WO2023038035A1 - Sealing resin composition, electronic component device, and method for manufacturing electronic component device - Google Patents

Sealing resin composition, electronic component device, and method for manufacturing electronic component device Download PDF

Info

Publication number
WO2023038035A1
WO2023038035A1 PCT/JP2022/033480 JP2022033480W WO2023038035A1 WO 2023038035 A1 WO2023038035 A1 WO 2023038035A1 JP 2022033480 W JP2022033480 W JP 2022033480W WO 2023038035 A1 WO2023038035 A1 WO 2023038035A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
compounds
curing agent
phenol
Prior art date
Application number
PCT/JP2022/033480
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 助川
実佳 田中
勇磨 竹内
有紗 山内
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023038035A1 publication Critical patent/WO2023038035A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a sealing resin composition, an electronic component device, and a method for manufacturing an electronic component device.
  • the amount of loss (dielectric loss) related to insulators such as circuit sealing materials is determined by the frequency of radio waves, the square root of the dielectric constant of the insulator, and the dielectric constant of the insulator. It increases in proportion to the product of the dielectric loss tangent. Therefore, as the frequency of radio waves increases, the reduction of dielectric constant or dielectric loss tangent of insulators is becoming more important from the viewpoint of suppressing transmission loss of electrical signals.
  • JP-A-2012-246367 and JP-A-2014-114352 disclose a resin composition containing an active ester resin as a curing agent for epoxy resins, and are obtained by curing this resin composition.
  • the dielectric loss tangent is said to be kept low in insulators with
  • thermosetting resin compositions described in JP-A-2012-246367 and JP-A-2014-114352 have a low dielectric loss tangent, but there is room for improvement in bending strength.
  • the present disclosure has been made in view of the above circumstances, a sealing resin composition that provides a cured product having a low dielectric loss tangent and excellent bending strength, an electronic component device sealed using the same, and An object of the present invention is to provide a method for manufacturing an electronic component device sealed using this.
  • An encapsulating resin composition comprising an epoxy resin and a curing agent, wherein the curing agent contains an active ester compound and a phenol compound having a hydroxyl equivalent of 150 g/eq or more.
  • the encapsulating resin composition according to ⁇ 1> wherein the proportion of the phenol compound having a hydroxyl equivalent of 150 g/eq or more in the entire curing agent is 20% by mass or more and 60% by mass or less.
  • ⁇ 4> The encapsulating resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the phenol compound having a hydroxyl equivalent of 150 g/eq or more contains a naphthalene structure.
  • ⁇ 5> The encapsulating resin composition according to any one of ⁇ 1> to ⁇ 4>, further comprising an inorganic filler, wherein the inorganic filler has an average particle size of 10 ⁇ m or less.
  • ⁇ 6> A support member, an element placed on the support member, and a cured product of the sealing resin composition according to any one of ⁇ 1> to ⁇ 5> sealing the element and an electronic component device.
  • An electronic component device comprising a step of placing an element on a support member and a step of sealing the element with the sealing resin composition according to any one of ⁇ 1> to ⁇ 5>. manufacturing method.
  • a sealing resin composition that provides a cured product having a low dielectric loss tangent and excellent bending strength, an electronic component device sealed using the same, and an electronic device sealed using the same A method of manufacturing a component device is provided.
  • the term "process” includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • active ester compound refers to a compound having one or more ester groups (active ester groups) capable of reacting with epoxy groups in one molecule and having a curing action for epoxy resins.
  • phenol compound refers to a compound that has one or more hydroxyl groups in one molecule that can react with epoxy groups and has a curing action for epoxy resins.
  • the encapsulating resin composition of the present disclosure contains an epoxy resin and a curing agent, wherein the curing agent contains an active ester compound and a phenol compound having a hydroxyl equivalent of 150 g/eq or more. It is a thing.
  • the cured product obtained by curing the encapsulating resin composition having the above configuration exhibits excellent bending strength while maintaining a low dielectric loss tangent.
  • the encapsulating resin composition of the present disclosure contains an active ester compound as a curing agent.
  • Phenolic compounds that are generally used as curing agents for epoxy resins generate secondary hydroxyl groups upon reaction with epoxy resins.
  • the reaction between the epoxy resin and the active ester compound produces an ester group having a lower polarity than the secondary hydroxyl group.
  • the encapsulating resin composition of the present disclosure can suppress the dielectric loss tangent of the cured product to a lower level than the encapsulating resin composition containing only a curing agent that produces secondary hydroxyl groups by reaction with an epoxy resin. is considered possible.
  • the encapsulating resin composition of the present disclosure contains a phenol compound having a hydroxyl equivalent of 150 g/eq or more as a curing agent.
  • the ratio of the active ester compound to the total curing agent is not particularly limited, and can be selected depending on the desired properties of the encapsulating resin composition.
  • the proportion of the active ester compound in the total curing agent is preferably 40% by mass or more, more preferably 45% by mass or more. , more preferably 50% by mass or more.
  • the proportion of the active ester compound in the total curing agent is preferably 85% by mass or less, more preferably 80% by mass or less. It is preferably 75% by mass or less, and more preferably 75% by mass or less.
  • the ratio of the phenolic compound having a hydroxyl equivalent of 150 g/eq or more in the total curing agent is not particularly limited, and can be selected depending on the desired properties of the encapsulating resin composition. From the viewpoint of reducing the dielectric loss tangent of the cured product of the encapsulating resin composition, the proportion of the phenol compound having a hydroxyl equivalent of 150 g/eq or more in the entire curing agent is preferably 60% by mass or less, and 55% by mass. % or less, more preferably 50 mass % or less.
  • the proportion of the phenol compound having a hydroxyl equivalent of 150 g/eq or more in the entire curing agent is preferably 20% by mass or more. It is more preferably 30% by mass or more, more preferably 30% by mass or more.
  • the equivalent ratio between the epoxy resin and the curing agent that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (number of functional groups in the curing agent/number of functional groups in the epoxy resin) is not particularly limited. From the viewpoint of suppressing the unreacted amount of each, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
  • epoxy resin The type of epoxy resin contained in the encapsulating resin composition of the present disclosure is not particularly limited.
  • the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • a novolac type epoxy resin (phenol novolak type epoxy resins, ortho-cresol novolac-type epoxy resins, etc.); triphenylmethane-type phenolic resins obtained by condensation or co-condensation of the above phenolic compounds and aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde in the presence of acidic catalysts as epoxy resins.
  • a triphenylmethane-type epoxy resin obtained by epoxidizing a triphenylmethane-type epoxy resin
  • a copolymer-type epoxy resin obtained by epoxidizing a novolak resin obtained by co-condensing the above phenol compound and naphthol compound with an aldehyde compound in the presence of an acidic catalyst
  • bisphenol A diphenylmethane-type epoxy resins that are diglycidyl ethers such as bisphenol F
  • biphenyl-type epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenols
  • stilbene-type epoxy resins that are diglycidyl ethers of stilbene-based phenol compounds
  • sulfur atom-containing epoxy resins that are diglycidyl ethers such as S
  • epoxy resins that are glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene
  • the epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g/eq to 1000 g/eq, more preferably 150 g/eq to 500 g/eq.
  • the epoxy equivalent of the epoxy resin shall be the value measured by the method according to JIS K 7236:2009.
  • the softening point or melting point of the epoxy resin is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40° C. to 180° C., and from the viewpoint of handleability in preparation of the encapsulating resin composition, it is more preferably 50° C. to 130° C.
  • the melting point or softening point of the epoxy resin is the value measured by the single-cylinder rotational viscometer method described in JIS K 7234:1986 and JIS K 7233:1986.
  • the content of the epoxy resin in the resin composition for sealing is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass, from the viewpoint of strength, fluidity, heat resistance, moldability, etc. % is more preferred.
  • the encapsulating resin composition contains an active ester compound as a curing agent.
  • an active ester compound as a curing agent for the encapsulating resin composition, the dielectric loss tangent of the cured product can be kept low.
  • the type of the active ester compound is not particularly limited as long as it has one or more ester groups in the molecule that react with epoxy groups.
  • active ester compounds include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esters of heterocyclic hydroxy compounds.
  • active ester compounds include ester compounds obtained from at least one of aliphatic carboxylic acids and aromatic carboxylic acids and at least one of aliphatic hydroxy compounds and aromatic hydroxy compounds.
  • Ester compounds containing an aliphatic compound as a polycondensation component tend to have excellent compatibility with epoxy resins due to having an aliphatic chain.
  • Ester compounds containing an aromatic compound as a polycondensation component tend to have excellent heat resistance due to having an aromatic ring.
  • a specific example of the active ester compound is an aromatic ester obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group of an aromatic hydroxy compound.
  • an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms of an aromatic ring such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid are substituted with a carboxy group, and the hydrogen atom of the aromatic ring described above.
  • a mixture of a monohydric phenol in which one of is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 of the hydrogen atoms on the aromatic ring are substituted with a hydroxyl group is used as a raw material to obtain an aromatic carboxylic acid and an aromatic hydroxy compound.
  • An aromatic ester obtained by a condensation reaction with a phenolic hydroxyl group is preferred. That is, aromatic esters having structural units derived from the aromatic carboxylic acid component, structural units derived from the monohydric phenol, and structural units derived from the polyhydric phenol are preferred.
  • the active ester compound examples include a phenol resin having a molecular structure in which a phenol compound is knotted via an aliphatic cyclic hydrocarbon group, described in JP-A-2012-246367, and an aromatic dicarboxylic acid or Examples thereof include active ester resins having a structure obtained by reacting the halide with an aromatic monohydroxy compound.
  • the active ester resin a compound represented by the following structural formula (1) is preferable.
  • R 1 is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a hydrogen atom
  • X is a benzene ring, a naphthalene ring, a benzene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a naphthalene ring or a biphenyl group
  • Y is a benzene ring, a naphthalene ring, or a benzene or naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms
  • k is 0 or 1
  • n is the number of repetitions represents the average value of
  • t-Bu in the structural formula is a tert-butyl group.
  • active ester compound is a compound represented by the following structural formula (2) and a compound represented by the following structural formula (3), which are described in JP-A-2014-114352. mentioned.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • Z is a benzoyl group, a naphthoyl group, or a carbon an ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with an alkyl group of number 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); at least one of which is an ester-forming structural site (z1).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • Z is a benzoyl group, a naphthoyl group, or a carbon an ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with an alkyl group of number 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); at least one of which is an ester-forming structural site (z1).
  • Specific examples of the compound represented by structural formula (2) include the following exemplary compounds (2-1) to (2-6).
  • Specific examples of the compound represented by structural formula (3) include the following exemplary compounds (3-1) to (3-6).
  • a commercially available product may be used as the active ester compound.
  • Active ester compounds include "EXB9451”, “EXB9460”, “EXB9460S”, and “HPC-8000-65T” (manufactured by DIC Corporation) as active ester compounds containing a dicyclopentadiene type diphenol structure; “EXB9416-70BK”, “EXB-8”, “EXB-9425” (manufactured by DIC Corporation) as active ester compounds containing structures; "DC808” (Mitsubishi Chemical Corporation (manufactured by Mitsubishi Chemical Corporation); active ester compounds containing benzoylated phenol novolak include “YLH1026" (manufactured by Mitsubishi Chemical Corporation).
  • the active ester compound may be used singly or in combination of two or more.
  • the ester equivalent (molecular weight/number of active ester groups) of the active ester compound is not particularly limited. From the viewpoint of balance of various properties such as formability, reflow resistance, and electrical reliability, it is preferably 150 g/eq to 400 g/eq, more preferably 170 g/eq to 300 g/eq, and 200 g/eq to 250 g/eq. More preferred.
  • the ester equivalent of the active ester compound shall be the value measured by the method according to JIS K 0070:1992.
  • the encapsulating resin composition contains a phenol compound having a hydroxyl equivalent of 150 g/eq or more as a curing agent.
  • a phenol compound having a hydroxyl equivalent of 150 g/eq or more as a curing agent for the encapsulating resin composition, the bending strength of the cured product is improved.
