JP2023034257A - Resin composition for sealing, electronic component device and method for manufacturing electronic component device - Google Patents

Resin composition for sealing, electronic component device and method for manufacturing electronic component device Download PDF

Info

Publication number
JP2023034257A
JP2023034257A JP2021140409A JP2021140409A JP2023034257A JP 2023034257 A JP2023034257 A JP 2023034257A JP 2021140409 A JP2021140409 A JP 2021140409A JP 2021140409 A JP2021140409 A JP 2021140409A JP 2023034257 A JP2023034257 A JP 2023034257A
Authority
JP
Japan
Prior art keywords
resin composition
filler
mass
electronic component
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021140409A
Other languages
Japanese (ja)
Inventor
雄太 助川
Yuta Sukegawa
実佳 田中
Mika Tanaka
真志 白神
Masashi Shirakami
千嘉 内山
Chika Uchiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Resonac Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Holdings Corp filed Critical Resonac Holdings Corp
Priority to JP2021140409A priority Critical patent/JP2023034257A/en
Publication of JP2023034257A publication Critical patent/JP2023034257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

To provide a resin composition for sealing from which a cured product having less dielectric loss can be obtained, an electronic component device sealed using the same, and a method for manufacturing an electronic component device sealed using the same.SOLUTION: A resin composition for sealing contains an epoxy resin, a curing agent and a filler, wherein the filler contains an organic filler containing an imide bond.SELECTED DRAWING: None

Description

本開示は、封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法に関する。 TECHNICAL FIELD The present disclosure relates to a sealing resin composition, an electronic component device, and a method for manufacturing an electronic component device.

近年の無線通信分野においては、チャンネル数の増加と伝送される情報量の増加にともなって電波の高周波化が進行している。無線通信に用いる電気信号の伝送損失のうち、回路の封止材等の絶縁体が関与する損失(誘電損失)の量は、電波の周波数、絶縁体の比誘電率の平方根、及び絶縁体の誘電正接の積に比例して増大する。したがって、電波の周波数が増大する局面にあっては絶縁体の比誘電率又は誘電正接の低減が電気信号の伝送損失の抑制の観点から重要性を増している。 2. Description of the Related Art In recent years, in the field of wireless communication, the frequency of radio waves is increasing along with an increase in the number of channels and an increase in the amount of information to be transmitted. Of the transmission loss of electrical signals used in wireless communication, the amount of loss (dielectric loss) related to insulators such as circuit sealing materials is determined by the frequency of radio waves, the square root of the dielectric constant of the insulator, and the dielectric constant of the insulator. It increases in proportion to the product of the dielectric loss tangent. Therefore, as the frequency of radio waves increases, the reduction of dielectric constant or dielectric loss tangent of insulators is becoming more important from the viewpoint of suppressing transmission loss of electrical signals.

例えば、特許文献1及び特許文献2には、エポキシ樹脂の硬化剤として活性エステル樹脂を含有する樹脂組成物が開示されており、この樹脂組成物を硬化して得られる絶縁体は誘電正接が低く抑えられるとされている。 For example, Patent Literature 1 and Patent Literature 2 disclose a resin composition containing an active ester resin as a curing agent for an epoxy resin, and an insulator obtained by curing this resin composition has a low dielectric loss tangent. supposed to be suppressed.

特開2012-246367号公報JP 2012-246367 A 特開2014-114352号公報JP 2014-114352 A

特許文献1及び特許文献2に記載されている樹脂組成物の硬化物は、誘電正接が低く誘電損失の低減に寄与しうるが、樹脂組成物に含有し得る硬化剤の量には限界がある。そこで、硬化剤以外の手段で硬化物の誘電損失を低減する技術の開発が望まれている。
本開示は上記事情を鑑みてなされたものであり、誘電損失が少ない硬化物が得られる封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法を提供することを課題とする。
The cured products of the resin compositions described in Patent Documents 1 and 2 have a low dielectric loss tangent and can contribute to the reduction of dielectric loss, but there is a limit to the amount of curing agent that can be contained in the resin composition. . Therefore, it is desired to develop a technique for reducing the dielectric loss of the cured product by means other than the curing agent.
The present disclosure has been made in view of the above circumstances, a sealing resin composition that provides a cured product with low dielectric loss, an electronic component device sealed using the same, and a sealing using the same An object of the present invention is to provide a method of manufacturing an electronic component device.

前記課題を解決するための具体的手段には、以下の態様が含まれる。
<1>エポキシ樹脂と、硬化剤と、充填材とを含み、前記充填材はイミド結合を含む有機充填材を含む、封止用樹脂組成物。
<2>前記イミド結合を含む有機充填材の平均粒子径は10μm以下である、<1>に記載の封止用樹脂組成物。
<3>前記充填材全体に占めるイミド結合を含む有機充填材の割合は5質量%~20質量%である、<1>又は<2>に記載の封止用樹脂組成物。
<4>前記硬化剤はフェノール硬化剤及び活性エステル化合物からなる群より選択される少なくとも1種を含む、<1>~<3>のいずれか1項に記載の封止用樹脂組成物。
<5>前記充填材は無機充填材をさらに含む、<1>~<4>のいずれか1項に記載の封止用樹脂組成物。
<6>支持部材と、前記支持部材上に配置された素子と、前記素子を封止している<1>~<5>のいずれか1項に記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。
<7>素子を支持部材上に配置する工程と、前記素子を<1>~<5>のいずれか1項に記載の封止用樹脂組成物で封止する工程と、を含む電子部品装置の製造方法。
Specific means for solving the above problems include the following aspects.
<1> A sealing resin composition comprising an epoxy resin, a curing agent, and a filler, wherein the filler comprises an organic filler containing an imide bond.
<2> The encapsulating resin composition according to <1>, wherein the organic filler containing an imide bond has an average particle size of 10 μm or less.
<3> The encapsulating resin composition according to <1> or <2>, wherein the proportion of the organic filler containing imide bonds in the entire filler is 5% by mass to 20% by mass.
<4> The sealing resin composition according to any one of <1> to <3>, wherein the curing agent contains at least one selected from the group consisting of phenolic curing agents and active ester compounds.
<5> The encapsulating resin composition according to any one of <1> to <4>, wherein the filler further contains an inorganic filler.
<6> A support member, an element placed on the support member, and a cured product of the sealing resin composition according to any one of <1> to <5> sealing the element and an electronic component device.
<7> An electronic component device comprising a step of placing an element on a support member and a step of sealing the element with the sealing resin composition according to any one of <1> to <5>. manufacturing method.

