WO2023039974A1 - 混合系统和混合方法 - Google Patents

混合系统和混合方法 Download PDF

Info

Publication number
WO2023039974A1
WO2023039974A1 PCT/CN2021/124069 CN2021124069W WO2023039974A1 WO 2023039974 A1 WO2023039974 A1 WO 2023039974A1 CN 2021124069 W CN2021124069 W CN 2021124069W WO 2023039974 A1 WO2023039974 A1 WO 2023039974A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
liquid
main
pipeline
branch
Prior art date
Application number
PCT/CN2021/124069
Other languages
English (en)
French (fr)
Inventor
仲跻风
吕亮
张坤
王传博
吴义朋
兰春强
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111082388.0A external-priority patent/CN113600088A/zh
Priority claimed from CN202122233060.6U external-priority patent/CN215901575U/zh
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023039974A1 publication Critical patent/WO2023039974A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/12Interdigital mixers, i.e. the substances to be mixed are divided in sub-streams which are rearranged in an interdigital or interspersed manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/54Mixing liquids with solids wetting solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • B01F25/72Spray-mixers, e.g. for mixing intersecting sheets of material with nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/80Falling particle mixers, e.g. with repeated agitation along a vertical axis
    • B01F25/85Falling particle mixers, e.g. with repeated agitation along a vertical axis wherein the particles fall onto a film that flows along the inner wall of a mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • B01F33/8212Combinations of dissimilar mixers with consecutive receptacles with moving and non-moving stirring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/824Combinations of dissimilar mixers mixing simultaneously in two or more mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2211Amount of delivered fluid during a period
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2213Pressure

