WO2023040336A1 - 一种耐溶剂正渗透复合膜及其制备方法和应用 - Google Patents

一种耐溶剂正渗透复合膜及其制备方法和应用 Download PDF

Info

Publication number
WO2023040336A1
WO2023040336A1 PCT/CN2022/095102 CN2022095102W WO2023040336A1 WO 2023040336 A1 WO2023040336 A1 WO 2023040336A1 CN 2022095102 W CN2022095102 W CN 2022095102W WO 2023040336 A1 WO2023040336 A1 WO 2023040336A1
Authority
WO
WIPO (PCT)
Prior art keywords
forward osmosis
solvent
porous support
support layer
composite membrane
Prior art date
Application number
PCT/CN2022/095102
Other languages
English (en)
French (fr)
Inventor
李砚硕
逯鹏
王玲
吴大朋
Original Assignee
宁波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大学 filed Critical 宁波大学
Publication of WO2023040336A1 publication Critical patent/WO2023040336A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention relates to the technical field of forward osmosis membrane separation, in particular to a solvent-resistant forward osmosis composite membrane and its preparation method and application.
  • forward osmosis technology is widely used in wastewater treatment, seawater desalination and fruit juice concentration and other fields.
  • the existing commercial forward osmosis composite membrane has a three-layer structure: a selective separation layer, a porous support layer, and a non-woven fabric substrate.
  • the porous support layer is mostly made of polysulfone, polyethersulfone and other materials.
  • the raw material has long been dependent on imports, the price is high, and it cannot run stably in an organic solvent environment for a long time, resulting in poor stability in an organic solvent environment.
  • the forward osmosis composite membrane reduces the production cost of the forward osmosis composite membrane so as to facilitate large-scale commercial production and expand the application of forward osmosis in the organic solvent separation process.
  • the technical problem to be solved by the present invention is to provide a solvent-resistant forward osmosis composite membrane and its preparation method and application in view of the deficiencies of the prior art.
  • a solvent-resistant forward osmosis composite membrane which has an upper and lower two-layer composite structure composed of a separation layer and a porous support layer.
  • the material of the separation layer It is polyamide, and the material of the porous support layer is at least one of high-density polyethylene, polytetrafluoroethylene and perfluoroethylene-propylene copolymer.
  • the solvent-resistant forward osmosis composite membrane of the present invention has the characteristics of solvent resistance stability, high porosity, high mechanical strength and the like in the porous support layer, and the separation layer compounded with the porous support layer has solvent resistance stability, high solvent permeability, high solute selectivity and so on.
  • the solvent-resistant forward osmosis composite membrane of the present invention has the characteristics of excellent solvent stability, strong mechanical properties, and long service life, and has good application prospects in the forward osmosis separation process of organic solvents, especially in the forward osmosis separation process of alcohol solvents .
  • the above forward osmosis composite membrane can be stabilized in the following organic solvents for a long time: alcohols, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide or tetrahydrofuran.
  • the preparation method of the above-mentioned solvent-resistant forward osmosis composite membrane comprises the following steps:
  • porous support layer from at least one material selected from high-density polyethylene, polytetrafluoroethylene and perfluoroethylene-propylene copolymer;
  • step 2) carry out hydrophilic modification to the porous support layer obtained in step 1), and clean the surface of the porous support layer after the modification reaction with absolute ethanol and deionized water, then soak the porous support layer after cleaning in isopropyl alcohol In alcohol for 12h, set aside;
  • step 2) Take out the porous support layer obtained in step 2) from isopropanol, put it into a water-solvent mixed solution with a concentration of 3.4wt% m-phenylenediamine and react for 20min, then take out the porous support layer and use an air knife Blow off the excess solution on the surface of the porous support layer, then put the porous support layer into the n-hexane solution of 0.15wt% trimesoyl chloride for 2min, finally take it out and heat-treat it in an oven at 60°C for 20min, to obtain the A forward osmosis composite membrane with a two-layer composite structure composed of a layer and a porous support layer.
  • the water-solvent mixed solution is a water-ethanol mixed solution, a water-methanol mixed solution or a water-isopropanol mixed solution.
  • the organic solvent forward osmosis separation process is a recovery process of alcoholic solvents or a drug concentration process in alcoholic solvents.
  • the present invention has the following advantages: the solvent-resistant forward osmosis composite membrane of the present invention has the characteristics of excellent solvent stability, strong mechanical properties, and long service life.
