zh) 一种光收发组件
CN113759473B (zh) 一种收发光组件、电子设备和光通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22868855

Country of ref document: EP

Kind code of ref document: A1