Definitions

  • Embodiments of the present disclosure relate to a mixing system and mixing method.
  • Fracturing technology refers to a method of using liquid pressure to form cracks in oil and gas reservoirs in the process of oil or gas production.
  • the specific operation is to use high-pressure and large-displacement pumps and use the principle of liquid pressure transmission.
  • a liquid with a certain viscosity that is, fracturing fluid
  • fracturing fluid is injected into the reservoir at a pressure greater than the absorption capacity of the reservoir, and then sand-filled fractures with a certain geometric size and high conductivity are formed in the formation near the bottom of the well, so that The well achieves the purpose of increasing production.
  • the fracturing fluid is mixed with at least one powder of guar gum powder, polymer, polyacrylamide powder, cellulose and base liquid in a mixing device.
  • a mixing device Including the feed inlet, the liquid inlet and the discharge outlet, wherein the feed inlet is the passage for the guar gum powder to enter, and the liquid inlet is the passage for the base liquid to enter, and the guar gum powder and the base liquid enter the single-form mixing device at the same time , mixed in the inner chamber of the mixing device, after the mixing is completed, the obtained fracturing fluid is discharged from the outlet.
  • the fracturing fluid mixed by the mixing device often has uneven mixing, so that the fracturing fluid often has powder agglomeration (commonly known as fish eyes). These agglomerations not only weaken the fracturing fluid It also reduces the viscosity of the fracturing fluid, which seriously affects the fracturing treatment effect of oil and gas wells. Therefore, how to improve the mixing quality of fracturing fluid and improve the fracturing treatment effect of oil and gas wells is an urgent problem to be solved by those skilled in the art.
  • At least one embodiment of the present disclosure provides a mixing system, including a main pump and at least one mixing device, each of the at least one mixing device includes: a main pipeline, a premixing device and a shearing mixing device, wherein, The liquid inlet end of the main pipeline is in communication with the main pump and configured to deliver the main liquid, the main pipeline includes a first liquid outlet and a second liquid outlet; the input end of the premixing device is connected to the The first liquid outlet end of the main pipeline is connected, and the premixing device is configured to premix the obtained main liquid and obtained powder to obtain a premixed liquid; the shear mixing device is connected to the The output end of the premixing device is communicated to obtain the premixed liquid, and the shear mixing device is provided with a first shear mixed liquid inlet communicated with the second liquid outlet end of the main pipeline to obtain the premixed liquid.
  • the main liquid is such that a mixed liquid is obtained by shear mixing.
  • the shearing mixing device further includes an impeller shearing assembly, and the impeller shearing assembly includes a rotating shaft and at least one shearing unit driven by the rotating shaft. impeller.
  • the liquid outlet direction of the second liquid outlet end is located on a plane perpendicular to the axial direction of the rotation shaft.
  • the shear mixing device includes a second shear mixing liquid inlet configured to obtain the premix liquid, and the second shear mixing liquid inlet
  • the liquid inlet direction is parallel to the axial direction of the rotating shaft; the liquid inlet direction of the first shear mixing liquid inlet is located on a plane perpendicular to the axial direction of the rotating shaft.
  • the number of the first shear mixing liquid inlets is one or more.
  • the liquid outlet direction of the second liquid outlet port is along an axis parallel to the rotation axis.
  • the first shear mixing inlet is in communication with the output end of the premixing device, and the liquid inlet direction of the first shear mixing inlet is along an axis parallel to the axis of rotation.
  • the at least one shearing impeller includes a first shearing impeller and a second shearing impeller, and the first shearing impeller and the second shearing impeller The impellers are respectively arranged coaxially with the rotating shafts.
  • a first stator is provided on the periphery of the first shearing impeller, and the first stator is provided with openings; and/or, the A second stator is provided on the periphery of the second shearing impeller, and the second stator is provided with openings.
  • the shearing mixing device further includes a delivery-type impeller shearing assembly that can have an output pressure greater than 0.04 mpa.
  • the mixing device further includes a control system, a first pressure sensor is arranged on the main pipeline and is configured to monitor the pressure of the main pipeline, The control system is in signal connection with the first pressure sensor and is configured to acquire a pressure signal of the first pressure sensor.
  • a first flow meter is provided on the main pipeline, and the control system is further connected to the first flow meter and configured to acquire the The flow signal of the first flow meter.
  • the input end of the premixing device includes one or more premixing liquid inlets, and the main pipeline is close to the input of the premixing device One side of the end is provided with a first flow control valve.
  • the branch pipeline is provided with a second flow control valve.
  • the mixing device further includes a jet mixing device
  • the jet mixing device includes a jet input end, a drainage input end and a jet output end
  • the jet input end communicated with the output end of the branch pipeline and the injection output end communicates with the input end of the remixing device, so that the output end of the branch pipeline communicates with the input end of the remixing device
  • the The drainage input end communicates with the output end of the mixed liquid delivery pipeline and the injection output end communicates with the input end of the remixing device, so that the output end of the mixed liquid delivery pipeline is connected with the input end of the remixing device
  • the injection input is configured to receive the primary liquid
  • the drainage input is configured to receive the mixed liquid such that the mixed liquid is mixed with the main liquid.
  • the flow area of the jet mixing device is fixed; or, the flow area of the jet mixing device is variable.
  • a mixing system provided in at least one embodiment of the present disclosure further includes: a main mixing tank, a main liquid branch pipeline, and a main pipeline communicating with the main pump, wherein the at least one mixing device includes a plurality of mixing devices , the liquid inlet end of the main pipeline of each mixing equipment in the multiple mixing equipment communicates with the main pump through the main pipeline respectively, and the multiple mixing equipment is arranged in parallel between the main pipeline and the main pipeline.
  • the total mixing tank is connected in series with the plurality of mixing equipment and the main liquid branch pipeline respectively, the main liquid branch pipeline is arranged in parallel with the plurality of mixing equipment and the main liquid branch
  • the pipeline is arranged between the main pipeline and the main mixing tank, and the liquid inlet end of the main liquid branch pipeline is communicated with the main pipeline to obtain the liquid provided by the main pump and flowing through the main pipeline.
  • Main liquid, the main liquid branch pipeline includes at least one main liquid branch liquid outlet, each of the at least one main liquid branch liquid outlet is respectively connected to at least one of the plurality of mixing devices An at least partial confluence arrangement of the shear mixing outlet and the intermediate piping of the overall mixing tank.
  • a mixing system provided in at least one embodiment of the present disclosure further includes a first confluence device and a second confluence device, wherein the at least one liquid outlet of the main liquid branch includes the first main liquid branch liquid outlet,
  • the multiple mixing devices include more than two first mixing devices, the shear mixing output ports of the two or more first mixing devices are respectively communicated with different input ends of the first confluence device, and the first The output end of a confluence device and the outlet end of the first main liquid branch are respectively communicated with different input ends of the second confluence device, and the output end of the second confluence device is connected to the input port of the total mixing tank. end connection.
  • a mixing system provided by at least one embodiment of the present disclosure further includes at least one third confluence device, wherein the at least one main liquid branch liquid outlet includes at least one second main liquid branch liquid outlet, so
  • the multiple mixing devices include at least one second mixing device, the at least one second main liquid branch liquid outlet corresponds to the at least one third confluence device one by one, and the at least one third confluence device is in one-to-one correspondence with the at least one third confluence device
  • the at least one second mixing device corresponds one by one, and the shear mixing output port of each of the at least one second mixing device is respectively communicated with different input ends of the corresponding third confluence device, and the at least one third confluence device
  • the output of each of the devices communicates with the input of the general mixing tank respectively.
  • the at least one second main liquid branch liquid outlet is more than two second main liquid branch liquid outlets
  • at least one second mixing The equipment is more than two second mixing devices
  • the at least one third confluence device is two or more third confluence devices
  • the two or more second main liquid branch outlets are connected to the two or more
  • each of the two or more third converging devices is respectively connected to the input end of the general mixing tank through a static mixer.
  • a mixing system provided in at least one embodiment of the present disclosure further includes a fourth confluence device, wherein the output ends of each of the two or more third confluence devices are different from those of the fourth confluence device.
  • the input end of the fourth converging device is communicated with the input end of the general mixing tank.
  • the output end of the fourth confluence device is connected to the input end of the general mixing tank through a static mixer.
  • one or more of the first confluence device, the second confluence device, the third confluence device, and the fourth confluence device respectively include at least one of the following: three-way, static mixer, jet mixer, swirl mixer, diffusion mixer, mixing tank, coil type mixing device.
  • At least one of a second flow meter and a second pressure sensor is arranged on the main pipeline.
  • a tank liquid level monitor is arranged in the master mixing tank.
  • At least one embodiment of the present disclosure also provides a mixing method based on any of the mixing systems described above, including: starting the main pump, and supplying the mixing device with the The main liquid; the premixing device obtains the powder and also obtains the main liquid from the main pipeline; the premixing device premixes the main liquid and the powder to obtain a premixed liquid; The shear mixing device obtains the premixed liquid from the output end of the premixing device, and obtains the main liquid through the first shear mixing liquid inlet; the shear mixing device obtains the mixed liquid through shear mixing And deliver the mixed solution.
  • FIG. 1 is a schematic diagram of a mixing system provided by some embodiments of the present disclosure
  • FIG. 2 is a partial schematic diagram of a shear mixing device provided by some embodiments of the present disclosure
  • Fig. 3 is a partial schematic diagram of a shear mixing device provided by some other embodiments of the present disclosure.
  • Fig. 4 is a partial schematic diagram of a double impeller shearing assembly provided by some embodiments of the present disclosure
  • Fig. 5 is a partial schematic diagram of a double-impeller shearing assembly provided by some other embodiments of the present disclosure
  • FIGS. 6 to 11 are schematic diagrams of mixing systems provided by some embodiments of the present disclosure.
  • FIGS. 12-12A are layout diagrams of a mixing system provided by some embodiments of the present disclosure including multiple mixing devices;
  • Fig. 13 is a layout diagram of the secondary confluence setting of the branches where multiple mixing devices are located and the liquid supply branch of the suction pump in the mixing system provided by some embodiments of the present disclosure;
  • Fig. 14 is a layout diagram of the first-stage confluence setting of the branches where multiple mixing devices are located in the mixing system provided by some embodiments of the present disclosure and the liquid supply branch of the suction pump;
  • FIGS. 15-16 are layout diagrams of two-stage confluence setting of branches where multiple mixing devices are located in the mixing system provided by other embodiments of the present disclosure and the liquid supply branch of the suction pump respectively.
  • the jet mixer is used to complete the water-powder mixing.
  • the water supply pressure is high enough and kept constant, so as to ensure the normal operation of the jet mixer.
  • jet mixers tend to introduce a large amount of air, which in some cases can lead to foaming and also have adverse effects on chemicals, such as oxidation reactions.
  • the jet flow depends on the pressure of the water supply. When the water supply pressure fluctuates, it will easily affect the stability of the liquid supply of the jet mixer, resulting in the instability of the jet flow velocity and affecting the mixing effect of powder and liquid.
  • the inventors of the present disclosure have discovered that during operations such as polymer flooding and fracturing stimulation in oilfields, it is necessary to mix polyacrylamide polymers with water to form a working fluid, and the mixed glue is used for displacement of oil and gas resources , production increase, replacement; the core component required for the above operations is a mixer capable of mixing water and powder to form a uniform solution.
  • the core component required for the above operations is a mixer capable of mixing water and powder to form a uniform solution.
  • the inventors of the present disclosure have also found that, using common stirring and shearing methods, such as existing shear pumps, there is usually only one liquid inlet and the liquid inlet is only used to obtain the required liquid to be mixed.
  • common stirring and shearing methods such as existing shear pumps
  • the liquid inlet is only used to obtain the required liquid to be mixed.
  • the inventors of the present disclosure also found that the discharge capacity of the existing shear pumps is relatively weak, and there is no shear pump with the main function of conveying. When the water flow is large, the problem of being unable to discharge the mixed liquid in time is likely to occur. When the powder used has high adhesion and is prone to agglomeration and adhesion, it is easy to cause problems such as accumulation, agglomeration, and adhesion, so that the liquid preparation process cannot be completed well.
  • At least one embodiment of the present disclosure provides a mixing system, including a main pump and at least one mixing device, each of the at least one mixing device includes a main pipeline, a premixing device, and a shearing mixing device.
  • the liquid inlet end of the main pipeline is in communication with the main pump and is configured to deliver the main liquid
  • the main pipeline includes a first liquid outlet and a second liquid outlet.
  • the input end of the premixing device communicates with the first liquid outlet end of the main pipeline, and the premixing device is configured to premix the obtained main liquid and obtained powder to obtain a premixed liquid.
  • the shear mixing device is communicated with the output end of the premixing device to obtain the premix liquid, and the shear mixing device is provided with a first shear mixing liquid inlet communicated with the second liquid outlet end of the main pipeline to obtain the main liquid, so that through Shear mixing yields a mixed liquor.
  • the mixing system of the above embodiments of the present disclosure uses a premixing device for premixing before mixing by a shearing mixing device, which improves the mixing effect of powder and liquid.
  • the shear mixing device can not only obtain the premixed liquid output from the premixing device for further mixing, but also directly obtain the main liquid circulating in the main pipeline, which can be used for various other purposes.
  • the internal structure of the shearing mixing device can be better washed to prevent adhesion, and the liquid volume can be increased, the concentration can be reduced, and the fluidity of the liquid can be increased.
  • it can also help the impeller in the shearing mixing device to be more immersed in the liquid, which reduces the contact between the impeller and the air, thereby reducing the occurrence of cavitation, so that the liquid preparation process can be better completed.
  • FIG. 1 is a schematic diagram of a mixing system provided by some embodiments of the present disclosure.
  • the mixing system provided by at least one embodiment of the present disclosure includes a main pump 100 (the main pump 100 can be regarded as a main liquid supply part or a base liquid supply part) and at least one mixing device 200 (in FIG. 1 only One mixing device is shown as an example), each of the at least one mixing device 200 includes a mains pipeline 210, a premixing device 220 and a shear mixing device 230, respectively.
  • the liquid inlet end of the main road pipeline 210 communicates with the main pump 100 and the main road pipeline 210 is configured to transport the main liquid (also referred to as base liquid), and the main road pipeline 210 includes a first liquid outlet end 211 and the second liquid outlet end 212.
  • the input end of the premixing device 220 communicates with the first liquid outlet 211 of the main pipeline 210, and the premixing device 220 is configured to premix the obtained main liquid and obtained powder to obtain a premixed liquid.
  • the shear mixing device 230 communicates with the output end of the premixing device 220 to obtain the premixed liquid, and the shear mixing device 230 is provided with a first shear mixing liquid inlet 231 communicating with the second liquid outlet 212 of the main pipeline 210 to The main liquid is obtained such that a mixed liquid is obtained by shear mixing.
  • FIG. 1 is only a simple and intuitive drawing diagram for the convenience of readers' understanding, and is not intended to limit the embodiments of the present disclosure.
  • the first shear mixing liquid inlet 231 shown in FIG. 1 is only for illustration, and it represents an opening at any position on the shear mixing device 230 that communicates with the second liquid outlet end 212 of the main pipeline 210, Moreover, the position where the output end of the premixing device 220 is connected to the shearing mixing device 230 in FIG. 1 is only for illustration, and is not limited to the embodiments of the present disclosure.