本開示によれば、誘電損失が少ない硬化物が得られる封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法が提供される。 According to the present disclosure, a sealing resin composition that provides a cured product with low dielectric loss, an electronic component device sealed using the same, and a method for manufacturing an electronic component device sealed using the same are provided. be done.

本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term "process" includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.

<封止用樹脂組成物>
本開示の封止用樹脂組成物は、エポキシ樹脂と、硬化剤と、充填材と、を含有し、前記充填材はイミド結合を含む有機充填材を含む、封止用樹脂組成物である。
<Resin composition for encapsulation>
The encapsulating resin composition of the present disclosure contains an epoxy resin, a curing agent, and a filler, and the filler contains an organic filler containing an imide bond.

本発明者らの検討の結果、充填材としてイミド結合を含む有機充填材を含む封止用樹脂組成物は、シリカ等の無機充填材のみを用いる従来の封止用樹脂組成物に比べて硬化物の比誘電率又は誘電正接が低い、すなわち硬化物の誘電損失が低減されることがわかった。
さらに、充填材としてイミド結合を含まない有機充填材を用いた場合には、硬化物の比誘電率は低下するが誘電正接が増大するために充分な誘電損失の低減効果が得られないことがわかった。
As a result of studies by the present inventors, it was found that a sealing resin composition containing an organic filler containing an imide bond as a filler cures faster than a conventional sealing resin composition using only an inorganic filler such as silica. It has been found that the dielectric constant or dielectric loss tangent of the product is low, that is, the dielectric loss of the cured product is reduced.
Furthermore, when an organic filler containing no imide bond is used as the filler, the relative dielectric constant of the cured product is lowered, but the dielectric loss tangent is increased, so that a sufficient dielectric loss reduction effect cannot be obtained. have understood.

以下、封止用樹脂組成物を構成する各成分について説明する。本実施形態の封止用樹脂組成物は、エポキシ樹脂と、硬化剤と、充填材とを含有し、必要に応じてその他の成分を含有してもよい。 Each component constituting the encapsulating resin composition will be described below. The encapsulating resin composition of the present embodiment contains an epoxy resin, a curing agent and a filler, and may contain other components as necessary.

(エポキシ樹脂)
エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
(Epoxy resin)
The type of epoxy resin is not particularly limited as long as it has an epoxy group in its molecule.

エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specifically, the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. A novolac type epoxy resin (phenol novolak type epoxy resins, ortho-cresol novolac-type epoxy resins, etc.); triphenylmethane-type phenolic resins obtained by condensation or co-condensation of the above phenolic compounds and aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde in the presence of acidic catalysts as epoxy resins. a triphenylmethane-type epoxy resin obtained by epoxidizing a triphenylmethane-type epoxy resin; a copolymer-type epoxy resin obtained by epoxidizing a novolak resin obtained by co-condensing the above phenol compound and naphthol compound with an aldehyde compound in the presence of an acidic catalyst; bisphenol A, diphenylmethane-type epoxy resins that are diglycidyl ethers such as bisphenol F; biphenyl-type epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenols; stilbene-type epoxy resins that are diglycidyl ethers of stilbene-based phenol compounds; sulfur atom-containing epoxy resins that are diglycidyl ethers such as S; epoxy resins that are glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid Glycidyl ester type epoxy resin which is a glycidyl ester of; aniline, diaminodiphenylmethane, glycidyl amine type epoxy resin in which the active hydrogen bonded to the nitrogen atom of isocyanuric acid is substituted with a glycidyl group; dicyclopentadiene type epoxy resins obtained by epoxidizing condensation resins; vinylcyclohexene diepoxides obtained by epoxidizing intramolecular olefin bonds, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 2-(3,4-epoxy)cyclohexyl-5, Alicyclic epoxy resins such as 5-spiro(3,4-epoxy)cyclohexane-m-dioxane; para-xylylene-modified epoxy resins that are glycidyl ethers of para-xylylene-modified phenol resins; meta-xylylene-modified epoxy resins that are glycidyl ethers of meta-xylylene-modified phenol resins a terpene-modified epoxy resin that is a glycidyl ether of a terpene-modified phenol resin; a dicyclopentadiene-modified epoxy resin that is a glycidyl ether of a dicyclopentadiene-modified phenol resin; a cyclopentadiene-modified epoxy resin that is a glycidyl ether of a cyclopentadiene-modified phenol resin; Polycyclic aromatic ring-modified epoxy resins that are glycidyl ethers of aromatic ring-modified phenolic resins; naphthalene-type epoxy resins that are glycidyl ethers of naphthalene ring-containing phenolic resins; halogenated phenolic novolac-type epoxy resins; hydroquinone-type epoxy resins; trimethylolpropane Epoxy resins: linear aliphatic epoxy resins obtained by oxidizing olefin bonds with peracids such as peracetic acid; aralkyl-type epoxy resins obtained by epoxidizing aralkyl-type phenolic resins such as phenol aralkyl resins and naphthol aralkyl resins ; and the like. Further examples of epoxy resins include epoxidized acrylic resins and the like. These epoxy resins may be used singly or in combination of two or more.

エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g/eq to 1000 g/eq, more preferably 150 g/eq to 500 g/eq.

エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 Let the epoxy equivalent of an epoxy resin be the value measured by the method according to JISK7236:2009.

エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、封止用樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 If the epoxy resin is solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40° C. to 180° C., and from the viewpoint of handleability in preparation of the encapsulating resin composition, it is more preferably 50° C. to 130° C.

エポキシ樹脂の融点又は軟化点は、示差走査熱量測定(DSC)又はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。 The melting point or softening point of the epoxy resin is a value measured by differential scanning calorimetry (DSC) or a method (ring and ball method) according to JIS K 7234:1986.

封止用樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましい。 The content of the epoxy resin in the resin composition for sealing is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass, from the viewpoint of strength, fluidity, heat resistance, moldability, etc. % is more preferred.

(硬化剤)
封止用樹脂組成物は、硬化剤を含む。硬化剤の種類は特に限定されず、封止用樹脂組成物の所望の特性等に応じて選択できる。硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤、活性エステル化合物等が挙げられる。これらの硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(curing agent)
The encapsulating resin composition contains a curing agent. The type of curing agent is not particularly limited, and can be selected according to the desired properties of the encapsulating resin composition. Curing agents include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, active ester compounds, and the like. These curing agents may be used singly or in combination of two or more.

フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of phenol curing agents include polyhydric phenol compounds such as resorcinol, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol , at least one phenolic compound selected from the group consisting of phenolic compounds such as aminophenol and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene, and an aldehyde compound such as formaldehyde, acetaldehyde and propionaldehyde with an acidic catalyst. Novolac type phenolic resins obtained by condensation or cocondensation under the following conditions; aralkyl type phenolic resins such as phenol aralkyl resins and naphthol aralkyl resins synthesized from the above phenolic compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc. ; para-xylylene-modified phenolic resin, meta-xylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; Resin; cyclopentadiene-modified phenolic resin; polycyclic aromatic ring-modified phenolic resin; biphenyl-type phenolic resin; and triphenylmethane type phenol resins obtained by copolymerizing two or more of these phenol resins. These phenol curing agents may be used singly or in combination of two or more.

硬化物の誘電正接を低減する観点からは、封止用樹脂組成物は硬化剤として活性エステル化合物を含むことが好ましい。
本開示において「活性エステル化合物」とは、エポキシ基と反応しうるエステル基(活性エステル基)を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有する化合物をいう。
From the viewpoint of reducing the dielectric loss tangent of the cured product, the encapsulating resin composition preferably contains an active ester compound as a curing agent.
In the present disclosure, the term “active ester compound” refers to a compound having one or more ester groups (active ester groups) capable of reacting with epoxy groups in one molecule and having a curing action for epoxy resins.

エポキシ樹脂の硬化剤として一般的なフェノール硬化剤は、エポキシ樹脂と反応して2級水酸基を生じる。これに対して、活性エステル化合物はエポキシ樹脂と反応してエステル基を生じる。エステル基は2級水酸基に比べて極性が低いため、硬化剤として活性エステル化合物を用いることにより、硬化物の誘電正接を低減できる。 Phenol curing agents, which are commonly used as curing agents for epoxy resins, react with epoxy resins to generate secondary hydroxyl groups. In contrast, an active ester compound reacts with an epoxy resin to produce an ester group. Since the ester group has a lower polarity than the secondary hydroxyl group, the dielectric loss tangent of the cured product can be reduced by using an active ester compound as the curing agent.

活性エステル化合物の種類は、特に制限されない。活性エステル化合物として具体的には、フェノールエステル化合物、チオフェノールエステル化合物、N-ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化物等が挙げられる。活性エステル化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The type of active ester compound is not particularly limited. Specific examples of active ester compounds include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esters of heterocyclic hydroxy compounds. An active ester compound may be used individually by 1 type, or may be used in combination of 2 or more type.

活性エステル化合物としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸の少なくとも1種と脂肪族ヒドロキシ化合物及び芳香族ヒドロキシ化合物の少なくとも1種とから得られるエステル化合物が挙げられる。脂肪族化合物を重縮合の成分とするエステル化合物は、脂肪族鎖を有することによりエポキシ樹脂との相溶性に優れる傾向にある。芳香族化合物を重縮合の成分とするエステル化合物は、芳香環を有することにより耐熱性に優れる傾向にある。 Examples of active ester compounds include ester compounds obtained from at least one of aliphatic carboxylic acids and aromatic carboxylic acids and at least one of aliphatic hydroxy compounds and aromatic hydroxy compounds. Ester compounds containing an aliphatic compound as a polycondensation component tend to have excellent compatibility with epoxy resins due to having an aliphatic chain. Ester compounds containing an aromatic compound as a polycondensation component tend to have excellent heat resistance due to having an aromatic ring.

活性エステル化合物の具体例としては、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが挙げられる。中でも、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2~4個をカルボキシ基で置換した芳香族カルボン酸成分と、前記した芳香環の水素原子の1個を水酸基で置換した1価フェノールと、前記した芳香環の水素原子の2~4個を水酸基で置換した多価フェノールとの混合物を原材料として、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。 A specific example of the active ester compound is an aromatic ester obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group. Among them, an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms of an aromatic ring such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid are substituted with a carboxy group, and the hydrogen atom of the aromatic ring described above. A mixture of a monohydric phenol in which one of is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 of the hydrogen atoms on the aromatic ring are substituted with a hydroxyl group is used as a raw material, and a mixture of an aromatic carboxylic acid and a phenolic hydroxyl group is used. Aromatic esters obtained by condensation reactions are preferred. That is, aromatic esters having structural units derived from the aromatic carboxylic acid component, structural units derived from the monohydric phenol, and structural units derived from the polyhydric phenol are preferred.

活性エステル化合物の具体例としては、特開2012-246367号公報に記載されている、脂肪族環状炭化水素基を介してフェノール化合物が結節された分子構造を有するフェノール樹脂と、芳香族ジカルボン酸又はそのハライドと、芳香族モノヒドロキシ化合物とを反応させて得られる構造を有する活性エステル樹脂が挙げられる。当該活性エステル樹脂としては、下記の構造式(1)で表される化合物が好ましい。 Specific examples of the active ester compound include a phenol resin having a molecular structure in which a phenol compound is knotted via an aliphatic cyclic hydrocarbon group, described in JP-A-2012-246367, and an aromatic dicarboxylic acid or Examples thereof include active ester resins having a structure obtained by reacting the halide with an aromatic monohydroxy compound. As the active ester resin, a compound represented by the following structural formula (1) is preferable.

Figure 2023034257000001
Figure 2023034257000001

構造式(1)中、Rは炭素数1~4のアルキル基、フェニル基又は水素原子であり、Xはベンゼン環、ナフタレン環、炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環、又はビフェニル基であり、Yはベンゼン環、ナフタレン環、又は炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環であり、kは0又は1であり、nは繰り返し数の平均値を表す。 In structural formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a hydrogen atom, and X is a benzene ring, a naphthalene ring, a benzene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a naphthalene ring or a biphenyl group, Y is a benzene ring, a naphthalene ring, or a benzene or naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, k is 0 or 1, and n is the number of repetitions represents the average value of

構造式(1)で表される化合物の具体例としては、例えば、下記の例示化合物(1-1)~(1-10)が挙げられる。構造式中のt-Buは、tert-ブチル基である。 Specific examples of the compound represented by Structural Formula (1) include the following exemplary compounds (1-1) to (1-10). t-Bu in the structural formula is a tert-butyl group.

Figure 2023034257000002
Figure 2023034257000002

Figure 2023034257000003
Figure 2023034257000003

活性エステル化合物の別の具体例としては、特開2014-114352号公報に記載されている、下記の構造式(2)で表される化合物及び下記の構造式(3)で表される化合物が挙げられる。 Another specific example of the active ester compound is a compound represented by the following structural formula (2) and a compound represented by the following structural formula (3), which are described in JP-A-2014-114352. mentioned.

Figure 2023034257000004
Figure 2023034257000004

構造式(2)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In structural formula (2), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, or a carbon an ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with an alkyl group of number 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); at least one of which is an ester-forming structural site (z1).