  • phenol compounds having a hydroxyl equivalent of 150 g/eq or more include polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, At least one phenolic compound selected from the group consisting of phenolic compounds such as bisphenol A, bisphenol F, phenylphenol and aminophenol, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, formaldehyde, acetaldehyde and propionaldehyde Novolac-type phenol compounds obtained by condensing or co-condensing an aldehyde compound such as a Aralkyl-type phenol compounds such as aralkyl compounds; para-xylylene-modified phenol compounds, meta-xylylene-modified phenol compounds;
  • the phenol compound having a hydroxyl equivalent of 150 g/eq or more is preferably a phenol compound containing a biphenyl structure or a naphthalene structure, and more preferably an aralkyl-type phenol compound containing a naphthalene structure or a biphenyl structure.
  • a biphenyl structure or a naphthalene structure and a benzene ring alternately linked via a methylene group are more preferred phenol compounds.
  • the hydroxyl equivalent of the phenol compound having a hydroxyl equivalent of 150 g/eq or more is preferably 160 g/eq or more, more preferably 170 g/eq or more, further preferably 180 g/eq or more, and 190 g/eq or more. eq or more is particularly preferred.
  • the upper limit of the hydroxyl equivalent weight of the phenol compound having a hydroxyl equivalent weight of 150 g/eq or more is not particularly limited. From the viewpoint of the balance of properties such as moldability, reflow resistance, and electrical reliability, the hydroxyl equivalent of the phenolic compound having a hydroxyl equivalent of 150 g/eq or more is preferably 1000 g/eq or less, and 500 g/eq or less. is more preferably 300 g/eq or less.
  • the hydroxyl equivalent of a phenol compound is a value measured by a method according to JIS K 0070:1992.
  • the softening point or melting point of the phenol compound having a hydroxyl equivalent of 150 g/eq or more is not particularly limited.
  • the temperature is preferably 40° C. to 180° C., and from the viewpoint of handleability during production of the encapsulating resin composition, it is more preferably 50° C. to 160° C. .
  • the melting point or softening point of a phenolic compound having a hydroxyl equivalent of 150 g/eq or more is the value measured by the single-cylinder rotational viscometer method described in JIS K 7234:1986 and JIS K 7233:1986.
  • the encapsulating resin composition may contain an active ester compound as a curing agent and a curing agent (other curing agent) other than the phenol compound having a hydroxyl equivalent of 150 g/eq or more.
  • the type of other curing agent is not particularly limited, and can be selected according to the desired properties of the encapsulating resin composition.
  • Other curing agents include phenol curing agents having a hydroxyl equivalent of less than 150 g/eq, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like. be done.
  • Other curing agents may be used alone or in combination of two or more.
  • the ratio of the other curing agent to the total curing agent is preferably 1% by mass to 10% by mass, and 3% by mass to 8% by mass. % is more preferable.
  • the encapsulating resin composition may contain a curing accelerator.
  • the type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin or curing agent, the desired properties of the encapsulating resin composition, and the like.
  • Curing accelerators include diazabicycloalkenes such as 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylhydroxyimidazole, 2-heptadecylimidazole; Derivatives of cyclic amidine compounds; phenol novolak salts of the cyclic amidine compounds or derivatives thereof; , 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, quinone compounds such as phenyl-1,4-benzoquinone, diazophenyl Compounds having intramolecular
  • a compound having intramolecular polarization obtained through a step of dehydrohalogenation after reacting a halogenated phenol compound Tetra-substituted phosphonium such as tetraphenylphosphonium; tetrasubstituted phosphonium compounds such as tetraphenylborate salts of substituted phosphonium and salts of tetrasubstituted phosphonium and phenolic compounds; phosphobetaine compounds; adducts of phosphonium compounds and silane compounds;
  • the amount thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). , more preferably 1 to 15 parts by mass.
  • the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency for satisfactory curing in a short period of time.
  • the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing speed is not too fast and a good molded article tends to be obtained.
  • the encapsulating resin composition of the present disclosure may contain an inorganic filler.
  • the type of inorganic filler is not particularly limited. Specific examples include inorganic materials such as fused silica, crystalline silica, glass, alumina, aluminum nitride, boron nitride, talc, clay, and mica.
  • Inorganic fillers having a flame retardant effect may also be used. Inorganic fillers having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate.
  • silica such as fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion
  • alumina is preferable from the viewpoint of high thermal conductivity.
  • An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types. Examples of the form of the inorganic filler include powders, beads obtained by spheroidizing powders, and fibers.
  • the inorganic filler When the inorganic filler is particulate, its average particle size is not particularly limited.
  • the average particle size of the inorganic filler is preferably 100 ⁇ m, more preferably 50 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the average particle size of the inorganic filler is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the average particle size of the inorganic filler is 0.2 ⁇ m or more, the increase in viscosity of the encapsulating resin composition is further suppressed.
  • the average particle size of the inorganic filler When the average particle size of the inorganic filler is 100 ⁇ m or less, the filling properties are further improved.
  • the average particle diameter of the inorganic filler is determined as the volume average particle diameter (D50) by a laser scattering diffraction method particle size distribution analyzer.
  • the content of the inorganic filler contained in the encapsulating resin composition is not particularly limited. From the viewpoint of fluidity and strength, it is preferably 30% to 90% by volume, more preferably 35% to 85% by volume, and 40% to 80% by volume of the entire sealing resin composition. % is more preferred.
  • the content of the inorganic filler is 30% by volume or more of the entire encapsulating resin composition, the properties of the cured product, such as coefficient of thermal expansion, thermal conductivity and elastic modulus, tend to be further improved.
  • the content of the inorganic filler is 90% by volume or less of the entire encapsulating resin composition, an increase in viscosity of the encapsulating resin composition is suppressed, fluidity is further improved, and moldability is further improved. tend to become
  • the encapsulating resin composition may contain various additives such as coupling agents, ion exchangers, release agents, flame retardants, colorants, and silicone compounds exemplified below.
  • the encapsulating resin composition may contain various additives known in the art as necessary, in addition to the additives exemplified below.
  • the encapsulating resin composition may contain a coupling agent.
  • the sealing resin composition preferably contains a coupling agent.
  • Coupling agents include known coupling agents such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane, silane compounds such as disilazane, titanium compounds, aluminum chelate compounds, and aluminum/zirconium compounds. mentioned.
  • the amount of the coupling agent is preferably 0.05 parts by mass to 15 parts by mass with respect to 100 parts by mass of the inorganic filler, and 0.1 part by mass. More preferably, it is up to 10 parts by mass.
  • the encapsulating resin composition may contain an ion exchanger.
  • the encapsulating resin composition preferably contains an ion exchanger from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device including the element to be sealed.
  • the ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • the ion exchangers may be used singly or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
  • the encapsulating resin composition contains an ion exchanger
  • its content is not particularly limited as long as it is sufficient to capture ions such as halogen ions.
  • it is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).
  • the encapsulating resin composition may contain a mold release agent from the viewpoint of obtaining good releasability from the mold during molding.
  • the release agent is not particularly limited, and conventionally known agents can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene.
  • the release agent may be used alone or in combination of two or more.
  • the amount thereof is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin component (the total amount of the epoxy resin and the curing agent), and 0.1 More preferably 5 parts by mass to 5 parts by mass.
  • the encapsulating resin composition may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known ones can be used. Specific examples include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, and metal hydroxides.
  • a flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the encapsulating resin composition contains a flame retardant
  • its amount is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect.
  • it is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, per 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).
  • the encapsulating resin composition may contain a coloring agent.
  • coloring agents include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide.
  • the content of the coloring agent can be appropriately selected according to the purpose and the like.
  • a coloring agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • a method for preparing the encapsulating resin composition is not particularly limited.
  • a general method there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the components described above are uniformly stirred and mixed, kneaded with a kneader, roll, extruder, or the like preheated to 70° C. to 140° C., cooled, and pulverized. can be mentioned.
  • the encapsulating resin composition is preferably solid at room temperature and normal pressure (eg, 25°C, atmospheric pressure).
  • the shape is not particularly limited, and examples thereof include powder, granules, tablets, and the like.
  • the encapsulating resin composition is in the form of a tablet, it is preferable from the standpoint of handleability that the dimensions and mass are such that they meet the molding conditions of the package.
  • An electronic component device that is an embodiment of the present disclosure includes an element and a cured product of the sealing resin composition of the present disclosure that seals the element.
  • elements active elements such as semiconductor chips, transistors, diodes, thyristors, capacitors, resistors, etc.
  • passive elements such as coils, etc.
  • the element is fixed on a lead frame, and the terminal portion of the element such as a bonding pad and the lead portion are connected by wire bonding, bumps, or the like, and then transfer molding or the like is performed using a sealing resin composition.
  • TCP Tape Carrier Package having a structure in which an element connected to a tape carrier with bumps is sealed with a sealing resin composition
  • COB Chip On Board
  • COB Chip On Board
  • encapsulation BGAs Bit Grid Arrays
  • CSPs Chip Size Packages
  • MCPs Multi Chip Packages
  • a method of manufacturing an electronic component device of the present disclosure includes a step of placing an element on a support member and a step of encapsulating the element with the encapsulating resin composition of the present disclosure.
  • the method for implementing each of the above steps is not particularly limited, and can be performed by a general method. Further, the types of supporting members and elements used for manufacturing electronic component devices are not particularly limited, and supporting members and elements generally used for manufacturing electronic component devices can be used.
  • Examples of methods for encapsulating an element using the encapsulating resin composition of the present disclosure include a low-pressure transfer molding method, an injection molding method, a compression molding method, and the like. Among these, the low pressure transfer molding method is common.
  • Epoxy resin 1 Triphenylmethane type epoxy resin containing alkyl group
  • Epoxy resin 2 Triphenylmethane type epoxy resin containing no alkyl group
  • Epoxy resin 3 Biphenyl type epoxy resin
  • Epoxy resin 4 Novolac type epoxy resin
  • Curing agent 1 active ester compound
  • Curing agent 2 aralkyl-type phenol compound containing naphthalene structure, hydroxyl equivalent 215 g/eq
  • Curing agent 3 aralkyl-type phenol compound containing biphenyl structure, hydroxyl equivalent 199 g/eq
  • Curing agent 4 triphenylmethane type phenol compound, hydroxyl equivalent 104 g / eq - Curing agent 5: Novolak type phenol compound, hydroxyl equivalent 106 g/eq
  • ⁇ Curing accelerator 1 adduct of triphenylphosphine and 1,4-benzoquinone
  • Coupling agent 1 N-phenyl-3-aminopropyltrimethoxysilane
  • Inorganic filler 1 silica particles, volume average particle diameter 3 ⁇ m
  • Inorganic filler 2 silica particles, volume average particle size 0.5 ⁇ m
  • the dielectric constant (Dk) and dielectric loss tangent (Df) of this test piece were measured at frequencies of 5 GHz and 10 GHz using a cavity resonator (Kanto Denshi Applied Development Co., Ltd.) and a network analyzer (Keysight Technologies, product name "PNA E8364B ”) was used, and the temperature was measured in an environment of 25 ⁇ 3°C. Table 1 shows the results.
  • the type of cavity resonator used at each measurement frequency is as follows. 5GHz...CP511 10GHz...CP531
  • the encapsulating resin composition was charged into a transfer molding machine, molded under conditions of a mold temperature of 175° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds.
  • a rectangular parallelepiped test piece of 12.7 mm ⁇ 4 mm was prepared.
  • Tensilon (A & D Co.) as an evaluation device, a three-point support bending test in accordance with JIS-K-7171 (2016) was performed at room temperature (25 ° C.), and the bending elastic modulus E, bending strength S and The elongation at break ⁇ was determined by the following formula.
  • Flexural modulus E (GPa), flexural strength S (MPa), and elongation at break ⁇ (%) are defined by the following equations.
  • P is the load cell value (N)
  • y is the amount of displacement (mm)
  • the suffix max indicates the maximum value.