  • Figures 2 to 5 below show schematic diagrams of specific embodiments of the present disclosure. In these embodiments, specific exemplary designs are used to illustrate the shear mixing device 230, the premixing device 220, and the main road of the present disclosure. Pipeline 210 and other structures.
  • the mixing device 200 includes a storage device 400 and a conveyor 300 , and the storage device 400 is configured to store powder.
  • the feeder 300 is configured to deliver the powder from the storage device 400 to the premixing device 220 .
  • the shear mixing device 230 also includes an impeller shear assembly 232, and the impeller shear assembly 232 includes a rotating shaft 2031 and at least one shearing impeller 2032 driven by the rotating shaft 2031 (only shown in Figure 1 A shear impeller as an example).
  • Fig. 2 is a partial schematic diagram of a shear mixing device provided by some embodiments of the present disclosure.
  • the liquid outlet direction of the second liquid outlet port 212 is located on a plane perpendicular to the axial direction of the rotation shaft 2031 .
  • the shear mixing device 230 includes a second shear mixing liquid inlet 233 and the second shear mixing liquid inlet 233 is configured to obtain the premix liquid, and the liquid inlet direction of the second shear mixing liquid inlet 233 parallel to the axial direction of the rotating shaft 2031 .
  • the liquid inlet direction of the first shear mixing liquid inlet 231 is located on a plane perpendicular to the axial direction of the rotation shaft 2031 .
  • the number of the first shear-mixing liquid inlet 231 may be one or multiple, which may be determined according to actual conditions, and the present disclosure is not limited thereto.
  • the multiple first shear mixing liquid inlets 231 may be arranged around the circumference of the housing of the shear mixing device 230 .
  • the first shear mixing liquid inlet 231 can be used as an auxiliary liquid inlet, which can flush the impeller shear assembly 2032 in the shear mixing device 230 to prevent adhesion, and can also increase the liquid volume and reduce the Concentration, dilute the mixture, increase the fluidity of the liquid.
  • first shear-mixing liquid inlet and the second shear-mixing liquid inlet are intended to distinguish the two shear-mixing liquid inlets, rather than the two shear-mixing liquid inlets themselves limits.
  • Fig. 3 is a partial schematic diagram of a shear mixing device provided by some other embodiments of the present disclosure.
  • the liquid outlet direction of the second liquid outlet port 212 is along the axis parallel to the rotation axis 2031 .
  • the first shear mixing liquid inlet 231 communicates with the output end of the premixing device 220 , and the liquid inlet direction of the first shear mixing liquid inlet 231 is along the axial direction parallel to the rotation axis 2031 .
  • the example of FIG. 3 can be changed by changing the relative positions of the premixing device 220 and the impeller 2032 so that the impeller 2032 is more submerged in the liquid in the shear mixing device 230 or completely submerged in the liquid. In the liquid in the shear mixing device 230, the contact between the impeller 2032 and the air is reduced, thereby reducing the occurrence of cavitation.
  • the communication involved in some embodiments of the present disclosure refers to the connection relationship between two components that allows the corresponding liquid to flow smoothly, for example, the two components may be directly connected or indirectly connected or provided with other intermediate pieces or There is a relatively small interval between them, as long as the smooth flow of liquid can be satisfied, which is not limited in the present disclosure, and will not be repeated here.
  • the shear mixing device 230 also includes a conveying-type impeller shearing assembly that can have an output pressure greater than 0.04mpa.
  • the conveying-type impeller shearing assembly can adopt a double-impeller shearing assembly to enhance its outward discharge.
  • the function of forming a shearing mixing device 230 mainly for transportation can also avoid problems such as easy adhesion, accumulation, and agglomeration, and is beneficial to improve the mixing effect of powder and liquid.
  • the delivery-type impeller shearing assembly with an output pressure greater than 0.04mpa is not limited to the double impeller shearing assembly, and may also be impeller shearing assemblies of other structures and configurations, which are not exhaustive here. and repeat.
  • Fig. 4 is a partial schematic diagram of a double impeller shearing assembly provided by some embodiments of the present disclosure.
  • Fig. 5 is a partial schematic diagram of a double-impeller shearing assembly provided by some other embodiments of the present disclosure.
  • At least one shearing impeller 2032 includes a first shearing impeller 2032 a and a second shearing impeller 2032 b, and the first shearing impeller 2032 a and the second shearing impeller 2032 b are connected to the rotating shaft 2031 respectively. coaxial setting. It can be seen that, after passing through the first shearing impeller 2032a and then further mixing through the second shearing impeller 2032b, the mixing effect of powder and liquid is improved, and at the same time, the second shearing impeller 2032b can enhance the effect of outward discharge.
  • the periphery of the first shearing impeller 2032a is provided with a first stator 2033a, and the first stator 2033a is provided with openings (such as mesh holes, bar holes, round holes, square holes, one or more of the oblong holes).
  • openings such as mesh holes, bar holes, round holes, square holes, one or more of the oblong holes.
  • the periphery of the second shearing impeller 2032b may also be provided with a second stator (not shown) according to actual needs and the second stator is provided with openings (mesh holes, bar holes, round holes, square holes, oblong holes) one or more of the holes).
  • impeller shearing assembly 232 of the shearing mixing device 230 in the above-mentioned embodiments of the present disclosure is not limited to include one shearing impeller or two shearing impellers, but may also be more than three shearing impellers, and each The arrangement of the shearing impellers is also not limited, and can be freely adjusted according to actual applications, which will not be repeated in this disclosure.
  • stator corresponding to the first shearing impeller 2032a and/or the second shearing impeller 2032b
  • the stator (such as the first stator and/or the second stator) It can be single-layer, multi-layer, or other reasonable forms, which will not be repeated here.
  • the forms of the first shearing impeller 2032a and/or the second shearing impeller 2032b are one or more of the following: blade type, tooth type, blade-tooth combination type, and centrifugal impeller type. This is merely exemplary and not limiting of the present disclosure.
  • 6 to 11 are schematic diagrams of mixing systems provided by some embodiments of the present disclosure.
  • the mixing equipment also includes a control system (not shown), the main road pipeline 210 is provided with a pressure sensor 250 and the pressure sensor 250 is configured to monitor the pressure of the main road pipeline 210, the control system and the pressure sensor 250 signal connection and the control system is configured to obtain the pressure signal of the pressure sensor 250 to check the pressure on the main pipeline 210 to ensure sufficient liquid supply to the shear mixing device.
  • a control system not shown
  • the main road pipeline 210 is provided with a pressure sensor 250 and the pressure sensor 250 is configured to monitor the pressure of the main road pipeline 210
  • the control system and the pressure sensor 250 signal connection and the control system is configured to obtain the pressure signal of the pressure sensor 250 to check the pressure on the main pipeline 210 to ensure sufficient liquid supply to the shear mixing device.
  • control system can preset a pressure value, by controlling the rotation speed of the main pump 100, etc., so that the value measured by the pressure sensor 250 is within the preset allowable range, so that the liquid supply of the shearing mixing device 230 is sufficient, which is consistent with the preset pressure value.
  • the operating conditions are similar.
  • a flow meter 240 is also provided on the main pipeline 210 , and the control system is also connected to the flow meter 240 and configured to obtain a flow signal of the flow meter 240 .
  • control system monitors the pressure and flow through the pipeline by acquiring the pressure signal of the pressure sensor 250 and the flow signal of the flowmeter 240, and judges whether they meet the requirements, and uses the execution module of the control system to control
  • the rotation speed of the main pump is to ensure that the liquid entering the main pump has a certain flow rate or flow rate, so as to avoid cavitation caused by insufficient liquid supply.
  • the feeder 300 may be a screw feeder, a star feeder, or a gate or the like. This is exemplary only and not limiting of the present disclosure.
  • a sensor (another sensor different from the above-mentioned pressure sensor 250) can be set to measure the rotation speed or opening of the feeder 300, etc. After obtaining the corresponding information of the sensor through the control system detection, set the Calculate the powder addition rate based on the proportioning ratio, the flow rate actually measured by the flowmeter 240, etc., and combine the conveying efficiency coefficient, density, unit speed or the conveying speed corresponding to the scale to control the corresponding conveying actuator to reach the corresponding speed or open Degree, etc., so that the actual output of powder is constantly approaching the required amount of addition.
  • a weight sensor (not shown) is arranged in the storage device 400, and the weight sensor is configured to monitor the weight value of the powder in the storage device 400 in real time, and the control system is connected with the weight sensor signal to obtain the weight sensor Monitor the resulting weight value.
  • a flow control valve 260 is provided on the main pipeline 210 near the input end of the premixing device 220, and the flow control valve 260 is configured to adjust the flow so that the flow entering the premixing device 220 is appropriate, thereby Create the desired flow effect.
  • the input end of the premixing device 220 includes a premixing liquid inlet or a plurality of premixing liquid inlets.
  • the input end of the premixing device 220 includes a premixing liquid inlet 221 .
  • the input end of the premixing device 220 includes two premixing liquid inlets, namely a premixing liquid inlet 221a and a premixing liquid inlet 221b. This is only exemplary and not a limitation of the present disclosure.
  • the input end of the premixing device 220 of the present disclosure may also include more than three premixing liquid inlets, and the present disclosure is not limited to the premixing inlet from the premixing device 220.
  • the direction of the liquid entering the liquid port is not limited, that is, the disclosure does not limit the liquid outlet direction of the first liquid outlet 211, for example, the liquid outlet direction of the first liquid outlet 211 can be aligned with the axial direction of the rotating shaft 2031. Any angle can also be any direction on the plane perpendicular to the rotation axis 2031 , and these aspects can be freely adjusted according to actual needs, and will not be repeated here.
  • the mixing device 200 further includes a mixed liquid delivery pipeline 270 , a remixing device 280 and a branch pipeline 290 .
  • the input end of the mixed liquid delivery pipe 270 communicates with the shear mixing output port 234 of the shear mixing device 230 to deliver the mixed liquid output from the shear mixing output port 234 .
  • the output end of the mixed liquid delivery pipe 270 communicates with the input end of the remixing device 280 .
  • the input end of the branch pipeline 290 communicates with the third liquid outlet 213 of the main pipeline 210 , and the output end of the branch pipeline 290 communicates with the input end of the remixing device 280 . Therefore, in some embodiments of the present disclosure, the overall flow rate is increased by adding the branch pipeline 290, and further mixing is achieved through the remixing device 280, so that the liquid and the powder can be fully mixed.
  • the main liquid in the branch pipe 290 and the mixed liquid passing through the mixed liquid delivery pipe 270 merge and then enter the remixing device 280 together.
  • the remixing device 280 can be a tee (eg, a Y or T tee), a static mixer, a jet mixer, a swirl mixer, a diffuser mixer, a mixing tank, a coil mixing device. One or more of them are connected in parallel or in series. This is merely exemplary and not limiting of the present disclosure.
  • the position where the main liquid of the branch pipe 290 and the mixed liquid passing through the mixed liquid delivery pipe 270 merge may be a tee (such as a Y-shaped or T-shaped tee), a static mixer, a jet mixer, a cyclone
  • a tee such as a Y-shaped or T-shaped tee
  • static mixer such as a static mixer
  • jet mixer such as a jet mixer
  • a cyclone One or more of flow mixers, diffusion mixers, mixing tanks, and coil mixing devices are connected in parallel or in series. This is merely exemplary and not limiting of the present disclosure.
  • a flow control valve 261 is provided on the branch pipeline 290 .
  • Some embodiments of the present disclosure use the flow control valve 261 to adjust the flow of the branch pipeline 290 (for example, adjust the flow by adjusting the opening of the valve), and control the proportion of the powder through the speed of the feeder 300, thereby ensuring that the liquid and powder
  • the ratio of the raw materials is such that the main liquid flowing through the flow control valve 261 of the branch pipe 290 and the mixed liquid output from the mixed liquid delivery pipe 270 enter the remixing device 280 together.
  • the mixing device 200 further includes a jet mixing device 201 , and the jet mixing device 201 includes a jet input end 2011 , a drainage input end 2012 and a jet output end 2013 .
  • injection input 2011 communicates with the output of branch conduit 290 and injection output 2013 communicates with the input of remixing device 280 such that the output of branch conduit 290 communicates with the input of remixing device 280 .
  • the drainage input end 2012 communicates with the output end of the mixed liquid delivery pipe 270 and the injection output end 2013 communicates with the input end of the remixing device 280 , so that the output end of the mixed liquid delivery pipe 270 communicates with the input end of the remixing device 280 .
  • the jet input 2011 is configured to take the main liquid and the drainage input 2012 is configured to take the mixed liquid, so that the mixed liquid is mixed with the main liquid inside the jet mixing device 201 .
  • the flow area of jet mixing device 201 is fixed.
  • the pressure sensor 250 and the control system on the main pipeline 210 combined with the speed regulation of the main pump 100, ensure that the cross-sectional area of the pipeline is constant.
  • the flow rate of the liquid sprayed into the nozzle of the input port 2011 is also constant.
  • the jet mixing device 201 has a variable flow area.
  • the jet mixing device 201 includes a variable-section pipeline and a flow adjustment assembly, through which the flow at the input end of the variable-section pipeline is adjusted.
  • the flow adjustment assembly includes a reciprocating movable member and a driving member that can drive the movable member to move , the conical surface of the moving part is set corresponding to the conical surface of the variable-section pipeline, so as to adjust the flow rate at the input end of the variable-section pipeline.
  • the adjustment of the flow rate can be realized by adjusting the flow area of the jet mixing device 201, and the mixing of the two liquids within a certain flow range can be completed.
  • the specific form of the jet mixing device 201 with a variable flow area is not the focus of the description in this disclosure, as long as it is a jet mixing device 201 with a variable flow area, it is within the scope of protection of the present disclosure, and will not be repeated here.
  • the remixing device 280 can also be a tee (such as a Y-type or T-type tee), a static mixer, a jet mixer, a swirl mixer, a diffusion mixer, a mixing One or several parallel or series connection of tank and coil type mixing devices.
  • a tee such as a Y-type or T-type tee
  • static mixer such as a jet mixer, a swirl mixer, a diffusion mixer, a mixing One or several parallel or series connection of tank and coil type mixing devices.
  • 12-12A are layout diagrams of a mixing system provided by some embodiments of the present disclosure including multiple mixing devices.
  • the mixing system includes a plurality of mixing devices 200 (only 2 are shown as an example in Figure 12), and the mixing system also includes a total mixing tank 500, a main liquid branch pipeline 600 and a main pump 100 in communication with the mixing system.
  • the total pipeline 700 includes
  • the liquid inlet end of the main pipeline 210 of each mixing device 200 communicates with the main pump 100 (for example, the main pump 100 is a suction pump) through the main pipeline 700 .
  • Multiple mixing devices 200 are arranged in parallel between the main pipeline 700 and the main mixing tank 500, and the total mixing tank 500 is connected in series with the multiple mixing devices 200 and the main liquid branch pipeline 600 respectively.
  • the main liquid branch pipeline 600 is arranged in parallel with a plurality of mixing devices 200 and the main liquid branch pipeline 600 is arranged between the main pipeline 700 and the total mixing tank 500, and the liquid inlet end of the main liquid branch pipeline 600 communicates with the main pipeline 700 to The main liquid supplied by the main pump 100 and flowing through the main pipe 700 is obtained.
  • the main liquid branch pipeline 600 includes at least one main liquid branch liquid outlet 610, and each main liquid branch liquid outlet 610 is respectively connected to the shear mixing output port of at least one mixing device 200 in the plurality of mixing devices 200 234 and at least part of the intermediate pipe 800 of the overall mixing tank 500 (eg, the input end of the overall mixing tank 500 ) are confluently arranged.
  • the above-mentioned embodiments of the present disclosure make the liquid in the branches where at least two mixing devices are located fully mix with another liquid directly supplied by the suction pump, and then enter the main mixing tank, which improves the mixing efficiency and improves the mixing efficiency. Effect.
  • each mixing device in the above-mentioned embodiments of the present disclosure has a storage device and a feeder, so that different powders can be added to different mixing devices, and each liquid is connected to the suction pump After the other liquid supplied is mixed, they enter the total mixing tank together, which can not only realize the staged mixing of different classifications, but also improve the mixing efficiency.
  • each mixing device in the above embodiments of the present disclosure has a storage device and a feeder, and some or all of these mixing devices can use the same powder.
  • the present disclosure does not limit this, it may depend on the actual situation, and will not be repeated here.
  • each mixing device of the mixing system includes a feeder, a premixing device, and a shearing mixing device, and the mixing system further includes a storage device, and multiple mixing devices share this storage device,