構造式(3)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In structural formula (3), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, or a carbon an ester-forming structural moiety (z1) selected from the group consisting of a benzoyl group or naphthoyl group substituted with an alkyl group of number 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); at least one of which is an ester-forming structural site (z1).

構造式(2)で表される化合物の具体例としては、例えば、下記の例示化合物(2-1)~(2-6)が挙げられる。 Specific examples of the compound represented by Structural Formula (2) include the following exemplary compounds (2-1) to (2-6).

Figure 2023034257000005
Figure 2023034257000005

構造式(3)で表される化合物の具体例としては、例えば、下記の例示化合物(3-1)~(3-6)が挙げられる。 Specific examples of the compound represented by Structural Formula (3) include the following exemplary compounds (3-1) to (3-6).

Figure 2023034257000006
Figure 2023034257000006

活性エステル化合物としては、市販品を用いてもよい。活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」(DIC株式会社製);芳香族構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8」、「EXB-9425」(DIC株式会社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル株式会社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル株式会社製)等が挙げられる。 A commercially available product may be used as the active ester compound. Commercially available active ester compounds include "EXB9451", "EXB9460", "EXB9460S", and "HPC-8000-65T" (manufactured by DIC Corporation) as active ester compounds containing a dicyclopentadiene type diphenol structure; "EXB9416-70BK", "EXB-8", "EXB-9425" (manufactured by DIC Corporation) as active ester compounds containing structures; "DC808" (Mitsubishi Chemical Corporation (manufactured by Mitsubishi Chemical Corporation); active ester compounds containing benzoylated phenol novolak include "YLH1026" (manufactured by Mitsubishi Chemical Corporation).

活性エステル化合物以外の硬化剤の官能基当量(例えば、フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。 The functional group equivalent weight (for example, the hydroxyl group equivalent weight in the case of a phenol curing agent) of the curing agent other than the active ester compound is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, it is preferably 70 g/eq to 1000 g/eq, more preferably 80 g/eq to 500 g/eq.

活性エステル化合物のエステル基当量は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、150g/eq~400g/eqが好ましく、170g/eq~300g/eqがより好ましく、200g/eq~250g/eqがさらに好ましい。 The ester group equivalent of the active ester compound is not particularly limited. From the viewpoint of balance of various properties such as formability, reflow resistance, and electrical reliability, it is preferably 150 g/eq to 400 g/eq, more preferably 170 g/eq to 300 g/eq, and 200 g/eq to 250 g/eq. More preferred.

硬化剤の官能基当量及び活性エステル化合物のエステル基当量は、JIS K 0070:1992に準じた方法により測定される値とする。 The functional group equivalent weight of the curing agent and the ester group equivalent weight of the active ester compound are values measured by a method according to JIS K 0070:1992.

硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止用樹脂組成物の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。 If the curing agent is solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40° C. to 180° C., and from the viewpoint of handleability during production of the encapsulating resin composition, it is more preferably 50° C. to 130° C. .

硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 The melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.

エポキシ樹脂と硬化剤との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 The equivalent ratio between the epoxy resin and the curing agent, that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (number of functional groups in the curing agent/number of functional groups in the epoxy resin) is not particularly limited. From the viewpoint of suppressing the unreacted amount of each, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.

硬化剤が活性エステル化合物を含む場合、硬化剤の全質量に対する活性エステル化合物の含有率は、硬化物の誘電正接を低減する観点から、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 When the curing agent contains an active ester compound, the content of the active ester compound with respect to the total mass of the curing agent is preferably 80% by mass or more from the viewpoint of reducing the dielectric loss tangent of the cured product, and 85% by mass or more. It is more preferable that the content is 90% by mass or more.

(硬化促進剤)
封止用樹脂組成物は、硬化促進剤を含有していてもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂又は硬化剤の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
(Curing accelerator)
The encapsulating resin composition may contain a curing accelerator. The type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin or curing agent, the desired properties of the encapsulating resin composition, and the like.

硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物及びイソシアネートを付加してなる化合物;DBUのイソシアネート付加物、DBNのイソシアネート付加物、2-エチル-4-メチルイミダゾールのイソシアネート付加物、N-メチルモルホリンのイソシアネート付加物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;エチルホスフィン、フェニルホスフィン等の一級ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の二級ホスフィン、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィンなどの、有機ホスフィン;前記有機ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記有機ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン、アントラキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記有機ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラフェニルホスホニウムテトラ-p-トリルボレート等のテトラ置換ホスホニウムのテトラフェニルボレート塩、テトラ置換ホスホニウムとフェノール化合物との塩などの、テトラ置換ホスホニウム化合物;ホスホベタイン化合物;ホスホニウム化合物とシラン化合物との付加物;テトラアルキルホスホニウムと芳香族カルボン酸無水物の部分加水分解物との塩などが挙げられる。 Curing accelerators include diazabicycloalkenes such as 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolak salts of the cyclic amidine compounds or derivatives thereof; maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 ,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone and other quinone compounds, and diazophenylmethane and other compounds having π bonds, which have intramolecular polarization. Compound; DBU tetraphenylborate salt, DBN tetraphenylborate salt, 2-ethyl-4-methylimidazole tetraphenylborate salt, N-methylmorpholine tetraphenylborate salt and other cyclic amidinium compounds and isocyanate added Compound: isocyanate adduct of DBU, isocyanate adduct of DBN, isocyanate adduct of 2-ethyl-4-methylimidazole, isocyanate adduct of N-methylmorpholine; pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanol Tertiary amine compounds such as amines, dimethylaminoethanol, and tris(dimethylaminomethyl)phenol; derivatives of the tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, benzoin Ammonium salt compounds such as tetra-n-hexylammonium acid and tetrapropylammonium hydroxide; primary phosphines such as ethylphosphine and phenylphosphine, secondary phosphines such as dimethylphosphine and diphenylphosphine, triphenylphosphine, diphenyl(p-tolyl) Phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkyl/alkoxyphenyl)phosphine, tris(dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris tertiary phosphines such as (tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine; organic phosphines; phosphine compounds such as complexes of the above organic phosphines and organic borons; 3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, anthraquinone, etc. A compound having intramolecular polarization obtained by adding a compound having a π bond, such as a quinone compound of diazophenylmethane; 4-chlorophenol, 3-chlorophenol, 2-chlorophenol, 4-iodinated phenol, 3-iodinated phenol, 2-iodinated phenol, 4-bromo-2-methylphenol, 4-bromo-3-methylphenol , 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4-bromo-2,6-di-tert-butylphenol, 4-chloro-1-naphthol, 1-bromo-2 - A compound having intramolecular polarization obtained through a dehydrohalogenation step after reacting a halogenated phenol compound such as naphthol, 6-bromo-2-naphthol, 4-bromo-4'-hydroxybiphenyl; tetrasubstituted phosphonium compounds such as tetrasubstituted phosphonium such as tetraphenylphosphonium, tetraphenylborate salts of tetrasubstituted phosphonium such as tetraphenylphosphonium tetra-p-tolylborate, salts of tetrasubstituted phosphonium and phenol compounds; phosphobetaine compounds; adducts of phosphonium compounds and silane compounds; and salts of tetraalkylphosphoniums and partial hydrolysates of aromatic carboxylic anhydrides.