Abstract

A sealing resin composition comprising an epoxy resin and a curing agent, wherein the curing agent contains an active ester compound and a phenolic compound having a hydroxyl equivalent of 150 g/eq or more.

Description

封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法Sealing resin composition, electronic component device, and method for manufacturing electronic component device
 本開示は、封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法に関する。 The present disclosure relates to a sealing resin composition, an electronic component device, and a method for manufacturing an electronic component device.
 近年の無線通信分野においては、チャンネル数の増加と伝送される情報量の増加にともなって電波の高周波化が進行している。無線通信に用いる電気信号の伝送損失のうち、回路の封止材等の絶縁体が関与する損失(誘電損失)の量は、電波の周波数、絶縁体の比誘電率の平方根、及び絶縁体の誘電正接の積に比例して増大する。したがって、電波の周波数が増大する局面にあっては絶縁体の比誘電率又は誘電正接の低減が電気信号の伝送損失の抑制の観点から重要性を増している。 In the field of wireless communications in recent years, radio waves are becoming higher in frequency as the number of channels increases and the amount of information transmitted increases. Of the transmission loss of electrical signals used in wireless communication, the amount of loss (dielectric loss) related to insulators such as circuit sealing materials is determined by the frequency of radio waves, the square root of the dielectric constant of the insulator, and the dielectric constant of the insulator. It increases in proportion to the product of the dielectric loss tangent. Therefore, as the frequency of radio waves increases, the reduction of dielectric constant or dielectric loss tangent of insulators is becoming more important from the viewpoint of suppressing transmission loss of electrical signals.
 例えば、特開2012-246367号公報及び特開2014-114352号公報には、エポキシ樹脂の硬化剤として活性エステル樹脂を含有する樹脂組成物が開示されており、この樹脂組成物を硬化して得られる絶縁体は誘電正接が低く抑えられるとされている。 For example, JP-A-2012-246367 and JP-A-2014-114352 disclose a resin composition containing an active ester resin as a curing agent for epoxy resins, and are obtained by curing this resin composition. The dielectric loss tangent is said to be kept low in insulators with
 特開2012-246367号公報及び特開2014-114352号公報に記載されている熱硬化性樹脂組成物の硬化物は、誘電正接が低い一方で曲げ強さに改善の余地がある。
 本開示は上記事情を鑑みてなされたものであり、誘電正接が低く、かつ曲げ強さに優れる硬化物が得られる封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法を提供することを課題とする。
The cured products of the thermosetting resin compositions described in JP-A-2012-246367 and JP-A-2014-114352 have a low dielectric loss tangent, but there is room for improvement in bending strength.
The present disclosure has been made in view of the above circumstances, a sealing resin composition that provides a cured product having a low dielectric loss tangent and excellent bending strength, an electronic component device sealed using the same, and An object of the present invention is to provide a method for manufacturing an electronic component device sealed using this.
 前記課題を解決するための具体的手段には、以下の態様が含まれる。
<1>エポキシ樹脂と、硬化剤とを含み、前記硬化剤は活性エステル化合物と、水酸基当量が150g/eq以上であるフェノール化合物とを含む、封止用樹脂組成物。
<2>前記硬化剤全体に占める前記水酸基当量が150g/eq以上であるフェノール化合物の割合が20質量%以上60質量%以下である、<1>に記載の封止用樹脂組成物。<3>前記水酸基当量が150g/eq以上であるフェノール化合物がビフェニル構造を含む、<1>又は<2>に記載の封止用樹脂組成物。
<4>前記水酸基当量が150g/eq以上であるフェノール化合物がナフタレン構造を含む、<1>~<3>のいずれか1項に記載の封止用樹脂組成物。
<5>無機充填材をさらに含み、前記無機充填材の平均粒径が10μm以下である、<1>~<4>のいずれか1項に記載の封止用樹脂組成物。
<6>支持部材と、前記支持部材上に配置された素子と、前記素子を封止している<1>~<5>のいずれか1項に記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。<7>素子を支持部材上に配置する工程と、前記素子を<1>~<5>のいずれか1項に記載の封止用樹脂組成物で封止する工程と、を含む電子部品装置の製造方法。
Specific means for solving the above problems include the following aspects.
<1> An encapsulating resin composition comprising an epoxy resin and a curing agent, wherein the curing agent contains an active ester compound and a phenol compound having a hydroxyl equivalent of 150 g/eq or more.
<2> The encapsulating resin composition according to <1>, wherein the proportion of the phenol compound having a hydroxyl equivalent of 150 g/eq or more in the entire curing agent is 20% by mass or more and 60% by mass or less. <3> The encapsulating resin composition according to <1> or <2>, wherein the phenol compound having a hydroxyl equivalent of 150 g/eq or more contains a biphenyl structure.
<4> The encapsulating resin composition according to any one of <1> to <3>, wherein the phenol compound having a hydroxyl equivalent of 150 g/eq or more contains a naphthalene structure.
<5> The encapsulating resin composition according to any one of <1> to <4>, further comprising an inorganic filler, wherein the inorganic filler has an average particle size of 10 μm or less.
<6> A support member, an element placed on the support member, and a cured product of the sealing resin composition according to any one of <1> to <5> sealing the element and an electronic component device. <7> An electronic component device comprising a step of placing an element on a support member and a step of sealing the element with the sealing resin composition according to any one of <1> to <5>. manufacturing method.
 本開示によれば、誘電正接が低く、かつ曲げ強さに優れる硬化物が得られる封止用樹脂
組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法が提供される。
According to the present disclosure, a sealing resin composition that provides a cured product having a low dielectric loss tangent and excellent bending strength, an electronic component device sealed using the same, and an electronic device sealed using the same A method of manufacturing a component device is provided.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term "process" includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
 本開示において「活性エステル化合物」とは、エポキシ基と反応しうるエステル基(活性エステル基)を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有する化合物をいう。
 本開示において「フェノール化合物」とは、エポキシ基と反応しうる水酸基を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有する化合物をいう。
In the present disclosure, the term “active ester compound” refers to a compound having one or more ester groups (active ester groups) capable of reacting with epoxy groups in one molecule and having a curing action for epoxy resins.
In the present disclosure, the term “phenol compound” refers to a compound that has one or more hydroxyl groups in one molecule that can react with epoxy groups and has a curing action for epoxy resins.
<封止用樹脂組成物>
 本開示の封止用樹脂組成物は、エポキシ樹脂と、硬化剤とを含み、前記硬化剤は活性エステル化合物と、水酸基当量が150g/eq以上であるフェノール化合物とを含む、封止用樹脂組成物である。
<Resin composition for encapsulation>
The encapsulating resin composition of the present disclosure contains an epoxy resin and a curing agent, wherein the curing agent contains an active ester compound and a phenol compound having a hydroxyl equivalent of 150 g/eq or more. It is a thing.
 本発明者らの検討の結果、上記構成を有する封止用樹脂組成物を硬化して得られる硬化物は、誘電正接を低く維持しながら優れた曲げ強さを示すことがわかった。 As a result of studies by the present inventors, it was found that the cured product obtained by curing the encapsulating resin composition having the above configuration exhibits excellent bending strength while maintaining a low dielectric loss tangent.
 本開示の封止用樹脂組成物は、硬化剤として活性エステル化合物を含んでいる。エポキシ樹脂の硬化剤として一般的に用いられるフェノール化合物は、エポキシ樹脂との反応において2級水酸基を生じる。これに対してエポキシ樹脂と活性エステル化合物との反応では、2級水酸基よりも極性が低いエステル基が生じる。このため、本開示の封止用樹脂組成物は、エポキシ樹脂との反応によって2級水酸基を生じる硬化剤のみを含有する封止用樹脂組成物に比べて、硬化物の誘電正接を低く抑えることができると考えられる。 The encapsulating resin composition of the present disclosure contains an active ester compound as a curing agent. Phenolic compounds that are generally used as curing agents for epoxy resins generate secondary hydroxyl groups upon reaction with epoxy resins. On the other hand, the reaction between the epoxy resin and the active ester compound produces an ester group having a lower polarity than the secondary hydroxyl group. For this reason, the encapsulating resin composition of the present disclosure can suppress the dielectric loss tangent of the cured product to a lower level than the encapsulating resin composition containing only a curing agent that produces secondary hydroxyl groups by reaction with an epoxy resin. is considered possible.
 さらに、本開示の封止用樹脂組成物は、硬化剤として水酸基当量が150g/eq以上であるフェノール化合物を含む。
 本発明者らの検討の結果、硬化剤として含まれる活性エステル化合物の一部を水酸基当量が150g/eq以上であるフェノール化合物に置き換えると、封止用樹脂組成物の硬化物の誘電特性(比誘電率及び誘電正接)はほぼ変化させずに曲げ強さを改善できることがわかった。
Furthermore, the encapsulating resin composition of the present disclosure contains a phenol compound having a hydroxyl equivalent of 150 g/eq or more as a curing agent.
As a result of studies by the present inventors, it was found that if a part of the active ester compound contained as a curing agent is replaced with a phenol compound having a hydroxyl equivalent of 150 g/eq or more, the dielectric properties (relative It was found that the flexural strength can be improved without substantially changing the dielectric constant and dielectric loss tangent.
 封止用樹脂組成物において、硬化剤全体に占める活性エステル化合物の割合は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。
 封止用樹脂組成物の硬化物の誘電正接の低減の観点からは、硬化剤全体に占める活性エステル化合物の割合は40質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。
 封止用樹脂組成物の硬化物の曲げ強さの改善の観点からは、硬化剤全体に占める活性エステル化合物の割合は85質量%以下であることが好ましく、80質量%以下であることがより好ましく、75質量%以下であることがさらに好ましい。
In the encapsulating resin composition, the ratio of the active ester compound to the total curing agent is not particularly limited, and can be selected depending on the desired properties of the encapsulating resin composition.
From the viewpoint of reducing the dielectric loss tangent of the cured product of the encapsulating resin composition, the proportion of the active ester compound in the total curing agent is preferably 40% by mass or more, more preferably 45% by mass or more. , more preferably 50% by mass or more.
From the viewpoint of improving the bending strength of the cured product of the encapsulating resin composition, the proportion of the active ester compound in the total curing agent is preferably 85% by mass or less, more preferably 80% by mass or less. It is preferably 75% by mass or less, and more preferably 75% by mass or less.
 硬化剤全体に占める水酸基当量が150g/eq以上であるフェノール化合物の割合は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。
 封止用樹脂組成物の硬化物の誘電正接の低減の観点からは、硬化剤全体に占める水酸基当量が150g/eq以上であるフェノール化合物の割合は60質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。
 封止用樹脂組成物の硬化物の曲げ強さの改善の観点からは、硬化剤全体に占める水酸基当量が150g/eq以上であるフェノール化合物の割合は20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。
The ratio of the phenolic compound having a hydroxyl equivalent of 150 g/eq or more in the total curing agent is not particularly limited, and can be selected depending on the desired properties of the encapsulating resin composition.
From the viewpoint of reducing the dielectric loss tangent of the cured product of the encapsulating resin composition, the proportion of the phenol compound having a hydroxyl equivalent of 150 g/eq or more in the entire curing agent is preferably 60% by mass or less, and 55% by mass. % or less, more preferably 50 mass % or less.
From the viewpoint of improving the bending strength of the cured product of the encapsulating resin composition, the proportion of the phenol compound having a hydroxyl equivalent of 150 g/eq or more in the entire curing agent is preferably 20% by mass or more. It is more preferably 30% by mass or more, more preferably 30% by mass or more.
 エポキシ樹脂と硬化剤との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 The equivalent ratio between the epoxy resin and the curing agent, that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (number of functional groups in the curing agent/number of functional groups in the epoxy resin) is not particularly limited. From the viewpoint of suppressing the unreacted amount of each, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
(エポキシ樹脂)
 本開示の封止用樹脂組成物に含まれるエポキシ樹脂の種類は特に制限されない。
 エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル型樹脂、ナフトールアラルキル型樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Epoxy resin)
The type of epoxy resin contained in the encapsulating resin composition of the present disclosure is not particularly limited.
Specifically, the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. A novolac type epoxy resin (phenol novolak type epoxy resins, ortho-cresol novolac-type epoxy resins, etc.); triphenylmethane-type phenolic resins obtained by condensation or co-condensation of the above phenolic compounds and aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde in the presence of acidic catalysts as epoxy resins. a triphenylmethane-type epoxy resin obtained by epoxidizing a triphenylmethane-type epoxy resin; a copolymer-type epoxy resin obtained by epoxidizing a novolak resin obtained by co-condensing the above phenol compound and naphthol compound with an aldehyde compound in the presence of an acidic catalyst; bisphenol A, diphenylmethane-type epoxy resins that are diglycidyl ethers such as bisphenol F; biphenyl-type epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenols; stilbene-type epoxy resins that are diglycidyl ethers of stilbene-based phenol compounds; sulfur atom-containing epoxy resins that are diglycidyl ethers such as S; epoxy resins that are glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid Glycidyl ester type epoxy resin which is a glycidyl ester of; aniline, diaminodiphenylmethane, glycidyl amine type epoxy resin in which the active hydrogen bonded to the nitrogen atom of isocyanuric acid is substituted with a glycidyl group; dicyclopentadiene type epoxy resins obtained by epoxidizing condensation resins; vinylcyclohexene diepoxides obtained by epoxidizing intramolecular olefin bonds, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 2-(3,4-epoxy)cyclohexyl-5, Alicyclic epoxy resins such as 5-spiro(3,4-epoxy)cyclohexane-m-dioxane; para-xylylene-modified epoxy resins that are glycidyl ethers of para-xylylene-modified phenol resins; meta-xylylene-modified epoxy resins that are glycidyl ethers of meta-xylylene-modified phenol resins a terpene-modified epoxy resin that is a glycidyl ether of a terpene-modified phenol resin; a dicyclopentadiene-modified epoxy resin that is a glycidyl ether of a dicyclopentadiene-modified phenol resin; a cyclopentadiene-modified epoxy resin that is a glycidyl ether of a cyclopentadiene-modified phenol resin; Polycyclic aromatic ring-modified epoxy resins that are glycidyl ethers of aromatic ring-modified phenolic resins; naphthalene-type epoxy resins that are glycidyl ethers of naphthalene ring-containing phenolic resins; halogenated phenolic novolac-type epoxy resins; hydroquinone-type epoxy resins; trimethylolpropane type epoxy resin; linear aliphatic epoxy resin obtained by oxidizing olefin bonds with peracid such as peracetic acid; epoxy resin; and the like. Further examples of epoxy resins include epoxidized acrylic resins and the like. These epoxy resins may be used singly or in combination of two or more.
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g/eq to 1000 g/eq, more preferably 150 g/eq to 500 g/eq.
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 The epoxy equivalent of the epoxy resin shall be the value measured by the method according to JIS K 7236:2009.
 エポキシ樹脂の軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、封止用樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 The softening point or melting point of the epoxy resin is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40° C. to 180° C., and from the viewpoint of handleability in preparation of the encapsulating resin composition, it is more preferably 50° C. to 130° C.
 エポキシ樹脂の融点又は軟化点は、JIS K 7234:1986及びJIS K 7233:1986に記載の単一円筒回転粘度計法により測定される値とする。 The melting point or softening point of the epoxy resin is the value measured by the single-cylinder rotational viscometer method described in JIS K 7234:1986 and JIS K 7233:1986.
 封止用樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましい。 The content of the epoxy resin in the resin composition for sealing is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass, from the viewpoint of strength, fluidity, heat resistance, moldability, etc. % is more preferred.
(活性エステル化合物)
 封止用樹脂組成物は、硬化剤として活性エステル化合物を含む。
 封止用樹脂組成物の硬化剤として活性エステル化合物を用いることによって、硬化物の誘電正接を低く抑えることができる。
(Active ester compound)
The encapsulating resin composition contains an active ester compound as a curing agent.
By using an active ester compound as a curing agent for the encapsulating resin composition, the dielectric loss tangent of the cured product can be kept low.
 活性エステル化合物は、エポキシ基と反応するエステル基を分子中に1個以上有する化合物であればその種類は特に制限されない。 The type of the active ester compound is not particularly limited as long as it has one or more ester groups in the molecule that react with epoxy groups.
 活性エステル化合物としては、フェノールエステル化合物、チオフェノールエステル化合物、N-ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化物等が挙げられる。 Examples of active ester compounds include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esters of heterocyclic hydroxy compounds.
 活性エステル化合物としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸の少なくとも1種と脂肪族ヒドロキシ化合物及び芳香族ヒドロキシ化合物の少なくとも1種とから得られるエステル化合物が挙げられる。脂肪族化合物を重縮合の成分とするエステル化合物は、脂肪族鎖を有することによりエポキシ樹脂との相溶性に優れる傾向にある。芳香族化合物を重縮合の成分とするエステル化合物は、芳香環を有することにより耐熱性に優れる傾向にある。 Examples of active ester compounds include ester compounds obtained from at least one of aliphatic carboxylic acids and aromatic carboxylic acids and at least one of aliphatic hydroxy compounds and aromatic hydroxy compounds. Ester compounds containing an aliphatic compound as a polycondensation component tend to have excellent compatibility with epoxy resins due to having an aliphatic chain. Ester compounds containing an aromatic compound as a polycondensation component tend to have excellent heat resistance due to having an aromatic ring.
 活性エステル化合物の具体例としては、芳香族カルボン酸と芳香族ヒドロキシ化合物のフェノール性水酸基との縮合反応にて得られる芳香族エステルが挙げられる。中でも、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2~4個をカルボキシ基で置換した芳香族カルボン酸成分と、前記した芳香環の水素原子の1個を水酸基で置換した1価フェノールと、前記した芳香環の水素原子の2~4個を水酸基で置換した多価フェノールとの混合物を原材料として、芳香族カルボン酸と芳香族ヒドロキシ化合物のフェノール性水酸基との縮合反応にて得られる芳香族エステルが好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。 A specific example of the active ester compound is an aromatic ester obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group of an aromatic hydroxy compound. Among them, an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms of an aromatic ring such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid are substituted with a carboxy group, and the hydrogen atom of the aromatic ring described above. A mixture of a monohydric phenol in which one of is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 of the hydrogen atoms on the aromatic ring are substituted with a hydroxyl group is used as a raw material to obtain an aromatic carboxylic acid and an aromatic hydroxy compound. An aromatic ester obtained by a condensation reaction with a phenolic hydroxyl group is preferred. That is, aromatic esters having structural units derived from the aromatic carboxylic acid component, structural units derived from the monohydric phenol, and structural units derived from the polyhydric phenol are preferred.
 活性エステル化合物の具体例としては、特開2012-246367号公報に記載されている、脂肪族環状炭化水素基を介してフェノール化合物が結節された分子構造を有するフェノール樹脂と、芳香族ジカルボン酸又はそのハライドと、芳香族モノヒドロキシ化合物とを反応させて得られる構造を有する活性エステル樹脂が挙げられる。当該活性エステル樹脂としては、下記の構造式(1)で表される化合物が好ましい。 Specific examples of the active ester compound include a phenol resin having a molecular structure in which a phenol compound is knotted via an aliphatic cyclic hydrocarbon group, described in JP-A-2012-246367, and an aromatic dicarboxylic acid or Examples thereof include active ester resins having a structure obtained by reacting the halide with an aromatic monohydroxy compound. As the active ester resin, a compound represented by the following structural formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 構造式(1)中、Rは炭素数1~4のアルキル基、フェニル基又は水素原子であり、Xはベンゼン環、ナフタレン環、炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環、又はビフェニル基であり、Yはベンゼン環、ナフタレン環、又は炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環であり、kは0又は1であり、nは繰り返し数の平均値を表す。 In structural formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a hydrogen atom, and X is a benzene ring, a naphthalene ring, a benzene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a naphthalene ring or a biphenyl group, Y is a benzene ring, a naphthalene ring, or a benzene or naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, k is 0 or 1, and n is the number of repetitions represents the average value of
 構造式(1)で表される化合物の具体例としては、例えば、下記の例示化合物(1-1)~(1-10)が挙げられる。構造式中のt-Buは、tert-ブチル基である。 Specific examples of the compound represented by structural formula (1) include the following exemplary compounds (1-1) to (1-10). t-Bu in the structural formula is a tert-butyl group.
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 活性エステル化合物の別の具体例としては、特開2014-114352号公報に記載されている、下記の構造式(2)で表される化合物及び下記の構造式(3)で表される化合物が挙げられる。 Another specific example of the active ester compound is a compound represented by the following structural formula (2) and a compound represented by the following structural formula (3), which are described in JP-A-2014-114352. mentioned.
Figure JPOXMLDOC01-appb-C000004