  • the feeder of each mixing device obtains the corresponding powder material from the storage device, and delivers the powder material to the corresponding pre-mixing device. This is merely exemplary, not a limitation of the present disclosure, and will not be repeated here.
  • the liquid flowing through the main liquid branch pipeline 600 and the multiple mixing devices 200 is merged in the intermediate pipeline 800 to obtain a liquid that can also be communicated with the main mixing tank 500 through a diffusion mixer, that is, the liquid after confluence Both go into the diffusion mixer and then into the mixing tank.
  • the protruding part on the upper surface of the total mixing tank 500 in the example shown in FIG. for example, at least part of the diffusion mixer may be inserted into a mixing tank with the outlet of the diffusion mixer directly entering the mixing tank. This is merely exemplary and not limiting of the present disclosure.
  • FIG. 12 is only a simple and intuitive diagram for the convenience of readers' understanding, and is not intended to limit the embodiments of the present disclosure.
  • the intermediate pipeline 800 shown in FIG. 12 is only schematic, and it represents the pipeline between the shear mixing outlet of the mixing device 200 and the total mixing tank 500, and the shear of multiple mixing devices 200 shown in FIG.
  • the confluence setting of the mixing output port and the main liquid branch outlet 610 of the main liquid branch pipe 600 is not limited to the direct intersection of the three at the same pipe position as shown in Figure 12, which mainly means that they can be in the middle Any part of the pipeline is arbitrarily intersected in at least two pairs.
  • Figures 13 to 15 below respectively show schematic diagrams of specific embodiments of the present disclosure, in which specific exemplary designs are used to illustrate the mixing system of the present disclosure.
  • the intermediate pipeline 800 in some embodiments of the present disclosure may all be pipelines outside the total mixing tank, and a part of the intermediate pipeline 800 may also be outside the total mixing tank and the other part inside the total mixing tank.
  • the input end of the total mixing tank in the present disclosure may refer to The position where the total mixing tank actually gets the output liquid (for example, the position corresponding to the outlet of the diffusion mixer) is not limited to the opening on the shell surface of the total mixing tank, which means that the input end of the total mixing tank can also be located in the total mixing tank Inside the mixing tank.
  • each mixing device 200 shown in FIG. 12 can refer to the description about the mixing device 200 in any embodiment above, and will not be repeated here.
  • the mixing system also includes a discharge pump 130, the output of the total mixing tank 500 is connected to the input of the discharge pump 130, and the output of the discharge pump 130 is connected to a discharge header 120, that is, the discharge pump 130
  • the mixed mixed fluid (such as fracturing fluid) can be discharged to downstream equipment through the discharge header 120 .
  • the input end of the suction pump 100 (the main liquid input end, also referred to as the base liquid input end) is connected to a suction header 110 , and the suction pump 100 is used to suck the main liquid through the suction header 110 .
  • a tank liquid level monitor (not shown) is provided in the total mixing tank 500 to monitor the tank liquid level in the total mixing tank 500 .
  • At least one of a flow meter 710 and a pressure sensor 720 is disposed on the main pipeline 700 .
  • Fig. 13 is a layout diagram of the secondary confluence setting of the branches where multiple mixing devices are located and the liquid supply branch of the suction pump in the mixing system provided by some embodiments of the present disclosure.
  • the mixing system also includes a first confluence device 910 (only one tee is shown in Figure 13 as an example of the first confluence device) and a second confluence device 920 (only one tee is shown in Figure 13 ).
  • a tee as an example of the first junction).
  • the above-mentioned at least one main liquid branch outlet 610 includes a first main liquid branch liquid outlet 611, which is a main liquid outlet 611 drawn from the main liquid branch pipe 600.
  • the liquid outlet of the liquid branch and a liquid outlet 611 of the first main liquid branch correspond to a branch branched from the main liquid branch pipe 600 .
  • the plurality of mixing devices 200 includes two or more first mixing devices 200a.
  • the shear mixing output ports 234a of the two or more first mixing devices 200a communicate with different input ends of the first confluence device 910 respectively.
  • the output end of the first confluence device 910 and the first main liquid branch liquid outlet 611 communicate with different input ends of the second confluence device 920 respectively, and the output end of the second confluence device 920 is connected with the input of the total mixing tank 500 end connection.
  • the first confluence device 910 and/or the second confluence device 920 respectively include at least one of the following: a tee, a static mixer, a jet mixer, a swirl mixer, a diffuser mixer, a mixing tank, a disc Tube mixing device. This is merely exemplary and not limiting of the present disclosure.
  • the liquids output by the two first mixing devices 200a are first combined at the first confluence device 910 and mixed, and the mixed liquid is then mixed with the main liquid circulating on the main liquid branch pipeline 600. Merged again and mixed before entering the main mixing tank 500.
  • the output end of the second confluence device 920 communicates with the input end of the general mixing tank 500 through a diffusion mixer or a swirl mixer.
  • Fig. 14 is a layout diagram of a first-stage confluence setting of the branches where multiple mixing devices are located in the mixing system provided by some embodiments of the present disclosure and the liquid supply branch of the suction pump respectively.
  • the mixing system also includes at least one third confluence device 930 (two third confluence devices are shown as an example in the figure, and only one tee is used as one first confluence device in Figure 14 example of a device).
  • the above-mentioned at least one main liquid branch liquid outlet 610 includes at least one second main liquid branch liquid outlet 612, and the second main liquid branch liquid outlet 612 is drawn from the main liquid branch pipe 600 A liquid outlet of the main liquid branch and a liquid outlet 612 of the second main liquid branch correspond to a branch branched from the main liquid branch pipe 600 .
  • the plurality of mixing devices 200 includes at least one second mixing device 200b (two are shown in FIG. 14 as an example).
  • At least one second main liquid branch liquid outlet 612 is in one-to-one correspondence with at least one third confluence device 930 and at least one third confluence device 930 is in one-to-one correspondence with at least one second mixing device 200b.
  • the shear mixing output port 234b of each second mixing device 200b communicates with different input ends of the corresponding third confluence device 930 respectively, and the output end of each third confluence device 930 communicates with the input end of the total mixing tank 500 respectively .
  • the above-mentioned at least one second main liquid branch liquid outlet 612 is more than two second main liquid branch liquid outlets 612 (for example, two are shown in FIG. 14 as an example), at least One second mixing device 200b is more than two second mixing devices 200b (showing 2 as an example among Fig. 14), and at least one third confluence device 930 is more than two third converging devices (such as showing 2 among Fig. 14 ). as an example).
  • the two or more second main liquid branch outlets 612 are in one-to-one correspondence with the two or more third confluent devices 930 and the two or more third confluent devices 930 are connected to the two or more second mixing devices 200b One to one correspondence.
  • the third confluence device 930 includes at least one of the following: a tee, a static mixer, a jet mixer, a swirl mixer, a diffusion mixer, a mixing tank, and a coil type mixing device. This is merely exemplary and not limiting of the present disclosure.
  • Fig. 15-Fig. 16 are layout diagrams of two-stage confluence setting of the branches where multiple mixing devices are located in the mixing system provided by other embodiments of the present disclosure and the liquid supply branch of the suction pump respectively.
  • the mixing system also includes a fourth confluence device 940 (a fourth confluence device is shown as an example in Figure 15, and only one tee is used as a fourth confluence device in Figure 15 example), the above-mentioned at least one third confluence device 930 is more than two third confluence devices 930 (two are shown in the figure as an example), and the output end of each third confluence device 930 is connected to the fourth confluence device 930 respectively.
  • Different input ends of the converging device 940 are connected, and the output end of the fourth converging device 940 is connected with the input end of the general mixing tank 500 .
  • the relevant content of the second main liquid branch liquid outlet 612 and the third confluence device 930 included in the mixing system can refer to the example of FIG. 14 , which will not be repeated here.
  • the fourth confluence device 940 respectively includes at least one of the following: a tee, a static mixer, a jet mixer, a swirl mixer, a diffusion mixer, a mixing tank, and a coil-type mixing device. This is merely exemplary and not limiting of the present disclosure.
  • the third confluence device 930 includes at least one of the following: a tee (shown in FIG. 15 ), a static mixer, and a jet mixer (for example, refer to the jet mixer shown in FIG. 16 below. ), swirl mixer, diffusion mixer, mixing tank, coil mixing device.
  • a tee shown in FIG. 15
  • a static mixer for example, a static mixer
  • a jet mixer for example, refer to the jet mixer shown in FIG. 16 below.
  • swirl mixer for example, refer to the jet mixer shown in FIG. 16 below.
  • diffusion mixer for example, diffusion mixer shown in FIG. 16 below.
  • mixing tank mixing tank
  • coil mixing device coil mixing device
  • the output end of the fourth confluence device 940 communicates with the input end of the general mixing tank 500 through a diffusion mixer or a swirl mixer.
  • a flow control valve (not shown) can be set on the branch channel corresponding to the outlet port 612 of each second main liquid branch to adjust different amounts of main liquid mixed with the second main liquid.
  • the mixed liquid output from the output port of the device 200b is mixed.
  • the example in FIG. 16 can be obtained by using a jet mixer 931 in the third confluence device 930 in FIG. 15 .
  • the drainage input end of each jet mixer 931 is communicated with the output port of a second mixing device 200b, and the injection input end of the jet mixer 931 is connected with the second main liquid branch of the main liquid branch pipeline 600.
  • the liquid outlet port 612 is in communication, and the jet output port of the jet mixer 931 is in communication with an input port of the fourth confluence device 940 .
  • jet mixer 931 has a fixed flow area.
  • the flow area of the jet mixer 931 is variable, for example, by adjusting the size of the flow area of the jet mixer 931 to adjust the flow rate, the mixing of two streams of liquids within a certain flow range is realized, thereby realizing variable flow mixing , Simplify the structure of the equipment, and use the Venturi principle to improve the effect of liquid turbulent mixing.
  • each fourth combining device 940 is connected to the input end of the general mixing tank 500 through the static mixer 102 respectively.
  • the first mixing device and the second mixing device are intended to distinguish the two mixing devices respectively applied in different implementations, rather than limiting the two mixing devices themselves.
  • the first confluence device, the second confluence device, the third confluence device and the fourth confluence device are intended to distinguish the four confluence devices respectively applied in different embodiments, rather than to Four confluent packs are limited by themselves.
  • the embodiment of the present disclosure may be any combination of the examples in FIG. 13 to FIG. 16 .
  • at least a part of the multiple mixing devices adopts the merging method of the first mixing device 200a in the example shown in FIG. .
  • the mixing system when the mixing system is running, parameters such as operating flow rate and powder ratio are usually set.
  • the pressure sensor 710 and flow meter 720 are installed at the outlet of the suction pump 100.
  • the flow meter 720 measures the real-time flow rate, and the pressure sensor 710 detects the pump discharge.
  • the outlet pressure thus, can ensure, for example, the inlet pressure of the mixing system and the inlet pressure of each converging device (such as the inlet pressure of the jet mixer 931 ), that is, the inlet pressure of these mixing devices can be guaranteed to be within a preset range.
  • the two jet mixers 931 corresponding to the two second mixing devices 200 b of the mixing system can be adjusted according to the flow rate, and can be opened at the same time, or only one way can be opened.
  • the valve of the rotation angle adjusts the liquid intake amount of the jet mixer 931 corresponding to the first mixing device 200b to improve the mixing effect.
  • the jet mixer 931 corresponding to the other mixing device 200b replenishes the liquid, so that the liquid flowing through the two jet mixers 931 passes through the static mixer 102 to the total mixing tank 500 .
  • the liquid level is monitored through the tank liquid level monitor in the total mixing tank 500, and the feedback signal is sent to the control system, and the control system takes corresponding control measures according to the preset liquid level height.
  • the preset liquid level height is set to 60%, and when the actual liquid level of the total mixing tank 500 is 50%, the opening of the suction pump connection manifold is increased to increase the liquid intake.
  • the actual liquid level of the tank drops to the warning liquid level, reduce the speed or opening of the discharge pump to reduce the discharge flow and avoid liquid level suction.
  • the liquid level rises to 70% that is, when it slightly exceeds 60% of the preset liquid level
  • the liquid supply volume of the suction pump is reduced, and the liquid discharge volume of the discharge pump is increased.
  • the mixing system closes the suction pump and other components, and stops the liquid and powder addition.
  • each mixing device also includes a flow control valve 206 and a flow control valve 207 .
  • the flow control valve 206 is arranged on the main pipeline of the mixing device 200 (for example, it is marked as the main pipeline 205 in FIG. 12A, and the main pipeline 205 is the main pipeline 210 in FIG.
  • the flow control valve 207 is arranged between the output port of the mixing device 200 and the intermediate pipeline 800 (for example, between the output port of the mixing device 200 and the input end of the first confluence device or the input end of the third confluence device ).
  • the above embodiments of the present disclosure set valves at the liquid inlet and the liquid discharge port of the mixing device 200, and the specific functions are as follows: in practical application, the mixing device is often in an open state, when there are vertical pipes or pipes in front of and behind the mixing device When the tank has a high liquid level, the liquid is easy to overflow from the dry powder adding port of the mixing equipment.
  • the control system obtains the pressure of the liquid supply end of the mixing equipment through the pressure sensor, and the opening degree of the hydraulic system of the mixing equipment and the power supply frequency of the motor can be obtained through other sensors. One or more signals from , rotating speed, etc. are used to obtain the rotating speed of the mixing equipment.
  • the feeder first stops adding, and the speed of the mixing equipment is reduced at the same time.
  • the valves before and after the mixing device are closed to prevent the liquid from overflowing from the mixing device.
  • the front and rear valves can be set in order to avoid idling of the mixing equipment or liquid overflow.
  • the control system sends instructions to the mixing equipment and its front and rear valves, the mixing equipment slows down and stops, and the front and rear valves are controlled in linkage according to the above process to avoid overflow.
  • any of the above-mentioned embodiments of the present disclosure can be applied not only to fracturing fluid, but also to other purposes, as long as the mixing between powder and base fluid is within the protection scope of the present disclosure, Here do not do exhaustive and repeat.
  • At least one embodiment of the present disclosure also provides a mixing system, including a suction pump, a main pipeline, a main mixing tank, a main liquid branch pipeline and multiple mixing devices, and the main pipeline communicates with the suction pump.
  • the liquid inlet end of the main pipeline of each mixing equipment in the multiple mixing equipment is respectively connected with the suction pump through the main pipeline.
  • the equipment is connected in series with the main liquid shunt pipeline.
  • the main liquid branch pipeline is set in parallel with multiple mixing devices and the main liquid branch pipeline is set between the main pipeline and the main mixing tank. The main liquid through the main pipeline.
  • the main liquid branch pipeline includes at least one main liquid branch liquid outlet, each of the at least one main liquid branch liquid outlet is respectively connected to the output port of at least one of the multiple mixing devices and the middle of the total mixing tank An at least partial confluence arrangement of the pipes. Therefore, the mixing system of this embodiment of the present disclosure makes the liquid in the branches where at least two mixing devices are located fully mixed with another liquid directly supplied by the suction pump, and then enters the total mixing tank, which can increase the overall flow rate and improve The efficiency of mixing can also be improved.
  • the mixing system of this embodiment may be the mixing system shown in FIG. 12 .
  • the multiple mixing devices of the mixing system of this embodiment include but not limited to the above mixing device 200 .
  • Some embodiments of the present disclosure also provide a mixing method based on a mixing system, including one or more of the following processes (or steps):
  • the premixing device 220 obtains the powder and also obtains the main liquid from the main pipeline 210 .
  • the premixing device 220 premixes the main liquid and the powder to obtain a premixed liquid.
  • the shear mixing device 230 obtains the premix liquid from the output end of the premix device 220 , and obtains the main liquid through the first shear mixing liquid inlet 231 .
  • the shear mixing device 230 obtains a mixed liquid by shear mixing and delivers the mixed liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本公开提供一种混合系统和混合方法,混合系统包括主泵和至少一个混合设备,至少一个混合设备中的每个分别包括主路管道、预混装置和剪切混合装置。主路管道的进液端与主泵连通且配置为输送主液体,主路管道包括第一出液端和第二出液端;预混装置的输入端与主路管道的第一出液端连通且预混装置配置为对获取的主液体和获取的粉料进行预混以得到预混液;剪切混合装置与预混装置的输出端连通以获取预混液,且剪切混合装置设置有与主路管道的第二出液端连通的第一剪混进液口以获取主液体,使得通过剪切混合得到混合液。本公开的混合系统改善了粉料和液体的混合效果,较好的完成配液过程。