封止用樹脂組成物が硬化促進剤を含む場合、その量は、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the encapsulating resin composition contains a curing accelerator, the amount thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). , more preferably 1 to 15 parts by mass. When the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency for satisfactory curing in a short period of time. When the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing speed is not too fast and a good molded article tends to be obtained.

(充填材)
封止用樹脂組成物は充填材を含み、充填材はイミド結合を含む有機充填材を含む。
イミド結合を含む有機充填材としては、ポリイミドを含む有機充填材が挙げられる。ポリイミドの構造は、特に制限されない。例えば、ポリイミドの原料モノマーとして用いるテトラカルボン酸2無水物とジアミンとをそれぞれ選択して組み合わせることで、所望の構造のポリイミドを得ることができる。
(filler)
The encapsulating resin composition contains a filler, and the filler contains an organic filler containing an imide bond.
Organic fillers containing imide bonds include organic fillers containing polyimides. The structure of polyimide is not particularly limited. For example, a polyimide having a desired structure can be obtained by selecting and combining a tetracarboxylic dianhydride and a diamine that are used as raw material monomers for the polyimide.

封止用樹脂組成物の特性のバランスの観点からは、イミド結合を含む有機充填材は芳香族ポリイミド(芳香族基を含むポリイミド)を含むことが好ましい。イミド結合を含む有機充填材は、1種のみを用いても、2種以上を用いてもよい。 From the viewpoint of the balance of properties of the encapsulating resin composition, the organic filler containing an imide bond preferably contains an aromatic polyimide (a polyimide containing an aromatic group). Only one kind of organic filler containing an imide bond may be used, or two or more kinds thereof may be used.

有機充填材に含まれるポリイミドとして具体的には、下記式のいずれかで表される構造を有するポリイミドが挙げられる。式中のRは2価の有機基である。 Specific examples of the polyimide contained in the organic filler include polyimide having a structure represented by any one of the following formulas. R in the formula is a divalent organic group.

Figure 2023034257000007
Figure 2023034257000007

上記式中のRで表される2価の有機基としては、下記の構造が挙げられる。 Examples of the divalent organic group represented by R in the above formula include the following structures.

Figure 2023034257000008
Figure 2023034257000008

封止用樹脂組成物としての特性のバランスの観点からは、封止用樹脂組成は充填材として無機充填材と、イミド結合を含む有機充填材とを含むことが好ましい。 From the viewpoint of the balance of properties as the encapsulating resin composition, it is preferable that the encapsulating resin composition contains an inorganic filler and an organic filler containing an imide bond as fillers.

無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。 The type of inorganic filler is not particularly limited. Specific examples include inorganic materials such as fused silica, crystalline silica, glass, alumina, talc, clay, and mica. Inorganic fillers having a flame retardant effect may also be used. Inorganic fillers having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate.

無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。無機充填材の形態としては粉末、粉末を球形化したビーズ、繊維等が挙げられる。 Among the inorganic fillers, silica such as fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types. Examples of the form of the inorganic filler include powder, beads obtained by spheroidizing powder, and fiber.

硬化物の誘電正接低減の観点からは、充填材全体に占めるイミド結合を含む有機充填材の割合は3質量%以上であることが好ましく、5質量%以上であることがより好ましい。硬化物の特性のバランスの観点からは、充填材全体に占めるイミド結合を含む有機充填材の割合は20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 From the viewpoint of reducing the dielectric loss tangent of the cured product, the proportion of the organic filler containing imide bonds in the entire filler is preferably 3% by mass or more, more preferably 5% by mass or more. From the viewpoint of the balance of properties of the cured product, the proportion of the organic filler containing imide bonds in the entire filler is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass. More preferably:

封止用樹脂組成物が充填材として無機充填材と、イミド結合を含む有機充填材とを含む場合、硬化物の誘電正接低減の観点からは、充填材全体に占める無機充填材の割合は97質量%より小さいことが好ましく、95質量%より小さいことがより好ましい。硬化物の特性のバランスの観点からは、充填材全体に占める無機充填材の割合は80質量%より大きいことが好ましく、85質量%より大きいことがより好ましく、90質量%より大きいことがさらに好ましい。 When the encapsulating resin composition contains an inorganic filler and an organic filler containing an imide bond as fillers, the ratio of the inorganic filler to the total filler is 97 from the viewpoint of reducing the dielectric loss tangent of the cured product. It is preferably less than 95% by mass, more preferably less than 95% by mass. From the viewpoint of the balance of properties of the cured product, the proportion of the inorganic filler in the total filler is preferably greater than 80% by mass, more preferably greater than 85% by mass, and even more preferably greater than 90% by mass. .

封止用樹脂組成物に含まれる充填材(イミド結合を含む有機充填材及び必要に応じて含まれる無機充填材)の平均粒径は、充填性の観点から、それぞれ独立に、10μm以下であることが好ましく、1μm~8μmであることが好ましく、2μm~6μmであることがより好ましい。 The average particle size of the fillers (organic fillers containing imide bonds and inorganic fillers optionally included) contained in the encapsulating resin composition is independently 10 μm or less from the viewpoint of filling properties. preferably 1 μm to 8 μm, more preferably 2 μm to 6 μm.

封止用樹脂組成物に含まれる充填材(イミド結合を含む有機充填材及び必要に応じて含まれる無機充填材)の最大粒径は、充填性の観点から、それぞれ独立に、50μm以下であることが好ましく、30μm以下であることがより好ましい。 The maximum particle size of the fillers (organic fillers containing imide bonds and inorganic fillers optionally included) contained in the encapsulating resin composition is independently 50 μm or less from the viewpoint of filling properties. is preferred, and 30 μm or less is more preferred.