 
 
Figure JPOXMLDOC01-appb-C000004

 
 
 構造式(2)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル
基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。
In structural formula (2), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, or a carbon an ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with an alkyl group of number 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); at least one of which is an ester-forming structural site (z1).
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 構造式(3)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In structural formula (3), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, or a carbon an ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with an alkyl group of number 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); at least one of which is an ester-forming structural site (z1).
 構造式(2)で表される化合物の具体例としては、例えば、下記の例示化合物(2-1)~(2-6)が挙げられる。 Specific examples of the compound represented by structural formula (2) include the following exemplary compounds (2-1) to (2-6).
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 構造式(3)で表される化合物の具体例としては、例えば、下記の例示化合物(3-1)~(3-6)が挙げられる。 Specific examples of the compound represented by structural formula (3) include the following exemplary compounds (3-1) to (3-6).
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 活性エステル化合物としては、市販品を用いてもよい。活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」(DIC株式会社製);芳香族構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8」、「EXB-9425」(DIC株式会社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル株式会社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル株式会社製)等が挙げられる。 A commercially available product may be used as the active ester compound. Commercially available active ester compounds include "EXB9451", "EXB9460", "EXB9460S", and "HPC-8000-65T" (manufactured by DIC Corporation) as active ester compounds containing a dicyclopentadiene type diphenol structure; "EXB9416-70BK", "EXB-8", "EXB-9425" (manufactured by DIC Corporation) as active ester compounds containing structures; "DC808" (Mitsubishi Chemical Corporation (manufactured by Mitsubishi Chemical Corporation); active ester compounds containing benzoylated phenol novolak include "YLH1026" (manufactured by Mitsubishi Chemical Corporation).
 活性エステル化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The active ester compound may be used singly or in combination of two or more.
 活性エステル化合物のエステル当量(分子量/活性エステル基数)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、150g/eq~400g/eqが好ましく、170g/eq~300g/eqがより好ましく、200g/eq~250g/eqがさらに好ましい。 The ester equivalent (molecular weight/number of active ester groups) of the active ester compound is not particularly limited. From the viewpoint of balance of various properties such as formability, reflow resistance, and electrical reliability, it is preferably 150 g/eq to 400 g/eq, more preferably 170 g/eq to 300 g/eq, and 200 g/eq to 250 g/eq. More preferred.
 活性エステル化合物のエステル当量は、JIS K 0070:1992に準じた方法により測定される値とする。 The ester equivalent of the active ester compound shall be the value measured by the method according to JIS K 0070:1992.
(水酸基当量が150g/eq以上であるフェノール化合物)
 封止用樹脂組成物は、硬化剤として水酸基当量が150g/eq以上であるフェノール化合物を含む。
 封止用樹脂組成物の硬化剤として水酸基当量が150g/eq以上であるフェノール化合物を用いることによって、硬化物の曲げ強さが改善される。
(Phenolic compound having a hydroxyl equivalent of 150 g/eq or more)
The encapsulating resin composition contains a phenol compound having a hydroxyl equivalent of 150 g/eq or more as a curing agent.
By using a phenol compound having a hydroxyl equivalent of 150 g/eq or more as a curing agent for the encapsulating resin composition, the bending strength of the cured product is improved.
 水酸基当量が150g/eq以上であるフェノール化合物として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール化合物;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル化合物、ナフトールアラルキル化合物等のアラルキル型フェノール化合物;パラキシリレン変性フェノール化合物、メタキシリレン変性フェノール化合物;メラミン変性フェノール化合物;テルペン変性フェノール化合物;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール化合物及びジシクロペンタジエン型ナフトール化合物;シクロペンタジエン変性フェノール化合物;多環芳香環変性フェノール化合物;ビフェニル型フェノール化合物;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール化合物;これら2種以上を共重合して得たフェノール化合物などであって、水酸基当量が150g/eq以上であるフェノール化合物が挙げられる。水酸基当量が150g/eq以上であるフェノール化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of phenol compounds having a hydroxyl equivalent of 150 g/eq or more include polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, At least one phenolic compound selected from the group consisting of phenolic compounds such as bisphenol A, bisphenol F, phenylphenol and aminophenol, and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene, formaldehyde, acetaldehyde and propionaldehyde Novolac-type phenol compounds obtained by condensing or co-condensing an aldehyde compound such as a Aralkyl-type phenol compounds such as aralkyl compounds; para-xylylene-modified phenol compounds, meta-xylylene-modified phenol compounds; melamine-modified phenol compounds; terpene-modified phenol compounds; Phenolic compounds and dicyclopentadiene-type naphthol compounds; Cyclopentadiene-modified phenol compounds; Polycyclic aromatic ring-modified phenol compounds; Biphenyl-type phenol compounds; a triphenylmethane type phenol compound obtained by condensing or co-condensing with , a phenol compound obtained by copolymerizing two or more of these, and a phenol compound having a hydroxyl equivalent of 150 g/eq or more. The phenol compounds having a hydroxyl equivalent of 150 g/eq or more may be used singly or in combination of two or more.
 硬化物の曲げ強さの観点からは、水酸基当量が150g/eq以上であるフェノール化合物は、ビフェニル構造又はナフタレン構造を含むフェノール化合物が好ましく、ナフタレン構造又はビフェニル構造を含むアラルキル型フェノール化合物がより好ましく、ビフェニル構造又はナフタレン構造とベンゼン環とがメチレン基を介して交互に連結した構造を含むフェノール化合物がさらに好ましい。 From the viewpoint of the bending strength of the cured product, the phenol compound having a hydroxyl equivalent of 150 g/eq or more is preferably a phenol compound containing a biphenyl structure or a naphthalene structure, and more preferably an aralkyl-type phenol compound containing a naphthalene structure or a biphenyl structure. , a biphenyl structure or a naphthalene structure and a benzene ring alternately linked via a methylene group are more preferred phenol compounds.
 水酸基当量が150g/eq以上であるフェノール化合物の水酸基当量は、160g/eq以上であることが好ましく、170g/eq以上であることがより好ましく、180g/eq以上であることがさらに好ましく、190g/eq以上であることが特に好ましい。水酸基当量が150g/eq以上であるフェノール化合物の水酸基当量が大きいほど、エポキシ樹脂との適切な当量比の範囲内で水酸基当量が150g/eq以上であるフェノール化合物の硬化剤全体に占める割合を大きくでき、硬化物の曲げ強さの向上を達成しやすい。 The hydroxyl equivalent of the phenol compound having a hydroxyl equivalent of 150 g/eq or more is preferably 160 g/eq or more, more preferably 170 g/eq or more, further preferably 180 g/eq or more, and 190 g/eq or more. eq or more is particularly preferred. The larger the hydroxyl equivalent weight of the phenolic compound having a hydroxyl equivalent weight of 150 g/eq or more, the larger the proportion of the phenol compound having a hydroxyl equivalent weight of 150 g/eq or more in the total curing agent within the range of the appropriate equivalent ratio with the epoxy resin. It is possible to improve the bending strength of the cured product.
 水酸基当量が150g/eq以上であるフェノール化合物の水酸基当量の上限値は特に制限されない。成形性、耐リフロー性、電気的信頼性等の特性のバランスの観点からは、水酸基当量が150g/eq以上であるフェノール化合物の水酸基当量は1000g/eq以下であることが好ましく、500g/eq以下であることがより好ましく、300g/eq以下であることがさらに好ましい。 The upper limit of the hydroxyl equivalent weight of the phenol compound having a hydroxyl equivalent weight of 150 g/eq or more is not particularly limited. From the viewpoint of the balance of properties such as moldability, reflow resistance, and electrical reliability, the hydroxyl equivalent of the phenolic compound having a hydroxyl equivalent of 150 g/eq or more is preferably 1000 g/eq or less, and 500 g/eq or less. is more preferably 300 g/eq or less.
 本開示において、フェノール化合物の水酸基当量は、JIS K 0070:1992に準じた方法により測定される値とする。 In the present disclosure, the hydroxyl equivalent of a phenol compound is a value measured by a method according to JIS K 0070:1992.
 水酸基当量が150g/eq以上であるフェノール化合物の軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止用樹脂組成物の製造時における取扱い性の観点からは、50℃~160℃であることがより好ましい。 The softening point or melting point of the phenol compound having a hydroxyl equivalent of 150 g/eq or more is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40° C. to 180° C., and from the viewpoint of handleability during production of the encapsulating resin composition, it is more preferably 50° C. to 160° C. .
 水酸基当量が150g/eq以上であるフェノール化合物の融点又は軟化点は、JIS K 7234:1986及びJIS K 7233:1986に記載の単一円筒回転粘度計法により測定される値とする。 The melting point or softening point of a phenolic compound having a hydroxyl equivalent of 150 g/eq or more is the value measured by the single-cylinder rotational viscometer method described in JIS K 7234:1986 and JIS K 7233:1986.
(その他の硬化剤)
 封止用樹脂組成物は、硬化剤として活性エステル化合物及び水酸基当量が150g/eq以上であるフェノール化合物以外の硬化剤(その他の硬化剤)を含んでもよい。この場合、その他の硬化剤の種類は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。
 その他の硬化剤としては、水酸基当量が150g/eqより小さいフェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。その他の硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Other curing agents)
The encapsulating resin composition may contain an active ester compound as a curing agent and a curing agent (other curing agent) other than the phenol compound having a hydroxyl equivalent of 150 g/eq or more. In this case, the type of other curing agent is not particularly limited, and can be selected according to the desired properties of the encapsulating resin composition.
Other curing agents include phenol curing agents having a hydroxyl equivalent of less than 150 g/eq, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like. be done. Other curing agents may be used alone or in combination of two or more.
 封止用樹脂組成物が、硬化剤としてその他の硬化剤を含む場合、硬化剤全体に占めるその他の硬化剤の割合は1質量%~10質量%であることが好ましく、3質量%~8質量%であることがより好ましい。 When the encapsulating resin composition contains another curing agent as a curing agent, the ratio of the other curing agent to the total curing agent is preferably 1% by mass to 10% by mass, and 3% by mass to 8% by mass. % is more preferable.
(硬化促進剤)
 封止用樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂又は硬化剤の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
(Curing accelerator)
The encapsulating resin composition may contain a curing accelerator. The type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin or curing agent, the desired properties of the encapsulating resin composition, and the like.
 硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルヒドロキシイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;エチルホスフィン、フェニルホスフィン等の一級ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の二級ホスフィン、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィンなどの、有機ホスフィン;前記有機ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記有機ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン、アントラキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記有機ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラフェニルホスホニウムテトラ-p-トリルボレート等のテトラ置換ホスホニウムのテトラフェニルボレート塩、テトラ置換ホスホニウムとフェノール化合物との塩などの、テトラ置換ホスホニウム化合物;ホスホベタイン化合物;ホスホニウム化合物とシラン化合物との付加物などが挙げられる。 Curing accelerators include diazabicycloalkenes such as 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylhydroxyimidazole, 2-heptadecylimidazole; Derivatives of cyclic amidine compounds; phenol novolak salts of the cyclic amidine compounds or derivatives thereof; , 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, quinone compounds such as phenyl-1,4-benzoquinone, diazophenyl Compounds having intramolecular polarization obtained by adding a compound having a π bond such as methane; - cyclic amidinium compounds such as the tetraphenylborate salt of methylmorpholine; tertiary amine compounds such as pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; Derivatives of amine compounds; ammonium salt compounds such as tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetra-n-hexylammonium benzoate, tetrapropylammonium hydroxide; ethylphosphine, phenyl Primary phosphines such as phosphine, secondary phosphines such as dimethylphosphine and diphenylphosphine, triphenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkyl/alkoxyphenyl) Phosphine, tris(dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine Organic phosphines such as sphines, tris(tetraalkoxyphenyl)phosphines, trialkylphosphines, dialkylarylphosphines, and tertiary phosphines such as alkyldiarylphosphines; Phosphine compounds such as complexes of the above organic phosphines and organic borons; The above organic phosphines or the above phosphine compound and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl -1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, quinone compounds such as anthraquinone, molecules having a π bond such as diazophenylmethane Compounds having internal polarization; said organic phosphine or said phosphine compound and 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, 2-chlorophenol, 4-iodinated phenol, 3-iodinated phenol, 2-iodinated phenol, 4-bromo-2-methylphenol, 4-bromo-3-methylphenol, 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethyl phenol, 4-bromo-2,6-di-tert-butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo-4'-hydroxybiphenyl, etc. A compound having intramolecular polarization obtained through a step of dehydrohalogenation after reacting a halogenated phenol compound; Tetra-substituted phosphonium such as tetraphenylphosphonium; tetrasubstituted phosphonium compounds such as tetraphenylborate salts of substituted phosphonium and salts of tetrasubstituted phosphonium and phenolic compounds; phosphobetaine compounds; adducts of phosphonium compounds and silane compounds;
 封止用樹脂組成物が硬化促進剤を含む場合、その量は、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the encapsulating resin composition contains a curing accelerator, the amount thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). , more preferably 1 to 15 parts by mass. When the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency for satisfactory curing in a short period of time. When the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing speed is not too fast and a good molded article tends to be obtained.
(無機充填材)
 本開示の封止用樹脂組成物は、無機充填材を含有してもよい。無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、窒化アルミニウム、窒化ホウ素、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
(Inorganic filler)
The encapsulating resin composition of the present disclosure may contain an inorganic filler. The type of inorganic filler is not particularly limited. Specific examples include inorganic materials such as fused silica, crystalline silica, glass, alumina, aluminum nitride, boron nitride, talc, clay, and mica. Inorganic fillers having a flame retardant effect may also be used. Inorganic fillers having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate.
 無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。無機充填材の形態としては粉未、粉末を球形化した状態のビーズ、繊維等が挙げられる。 Among the inorganic fillers, silica such as fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types. Examples of the form of the inorganic filler include powders, beads obtained by spheroidizing powders, and fibers.
 無機充填材が粒子状である場合、その平均粒径は、特に制限されない。例えば、無機充填材の平均粒径は100μmであることが好ましく、50μm以下であることがより好ましく、10μm以下であることがさらに好ましい。
 無機充填材の平均粒径は0.2μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。
 無機充填材の平均粒径が0.2μm以上であると、封止用樹脂組成物の粘度の上昇がより抑制される。無機充填材の平均粒径が100μm以下であると、充填性がより向上する。無機充填材の平均粒径は、レーザー散乱回折法粒度分布測定装置により、体積平均粒径(D50)として求める。
When the inorganic filler is particulate, its average particle size is not particularly limited. For example, the average particle size of the inorganic filler is preferably 100 μm, more preferably 50 μm or less, and even more preferably 10 μm or less.
The average particle size of the inorganic filler is preferably 0.2 μm or more, more preferably 0.5 μm or more, and even more preferably 1 μm or more.
When the average particle size of the inorganic filler is 0.2 μm or more, the increase in viscosity of the encapsulating resin composition is further suppressed. When the average particle size of the inorganic filler is 100 µm or less, the filling properties are further improved. The average particle diameter of the inorganic filler is determined as the volume average particle diameter (D50) by a laser scattering diffraction method particle size distribution analyzer.
 封止用樹脂組成物に含まれる無機充填材の含有率は特に制限されない。流動性及び強度の観点からは、封止用樹脂組成物全体の30体積%~90体積%であることが好ましく、35体積%~85体積%であることがより好ましく、40体積%~80体積%であることがさらに好ましい。無機充填材の含有率が封止用樹脂組成物全体の30体積%以上であると、硬化物の熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。無機充填材の含有率が封止用樹脂組成物全体の90体積%以下であると、封止用樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。 The content of the inorganic filler contained in the encapsulating resin composition is not particularly limited. From the viewpoint of fluidity and strength, it is preferably 30% to 90% by volume, more preferably 35% to 85% by volume, and 40% to 80% by volume of the entire sealing resin composition. % is more preferred. When the content of the inorganic filler is 30% by volume or more of the entire encapsulating resin composition, the properties of the cured product, such as coefficient of thermal expansion, thermal conductivity and elastic modulus, tend to be further improved. When the content of the inorganic filler is 90% by volume or less of the entire encapsulating resin composition, an increase in viscosity of the encapsulating resin composition is suppressed, fluidity is further improved, and moldability is further improved. tend to become
[各種添加剤]
 封止用樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、難燃剤、着色剤、シリコーン化合物等の各種添加剤を含んでもよい。封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。
[Various additives]
In addition to the components described above, the encapsulating resin composition may contain various additives such as coupling agents, ion exchangers, release agents, flame retardants, colorants, and silicone compounds exemplified below. The encapsulating resin composition may contain various additives known in the art as necessary, in addition to the additives exemplified below.
(カップリング剤)
 封止用樹脂組成物は、カップリング剤を含んでもよい。樹脂成分と無機充填材との接着性を高める観点からは、封止用樹脂組成物はカップリング剤を含むことが好ましい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、ジシラザン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(coupling agent)
The encapsulating resin composition may contain a coupling agent. From the viewpoint of enhancing the adhesiveness between the resin component and the inorganic filler, the sealing resin composition preferably contains a coupling agent. Coupling agents include known coupling agents such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane, silane compounds such as disilazane, titanium compounds, aluminum chelate compounds, and aluminum/zirconium compounds. mentioned.
 封止用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填材100質量部に対して0.05質量部~15質量部であることが好ましく、0.1質量部~10質量部であることがより好ましい。 When the encapsulating resin composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 15 parts by mass with respect to 100 parts by mass of the inorganic filler, and 0.1 part by mass. More preferably, it is up to 10 parts by mass.
(イオン交換体)
 封止用樹脂組成物は、イオン交換体を含んでもよい。封止用樹脂組成物は、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
(Ion exchanger)
The encapsulating resin composition may contain an ion exchanger. The encapsulating resin composition preferably contains an ion exchanger from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device including the element to be sealed. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. The ion exchangers may be used singly or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
  Mg(1-X)Al(OH)(COX/2・mHO ……(A)
  (0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X/2 ·mH 2 O (A)
(0<X≤0.5, m is a positive number)
 封止用樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。 When the encapsulating resin composition contains an ion exchanger, its content is not particularly limited as long as it is sufficient to capture ions such as halogen ions. For example, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).
(離型剤)
 封止用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The encapsulating resin composition may contain a mold release agent from the viewpoint of obtaining good releasability from the mold during molding. The release agent is not particularly limited, and conventionally known agents can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. The release agent may be used alone or in combination of two or more.
 封止用樹脂組成物が離型剤を含む場合、その量は樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。 When the encapsulating resin composition contains a release agent, the amount thereof is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin component (the total amount of the epoxy resin and the curing agent), and 0.1 More preferably 5 parts by mass to 5 parts by mass.
(難燃剤)
 封止用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The encapsulating resin composition may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known ones can be used. Specific examples include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, and metal hydroxides. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
 封止用樹脂組成物が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 When the encapsulating resin composition contains a flame retardant, its amount is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect. For example, it is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, per 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).
(着色剤)
 封止用樹脂組成物は、着色剤を含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(coloring agent)
The encapsulating resin composition may contain a coloring agent. Examples of coloring agents include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide. The content of the coloring agent can be appropriately selected according to the purpose and the like. A coloring agent may be used individually by 1 type, or may be used in combination of 2 or more type.
(封止用樹脂組成物の調製方法)
 封止用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Method for preparing encapsulating resin composition)