Description

混合系统和混合方法
出于所有目的,本申请要求于2021年9月15日递交的中国专利申请第202111082388.0号以及202122233060.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种混合系统和混合方法。
背景技术
压裂技术是指采油或采气过程中,利用液体压力作用,使油、气的储层形成裂缝的一种方法,其具体操作是采用高压大排量的泵,利用液体传压的原理,将具有一定粘度的液体(即压裂液),以大于储层的吸收能力的压力向储层注入,进而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,使井达到增产的目的。
在现有技术中,压裂液是由胍胶粉、聚合物、聚丙烯酰胺类粉料、纤维素中的至少1种粉料和基液在混配装置中混配而成,混配装置包括进料口、进液口和排出口,其中进料口为胍胶粉进入的通道,进液口为基液进入的通道,胍胶粉和基液同时进入到单一形式的混配装置后,在混配装置的内腔中进行混合,混合完成后,得到的压裂液从排出口排出。
但是,采用混配装置混配而成的压裂液,经常出现混合不均匀的现象,使得压裂液经常会存在粉体结块现象(俗称鱼眼),这些结块不仅减弱了压裂液的渗透性,而且也降低了压裂液的粘度,严重影响了油、气井的压裂处理效果。因此,如何提高压裂液的混配质量,提高油、气井的压裂处理效果,是目前本领域技术人员亟待解决的问题。
发明内容
本公开至少一实施例提供了一种混合系统,包括主泵和至少一个混合设备,所述至少一个混合设备中的每个分别包括:主路管道、预混装置和剪切混合装置,其中,所述主路管道的进液端与所述主泵连通且配置为输送主液体,所述主路管道包括第一出液端和第二出液端;所述预混装置的输入端与所述 主路管道的所述第一出液端连通且所述预混装置配置为对获取的所述主液体和获取的粉料进行预混以得到预混液;所述剪切混合装置与所述预混装置的输出端连通以获取所述预混液,且所述剪切混合装置设置有与所述主路管道的所述第二出液端连通的第一剪混进液口以获取所述主液体,使得通过剪切混合得到混合液。
例如,本公开至少一实施例提供的一种混合系统中,所述剪切混合装置还包括叶轮剪切组件,所述叶轮剪切组件包括转动轴以及由所述转动轴带动的至少一个剪切叶轮。
例如,在本公开至少一实施例提供的一种混合系统中,所述第二出液端的出液方向位于与所述转动轴的轴向垂直的平面上。
例如,在本公开至少一实施例提供的一种混合系统中,所述剪切混合装置包括第二剪混进液口,配置为获取所述预混液,所述第二剪混进液口的进液方向平行于所述转动轴的轴向;所述第一剪混进液口的进液方向位于与所述转动轴的轴向垂直的平面上。
例如,在本公开至少一实施例提供的一种混合系统中,所述第一剪混进液口的数目为一个或为多个。
例如,在本公开至少一实施例提供的一种混合系统中,所述第二出液端的出液方向沿着平行于所述转动轴的轴向。
例如,在本公开至少一实施例提供的一种混合系统中,所述第一剪混进液口与所述预混装置的输出端连通,所述第一剪混进液口的进液方向沿着平行于所述转动轴的轴向。
例如,在本公开至少一实施例提供的一种混合系统中,所述至少一个剪切叶轮包括第一剪切叶轮和第二剪切叶轮,所述第一剪切叶轮和所述第二剪切叶轮分别与所述转动轴同轴设置。
例如,在本公开至少一实施例提供的一种混合系统中,所述第一剪切叶轮的外围设置有第一定子,所述第一定子设置有开孔;和/或,所述第二剪切叶轮的外围设置有第二定子,所述第二定子设置有开孔。
例如,在本公开至少一实施例提供的一种混合系统中,所述剪切混合装置还包括可具有大于0.04mpa输出压力的输送式的叶轮剪切组件。
例如,在本公开至少一实施例提供的一种混合系统中,所述混合设备还包括控制系统,所述主路管道上设置有第一压力传感器且配置为监测所述主路 管道的压力,所述控制系统与所述第一压力传感器信号连接且配置为获取所述第一压力传感器的压力信号。
例如,在本公开至少一实施例提供的一种混合系统中,所述主路管道上设置有第一流量计,所述控制系统还与所述第一流量计信号连接且配置为获取所述第一流量计的流量信号。
例如,在本公开至少一实施例提供的一种混合系统中,所述预混装置的输入端包括一个或多个预混进液口,所述主路管道上靠近所述预混装置的输入端的一侧设置有第一流量控制阀。
例如,在本公开至少一实施例提供的一种混合系统中,所述混合设备还包括混合液输送管道、再混装置和支路管道,所述混合液输送管道的输入端与所述剪切混合装置的剪切混合输出口连通以输送从所述剪切混合输出口输出的所述混合液,所述混合液输送管道的输出端与所述再混装置的输入端连通,所述支路管道的输入端与所述主路管道的第三出液端连通,所述支路管道的输出端与所述再混装置的输入端连通。
例如,在本公开至少一实施例提供的一种混合系统中,所述支路管道上设置有第二流量控制阀。
例如,在本公开至少一实施例提供的一种混合系统中,所述混合设备还包括喷射混合装置,所述喷射混合装置包括喷射输入端、引流输入端和喷射输出端,所述喷射输入端与所述支路管道的输出端连通且所述喷射输出端与所述再混装置的输入端连通,使得所述支路管道的输出端与所述再混装置的输入端实现连通,所述引流输入端与所述混合液输送管道的输出端连通且所述喷射输出端与所述再混装置的输入端连通,使得所述混合液输送管道的输出端与所述再混装置的输入端实现连通,所述喷射输入端配置为获取所述主液体且所述引流输入端配置为获取所述混合液,使得所述混合液与所述主液体进行混合。
例如,在本公开至少一实施例提供的一种混合系统中,所述喷射混合装置的流通面积固定;或者,所述喷射混合装置的流通面积可变。
例如,本公开至少一实施例提供的一种混合系统还包括:总混合罐、主液分路管道以及与所述主泵连通的总管道,其中,所述至少一个混合设备包括多个混合设备,所述多个混合设备中每个混合设备的主路管道的进液端分别通过所述总管道与所述主泵连通,所述多个混合设备并联设置在所述总管道和 所述总混合罐之间,所述总混合罐分别与所述多个混合设备和所述主液分路管道串联,所述主液分路管道与所述多个混合设备并联设置且所述主液分路管道设置在所述总管道和所述总混合罐之间,所述主液分路管道的进液端与所述总管道连通以获取由所述主泵提供并流经所述总管道的主液体,所述主液分路管道包括至少一个主液分路出液端,所述至少一个主液分路出液端中的每个分别与用于连通所述多个混合设备中至少一个的剪切混合输出口和所述总混合罐的中间管道的至少部分合流设置。
例如,本公开至少一实施例提供的一种混合系统还包括第一合流装置和第二合流装置,其中,所述至少一个主液分路出液端包括第一主液分路出液端,所述多个混合设备包括两个以上的第一混合设备,所述两个以上的第一混合设备的剪切混合输出口分别与所述第一合流装置的不同的输入端连通,所述第一合流装置的输出端和所述第一主液分路出液端分别与所述第二合流装置的不同的输入端连通,所述第二合流装置的输出端与所述总混合罐的输入端连通。
例如,本公开至少一实施例提供的一种混合系统还包括至少一个第三合流装置,其中,所述至少一个主液分路出液端包括至少一个第二主液分路出液端,所述多个混合设备包括至少一个第二混合设备,所述至少一个第二主液分路出液端与所述至少一个第三合流装置一一对应且所述至少一个第三合流装置与所述至少一个第二混合设备一一对应,所述至少一个第二混合设备中的每个的剪切混合输出口分别与对应的第三合流装置的不同的输入端连通,所述至少一个第三合流装置中的每个的输出端分别与所述总混合罐的输入端连通。
例如,在本公开至少一实施例提供的一种混合系统中,所述至少一个第二主液分路出液端为两个以上的第二主液分路出液端,至少一个第二混合设备为两个以上的第二混合设备,所述至少一个第三合流装置为两个以上的第三合流装置,所述两个以上的第二主液分路出液端与所述两个以上的第三合流装置一一对应且所述两个以上的第三合流装置与所述两个以上的第二混合设备一一对应。
例如,在本公开至少一实施例提供的一种混合系统中,所述两个以上的第三合流装置中的每个的输出端分别通过静态混合器连通至所述总混合罐的输入端。
例如,本公开至少一实施例提供的一种混合系统还包括第四合流装置,其中,所述两个以上的第三合流装置中的每个的输出端分别与所述第四合流装置的不同的输入端连通,所述第四合流装置的输出端与所述总混合罐的输入端连通。
例如,在本公开至少一实施例提供的一种混合系统中,所述第四合流装置的输出端通过静态混合器连通至所述总混合罐的输入端。
例如,在本公开至少一实施例提供的一种混合系统中,所述第一合流装置、所述第二合流装置、所述第三合流装置、所述第四合流装置中的一种或多种分别包括以下的至少一种:三通、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置。
例如,在本公开至少一实施例提供的一种混合系统中,所述总管道上设置有第二流量计和第二压力传感器至少之一。
例如,在本公开至少一实施例提供的一种混合系统中,所述总混合罐内设置有罐液位监测器。
本公开至少一实施例还提供了一种基于如上文任一所述的混合系统的混合方法,包括:启动所述主泵,通过所述主路管道的进液端向所述混合设备供给所述主液体;所述预混装置获取粉料以及还从所述主路管道获取所述主液体;所述预混装置将所述主液体和所述粉料进行预混,得到预混液;所述剪切混合装置从所述预混装置的输出端获取所述预混液,以及通过所述第一剪混进液口获取所述主液体;所述剪切混合装置通过剪切混合得到混合液并输送出所述混合液。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例提供的混合系统的示意图;
图2为本公开一些实施例提供的剪切混合装置的局部示意图;
图3为本公开又一些实施例提供的剪切混合装置的局部示意图;
图4为本公开一些实施例提供的双叶轮剪切组件的局部示意图;
图5为本公开又一些实施例提供的双叶轮剪切组件的局部示意图;
图6~图11分别为本公开一些实施例提供的混合系统的示意图;
图12-图12A为本公开一些实施例提供的混合系统包括多个混合设备的布置图;
图13为本公开一些实施例提供的混合系统中多个混合设备所在支路和吸入泵的供液支路进行二级合流设置的布置图;
图14为本公开一些实施例提供的混合系统中多个混合设备所在支路分别和吸入泵的供液支路进行一级合流设置的布置图;以及
图15-图16为本公开另一些实施例提供的混合系统中多个混合设备所在支路分别和吸入泵的供液支路进行二级合流设置的布置图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另有定义,本公开实施例使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非本公开实施例明确地这样定义。
本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。本公开实施例中使用了流程图用来说明根据本公开实施例的方法的步骤。应当理解的是,前面或后面的步骤不一定按照顺序来精确的进行。相反,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步。
目前水和粉料混合时大部分采用射流的方式和搅拌剪切的方式。对于易混合的粉料,比如糖或者盐粉末,能够比较快速的实现混合,然而遇到比较难混合的物料时往往存在较多问题。
对于现有技术方案中采用喷射式混合器完成水粉混合,一些喷射式混合器在应用时,需要保障供水压力足够高,并且保持恒定,这样才能保障喷射式混合器的正常工作。而且,采用喷射式混合器时容易引入大量空气,在一些工况下,引入空气会导致泡沫的产生,同时也对化学品产生不利影响,比如氧化反应。另外,射流依赖于供水的压力,当供水压力波动时,极易影响喷射式混合器供液的稳定性,造成射流流速的不稳定,影响粉料和液体的混合效果。
本公开的发明人发现,在油田聚合物驱油、压裂增产等作业过程中,需要将聚丙烯酰胺类聚合物与水进行混合形成工作液,混合形成的胶液用于油气资源的驱替、增产、置换;以上作业需要的核心部件是能够将水和粉料混合形成均匀溶液的混合器。上述作业过程中存在三个难点:(1)形成均匀一致的溶液,不能产生水包粉;(2)减少空气的进入,从而减少泡沫对作业的影响,尤其是减少空气中氧气对聚丙烯酰胺容易溶液的影响;(3)提高水和粉料的结合程度,减少粉料的使用。
混合器在解决上述难点时存在一定的问题:第一,在大多数情况下能够形成均匀一致的溶液,但是无法确保在任何情况下百分百地无鱼眼,比如粉料挂壁结块时,粉料块落入混合器内容易发生混合器失效、出现粉料团等问题;第二,射流过程中不可避免地会引入大量空气,产生的泡沫对输送、液位控制等产生不利影响,对聚丙烯酰胺溶液等有氧化降解的不良影响;第三,射流混合器的稳定性欠佳、水的压力波动等问题对使用效果影响较大,可能出现粉料和水结合程度低的问题,容易浪费粉料。由此,本公开的发明人发现,对于例如压裂增产作业,剪切混合系统在上述三个难点问题方面,一般比喷射混合器具有优势。
本公开的发明人还发现,采用普通的搅拌剪切的方式,例如现有的剪切泵,其进液口通常只有一个且该进液口仅仅用于获取所需的待混合的液体,当使用的粉料附着力较高、容易结块粘连时,容易造成堆积、结块、粘连等问题,无法较好的完成配液过程。
本公开的发明人还发现,现有的剪切泵的排出能力较弱,没有输送功能为主的剪切泵,在水流较大的时候容易发生无法及时向外排出混合液的问题,而 且在使用的粉料附着力较高、容易结块粘连的时候,易造成堆积、结块、粘连等问题,从而无法较好的完成配液过程。
本公开至少一实施例提供了一种混合系统,包括主泵和至少一个混合设备,至少一个混合设备中的每个分别包括主路管道、预混装置和剪切混合装置。主路管道的进液端与主泵连通且配置为输送主液体,主路管道包括第一出液端和第二出液端。预混装置的输入端与主路管道的第一出液端连通且预混装置配置为对获取的主液体和获取的粉料进行预混以得到预混液。剪切混合装置与预混装置的输出端连通以获取预混液,且剪切混合装置设置有与主路管道的第二出液端连通的第一剪混进液口以获取主液体,使得通过剪切混合得到混合液。
本公开上述实施例的混合系统在剪切混合装置混合之前采用预混装置进行预混,改善了粉料和液体的混合效果。剪切混合装置不仅可以获取预混装置输出的预混液进行进一步地混合,还能直接获取主路管道中流通的主液体,可以用于其他各种目的。例如,可以较好地冲刷剪切混合装置的内部结构,防止粘连,也可增加液量,降低浓度,增加液体流动性。又例如,也可利于剪切混合装置内的叶轮更多地浸在液体中,减少了叶轮与空气的接触,进而减少气蚀的情况发生,从而较好的完成配液过程。
下面结合图1-图16对本公开的实施例及其示例进行详细说明。
图1为本公开一些实施例提供的混合系统示意图。
例如,如图1所示,本公开至少一实施例提供的混合系统包括主泵100(主泵100可视为主液体供给件或基液供给件)和至少一个混合设备200(图1中仅示出一个混合设备作为示例),至少一个混合设备200中的每个混合设备200分别包括主路管道210、预混装置220和剪切混合装置230。
例如,在图1的示例中,主路管道210的进液端与主泵100连通且主路管道210配置为输送主液体(也可称为基液),主路管道210包括第一出液端211和第二出液端212。预混装置220的输入端与主路管道210的第一出液端211连通,预混装置220配置为对获取的主液体和获取的粉料进行预混以得到预混液。剪切混合装置230与预混装置220的输出端连通以获取预混液,而且剪切混合装置230设置有与主路管道210的第二出液端212连通的第一剪混进液口231以获取主液体,使得通过剪切混合得到混合液。
需要说明的是,图1所示也仅为一种简单、直观的附图示意,以便于读者 理解,并不为本公开的实施例的限制。
例如,图1所示的第一剪混进液口231仅为示意,其表示在剪切混合装置230上的与主路管道210的第二出液端212连通的任一位置处的开口,而且图1中预混装置220的输出端连通到剪切混合装置230的位置也仅为一种示意,并不为本公开的实施例的限制。下文的图2~图5分别示出了本公开具体实施例的示意图,在该些实施例中,以具体的示范性设计来说明本公开的剪切混合装置230、预混装置220、主路管道210等结构。
还需要说明的是,本公开实施例的混合系统的管道在所有附图中的布置和摆放仅仅为一种示意,并不为实际方案和应用中的布置和摆放,这对本公开不造成任何限制。
例如,如图1所示,混合设备200包括储料装置400和输料器300,储料装置400配置为储存粉料。输料器300配置为向预混装置220输送来自储料装置400的粉料。
例如,如图1所示,剪切混合装置230还包括叶轮剪切组件232,叶轮剪切组件232包括转动轴2031以及由转动轴2031带动的至少一个剪切叶轮2032(图1中仅示出一个剪切叶轮作为示例)。
图2为本公开一些实施例提供的剪切混合装置的局部示意图。
例如,如图2所示,第二出液端212的出液方向位于与转动轴2031的轴向垂直的平面上。例如,在图2的示例中,剪切混合装置230包括第二剪混进液口233且第二剪混进液口233配置为获取预混液,第二剪混进液口233的进液方向平行于转动轴2031的轴向。第一剪混进液口231的进液方向位于与转动轴2031的轴向垂直的平面上。
例如,如图2所示,第一剪混进液口231的数目可以是一个,也可以是多个,其可以视实际情况而定,本公开对此不作限制。
例如,如图2所示,第一剪混进液口231的数目为多个时,该多个第一剪混进液口231可围绕在剪切混合装置230的壳体的周向布置。此仅仅为示例性的,并不为本公开的限制,只要第一剪混进液口231能够获取到主路管道210的第二出液端212提供的主液体即可,这里不做穷举和赘述。
例如,在图2的示例中,第一剪混进液口231可作为辅助进液口,既可以冲刷剪切混合装置230内的叶轮剪切组件2032,防止粘连,也可以增加液量,降低浓度,稀释混合液,增加液体流动性。
需要说明的是,在本公开上述实施例中,第一剪混进液口和第二剪混进液口旨在区分两个剪混进液口,而不是对两个剪混进液口本身的限制。