本開示において充填材の平均粒径は、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920)を用いて得られる体積基準の粒度分布において小径側からの累積が50%となるときの粒径(D50)である。
充填材が封止用樹脂組成物に含まれた状態である場合、熱分解、溶解等の方法で封止用樹脂成分に含まれる樹脂成分を除去してから平均粒径を測定してもよい。あるいは、封止用樹脂組成物又はその硬化物の薄片試料を走査型電子顕微鏡にて撮像した画像において、無作為に選んだ無機充填材100個の長径を測定し、それを算術平均した値を平均粒径としてもよい。
In the present disclosure, the average particle diameter of the filler is 50% cumulative from the small diameter side in the volume-based particle size distribution obtained using a laser diffraction/scattering particle size distribution analyzer (e.g., Horiba, Ltd., LA920). It is the particle size (D50) when it becomes.
When the filler is contained in the encapsulating resin composition, the average particle diameter may be measured after removing the resin component contained in the encapsulating resin component by a method such as thermal decomposition or dissolution. . Alternatively, in an image obtained by imaging a thin piece sample of the encapsulating resin composition or its cured product with a scanning electron microscope, the major axis of 100 randomly selected inorganic fillers is measured, and the value obtained by arithmetically averaging them It may be an average particle size.

封止用樹脂組成物に含まれる充填材の含有率は、特に制限されず、流動性及び強度の観点からは、封止用樹脂組成物全体の30体積%~90体積%であることが好ましく、35体積%~80体積%であることがより好ましく、50体積%~80体積%であることがさらに好ましい。充填材の含有率が封止用樹脂組成物全体の30体積%以上であると、硬化物の熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。充填材の含有率が封止用樹脂組成物全体の90体積%以下であると、封止用樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。 The content of the filler contained in the encapsulating resin composition is not particularly limited, and from the viewpoint of fluidity and strength, it is preferably 30% by volume to 90% by volume of the entire encapsulating resin composition. , more preferably 35% to 80% by volume, more preferably 50% to 80% by volume. When the content of the filler is 30% by volume or more of the entire encapsulating resin composition, the properties of the cured product, such as coefficient of thermal expansion, thermal conductivity and elastic modulus, tend to be further improved. When the content of the filler is 90% by volume or less of the entire encapsulating resin composition, an increase in viscosity of the encapsulating resin composition is suppressed, fluidity is further improved, and moldability is further improved. There is a tendency.

封止用樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、難燃剤、着色剤、シリコーンオイル等の各種添加剤を含んでもよい。封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。 In addition to the components described above, the encapsulating resin composition may contain various additives such as coupling agents, ion exchangers, mold release agents, flame retardants, colorants, and silicone oils exemplified below. The encapsulating resin composition may contain various additives known in the art as necessary, in addition to the additives exemplified below.

(カップリング剤)
封止用樹脂組成物は、カップリング剤を含んでもよい。樹脂成分と無機充填材との接着性を高める観点からは、封止用樹脂組成物はカップリング剤を含むことが好ましい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、ジシラザン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(coupling agent)
The encapsulating resin composition may contain a coupling agent. From the viewpoint of enhancing the adhesiveness between the resin component and the inorganic filler, the sealing resin composition preferably contains a coupling agent. Coupling agents include known coupling agents such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane, silane compounds such as disilazane, titanium compounds, aluminum chelate compounds, and aluminum/zirconium compounds. mentioned.

封止用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填材100質量部に対して0.05質量部~10質量部であることが好ましく、0.1質量部~8質量部であることがより好ましい。カップリング剤の量が無機充填材100質量部に対して0.05質量部以上であると、フレームとの接着性がより向上する傾向にある。カップリング剤の量が無機充填材100質量部に対して10質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the encapsulating resin composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 10 parts by mass with respect to 100 parts by mass of the inorganic filler, and 0.1 part by mass. It is more preferably 8 parts by mass. When the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, the adhesion to the frame tends to be further improved. When the amount of the coupling agent is 10 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.

(イオン交換体)
封止用樹脂組成物は、イオン交換体を含んでもよい。封止用樹脂組成物は、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
(Ion exchanger)
The encapsulating resin composition may contain an ion exchanger. The encapsulating resin composition preferably contains an ion exchanger from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device including the element to be sealed. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. The ion exchangers may be used singly or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.

Mg(1-X)Al(OH)(COX/2・mHO ……(A)
(0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X/2 ·mH 2 O (A)
(0<X≤0.5, m is a positive number)

封止用樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。 When the encapsulating resin composition contains an ion exchanger, its content is not particularly limited as long as it is sufficient to capture ions such as halogen ions. For example, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).

(離型剤)
封止用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The encapsulating resin composition may contain a mold release agent from the viewpoint of obtaining good releasability from the mold during molding. The release agent is not particularly limited, and conventionally known agents can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. The release agent may be used alone or in combination of two or more.

封止用樹脂組成物が離型剤を含む場合、その量は樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性が得られる傾向にある。 When the encapsulating resin composition contains a release agent, the amount thereof is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin component (the total amount of the epoxy resin and the curing agent), and 0.1 More preferably 5 parts by mass to 5 parts by mass. When the amount of the release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency that sufficient releasability can be obtained. When the amount is 10 parts by mass or less, better adhesiveness tends to be obtained.

(難燃剤)
封止用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The encapsulating resin composition may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known ones can be used. Specific examples include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, and metal hydroxides. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.

封止用樹脂組成物が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 When the encapsulating resin composition contains a flame retardant, its amount is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect. For example, it is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, per 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).

(着色剤)
封止用樹脂組成物は、着色剤を含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(coloring agent)
The encapsulating resin composition may contain a coloring agent. Examples of coloring agents include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide. The content of the coloring agent can be appropriately selected according to the purpose and the like. A coloring agent may be used individually by 1 type, or may be used in combination of 2 or more type.

(封止用樹脂組成物の調製方法)
封止用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Method for preparing encapsulating resin composition)
A method for preparing the encapsulating resin composition is not particularly limited. As a general method, there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the components described above are uniformly stirred and mixed, kneaded with a kneader, roll, extruder, or the like preheated to 70° C. to 140° C., cooled, and pulverized. can be mentioned.

封止用樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。封止用樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。封止用樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The encapsulating resin composition is preferably solid at room temperature and normal pressure (eg, 25° C., atmospheric pressure). When the encapsulating resin composition is solid, the shape is not particularly limited, and examples thereof include powder, granules, tablets, and the like. When the encapsulating resin composition is in the form of a tablet, it is preferable from the standpoint of handleability that the dimensions and mass are such that they meet the molding conditions of the package.

<電子部品装置>
本開示の電子部品装置は、素子と、前記素子を封止している前述の本開示の封止用樹脂組成物の硬化物と、を有する。
<Electronic parts equipment>
An electronic component device of the present disclosure has an element and a cured product of the sealing resin composition of the present disclosure, which seals the element.