A method for preparing the encapsulating resin composition is not particularly limited. As a general method, there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the components described above are uniformly stirred and mixed, kneaded with a kneader, roll, extruder, or the like preheated to 70° C. to 140° C., cooled, and pulverized. can be mentioned.
 封止用樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。封止用樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。封止用樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The encapsulating resin composition is preferably solid at room temperature and normal pressure (eg, 25°C, atmospheric pressure). When the encapsulating resin composition is solid, the shape is not particularly limited, and examples thereof include powder, granules, tablets, and the like. When the encapsulating resin composition is in the form of a tablet, it is preferable from the standpoint of handleability that the dimensions and mass are such that they meet the molding conditions of the package.
<電子部品装置>
 本開示の一実施形態である電子部品装置は、素子と、前記素子を封止している本開示の封止用樹脂組成物の硬化物と、を備える。
<Electronic parts equipment>
An electronic component device that is an embodiment of the present disclosure includes an element and a cured product of the sealing resin composition of the present disclosure that seals the element.
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等の支持部材に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載して得られた素子部を封止用樹脂組成物で封止したものが挙げられる。
 より具体的には、リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等で接続した後、封止用樹脂組成物を用いてトランスファ成形等によって封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した素子を封止用樹脂組成物で封止した構造を有するTCP(Tape Carrier Package);支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した素子を、封止用樹脂組成物で封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と支持部材に形成された配線とを接続した後、封止用樹脂組成物で素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、プリント配線板においても封止用樹脂組成物を好適に使用することができる。
As an electronic component device, elements (active elements such as semiconductor chips, transistors, diodes, thyristors, capacitors, resistors, etc.) , passive elements such as coils, etc.) are sealed with a sealing resin composition.
More specifically, the element is fixed on a lead frame, and the terminal portion of the element such as a bonding pad and the lead portion are connected by wire bonding, bumps, or the like, and then transfer molding or the like is performed using a sealing resin composition. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-lead package (TSO), Outline Package), TQFP (Thin Quad Flat Package) and other general resin-sealed ICs; TCP (Tape Carrier Package) having a structure in which an element connected to a tape carrier with bumps is sealed with a sealing resin composition ; COB (Chip On Board) modules, hybrid ICs, multi Chip modules, etc.: After mounting an element on the surface of a support member on which terminals for wiring board connection are formed on the back surface, and connecting the element and the wiring formed on the support member by bumps or wire bonding, resin composition for encapsulation BGAs (Ball Grid Arrays), CSPs (Chip Size Packages), MCPs (Multi Chip Packages), etc., which have a structure in which an element is sealed with a substance, can be mentioned. Moreover, the resin composition for sealing can be used suitably also in a printed wiring board.
<電子部品装置の製造方法>
 本開示の電子部品装置の製造方法は、素子を支持部材上に配置する工程と、前記素子を本開示の封止用樹脂組成物で封止する工程と、を含む。
<Method for manufacturing electronic component device>
A method of manufacturing an electronic component device of the present disclosure includes a step of placing an element on a support member and a step of encapsulating the element with the encapsulating resin composition of the present disclosure.
 上記各工程を実施する方法は特に制限されず、一般的な手法により行うことができる。また、電子部品装置の製造に使用する支持部材及び素子の種類は特に制限されず、電子部品装置の製造に一般的に用いられる支持部材及び素子を使用できる。  The method for implementing each of the above steps is not particularly limited, and can be performed by a general method. Further, the types of supporting members and elements used for manufacturing electronic component devices are not particularly limited, and supporting members and elements generally used for manufacturing electronic component devices can be used.
 本開示の封止用樹脂組成物を用いて素子を封止する方法としては、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。これらの中では、低圧トランスファ成形法が一般的である。 Examples of methods for encapsulating an element using the encapsulating resin composition of the present disclosure include a low-pressure transfer molding method, an injection molding method, a compression molding method, and the like. Among these, the low pressure transfer molding method is common.
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。 Although the above embodiment will be specifically described below with reference to examples, the scope of the above embodiment is not limited to these examples.
<封止用樹脂組成物の調製>
 下記に示す成分を表1に示す配合割合(質量部)で混合し、実施例と比較例の封止用樹脂組成物を調製した。
<Preparation of encapsulating resin composition>
The components shown below were mixed in the proportions (parts by mass) shown in Table 1 to prepare encapsulating resin compositions of Examples and Comparative Examples.
・エポキシ樹脂1:アルキル基を含むトリフェニルメタン型エポキシ樹脂
・エポキシ樹脂2:アルキル基を含まないトリフェニルメタン型エポキシ樹脂
・エポキシ樹脂3:ビフェニル型エポキシ樹脂
・エポキシ樹脂4:ノボラック型エポキシ樹脂
Epoxy resin 1: Triphenylmethane type epoxy resin containing alkyl group Epoxy resin 2: Triphenylmethane type epoxy resin containing no alkyl group Epoxy resin 3: Biphenyl type epoxy resin Epoxy resin 4: Novolac type epoxy resin
・硬化剤1:活性エステル化合物
・硬化剤2:ナフタレン構造を含むアラルキル型フェノール化合物、水酸基当量215g/eq
・硬化剤3:ビフェニル構造を含むアラルキル型フェノール化合物、水酸基当量199g/eq
・硬化剤4:トリフェニルメタン型フェノール化合物、水酸基当量104g/eq
・硬化剤5:ノボラック型フェノール化合物、水酸基当量106g/eq
Curing agent 1: active ester compound Curing agent 2: aralkyl-type phenol compound containing naphthalene structure, hydroxyl equivalent 215 g/eq
Curing agent 3: aralkyl-type phenol compound containing biphenyl structure, hydroxyl equivalent 199 g/eq
· Curing agent 4: triphenylmethane type phenol compound, hydroxyl equivalent 104 g / eq
- Curing agent 5: Novolak type phenol compound, hydroxyl equivalent 106 g/eq
・硬化促進剤1:トリフェニルホスフィンと1,4-ベンゾキノンの付加物
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン
・無機充填材1:シリカ粒子、体積平均粒子径3μm
・無機充填材2:シリカ粒子、体積平均粒子径0.5μm
・Curing accelerator 1: adduct of triphenylphosphine and 1,4-benzoquinone ・Coupling agent 1: N-phenyl-3-aminopropyltrimethoxysilane ・Inorganic filler 1: silica particles, volume average particle diameter 3 μm
・ Inorganic filler 2: silica particles, volume average particle size 0.5 μm
<封止用樹脂組成物の性能評価>
(比誘電率及び誘電正接の測定)
 封止用樹脂組成物をトランスファ成形機に仕込み、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、後硬化を175℃で6時間行い、90mm×0.6mm×0.8mmの直方体形状の試験片を作製した。
 この試験片の比誘電率(Dk)及び誘電正接(Df)を、周波数5GHz及び10GHzにて、空洞共振器(株式会社関東電子応用開発)及びネットワーク・アナライザー(キーサイトテクノロジー社、品名「PNA E8364B」)を用いて、温度25±3℃の環境下で測定した。結果を表1に示す。
 各測定周波数にて使用した空洞共振器の型式は以下の通りである。
 5GHz・・・CP511
 10GHz・・・CP531
<Performance evaluation of encapsulating resin composition>
(Measurement of dielectric constant and dielectric loss tangent)
The encapsulating resin composition was charged into a transfer molding machine, molded under conditions of a mold temperature of 180° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. A rectangular parallelepiped test piece of ×0.8 mm was prepared.
The dielectric constant (Dk) and dielectric loss tangent (Df) of this test piece were measured at frequencies of 5 GHz and 10 GHz using a cavity resonator (Kanto Denshi Applied Development Co., Ltd.) and a network analyzer (Keysight Technologies, product name "PNA E8364B ”) was used, and the temperature was measured in an environment of 25±3°C. Table 1 shows the results.
The type of cavity resonator used at each measurement frequency is as follows.
5GHz...CP511
10GHz...CP531
(曲げ弾性率、曲げ強さ及び破断伸びの測定)
 封止用樹脂組成物をトランスファ成形機に仕込み、金型温度175℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、後硬化を175℃で6時間の条件で行って、127mm×12.7mm×4mmの直方体形状の試験片を作製した。
 評価装置としてテンシロン(A&D社)を用い、JIS-K-7171(2016)に準拠した3点支持型曲げ試験を常温(25℃)において行い、試験片の曲げ弾性率E、曲げ強さS及び破断伸びεを下記式により求めた。
(Measurement of flexural modulus, flexural strength and elongation at break)
The encapsulating resin composition was charged into a transfer molding machine, molded under conditions of a mold temperature of 175° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. A rectangular parallelepiped test piece of 12.7 mm×4 mm was prepared.
Using Tensilon (A & D Co.) as an evaluation device, a three-point support bending test in accordance with JIS-K-7171 (2016) was performed at room temperature (25 ° C.), and the bending elastic modulus E, bending strength S and The elongation at break ε was determined by the following formula.
 曲げ弾性率E(GPa)、曲げ強さS(MPa)及び破断伸びε(%)は下記式にて定義される。
 下記式中、Pはロードセルの値(N)、yは変位量(mm)、lはスパン=64mm、wは試験片幅=12.7mm、hは試験片厚さ=4mmである。添字のmaxは最大値を示す。
Flexural modulus E (GPa), flexural strength S (MPa), and elongation at break ε (%) are defined by the following equations.
In the following formula, P is the load cell value (N), y is the amount of displacement (mm), l is the span=64 mm, w is the test piece width=12.7 mm, and h is the test piece thickness=4 mm. The suffix max indicates the maximum value.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1に示すように、硬化剤として活性エステル化合物を含む比較例1の封止用樹脂組成物において、活性エステル化合物の一部を水酸基当量が150g/eq以上であるフェノール化合物に置き換えた実施例1の封止用樹脂組成物は、比較例1と同等の誘電特性を示し、かつ比較例1に比べて曲げ強さの値が大きい。
 硬化剤として活性エステル化合物を含む比較例2の封止用樹脂組成物において、活性エステル化合物の一部を水酸基当量が150g/eq以上であるフェノール化合物に置き換えた実施例2の封止用樹脂組成物は、比較例2と同等の誘電特性を示し、かつ比較例2に比べて曲げ強さの値が大きい。
 硬化剤として活性エステル化合物を含む比較例3の封止用樹脂組成物において、活性エステル化合物の一部を水酸基当量が150g/eqより小さいフェノール化合物に置き換えた比較例4及び比較例5の封止用樹脂組成物は、比較例3と比べて曲げ強さの値がほぼ変化していない。
As shown in Table 1, in the encapsulating resin composition of Comparative Example 1 containing an active ester compound as a curing agent, a part of the active ester compound was replaced with a phenol compound having a hydroxyl equivalent of 150 g/eq or more. The encapsulating resin composition No. 1 exhibits dielectric properties equivalent to those of Comparative Example 1, and has a higher bending strength value than Comparative Example 1.
In the sealing resin composition of Comparative Example 2 containing an active ester compound as a curing agent, a part of the active ester compound was replaced with a phenol compound having a hydroxyl equivalent of 150 g/eq or more. The product exhibits dielectric properties equivalent to those of Comparative Example 2, and has a greater bending strength value than Comparative Example 2.
In the sealing resin composition of Comparative Example 3 containing an active ester compound as a curing agent, sealing of Comparative Examples 4 and 5 in which a part of the active ester compound was replaced with a phenol compound having a hydroxyl equivalent of less than 150 g / eq. Compared to Comparative Example 3, the bending strength of the resin composition for 100% is almost unchanged.
 特願2021-147100号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 The disclosure of Japanese Patent Application No. 2021-147100 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (7)