图3为本公开又一些实施例提供的剪切混合装置的局部示意图。
例如,如图3所示,第二出液端212的出液方向沿着平行于转动轴2031的轴向。例如,如图3所示,第一剪混进液口231与预混装置220的输出端连通,第一剪混进液口231的进液方向沿着平行于转动轴2031的轴向。
例如,相较于图2的示例,图3的示例可以通过改变预混装置220和叶轮2032的相对位置,使得叶轮2032更多地浸没在剪切混合装置230内的液体中或完全地浸没在剪切混合装置230内的液体中,减少了叶轮2032与空气的接触,从而减少气蚀的情况发生。
需要说明的是,本公开一些实施例涉及的连通是指两个部件的连接关系允许相应液体顺利流通,例如,两个部件之间可以直接连接或间接连接或者相互之间设置有其他中间件或者相互之间具有较小的间隔等,只要能满足液体顺利流通即可,本公开对此不作限制,这里不再赘述。
在一些示例中,剪切混合装置230还包括可具有大于0.04mpa输出压力的输送式的叶轮剪切组件,例如输送式的叶轮剪切组件可采用双叶轮剪切组件,以增强其向外排出的作用,形成以输送为主的剪切混合装置230,也可避免容易粘连、堆积、结块等问题,有利于改善粉料和液体的混合效果。当然,此仅仅为示例性的,具有大于0.04mpa输出压力的输送式的叶轮剪切组件不限于该双叶轮剪切组件,还可以是其他结构和构造的叶轮剪切组件,这里不做穷举和赘述。
图4为本公开一些实施例提供的双叶轮剪切组件的局部示意图。图5为本公开又一些实施例提供的双叶轮剪切组件的局部示意图。
例如,如图4和图5所示,至少一个剪切叶轮2032包括第一剪切叶轮2032a和第二剪切叶轮2032b,第一剪切叶轮2032a和第二剪切叶轮2032b分别与转动轴2031同轴设置。由此可知,经过第一剪切叶轮2032a之后再经过第二剪切叶轮2032b的进一步混合,改善了粉料和液体的混合效果,同时第二剪切叶轮2032b可增强向外排出的作用。
例如,如图4和图5所示,第一剪切叶轮2032a的外围设置有第一定子2033a,第一定子2033a设置有开孔(例如网孔、条孔、圆孔、方孔、长圆孔中的一种或几种)。这样通过增加定子,可以形成多个局部湍流,增加粉料溶 液剪切效果,进一步起到溶解、分散的作用,使液体和粉料能够充分混合。
在一些示例中,第二剪切叶轮2032b的外围也可视实际需要设置有第二定子(未图示)而且第二定子设置有开孔(网孔、条孔、圆孔、方孔、长圆孔中的一种或几种)。
需要说明的是,本公开上述实施例的剪切混合装置230的叶轮剪切组件232不仅限于包括一个剪切叶轮或两个剪切叶轮,还可以是三个以上的剪切叶轮,而且对各个剪切叶轮的布置方式也不作限制,可以根据实际应用进行自由调整,本公开在此不赘述。
还需要说明的是,本公开对第一剪切叶轮2032a和/或第二剪切叶轮2032b相对应设置的定子的形式不作限制,例如,定子(例如第一定子和/或第二定子)可以是单层的,也可以是多层的,还可以是其他的合理形式,这里不再赘述。
在一些示例中,第一剪切叶轮2032a和/或第二剪切叶轮2032b的形式为以下的一种或多种:叶片式、齿式、叶片齿形组合式、离心叶轮式。此仅仅为示例性的,并不为本公开的限制。
图6~图11分别为本公开一些实施例提供的混合系统的示意图。
例如,如图6所示,混合设备还包括控制系统(未图示),主路管道210上设置有压力传感器250且压力传感器250配置为监测主路管道210的压力,该控制系统与压力传感器250信号连接且控制系统配置为获取压力传感器250的压力信号,用以检查主路管道210上的压力,保障剪切混合装置的液体供给充足。
例如,该控制系统可以预设一个压力值,通过控制主泵100的转速等,使得压力传感器250测得的数值在预设允许范围内,从而使得剪切混合装置230的液体供给充足,与预设工况相近。
例如,如图6所示,主路管道210上还设置有流量计240,控制系统还与流量计240信号连接且配置为获取该流量计240的流量信号。
在一些示例中,控制系统通过获取压力传感器250的压力信号和流量计240的流量信号来监测流经管道的压力和流量,并判断它们是否满足需求,并根据需求,利用控制系统的执行模块控制主泵的转速,以保障进入主泵的液体有一定的流速或流量,这样可以避免因供液不充足而导致汽蚀。
在一些示例中,输料器300可以是螺旋输料器、星形输料器或闸板等。此 仅仅为示例性的,并不为本公开的限制。
本公开一些实施例可以设置一个传感器(区别于上述压力传感器250的另一传感器)测量输料器300的转速或开度等,通过控制系统检测获得该传感器的相应信息后,根据控制系统设定的配比、流量计240实际测得的流量等,计算出粉料添加速度,并结合输送效率系数、密度、单位转速或刻度对应的输送速度,控制相应输料执行器达到相应的转速或者开度等,进而让粉料的实际输出量不断接近需求的添加量。
在一些示例中,储料装置400内设置有重量传感器(未图示),该重量传感器配置为实时监测储料装置400内的粉料的重量值,控制系统与重量传感器信号连接,获取重量传感器监测得到的重量值。
例如,如图7所示,主路管道210上靠近预混装置220的输入端的一侧设置有流量控制阀260,流量控制阀260配置为调整流量,使得进入预混装置220的流量适当,从而产生需要的流动效果。
在一些示例中,预混装置220的输入端包括一个预混进液口或多个预混进液口。例如,如图7所示,预混装置220的输入端包括一个预混进液口221。又例如,如图8所示,预混装置220的输入端包括两个预混进液口,分别为预混进液口221a和预混进液口221b。此仅仅为示例性,并不为本公开的限制,本公开的预混装置220的输入端还可包括三个以上的预混进液口,而且本公开对从预混装置220的预混进液口进入的液体方向不作限制,也即本公开对第一出液端211的出液方向也不做限制,例如第一出液端211的出液方向可以是与转动轴2031轴向方向成任意角度,也可以是与转动轴2031垂直平面上的任意方向,这些方面均可以根据实际需要进行自由调整,这里不再赘述。
例如,如图9所示,混合设备200还包括混合液输送管道270、再混装置280和支路管道290。混合液输送管道270的输入端与剪切混合装置230的剪切混合输出口234连通以输送从剪切混合输出口234输出的混合液。混合液输送管道270的输出端与再混装置280的输入端连通。支路管道290的输入端与主路管道210的第三出液端213连通,支路管道290的输出端与再混装置280的输入端连通。由此,本公开一些实施例通过增加支路管道290增加总体的流量,并且通过再混装置280实现进一步混合,使液体和粉料能够充分混合。
例如,在图9的示例中,支路管道290的主液体和经过混合液输送管道 270的混合液合流后再一起进入再混装置280。
在一些示例中,再混装置280可以是三通(例如Y型或T型三通)、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置的的一种或几种并联或串联。此仅仅为示例性的,并不为本公开的限制。
在一些示例中,支路管道290的主液体和经过混合液输送管道270的混合液合流的位置处可以是三通(例如Y型或T型三通)、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置的一种或几种并联或串联。此仅仅为示例性的,并不为本公开的限制。
例如,如图10所示,支路管道290上设置有流量控制阀261。本公开一些实施例通过使用流量控制阀261来调整支路管道290的流量(例如通过调整阀门开度来调整流量),通过输料器300的转速控制粉料的占比,进而保障液体和粉料的比例,使得流经支路管道290的流量控制阀261的主液体和混合液输送管道270输出的混合液一起进入再混装置280。
例如,如图11所示,混合设备200还包括喷射混合装置201,喷射混合装置201包括喷射输入端2011、引流输入端2012和喷射输出端2013。
例如,喷射输入端2011与支路管道290的输出端连通且喷射输出端2013与再混装置280的输入端连通,使得支路管道290的输出端与再混装置280的输入端实现连通。引流输入端2012与混合液输送管道270的输出端连通且喷射输出端2013与再混装置280的输入端连通,使得混合液输送管道270的输出端与再混装置280的输入端实现连通。喷射输入端2011配置为获取主液体且引流输入端2012配置为获取混合液,使得该混合液与主液体在喷射混合装置201内部进行混合。
在一些示例中,喷射混合装置201的流通面积固定。例如,当喷射输入端2011包括一个截面固定的喷嘴管道时,通过主路管道210上的压力传感器250和控制系统,并结合主泵100进行调速,保障管道横截面积恒定,此时流经喷射输入端2011的喷嘴的液体的流量也是恒定的。
在另一些示例中,喷射混合装置201流通面积可变。例如,喷射混合装置201包括变截面管道和流量调节组件,通过流量调节组件调节变截面管道的输入端的流量,例如,该流量调节组件包括可往复运动的移动件以及可驱动移动件运动的驱动件,移动件锥面对应于变截面管道的锥面设置,以调节变截面管道的输入端的流量。由此可通过调整喷射混合装置201的流通面积大小来实 现流量的调整,完成在一定流量范围内的两股液体的混合。鉴于流通面积可变的喷射混合装置201的具体形式并不为本公开描述的重点,只要是流通面积可变的喷射混合装置201,均在本公开的保护范围内,这里不再赘述。
例如,在图10和图11的示例中,再混装置280也可以是三通(例如Y型或T型三通)、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置的一种或几种并联或串联。此仅仅为示例性的,并不为本公开的限制。
图12-图12A为本公开一些实施例提供的混合系统包括多个混合设备的布置图。
例如,如图12所示,混合系统包括多个混合设备200(图12中仅示出2个作为示例),混合系统还包括总混合罐500、主液分路管道600以及与主泵100连通的总管道700。
例如,如图12所示,每个混合设备200的主路管道210的进液端分别通过总管道700与主泵100(例如主泵100为吸入泵)连通。多个混合设备200并联设置在总管道700和总混合罐500之间,总混合罐500分别与多个混合设备200和主液分路管道600串联。主液分路管道600与多个混合设备200并联设置且主液分路管道600设置在总管道700和总混合罐500之间,主液分路管道600的进液端与总管道700连通以获取由主泵100提供并流经总管道700的主液体。主液分路管道600包括至少一个主液分路出液端610,每个主液分路出液端610分别与用于连通多个混合设备200中至少一个混合设备200的剪切混合输出口234和总混合罐500(例如总混合罐500的输入端)的中间管道800的至少部分进行合流设置。
由此,本公开上述实施例使得至少两个混合设备所在支路的液体与由吸入泵直接供给的另一股液体充分混合,之后再进入总混合罐,提高了混合的效率,也改善了混合效果。
在一些示例中,本公开上述实施例的每个混合设备都分别具有一个储料装置和输料器,由此,还可以分别向不同混合设备添加不同的粉料,每种液体均和吸入泵供给的另一股液体混合后,再一起进入总混合罐,既能够实现不同分类的分阶段混合,还能提高混合效率。
在另外一些示例中,本公开上述实施例的每个混合设备都分别具有一个储料装置和输料器,而且这些混合设备中一部分或全部的混合设备可以使用 同一种粉料。本公开对此不作限制,可以视实际情况而定,这里不再赘述。还在其他一些实施例中,混合系统的每个混合设备分别包括输料器、预混装置和剪切混合装置,混合系统还包括一个储料装置,多个混合设备共享这一个储料装置,例如每个混合设备的输料器都从这一个储料装置获取相应的粉料,并向对应的预混装置输送该粉料。此仅仅为示例性的,并不为本公开的限制,这里不再赘述。
在本公开一些实施例中,流经主液分路管道600和多个混合设备200的液体在中间管道800合流之后得到液体还可通过扩散混合器与总混合罐500连通,即合流之后的液体都进入扩散混合器,再进入混合罐。
例如,图12示例中总混合罐500上表面突出部分为扩散混合器,合流之后的液体通过扩散混合器后进入到总混合罐500内部。例如,该扩散混合器的至少部分可以插入到混合罐内且扩散混合器的出口直接进入到混合罐。此仅仅为示例性的,并不为本公开的限制。
需要说明的是,图12所示也仅为一种简单、直观的附图示意,以便于读者理解,并不为本公开的实施例的限制。例如,图12所示的中间管道800仅为示意,其表示介于混合设备200的剪切混合输出口和总混合罐500之间的管道,而且图12所示的多个混合设备200的剪切混合输出口和主液分路管道600的主液分路出液端610的合流设置不局限于图12直观所示的这三者在同一管道位置处直接交汇,其主要表示它们可以在中间管道的任一部分任意地至少两两交汇。下文的图13~图15分别示出了本公开具体实施例的示意图,在该些实施例中,以具体的示范性设计来说明本公开的混合系统。
本公开一些实施例的中间管道800可以全部是总混合罐外部的管道,中间管道800也可以一部分在总混合罐外且另一部分在总混合罐内,本公开的总混合罐的输入端可以指总混合罐实际获取到输出的液体的位置(例如对应于扩散混合器的出口的位置),并不局限于总混合罐壳体表面的开口,这意味着总混合罐的输入端也可以位于总混合罐内部。
需要说明的是,本公开实施例中在混合系统的技术方案时将其划分或定义为用于执行相应功能的元件或物件(例如中间管道、总混合罐的输入端等)。本领域技术人员清楚的是,各元件或物件执行的功能可以在上文所述的划分下进行,也可以在其他划分方式下进行,这对本公开的保护范围不起限制,而且本公开上述实施例的元件或者物件的含义和作用等并不受限于其名称,不 能用理想化或极度形式化的意义来解释。
例如,在本公开的实施例中,图12所示的每个混合设备200的具体结构与构造以及技术效果可以参考上文任一实施例中关于混合设备200的描述,此处不再赘述。
例如,如图12A所示,混合系统还包括排出泵130,总混合罐500的输出端连接该排出泵130的输入端,排出泵130的输出端连接有排出集管120,即该排出泵130可以将混配好的混合液(例如压裂液)经排出集管120排出给下游设备。
例如,如图12A所示,吸入泵100的输入端(主液体输入端,也可称为基液输入端)连接有吸入集管110,使用吸入泵100通过吸入集管110吸入主液体。
在一些示例中,总混合罐500内设置有罐液位监测器(未图示),用以监测总混合罐500内的罐液位高度。
例如,如图12A所示,总管道700上设置有流量计710和压力传感器720至少之一。
图13为本公开一些实施例提供的混合系统中多个混合设备所在支路和吸入泵的供液支路进行二级合流设置的布置图。
例如,如图13所示,混合系统还包括第一合流装置910(图13中仅示出1个三通作为第一合流装置的示例)和第二合流装置920(图13中仅示出1个三通作为第一合流装置的示例)。上文所述的至少一个主液分路出液端610包括第一主液分路出液端611,该第一主液分路出液端611是从主液分路管道600引出的一个主液分路出液端而且一个第一主液分路出液端611对应一个从主液分路管道600分出的一个岔道。多个混合设备200包括两个以上第一混合设备200a。这两个以上第一混合设备200a的剪切混合输出口234a分别与第一合流装置910的不同的输入端连通。例如,第一合流装置910的输出端和第一主液分路出液端611分别与第二合流装置920的不同的输入端连通,第二合流装置920的输出端与总混合罐500的输入端连通。
在一些示例中,第一合流装置910和/或第二合流装置920分别包括以下的至少一种:三通、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置。此仅仅为示例性的,并不为本公开的限制。
例如,在图13的示例中,两个第一混合设备200a输出的液体先合流在 第一合流装置910处并进行混合,混合之后的液体再与主液分路管道600上流通的主液体进行再次合流并进行混合,然后再进入总混合罐500。
例如,在图13示例中,第二合流装置920的输出端通过扩散混合器或旋流混合器与总混合罐500的输入端连通。
图14为本公开一些实施例提供的混合系统中多个混合设备所在支路分别和吸入泵的供液支路进行一级合流设置的布置图。
例如,如图14所示,混合系统还包括至少一个第三合流装置930(图中示出2个第三合流装置作为示例,图14中仅示出将1个三通作为1个第一合流装置的示例)。上文所述的至少一个主液分路出液端610包括至少一个第二主液分路出液端612,该第二主液分路出液端612是从主液分路管道600引出的一个主液分路出液端而且一个第二主液分路出液端612对应一个从主液分路管道600分出的一个岔道。多个混合设备200包括至少一个第二混合设备200b(图14中示出2个作为示例)。至少一个第二主液分路出液端612与至少一个第三合流装置930一一对应且至少一个第三合流装置930与至少一个第二混合设备200b一一对应。每个第二混合设备200b的剪切混合输出口234b分别与对应的第三合流装置930的不同的输入端连通,每个第三合流装置930的输出端分别与总混合罐500的输入端连通。
在一些示例中,上文所述的至少一个第二主液分路出液端612为两个以上第二主液分路出液端612(例如图14中示出2个作为示例),至少一个第二混合设备200b为两个以上第二混合设备200b(图14中示出2个作为示例),至少一个第三合流装置930为两个以上第三合流装置(例如图14中示出2个作为示例)。由此,这两个以上第二主液分路出液端612与这两个以上第三合流装置930一一对应而且这两个以上第三合流装置930与这两个以上第二混合设备200b一一对应。
在一些示例中,第三合流装置930包括以下的至少一种:三通、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置。此仅仅为示例性的,并不为本公开的限制。