  • the forward osmosis separation process of organic solvents, especially alcohol It has good application prospects in the forward osmosis separation process of solvent-like solvents and the drug concentration process in alcoholic solvents.
  • the solvent-resistant forward osmosis composite membrane of embodiment 1 has an upper and lower two-layer composite structure composed of a polyamide (PA) separation layer and a high-density polyethylene (PE) porous support layer.
  • the preparation method of this solvent-resistant forward osmosis composite membrane include the following steps:
  • PE high-density polyethylene
  • step 2) Carry out high-voltage corona discharge modification to the porous support layer obtained in step 1), the voltage of corona treatment is between 1 ⁇ 5kv, the treatment time is 3 ⁇ 5min, and the modification is cleaned with absolute ethanol and deionized water. After the surface of the porous support layer after the sexual reaction, soak the cleaned porous support layer in isopropanol for 12 hours, and set aside;
  • step 2) Take out the porous support layer obtained in step 2) from isopropanol, put it into a water-ethanol mixed solution with a concentration of 3.4wt% m-phenylenediamine and react for 20min, then take out the porous support layer and use an air knife Blow off the excess solution on the surface of the porous support layer, then put the porous support layer into the n-hexane solution of 0.15wt% trimesoyl chloride for 2min, finally take it out and heat-treat it in an oven at 60°C for 20min, to obtain the Layer ( ⁇ 100nm) and porous support layer ( ⁇ 10 ⁇ m) is a solvent-resistant forward osmosis PA-PE composite membrane with an upper and lower two-layer composite structure.
  • Test method 1 is: using cross-flow filtration, using absolute ethanol as the raw material solution, and using 1mol L -1 lithium chloride-ethanol solution as the driving solution, the test time is 10h, and the average value is taken from three tests.
  • the test results are as follows: Table 1 shows.
  • Test method 2 is: using cross-flow filtration, using 100ppm oxytetracycline-ethanol solution as the raw material solution, and using 1mol L - 1 lithium chloride-ethanol solution as the driving solution, the test time is 24h, and the average value is taken after three tests , and the test results are shown in Table 2.
  • Solvent-resistant stability test soak the prepared solvent-resistant forward osmosis composite membrane in dimethylformamide (DMF) solvent for 30 days, take it out, and perform performance test again according to test method 2. The test results are shown in Table 3.
  • DMF dimethylformamide
  • the solvent-resistant forward osmosis composite membrane of Example 2 has an upper and lower two-layer composite structure composed of a polyamide (PA) separation layer and a perfluoroethylene-propylene copolymer (FEP) porous support layer.
  • the solvent-resistant forward osmosis composite membrane The preparation method comprises the following steps:
  • a porous support layer is prepared by a commercially known melt extrusion stretching process
  • step 2) Chemically modify the porous support layer obtained in step 1), that is, immerse the FEP porous support layer into a water-ethanol mixed solution of 2g L -1 dopamine, wherein the concentration of ethanol is 10ppm, in an oven at 37°C After reacting for 24 hours, take out the porous support layer, wash the surface of the modified porous support layer with absolute ethanol and deionized water, then soak the cleaned porous support layer in isopropanol for 12 hours, and set aside;
  • step 2) Take out the porous support layer obtained in step 2) from isopropanol, put it into a water-ethanol mixed solution with a concentration of 3.4wt% m-phenylenediamine and react for 20min, then take out the porous support layer and use an air knife Blow off the excess solution on the surface of the porous support layer, then put the porous support layer into the n-hexane solution of 0.15wt% trimesoyl chloride for 2min, finally take it out and heat-treat it in an oven at 60°C for 20min, to obtain the Layer ( ⁇ 150nm) and porous support layer ( ⁇ 30 ⁇ m) composed of upper and lower two-layer composite structure solvent-resistant forward osmosis PA-FEP composite membrane.
  • Test method 1 is: using cross-flow filtration, using absolute ethanol as the raw material solution, and using 1mol L -1 lithium chloride-ethanol solution as the driving solution, the test time is 10h, and the average value is taken from three tests.
  • the test results are as follows: Table 4 shows.
  • Test method 2 is: using cross-flow filtration, using 100ppm oxytetracycline-ethanol solution as the raw material solution, and using 1mol L - 1 lithium chloride-ethanol solution as the driving solution, the test time is 24h, and the average value is taken after three tests , and the test results are shown in Table 5.