  1.  エポキシ樹脂と、硬化剤とを含み、前記硬化剤は活性エステル化合物と、水酸基当量が150g/eq以上であるフェノール化合物とを含む、封止用樹脂組成物。 A sealing resin composition comprising an epoxy resin and a curing agent, wherein the curing agent contains an active ester compound and a phenol compound having a hydroxyl equivalent of 150 g/eq or more.
  2.  前記硬化剤全体に占める前記水酸基当量が150g/eq以上であるフェノール化合物の割合が20質量%以上60質量%以下である、請求項1に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 1, wherein the proportion of the phenol compound having a hydroxyl equivalent of 150 g/eq or more in the entire curing agent is 20% by mass or more and 60% by mass or less.
  3.  前記水酸基当量が150g/eq以上であるフェノール化合物がビフェニル構造を含む、請求項1に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 1, wherein the phenol compound having a hydroxyl equivalent of 150 g/eq or more contains a biphenyl structure.
  4.  前記水酸基当量が150g/eq以上であるフェノール化合物がナフタレン構造を含む、請求項1に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 1, wherein the phenolic compound having a hydroxyl equivalent of 150 g/eq or more contains a naphthalene structure.
  5.  無機充填材をさらに含み、前記無機充填材の平均粒径が10μm以下である、請求項1に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 1, further comprising an inorganic filler, wherein the inorganic filler has an average particle size of 10 µm or less.
  6.  支持部材と、前記支持部材上に配置された素子と、前記素子を封止している請求項1~請求項5のいずれか1項に記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。 A support member, an element arranged on the support member, and a cured product of the sealing resin composition according to any one of claims 1 to 5 sealing the element, electronic component device.
  7.  素子を支持部材上に配置する工程と、前記素子を請求項1~請求項5のいずれか1項に記載の封止用樹脂組成物で封止する工程と、を含む電子部品装置の製造方法。
     