例如,如图14所示,每个第三合流装置930的输出端分别通过静态混合器950连通至总混合罐500的输入端。此仅仅为示例性的,并不为本公开的限制。
图15-图16为本公开另一些实施例提供的混合系统中多个混合设备所在 支路分别和吸入泵的供液支路进行二级合流设置的布置图。
例如,如图15所示,混合系统还包括第四合流装置940(图15中示出1个第四合流装置作为示例,图15中仅示出将1个三通作为1个第四合流装置的示例),上文所述的至少一个第三合流装置930为两个以上第三合流装置930(图中示出2个作为示例),每个第三合流装置930的输出端分别与第四合流装置940的不同的输入端连通,第四合流装置940的输出端与总混合罐500的输入端连通。在图15的示例中,混合系统包括的第二主液分路出液端612和第三合流装置930的相关内容可以参照图14的示例,这里不再赘述。
在一些示例中,第四合流装置940分别包括以下的至少一种:三通、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置。此仅仅为示例性的,并不为本公开的限制。
例如,在图15的示例中,第三合流装置930包括以下的至少一种:三通(图15所示)、静态混合器、喷射混合器(例如参照下面的图16所示的喷射混合器)、旋流混合器、扩散混合器、混合罐、盘管式混合装置。此仅仅为示例性的,并不为本公开的限制。
例如,在图15的示例中,第四合流装置940的输出端通过扩散混合器或旋流混合器与总混合罐500的输入端连通。
例如,在图15的示例中,每个第二主液分路出液端612对应的岔道管道上可设置一个流量控制阀门(未图示),用以调整不同量的主液体与第二混合设备200b的输出口输出的混合液进行混合。
例如,将图15中的第三合流装置930采用一种喷射混合器931即可得到图16的示例。在图16示例中,每个喷射混合器931的引流输入端与一个第二混合设备200b的输出口连通,喷射混合器931的喷射输入端与主液分路管道600的第二主液分路出液端612连通,喷射混合器931的喷射输出端与第四合流装置940的一个输入端连通。
在一些示例中,喷射混合器931的流通面积固定。
在另一些示例中,喷射混合器931的流通面积可变,例如,通过调整喷射混合器931的流通面积大小来调整流量,实现在一定流量范围内的两股液体的混合,从而实现变流量混合,简化设备结构,并利用文丘里原理,提高液体湍流混合的效果。
需要说明的是,对于喷射混合器931的喷射输入端(即对应主液分路管 道600的这一股液体)的管道流通口径有较明显变化,使得液体流速加快,形成喷射效果,产生文丘里效应,较好地和引流输入端对应的一股浓缩液进行混合。
例如,在图16的示例中,每个第四合流装置940的输出端分别通过静态混合器102连通至总混合罐500的输入端。
需要说明的是,在本公开上述实施例中,第一混合设备和第二混合设备旨在区分不同实施方案中分别应用的两个混合设备,而不是对两个混合设备本身的限制。同样地,在在本公开上述实施例中,第一合流装置、第二合流装置、第三合流装置和第四合流装置旨在区分在不同实施方案中分别应用的四个合流装置,而不是对四个合流装本身的限制。
还需要说明的是,本公开的实施例可以是图13~图16示例中的任意的组合。例如,多个混合设备的至少一部分是采用图13示例中的第一混合设备200a的合流方式,多个混合设备的其他部分可以是采用图14~16示例中的第二混合设备200b的合流方式。
在一些示例中,混合系统运行时通常设置作业流量、粉料配比等参数,吸入泵100排出口设置压力传感器710和流量计720,通过流量计720计量实时流量,通过压力传感器710检测泵排出口压力,由此,可以保障例如混合系统的入口压力和各个合流装置的入口压力(例如喷射混合器931的入口压力),即可以保障这些混合装置的入口压力在预设范围。
例如,在图16的示例中,对于混合系统的两个第二混合设备200b对应的两个喷射混合器931,可以根据流量进行调整,可以同时开启,也可以只开启一路。
例如,第一个混合设备200b工作时,第一个混合设备200b工作时只开启对应的喷射混合器931,通过直线运动或旋转角度的执行器关闭另喷射混合器931的输入端,通过直线运动或旋转角度的阀门调整第一个混合设备200b对应的喷射混合器931的进液量,提高混合效果。
又例如,当需要增加液体流量的时候,另一个混合设备200b对应的喷射混合器931补充液体,由此流经两个喷射混合器931的液体均通过静态混合器102直至总混合罐500内。
之后,通过总混合罐500内的罐液位监测器进行液位监控,并将反馈信号给控制系统,控制系统根据预设液位高度,采取相应控制措施。比如,预设 液位高度设定为60%,当总混合罐500的罐实际液位为50%时,则提高吸入泵连接管汇的开度,增加进液量。例如,当罐实际液位降低至警戒液位时,则减少排出泵的转速或开度等,减少排出流量,避免液位吸空。例如,当液位升高至70%时(即略超过60%预设液位高度时),则减少吸入泵供液量,提高排出泵排液量。当罐实际液位升高至警戒值时,则混合系统关闭吸入泵等部件,停止进液和粉料添加。
例如,如图12A所示,每个混合设备还包括流量控制阀206和流量控制阀207。流量控制阀206设置在混合设备200的主路管道(例如在图12A中记为主路管道205,该主路管道205即图1中的主路管道210)上靠近主路管道205的进液端的一侧,流量控制阀207设置在混合设备200的输出口与中间管道800之间(例如设置在混合设备200的输出口与第一合流装置的输入端或第三合流装置的输入端之间)。
由此,本公开上述实施例在混合设备200的进液口和排液口设置阀门,具体作用如下:实际应用时,混合设备经常处于敞口状态,当混合设备前和后有竖直管道或高液位的罐体时,液体容易从混合设备的干粉添加口溢出,控制系统通过压力传感器获取混合设备供液端的压力,通过其他的传感器可获得混合设备的液压系统的开度、电机供电频率、转速等中的一种或多种信号,用以获取混合设备转速,比如当需要混合设备的剪切混合装置停止时,输料器先停止添加,同时混合设备转速降低,当混合设备降低至预设转速时,则关闭混合设备前后的阀门,避免液体从混合设备中溢出。根据混合设备前和后的液体高度,前后阀门可设置先后顺序,避免混合设备空转或液体溢出。当混合设备前的管道压力低于系统预设值时,控制系统发出指令给混合设备及其前后阀门,混合设备降速停止,前后阀门按上述过程联动控制,避免溢出。此仅仅为示例性的,并不为本公开的限制。
需要说明的是,本公开上述任一实施例的混合系统不仅可以适用于压裂液,还可以适用于其他用途,只要是粉料和基液之间的混合均在本公开的保护范围内,这里不做穷举和赘述。
本公开至少一实施例还提供了一种混合系统,包括吸入泵、总管道、总混合罐、主液分路管道和多个混合设备,总管道与吸入泵连通。多个混合设备中每个混合设备的主路管道的进液端分别通过总管道与吸入泵连通,多个混合设备并联设置在总管道和总混合罐之间,总混合罐分别与多个混合设备和主 液分路管道串联。主液分路管道与多个混合设备并联设置且主液分路管道设置在总管道和总混合罐之间,主液分路管道的进液端与总管道连通以获取由吸入泵提供并流经总管道的主液体。主液分路管道包括至少一个主液分路出液端,至少一个主液分路出液端中的每个分别与用于连通多个混合设备中至少一个的输出口和总混合罐的中间管道的至少部分合流设置。由此,本公开该实施例的混合系统使得至少两个混合设备所在支路的液体与由吸入泵直接供给的另一股液体充分混合,之后再进入总混合罐,可以增加总体的流量,提高混合的效率,也可改善混合效果。例如,该实施例的混合系统可以是图12所示的混合系统。又例如,该实施例的混合系统的多个混合设备包括但不限于上文的混合设备200。
本公开一些实施例还提供了一种基于混合系统的混合方法,包括以下过程(或步骤)的一种或多种:
(1)启动主泵100,通过主路管道210的进液端向混合设备200供给主液体。
(2)预混装置220获取粉料以及还从主路管道210获取主液体。
(3)预混装置220将主液体和粉料进行预混,得到预混液。
(4)剪切混合装置230从预混装置220的输出端获取预混液,以及通过第一剪混进液口231获取主液体。
(5)剪切混合装置230通过剪切混合得到混合液并输送出该混合液。
需要说明的是,在本公开的实施例中,基于混合系统的混合方法的具体过程和技术效果可以参考上文中关于混合系统的描述,此处不再赘述。
有以下几点需要说明:
(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种混合系统,包括主泵和至少一个混合设备,所述至少一个混合设备中的每个分别包括:主路管道、预混装置和剪切混合装置,其中,
    所述主路管道的进液端与所述主泵连通且配置为输送主液体,所述主路管道包括第一出液端和第二出液端;
    所述预混装置的输入端与所述主路管道的所述第一出液端连通且所述预混装置配置为对获取的所述主液体和获取的粉料进行预混以得到预混液;
    所述剪切混合装置与所述预混装置的输出端连通以获取所述预混液,且所述剪切混合装置设置有与所述主路管道的所述第二出液端连通的第一剪混进液口以获取所述主液体,使得通过剪切混合得到混合液。
  2. 如权利要求1所述的混合系统,其中,
    所述剪切混合装置还包括叶轮剪切组件,所述叶轮剪切组件包括转动轴以及由所述转动轴带动的至少一个剪切叶轮。
  3. 如权利要求2所述的混合系统,其中,
    所述第二出液端的出液方向位于与所述转动轴的轴向垂直的平面上。
  4. 如权利要求3所述的混合系统,其中,
    所述剪切混合装置包括第二剪混进液口,配置为获取所述预混液,所述第二剪混进液口的进液方向平行于所述转动轴的轴向;
    所述第一剪混进液口的进液方向位于与所述转动轴的轴向垂直的平面上。
  5. 如权利要求4所述的混合系统,其中,
    所述第一剪混进液口的数目为一个或为多个。
  6. 如权利要求2所述的混合系统,其中,
    所述第二出液端的出液方向沿着平行于所述转动轴的轴向。
  7. 如权利要求6所述的混合系统,其中,
    所述第一剪混进液口与所述预混装置的输出端连通,所述第一剪混进液口的进液方向沿着平行于所述转动轴的轴向。
  8. 如权利要求2~7任一所述的混合系统,其中,
    所述至少一个剪切叶轮包括第一剪切叶轮和第二剪切叶轮,所述第一剪切叶轮和所述第二剪切叶轮分别与所述转动轴同轴设置。
  9. 如权利要求8所述的混合系统,其中,
    所述第一剪切叶轮的外围设置有第一定子,所述第一定子设置有开孔;
    和/或,所述第二剪切叶轮的外围设置有第二定子,所述第二定子设置有开孔。
  10. 如权利要求1~9任一所述的混合系统,其中,
    所述剪切混合装置还包括可具有大于0.04mpa输出压力的输送式的叶轮剪切组件。
  11. 如权利要求1~10任一所述的混合系统,其中,
    所述混合设备还包括控制系统,所述主路管道上设置有第一压力传感器且配置为监测所述主路管道的压力,所述控制系统与所述第一压力传感器信号连接且配置为获取所述第一压力传感器的压力信号。
  12. 如权利要求11所述的混合系统,其中,
    所述主路管道上设置有第一流量计,所述控制系统还与所述第一流量计信号连接且配置为获取所述第一流量计的流量信号。
  13. 如权利要求1~12任一所述的混合系统,其中,
    所述预混装置的输入端包括一个或多个预混进液口,所述主路管道上靠近所述预混装置的输入端的一侧设置有第一流量控制阀。
  14. 如权利要求1~13任一所述的混合系统,其中,
    所述混合设备还包括混合液输送管道、再混装置和支路管道,
    所述混合液输送管道的输入端与所述剪切混合装置的剪切混合输出口连通以输送从所述剪切混合输出口输出的所述混合液,
    所述混合液输送管道的输出端与所述再混装置的输入端连通,
    所述支路管道的输入端与所述主路管道的第三出液端连通,所述支路管道的输出端与所述再混装置的输入端连通。
  15. 如权利要求14所述的混合系统,其中,
    所述支路管道上设置有第二流量控制阀。
  16. 如权利要求14或15所述的混合系统,其中,
    所述混合设备还包括喷射混合装置,所述喷射混合装置包括喷射输入端、引流输入端和喷射输出端,
    所述喷射输入端与所述支路管道的输出端连通且所述喷射输出端与所述再混装置的输入端连通,使得所述支路管道的输出端与所述再混装置的输入端实现连通,
    所述引流输入端与所述混合液输送管道的输出端连通且所述喷射输出端与所述再混装置的输入端连通,使得所述混合液输送管道的输出端与所述再混装置的输入端实现连通,
    所述喷射输入端配置为获取所述主液体且所述引流输入端配置为获取所述混合液,使得所述混合液与所述主液体进行混合。
  17. 如权利要求16所述的混合系统,其中,
    所述喷射混合装置的流通面积固定;
    或者,所述喷射混合装置的流通面积可变。
  18. 如权利要求1~17任一所述的混合系统,还包括:总混合罐、主液分路管道以及与所述主泵连通的总管道,其中,
    所述至少一个混合设备包括多个混合设备,所述多个混合设备中每个混合设备的主路管道的进液端分别通过所述总管道与所述主泵连通,所述多个混合设备并联设置在所述总管道和所述总混合罐之间,所述总混合罐分别与所述多个混合设备和所述主液分路管道串联,
    所述主液分路管道与所述多个混合设备并联设置且所述主液分路管道设置在所述总管道和所述总混合罐之间,所述主液分路管道的进液端与所述总管道连通以获取由所述主泵提供并流经所述总管道的主液体,
    所述主液分路管道包括至少一个主液分路出液端,所述至少一个主液分路出液端中的每个分别与用于连通所述多个混合设备中至少一个的剪切混合输出口和所述总混合罐的中间管道的至少部分合流设置。
  19. 如权利要求18所述的混合系统,还包括第一合流装置和第二合流装置,其中,
    所述至少一个主液分路出液端包括第一主液分路出液端,所述多个混合设备包括两个以上的第一混合设备,
    所述两个以上的第一混合设备的剪切混合输出口分别与所述第一合流装置的不同的输入端连通,所述第一合流装置的输出端和所述第一主液分路出液端分别与所述第二合流装置的不同的输入端连通,所述第二合流装置的输出端与所述总混合罐的输入端连通。
  20. 如权利要求18或19所述的混合系统,还包括至少一个第三合流装置,其中,
    所述至少一个主液分路出液端包括至少一个第二主液分路出液端,所述 多个混合设备包括至少一个第二混合设备,
    所述至少一个第二主液分路出液端与所述至少一个第三合流装置一一对应且所述至少一个第三合流装置与所述至少一个第二混合设备一一对应,
    所述至少一个第二混合设备中的每个的剪切混合输出口分别与对应的第三合流装置的不同的输入端连通,所述至少一个第三合流装置中的每个的输出端分别与所述总混合罐的输入端连通。
  21. 如权利要求20所述的混合系统,其中,
    所述至少一个第二主液分路出液端为两个以上的第二主液分路出液端,至少一个第二混合设备为两个以上的第二混合设备,所述至少一个第三合流装置为两个以上的第三合流装置,
    所述两个以上的第二主液分路出液端与所述两个以上的第三合流装置一一对应且所述两个以上的第三合流装置与所述两个以上的第二混合设备一一对应。
  22. 如权利要求20或21所述的混合系统,其特征在于,
    所述两个以上的第三合流装置中的每个的输出端分别通过静态混合器连通至所述总混合罐的输入端。
  23. 如权利要求21所述的混合系统,还包括第四合流装置,其中,
    所述两个以上的第三合流装置中的每个的输出端分别与所述第四合流装置的不同的输入端连通,所述第四合流装置的输出端与所述总混合罐的输入端连通。
  24. 如权利要求23所述的混合系统,其中,
    所述第四合流装置的输出端通过静态混合器连通至所述总混合罐的输入端。
  25. 如权利要求23或24所述的混合系统,其中,
    所述第一合流装置、所述第二合流装置、所述第三合流装置、所述第四合流装置中的一种或多种分别包括以下的至少一种:三通、静态混合器、喷射混合器、旋流混合器、扩散混合器、混合罐、盘管式混合装置。
  26. 如权利要求18~25任一所述的混合系统,其中,
    所述总管道上设置有第二流量计和第二压力传感器至少之一。
  27. 如权利要求18~25任一所述的混合系统,其中,
    所述总混合罐内设置有罐液位监测器。
  28. 一种基于如权利要求1~27任一所述的混合系统的混合方法,包括:
    启动所述主泵,通过所述主路管道的进液端向所述混合设备供给所述主液体;
    所述预混装置获取粉料以及还从所述主路管道获取所述主液体;
    所述预混装置将所述主液体和所述粉料进行预混,得到预混液;
    所述剪切混合装置从所述预混装置的输出端获取所述预混液,以及通过所述第一剪混进液口获取所述主液体;
    所述剪切混合装置通过剪切混合得到混合液并输送出所述混合液。
PCT/CN2021/124069 2021-09-15 2021-10-15 混合系统和混合方法 WO2023039974A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122233060.6 2021-09-15
CN202111082388.0A CN113600088A (zh) 2021-09-15 2021-09-15 混合系统和混合方法
CN202122233060.6U CN215901575U (zh) 2021-09-15 2021-09-15 混合系统
CN202111082388.0 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023039974A1 true WO2023039974A1 (zh) 2023-03-23