電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等の支持部材に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載して得られた素子部を封止用樹脂組成物で封止したものが挙げられる。
より具体的には、リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等で接続した後、封止用樹脂組成物を用いてトランスファ成形等によって封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した素子を封止用樹脂組成物で封止した構造を有するTCP(Tape Carrier Package);支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した素子を、封止用樹脂組成物で封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と支持部材に形成された配線とを接続した後、封止用樹脂組成物で素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、プリント配線板においても封止用樹脂組成物を好適に使用することができる。
As an electronic component device, elements (active elements such as semiconductor chips, transistors, diodes, thyristors, capacitors, resistors, etc.) , passive elements such as coils, etc.) are sealed with a sealing resin composition.
More specifically, the element is fixed on a lead frame, and the terminal portion of the element such as a bonding pad and the lead portion are connected by wire bonding, bumps, or the like, and then transfer molding or the like is performed using a sealing resin composition. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-lead package (TSO), Outline Package), TQFP (Thin Quad Flat Package) and other general resin-sealed ICs; TCP (Tape Carrier Package) having a structure in which an element connected to a tape carrier with bumps is sealed with a sealing resin composition ; COB (Chip On Board) modules, hybrid ICs, multi Chip modules, etc.: After mounting an element on the surface of a support member on which terminals for wiring board connection are formed on the back surface, and connecting the element and the wiring formed on the support member by bumps or wire bonding, resin composition for encapsulation BGAs (Ball Grid Arrays), CSPs (Chip Size Packages), MCPs (Multi Chip Packages), etc., which have a structure in which an element is sealed with a substance, can be mentioned. Moreover, the resin composition for sealing can be used suitably also in a printed wiring board.

<電子部品装置の製造方法>
本開示の電子部品装置の製造方法は、素子を支持部材上に配置する工程と、前記素子を本開示の封止用樹脂組成物で封止する工程と、を含む。
<Method for manufacturing electronic component device>
A method of manufacturing an electronic component device of the present disclosure includes a step of placing an element on a support member and a step of encapsulating the element with the encapsulating resin composition of the present disclosure.

上記各工程を実施する方法は特に制限されず、一般的な手法により行うことができる。また、電子部品装置の製造に使用する支持部材及び素子の種類は特に制限されず、電子部品装置の製造に一般的に用いられる支持部材及び素子を使用できる。 The method for implementing each of the above steps is not particularly limited, and can be carried out by a general method. Further, the types of supporting members and elements used for manufacturing electronic component devices are not particularly limited, and supporting members and elements generally used for manufacturing electronic component devices can be used.

本開示の封止用樹脂組成物を用いて素子を封止する方法としては、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。これらの中では、低圧トランスファ成形法が一般的である。 Examples of methods for encapsulating an element using the encapsulating resin composition of the present disclosure include a low-pressure transfer molding method, an injection molding method, a compression molding method, and the like. Among these, the low pressure transfer molding method is common.

以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the scope of the present invention is not limited to these Examples.

<封止用樹脂組成物の調製>
下記に示す成分を表1に示す配合割合(単位:質量部)で混合し、実施例と比較例の封止用樹脂組成物を調製した。
<Preparation of encapsulating resin composition>
The components shown below were mixed at the compounding ratio (unit: parts by mass) shown in Table 1 to prepare encapsulating resin compositions of Examples and Comparative Examples.

・エポキシ樹脂1:トリフェニルメタン型エポキシ樹脂エポキシ樹脂
・エポキシ樹脂2:ビフェニル型エポキシ樹脂
・硬化剤1:活性エステル化合物
・硬化促進剤1:トリフェニルホスフィンと1,4-ベンゾキノンの付加物
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン
・充填材1:シリカ粒子、体積平均粒子径0.5μm
・充填材2:シリカ粒子、体積平均粒子径3μm
・充填材3:(CHSiO3/2)nで表される三次元網目状に架橋した構造を持つポリメチルシルセスキオキサンの粒子、体積平均粒子径2μm
・充填材4:球状シリコーンゴムの表面をシリコーンレジンで被覆した粒子、体積平均粒子径5μm
・充填材5:直鎖状のジメチルポリシロキサンを架橋した構造をもつシリコーンゴムの粒子、体積平均粒子径5μm
・充填材6:下記式で表される構造を有するポリイミドの粒子、Rは2価の有機基、体積平均粒子径5μm
・Epoxy resin 1: triphenylmethane type epoxy resin epoxy resin ・Epoxy resin 2: biphenyl type epoxy resin ・Curing agent 1: active ester compound ・Curing accelerator 1: adduct of triphenylphosphine and 1,4-benzoquinone ・Cup Ring agent 1: N-phenyl-3-aminopropyltrimethoxysilane Filler 1: silica particles, volume average particle size 0.5 μm
・ Filler 2: silica particles, volume average particle size 3 μm
Filler 3: Particles of polymethylsilsesquioxane having a three-dimensional network crosslinked structure represented by (CH 3 SiO 3/2 )n, volume average particle size 2 μm
Filler 4: Particles of spherical silicone rubber coated with silicone resin, volume average particle size 5 μm
・Filler 5: Particles of silicone rubber having a structure in which linear dimethylpolysiloxane is crosslinked, volume average particle size 5 μm
Filler 6: Polyimide particles having a structure represented by the following formula, R is a divalent organic group, volume average particle diameter 5 μm

Figure 2023034257000009
Figure 2023034257000009

<封止用樹脂組成物の性能評価>
(比誘電率及び誘電正接)
封止用樹脂組成物をトランスファ成形機に仕込み、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、後硬化を175℃で6時間行い、90mm×0.6mm×0.8mmの直方体形状の試験片を作製した。
この試験片の比誘電率(Dk)及び誘電正接(Df)を、周波数5GHz及び10GHzにて、空洞共振器(株式会社関東電子応用開発)及びネットワーク・アナライザー(キーサイトテクノロジー社、品名「PNA E8364B」)を用いて、温度25±3℃の環境下で測定した。結果を表1に示す。
各測定周波数にて使用した空洞共振器の型式は以下の通りである。
5GHz・・・CP511
10GHz・・・CP531
<Performance evaluation of encapsulating resin composition>
(relative permittivity and dielectric loss tangent)
The encapsulating resin composition was charged into a transfer molding machine, molded under conditions of a mold temperature of 180° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds. A rectangular parallelepiped test piece of ×0.8 mm was prepared.
The dielectric constant (Dk) and dielectric loss tangent (Df) of this test piece were measured at frequencies of 5 GHz and 10 GHz using a cavity resonator (Kanto Denshi Applied Development Co., Ltd.) and a network analyzer (Keysight Technologies, product name "PNA E8364B ”) was used, and the temperature was measured in an environment of 25±3°C. Table 1 shows the results.
The type of cavity resonator used at each measurement frequency is as follows.
5GHz...CP511
10GHz...CP531