  • Solvent-resistant stability test soak the prepared solvent-resistant forward osmosis composite membrane in dimethylformamide (DMF) solvent for 30 days, take it out, and perform performance test again according to test method 2. The test results are shown in Table 6.
  • DMF dimethylformamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种耐溶剂正渗透复合膜,该正渗透复合膜具有由分离层和多孔支撑层构成的上下两层复合结构,所述的分离层的材料为聚酰胺,所述的多孔支撑层的材料为高密度聚乙烯、聚四氟乙烯和全氟乙烯-丙烯共聚物中的至少一种。本发明耐溶剂正渗透复合膜具有溶剂稳定性优异、机械性能强、使用寿命长等特点,能够长期稳定在醇类、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、四氢呋喃等有机溶剂中,在有机溶剂的正渗透分离过程中,尤其是醇类溶剂的正渗透分离过程和醇类溶剂中的药物浓缩过程中具有良好的应用前景。

Description

一种耐溶剂正渗透复合膜及其制备方法和应用 技术领域
本发明涉及正渗透膜分离技术领域,具体是一种耐溶剂正渗透复合膜及其制备方法和应用。
背景技术
正渗透技术作为一项水处理技术,被广泛应用于废水处理、海水淡化和果汁浓缩等领域。但现有商业化的正渗透复合膜为三层结构:选择分离层、多孔支撑层以及无纺布衬底。其中多孔支撑层大多采用聚砜、聚醚砜等材料,该原料长期依赖进口,价格较高,且无法长期在有机溶剂环境下稳定运行,导致其在有机溶剂环境下稳定性差。为了解决现有商业化正渗透复合膜的有机溶剂稳定性差和成本较高等问题,亟需开发一种耐有机溶剂、多孔、成本低、机械性能强的正渗透复合膜,取代现有的商业化正渗透复合膜,降低正渗透复合膜的生产成本,以便于实现大规模的商业化生产,以及拓展有机溶剂分离过程中的正渗透应用。
发明内容
本发明所要解决的技术问题是,针对现有技术的不足,提供一种耐溶剂正渗透复合膜及其制备方法和应用。
本发明解决上述技术问题所采用的技术方案为:一种耐溶剂正渗透复合膜,该正渗透复合膜具有由分离层和多孔支撑层构成的上下两层复合结构,所述的分离层的材料为聚酰胺,所述的多孔支撑层的材料为高密度聚乙烯、聚四氟乙烯和全氟乙烯-丙烯共聚物中的至少一种。
本发明耐溶剂正渗透复合膜,其多孔支撑层具有耐溶剂稳定性、高孔隙率、高机械强度等特点,与多孔支撑层复合的分离层具有耐溶剂稳定性、高溶剂渗透性、高溶质选择性等特点。本发明耐溶剂正渗透复合膜具有溶剂稳定性优异、机械性能强、使用寿命长等特点,在有机溶剂的正渗透分离过程中,尤其是醇类溶剂的正渗透分离过程中具有良好的应用前景。
上述正渗透复合膜能够长期稳定在以下有机溶剂中:醇类、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜或四氢呋喃。
上述耐溶剂正渗透复合膜的制备方法,包括以下步骤:
1)以高密度聚乙烯、聚四氟乙烯和全氟乙烯-丙烯共聚物中的至少一种材料为原料制备多孔支撑层;
2)对步骤1)得到的多孔支撑层进行亲水性改性,并用无水乙醇和去离子水清洗改性反应后的多孔支撑层表面,再将洗净后的多孔支撑层浸泡在异丙醇中12h,备用;
3)将步骤2)得到的多孔支撑层从异丙醇中取出,放入浓度为3.4wt%的间苯二胺的水-溶剂混合溶液中反应20min,再将多孔支撑层取出并利用气刀吹掉多孔支撑层表面多余的溶液,然后将多孔支撑层放入浓度为0.15wt%的均苯三甲酰氯的正己烷溶液中2min,最后取出并在烘箱中60℃热处理20min,即得到具有由分离层和多孔支撑层构成的上下两层复合结构的正渗透复合膜。
作为优选,所述的水-溶剂混合溶液为水-乙醇混合溶液、水-甲醇混合溶液或水-异丙醇混合溶液。
上述耐溶剂正渗透复合膜在有机溶剂正渗透分离过程中的应用。
作为优选,所述的有机溶剂正渗透分离过程为醇类溶剂的回收过程或醇类溶剂中的药物浓缩过程。
与现有技术相比,本发明具有如下优点:本发明耐溶剂正渗透复合膜具有溶剂稳定性优异、机械性能强、使用寿命长等特点,在有机溶剂的正渗透分离过程中,尤其是醇类溶剂的正渗透分离过程和醇类溶剂中的药物浓缩过程中具有良好的应用前景。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1的耐溶剂正渗透复合膜,具有由聚酰胺(PA)分离层和高密度聚乙烯(PE)多孔支撑层构成的上下两层复合结构,该耐溶剂正渗透复合膜的制备方法,包括以下步骤:
1)以高密度聚乙烯(PE)为原料,利用商业已知的湿法或干法工艺制备多孔支撑层;
2)对步骤1)得到的多孔支撑层进行高压电晕放电改性,电晕处理的电压介于1~5kv之间,处理时间为3~5min,并用无水乙醇和去离子水清洗改性反应后的多孔支撑层表面,再将洗净后的多孔支撑层浸泡在异丙醇中12h,备用;