Family

ID=85478803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124069 WO2023039974A1 (zh) 2021-09-15 2021-10-15 混合系统和混合方法

Country Status (2)

Country Link
US (1) US20230085124A1 (zh)
WO (1) WO2023039974A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117281011A (zh) * 2023-08-14 2023-12-26 南通极菜农业科技发展有限公司 一种以秸秆为原料的育苗基质制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US12065968B2 (en) 2019-09-13 2024-08-20 BJ Energy Solutions, Inc. Systems and methods for hydraulic fracturing
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3191280A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
CN117123117B (zh) * 2023-10-26 2024-01-23 天津渤化化工发展有限公司 一种配置聚乙烯醇分散剂的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203899476U (zh) * 2014-05-28 2014-10-29 烟台杰瑞石油装备技术有限公司 一种压裂液的混配装置
CN205850752U (zh) * 2016-07-04 2017-01-04 中石化石油工程机械有限公司第四机械厂 一种高效压裂液混配装置
US20170259457A1 (en) * 2016-03-14 2017-09-14 Schlumberger Technology Corporation Mixing System for Cement and Fluids
CN107159046A (zh) * 2017-07-11 2017-09-15 烟台杰瑞石油装备技术有限公司 压裂液的混配系统及其混配方法
CN108371894A (zh) * 2018-03-30 2018-08-07 烟台杰瑞石油装备技术有限公司 一种压裂基液混合器
CN110124574A (zh) * 2019-06-21 2019-08-16 烟台杰瑞石油装备技术有限公司 一种多功能混配设备
CN113385091A (zh) * 2021-06-11 2021-09-14 天津市艾盟科技发展有限公司 一种连续式粉体石灰强制分散均匀混合投加系统
CN215963320U (zh) * 2021-09-15 2022-03-08 烟台杰瑞石油装备技术有限公司 混合系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203899476U (zh) * 2014-05-28 2014-10-29 烟台杰瑞石油装备技术有限公司 一种压裂液的混配装置
US20170259457A1 (en) * 2016-03-14 2017-09-14 Schlumberger Technology Corporation Mixing System for Cement and Fluids
CN205850752U (zh) * 2016-07-04 2017-01-04 中石化石油工程机械有限公司第四机械厂 一种高效压裂液混配装置
CN107159046A (zh) * 2017-07-11 2017-09-15 烟台杰瑞石油装备技术有限公司 压裂液的混配系统及其混配方法
CN108371894A (zh) * 2018-03-30 2018-08-07 烟台杰瑞石油装备技术有限公司 一种压裂基液混合器
CN110124574A (zh) * 2019-06-21 2019-08-16 烟台杰瑞石油装备技术有限公司 一种多功能混配设备
CN113385091A (zh) * 2021-06-11 2021-09-14 天津市艾盟科技发展有限公司 一种连续式粉体石灰强制分散均匀混合投加系统
CN215963320U (zh) * 2021-09-15 2022-03-08 烟台杰瑞石油装备技术有限公司 混合系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117281011A (zh) * 2023-08-14 2023-12-26 南通极菜农业科技发展有限公司 一种以秸秆为原料的育苗基质制备方法
CN117281011B (zh) * 2023-08-14 2024-05-14 南通极菜农业科技发展有限公司 一种以秸秆为原料的育苗基质制备方法

Also Published As

Publication number Publication date
US20230085124A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2023039974A1 (zh) 混合系统和混合方法
CN208260574U (zh) 一种压裂基液混合器
CN103599607B (zh) 一种用于煤矿防灭火的固化泡沫流体产生装置
CN113600088A (zh) 混合系统和混合方法
CN215963320U (zh) 混合系统
CN102345454B (zh) 压裂液射流混合装置
CN208990597U (zh) 一种高效射流混浆装置
CN203620127U (zh) 用于煤矿防灭火的固化泡沫流体产生装置
CN104147723A (zh) 一种液体比例混合装置
CN204522887U (zh) 一种加药混合器
CN216149464U (zh) 乳液混合系统
CN215901575U (zh) 混合系统
CN113318654B (zh) 一种压裂液混配装置及混配方法
US8561972B2 (en) Low pressure gas transfer device
CN202133915U (zh) 全自动自力式溶液调配装置
CN211274251U (zh) 一种海上油田聚合物水射流高效分散溶解装置
CN212576114U (zh) 定型机助剂搅拌罐
CN207446008U (zh) 一种文丘里混合器喷嘴及文丘里混合器
CN108883381A (zh) 用于由浓缩物生产即可使用的溶液的设备和方法
CN201157761Y (zh) 一种粉液混料均质系统
CN106417233A (zh) 一种即配即洒的农药喷洒系统
CN203389557U (zh) 连续配碱装置
CN208260629U (zh) 浮选药剂给药装置
CN103821493B (zh) 酸化压裂液连续混配供送方法
CN201778796U (zh) 压裂液射流混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21957241

Country of ref document: EP

Kind code of ref document: A1