    A method for manufacturing an electronic component device, comprising the steps of placing an element on a support member and sealing the element with the sealing resin composition according to any one of claims 1 to 5. .
PCT/JP2022/033480 2021-09-09 2022-09-06 Sealing resin composition, electronic component device, and method for manufacturing electronic component device WO2023038035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147100 2021-09-09
JP2021-147100 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023038035A1 true WO2023038035A1 (en) 2023-03-16

Family

ID=85507616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033480 WO2023038035A1 (en) 2021-09-09 2022-09-06 Sealing resin composition, electronic component device, and method for manufacturing electronic component device

Country Status (2)

Country Link
TW (1) TW202313759A (en)
WO (1) WO2023038035A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093120A (en) * 2016-12-06 2018-06-14 住友ベークライト株式会社 Resin sheet
JP2018172519A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board, and semiconductor device
JP2019038930A (en) * 2017-08-24 2019-03-14 味の素株式会社 Resin composition
WO2019127391A1 (en) * 2017-12-29 2019-07-04 广东生益科技股份有限公司 Maleimide resin composition, prepreg, laminate and printed circuit board
JP2019182891A (en) * 2018-04-02 2019-10-24 味の素株式会社 Resin composition
WO2020262654A1 (en) * 2019-06-26 2020-12-30 昭和電工マテリアルズ株式会社 Sealing resin composition, electronic component device, and method for manufacturing electronic component device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093120A (en) * 2016-12-06 2018-06-14 住友ベークライト株式会社 Resin sheet
JP2018172519A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board, and semiconductor device
JP2019038930A (en) * 2017-08-24 2019-03-14 味の素株式会社 Resin composition
WO2019127391A1 (en) * 2017-12-29 2019-07-04 广东生益科技股份有限公司 Maleimide resin composition, prepreg, laminate and printed circuit board
JP2019182891A (en) * 2018-04-02 2019-10-24 味の素株式会社 Resin composition
WO2020262654A1 (en) * 2019-06-26 2020-12-30 昭和電工マテリアルズ株式会社 Sealing resin composition, electronic component device, and method for manufacturing electronic component device

Also Published As

Publication number Publication date
TW202313759A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
JP2024026589A (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2023100761A (en) Resin composition for encapsulation, electronic component device and method for manufacturing electronic component device
JP7452028B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP7388160B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
WO2020262654A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2023059892A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
JP2020152825A (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JP7396290B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
WO2023038035A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2020122071A (en) Sealing resin composition, electronic component device, and method for manufacturing same
JP7443778B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
KR20240052770A (en) Resin composition for sealing, electronic component device, and manufacturing method of electronic component device
JP2023034257A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
JP2022021901A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2022021902A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2023127421A (en) Sealing resin composition, electronic component device and method for producing electronic component device
CN113260651A (en) Resin composition for sealing, electronic component device, and method for manufacturing electronic component device
JP2024015914A (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2022011184A (en) Sealing resin composition and electronic component device
JP2023180969A (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2023180970A (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
WO2023238951A1 (en) Resin composition for molding and electronic component device
WO2023238950A1 (en) Molding resin composition and electronic component device
WO2020189309A1 (en) Resin composition for sealing, electronic component device, and production method for electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546952

Country of ref document: JP