3)将步骤2)得到的多孔支撑层从异丙醇中取出,放入浓度为3.4wt%的间苯二胺的水-乙醇混合溶液中反应20min,再将多孔支撑层取出并利用气刀吹掉多孔支撑层表面多余的溶液,然后将多孔支撑层放入浓度为0.15wt%的均苯三甲酰氯的正己烷溶液中2min,最后取出并在烘箱中60℃热处理20min,即得到具有由分离层(<100nm)和多孔支撑层(<10μm)构成的上下两层复合结构的耐溶剂正渗透PA-PE复合膜。
在25℃下,对所制备的耐溶剂正渗透复合膜进行性能评价。
测试方式1为:采用错流过滤的方式,以无水乙醇为原料液,以1mol L -1的氯化锂-乙醇 溶液为驱动液,测试时长为10h,测试三次取平均值,测试结果如表1所示。
表1
Figure PCTCN2022095102-appb-000001
测试方式2为:采用错流过滤的方式,以100ppm土霉素-乙醇溶液为原料液,以1mol L -1的氯化锂-乙醇溶液为驱动液,测试时长为24h,测试三次取平均值,测试结果如表2所示。
表2
样品 乙醇通量(L m -2h -1) 土霉素截留率(%)
PA-PE膜 1.80±0.08 99.52
耐溶剂稳定性测试:将制备的耐溶剂正渗透复合膜浸泡在二甲基甲酰胺(DMF)溶剂中30天,取出后按测试方式2重新进行性能测试,测试结果如表3所示。
表3
样品 乙醇通量(L m -2h -1) 土霉素截留率(%)
PA-PE膜 2.10±0.11 98.83
实施例2的耐溶剂正渗透复合膜,具有由聚酰胺(PA)分离层和全氟乙烯-丙烯共聚物(FEP)多孔支撑层构成的上下两层复合结构,该耐溶剂正渗透复合膜的制备方法,包括以下步骤:
1)以全氟乙烯-丙烯共聚物(FEP)为原料,利用商业已知的熔融挤出拉伸工艺制备多孔支撑层;
2)对步骤1)得到的多孔支撑层进行化学改性,即:将FEP多孔支撑层浸入到2g L -1的多巴胺的水-乙醇混合溶液中,其中乙醇浓度为10ppm,在烘箱中37℃下反应24h后取出多孔支撑层,用无水乙醇和去离子水清洗改性反应后的多孔支撑层表面,再将洗净后的多孔支撑层浸泡在异丙醇中12h,备用;
3)将步骤2)得到的多孔支撑层从异丙醇中取出,放入浓度为3.4wt%的间苯二胺的水-乙醇混合溶液中反应20min,再将多孔支撑层取出并利用气刀吹掉多孔支撑层表面多余的溶液,然后将多孔支撑层放入浓度为0.15wt%的均苯三甲酰氯的正己烷溶液中2min,最后取出并在烘箱中60℃热处理20min,即得到具有由分离层(<150nm)和多孔支撑层(<30μm) 构成的上下两层复合结构的耐溶剂正渗透PA-FEP复合膜。
在25℃下,对所制备的耐溶剂正渗透复合膜进行性能评价。
测试方式1为:采用错流过滤的方式,以无水乙醇为原料液,以1mol L -1的氯化锂-乙醇溶液为驱动液,测试时长为10h,测试三次取平均值,测试结果如表4所示。
表4
Figure PCTCN2022095102-appb-000002
测试方式2为:采用错流过滤的方式,以100ppm土霉素-乙醇溶液为原料液,以1mol L -1的氯化锂-乙醇溶液为驱动液,测试时长为24h,测试三次取平均值,测试结果如表5所示。
表5
样品 乙醇通量(L m -2h -1) 土霉素截留率(%)
PA-FEP膜 2.80±0.07 98.48
耐溶剂稳定性测试:将制备的耐溶剂正渗透复合膜浸泡在二甲基甲酰胺(DMF)溶剂中30天,取出后按测试方式2重新进行性能测试,测试结果如表6所示。
表6
样品 乙醇通量(L m -2h -1) 土霉素截留率(%)
PA-FEP膜 3.60±0.13 97.63
以上内容仅仅是对本发明的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (6)

  1. 一种耐溶剂正渗透复合膜,其特征在于,该正渗透复合膜具有由分离层和多孔支撑层构成的上下两层复合结构,所述的分离层的材料为聚酰胺,所述的多孔支撑层的材料为高密度聚乙烯、聚四氟乙烯和全氟乙烯-丙烯共聚物中的至少一种。
  2. 根据权利要求1所述的耐溶剂正渗透复合膜,其特征在于,该正渗透复合膜能够长期稳定在以下有机溶剂中:醇类、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜或四氢呋喃。
  3. 权利要求1或2所述的耐溶剂正渗透复合膜的制备方法,其特征在于,包括以下步骤:
    1)以高密度聚乙烯、聚四氟乙烯和全氟乙烯-丙烯共聚物中的至少一种材料为原料制备多孔支撑层;
    2)对步骤1)得到的多孔支撑层进行亲水性改性,并用无水乙醇和去离子水清洗改性反应后的多孔支撑层表面,再将洗净后的多孔支撑层浸泡在异丙醇中12h,备用;
    3)将步骤2)得到的多孔支撑层从异丙醇中取出,放入浓度为3.4wt%的间苯二胺的水-溶剂混合溶液中反应20min,再将多孔支撑层取出并利用气刀吹掉多孔支撑层表面多余的溶液,然后将多孔支撑层放入浓度为0.15wt%的均苯三甲酰氯的正己烷溶液中2min,最后取出并在烘箱中60℃热处理20min,即得到具有由分离层和多孔支撑层构成的上下两层复合结构的正渗透复合膜。
  4. 根据权利要求3所述的制备方法,其特征在于,所述的水-溶剂混合溶液为水-乙醇混合溶液、水-甲醇混合溶液或水-异丙醇混合溶液。