(成形収縮率)
封止用樹脂組成物をトランスファ成形機に仕込み、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、127mm×12.7mm×6.4mmの試験片を作製した。
この試験片の長手方向寸法を、熱処理無しの状態(以下AMと略す)で、マイクロメータで測定した。また、175℃、6時間の熱処理を行った後(以下ACと略す)の試験片の長手方向寸法を、マイクロメータで測定した。室温(25℃)で測定した金型の長手方向寸法と、AM及びAC後の試験片の長手方向寸法とから、下記式により成形収縮率(%)を算出した。
成形収縮率=(金型の長手方向寸法-試験片の長手方向寸法/金型の長手方向寸法)×100
(Molding shrinkage rate)
The encapsulating resin composition was charged into a transfer molding machine and molded under conditions of a mold temperature of 180°C, a molding pressure of 6.9 MPa, and a curing time of 90 seconds to prepare a test piece of 127 mm x 12.7 mm x 6.4 mm. .
The longitudinal dimension of this test piece was measured with a micrometer in a state without heat treatment (hereinafter abbreviated as AM). Further, after heat treatment at 175° C. for 6 hours (hereinafter abbreviated as AC), the longitudinal dimension of the test piece was measured with a micrometer. Mold shrinkage (%) was calculated by the following formula from the longitudinal dimension of the mold measured at room temperature (25° C.) and the longitudinal dimension of the test piece after AM and AC.
Mold shrinkage = (longitudinal dimension of mold - longitudinal dimension of test piece / longitudinal dimension of mold) x 100

Figure 2023034257000010
Figure 2023034257000010

表1に示すように、充填材としてシリカ粒子とポリイミド粒子とを含む実施例1の封止用樹脂組成物は、充填材としてシリカ粒子のみを含む比較例1の封止用樹脂組成物に比べて硬化物の比誘電率と誘電正接がともに低い。
充填材としてシリカ粒子とシリコーン粒子とを含む比較例2~4の封止用樹脂組成物は、充填材としてシリカ粒子のみを含む比較例1の封止用樹脂組成物に比べて硬化物の比誘電率は低いが誘電正接が高い。また、比較例2~4の封止用樹脂組成物は実施例1の封止用樹脂組成物に比べて硬化物の成形収縮率が大きい。
As shown in Table 1, the encapsulating resin composition of Example 1 containing silica particles and polyimide particles as fillers compared to the encapsulating resin composition of Comparative Example 1 containing only silica particles as fillers. Both the dielectric constant and dielectric loss tangent of the cured product are low.
The encapsulating resin compositions of Comparative Examples 2 to 4, which contain silica particles and silicone particles as fillers, are compared to the encapsulating resin composition of Comparative Example 1, which contains only silica particles as fillers. It has a low dielectric constant but a high dielectric loss tangent. Further, the encapsulating resin compositions of Comparative Examples 2 to 4 had a higher mold shrinkage rate of the cured product than the encapsulating resin composition of Example 1.

Claims (7)

エポキシ樹脂と、硬化剤と、充填材とを含み、前記充填材はイミド結合を含む有機充填材を含む、封止用樹脂組成物。 A sealing resin composition comprising an epoxy resin, a curing agent, and a filler, wherein the filler comprises an organic filler containing an imide bond. 前記イミド結合を含む有機充填材の平均粒子径は10μm以下である、請求項1に記載の封止用樹脂組成物。 2. The encapsulating resin composition according to claim 1, wherein the organic filler containing imide bonds has an average particle size of 10 [mu]m or less. 前記充填材全体に占めるイミド結合を含む有機充填材の割合は5質量%~20質量%である、請求項1又は請求項2に記載の封止用樹脂組成物。 3. The encapsulating resin composition according to claim 1, wherein the proportion of the organic filler containing imide bonds in the entire filler is 5% by mass to 20% by mass. 前記硬化剤はフェノール硬化剤及び活性エステル化合物からなる群より選択される少なくとも1種を含む、請求項1~請求項3のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 3, wherein the curing agent contains at least one selected from the group consisting of phenolic curing agents and active ester compounds. 前記充填材は無機充填材をさらに含む、請求項1~請求項4のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 4, wherein the filler further comprises an inorganic filler. 支持部材と、前記支持部材上に配置された素子と、前記素子を封止している請求項1~請求項5のいずれか1項に記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。 A support member, an element arranged on the support member, and a cured product of the sealing resin composition according to any one of claims 1 to 5 sealing the element, electronic component device. 素子を支持部材上に配置する工程と、前記素子を請求項1~請求項5のいずれか1項に記載の封止用樹脂組成物で封止する工程と、を含む電子部品装置の製造方法。 A method for manufacturing an electronic component device, comprising the steps of placing an element on a support member and sealing the element with the sealing resin composition according to any one of claims 1 to 5. .
JP2021140409A 2021-08-30 2021-08-30 Resin composition for sealing, electronic component device and method for manufacturing electronic component device Pending JP2023034257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021140409A JP2023034257A (en) 2021-08-30 2021-08-30 Resin composition for sealing, electronic component device and method for manufacturing electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021140409A JP2023034257A (en) 2021-08-30 2021-08-30 Resin composition for sealing, electronic component device and method for manufacturing electronic component device

Publications (1)

Publication Number Publication Date
JP2023034257A true JP2023034257A (en) 2023-03-13

Family

ID=85504135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021140409A Pending JP2023034257A (en) 2021-08-30 2021-08-30 Resin composition for sealing, electronic component device and method for manufacturing electronic component device

Country Status (1)

Country Link
JP (1) JP2023034257A (en)

Similar Documents

Publication Publication Date Title
JP7452028B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP7388160B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2023100761A (en) Resin composition for encapsulation, electronic component device and method for manufacturing electronic component device
JP2024116267A (en) Molding resin composition and electronic component device
JP2024107187A (en) Molding resin composition and electronic component device
WO2020262654A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2023059892A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
JP2020152825A (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JP7491223B2 (en) Encapsulating resin composition, electronic component device, and method for producing electronic component device
JP7396290B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP7443778B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2023034257A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
JP7487596B2 (en) Encapsulating resin composition, electronic component device, and method for producing electronic component device
TWI854997B (en) Resin composition for sealing, electronic component device and method of manufacturing electronic component device
WO2023038035A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2023127421A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2024015914A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2023127420A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2024081462A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2022021901A (en) Sealing resin composition, electronic component device and method for producing electronic component device
WO2020189309A1 (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JP2024081463A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2023180969A (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2022011184A (en) Sealing resin composition and electronic component device