  5. 权利要求1所述的耐溶剂正渗透复合膜在有机溶剂正渗透分离过程中的应用。
  6. 根据权利要求5所述的应用,其特征在于,所述的有机溶剂正渗透分离过程为醇类溶剂的回收过程或醇类溶剂中的药物浓缩过程。
PCT/CN2022/095102 2021-09-18 2022-05-26 一种耐溶剂正渗透复合膜及其制备方法和应用 WO2023040336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111097715.XA CN113828168B (zh) 2021-09-18 2021-09-18 一种耐溶剂正渗透复合膜及其制备方法和应用
CN202111097715.X 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040336A1 true WO2023040336A1 (zh) 2023-03-23

Family

ID=78959807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095102 WO2023040336A1 (zh) 2021-09-18 2022-05-26 一种耐溶剂正渗透复合膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113828168B (zh)
WO (1) WO2023040336A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828168B (zh) * 2021-09-18 2024-01-30 宁波大学 一种耐溶剂正渗透复合膜及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080378A1 (en) * 2010-09-30 2012-04-05 Ravindra Revanur Thin film composite membranes for forward osmosis, and their preparation methods
US20130026091A1 (en) * 2011-07-26 2013-01-31 Hydration Systems, Llc Method to improve forward osmosis membrane performance
CN104548967A (zh) * 2014-12-24 2015-04-29 哈尔滨工业大学 一种高选择性正渗透聚酰胺复合膜的原位制备方法
CN106582315A (zh) * 2016-11-29 2017-04-26 华中科技大学 一种聚酰胺复合膜及其制备方法
CN108295667A (zh) * 2017-01-13 2018-07-20 宁波大学 一种基于大孔径基膜的正渗透复合膜及其制备方法
CN109012241A (zh) * 2018-09-13 2018-12-18 中煤能源研究院有限责任公司 一种具有分离功能的复合正渗透膜及其制备方法
CN112742221A (zh) * 2019-10-29 2021-05-04 珠海恩捷新材料科技有限公司 基于亲水改性聚烯烃微孔基底的正渗透膜及制备方法
CN113828168A (zh) * 2021-09-18 2021-12-24 宁波大学 一种耐溶剂正渗透复合膜及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106621855A (zh) * 2017-01-18 2017-05-10 南京湶膜科技有限公司 反渗透复合膜制备方法及反渗透复合膜
CN112535957B (zh) * 2020-11-10 2021-12-07 同济大学 一种有机溶剂正渗透用带中间层复合膜及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080378A1 (en) * 2010-09-30 2012-04-05 Ravindra Revanur Thin film composite membranes for forward osmosis, and their preparation methods
US20130026091A1 (en) * 2011-07-26 2013-01-31 Hydration Systems, Llc Method to improve forward osmosis membrane performance
CN104548967A (zh) * 2014-12-24 2015-04-29 哈尔滨工业大学 一种高选择性正渗透聚酰胺复合膜的原位制备方法
CN106582315A (zh) * 2016-11-29 2017-04-26 华中科技大学 一种聚酰胺复合膜及其制备方法
CN108295667A (zh) * 2017-01-13 2018-07-20 宁波大学 一种基于大孔径基膜的正渗透复合膜及其制备方法
CN109012241A (zh) * 2018-09-13 2018-12-18 中煤能源研究院有限责任公司 一种具有分离功能的复合正渗透膜及其制备方法
CN112742221A (zh) * 2019-10-29 2021-05-04 珠海恩捷新材料科技有限公司 基于亲水改性聚烯烃微孔基底的正渗透膜及制备方法
CN113828168A (zh) * 2021-09-18 2021-12-24 宁波大学 一种耐溶剂正渗透复合膜及其制备方法和应用

Also Published As

Publication number Publication date
CN113828168A (zh) 2021-12-24
CN113828168B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
Jiang et al. A facile direct spray-coating of Pebax® 1657: Towards large-scale thin-film composite membranes for efficient CO2/N2 separation
CN102755844B (zh) 一种表面离子化改性聚砜超滤膜的制备方法
CN103877871B (zh) 一种复合分离膜、其制备方法及应用
Liu et al. Chitosan/poly (tetrafluoroethylene) composite membranes using in pervaporation dehydration processes
WO2022032730A1 (zh) 一种耐溶剂反渗透复合膜的制备方法
Chen et al. High salt permeation nanofiltration membranes based on NMG-assisted polydopamine coating for dye/salt fractionation
Castro-Muñoz et al. Recent advances in pervaporation hollow fiber membranes for dehydration of organics
WO2019179082A1 (zh) 金属有机框架反渗透膜及其制备方法
Tsai et al. Preparation of polyamide/polyacrylonitrile composite hollow fiber membrane by synchronous procedure of spinning and interfacial polymerization
CN105617882A (zh) 一种壳聚糖修饰氧化石墨烯纳米复合正渗透膜及其制备方法
CN115138344B (zh) 一种聚氨酯-mof材料中空纤维的制备方法及其应用
Hong et al. Integral PVA-PES composite membranes by surface segregation method for pervaporation dehydration of ethanol
Jiang et al. Air plasma assisted spray coating of Pebax-1657 thin-film composite membranes for post-combustion CO2 capture
KR20160026070A (ko) 기체분리막의 제조 방법
WO2023040336A1 (zh) 一种耐溶剂正渗透复合膜及其制备方法和应用
EP3348323A1 (en) Film-forming stock solution for use in non-solvent-induced phase separation methods, and method for producing porous hollow fiber membrane using same
Salehian et al. Two-dimensional (2D) particle coating on membranes for pervaporation dehydration of isopropanol: A new approach to seal defects and enhance separation performance
CN108499361B (zh) 一种孔径可调节的纳米多孔聚合物膜的制备方法
CN110559884A (zh) 一种mil-101@pim-1复合渗透汽化膜及其制备方法和用途
CN108014654B (zh) 一种用于强极性溶剂脱水分离的分子筛膜改性方法
KR101972172B1 (ko) 고기능성 역삼투막 및 그 제조방법
JPS6214916A (ja) ガスを互いに分離するための複合非対称膜の製法
KR20160090535A (ko) 이중층 한외여과 중공사막 및 그 제조방법
CN106964263A (zh) 一种耐溶剂耐污的石墨烯纳滤膜的制备方法及应用
KR101467906B1 (ko) 금속이온 착화합물을 이용한 투과증발막 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE