WO2023037613A1 - 変位検知装置及び方法 - Google Patents

変位検知装置及び方法 Download PDF

Info

Publication number
WO2023037613A1
WO2023037613A1 PCT/JP2022/010878 JP2022010878W WO2023037613A1 WO 2023037613 A1 WO2023037613 A1 WO 2023037613A1 JP 2022010878 W JP2022010878 W JP 2022010878W WO 2023037613 A1 WO2023037613 A1 WO 2023037613A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
control unit
displacement
phase information
Prior art date
Application number
PCT/JP2022/010878
Other languages
English (en)
French (fr)
Inventor
佑真 渡部
隆昭 浅田
晋一 佐々木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to DE112022003506.4T priority Critical patent/DE112022003506T5/de
Priority to CN202280049214.0A priority patent/CN117642651A/zh
Priority to JP2023546758A priority patent/JPWO2023037613A1/ja
Publication of WO2023037613A1 publication Critical patent/WO2023037613A1/ja
Priority to US18/536,530 priority patent/US20240118415A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/102Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics
    • G01S15/104Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/62Sense-of-movement determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S15/523Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • G01S15/526Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection by comparing echos in different sonar periods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/53Means for transforming coordinates or for evaluating data, e.g. using computers

Definitions

  • the present invention relates to a displacement detection device and method for detecting minute displacements of an object based on transmission and reception of broadband ultrasonic waves.
  • Non-Patent Document 1 discloses a method for percutaneously measuring minute displacements due to minute vibrations of the heart wall in ultrasonic diagnosis.
  • the method of Non-Patent Document 1 transmits an ultrasonic high-frequency signal at least twice by an ultrasonic transducer on the surface of the chest and receives the received signal reflected by the heart wall.
  • the method using the phase difference tracking method calculates the phase difference of the complex signal obtained by quadrature demodulation of each received signal for two times, and estimates the change in the delay time of the received signal from the phase change of the received signal. .
  • the method of Non-Patent Document 1 attempts to detect minute displacements on the body surface in contact with the ultrasonic transducer.
  • An object of the present invention is to provide a displacement detection device and method that can accurately detect minute displacements of an object.
  • a displacement detection device includes a transmitter, a receiver, and a controller.
  • a transmitter transmits modulated waves having multiple frequencies to an object.
  • a wave receiver receives a reflected wave from an object and generates a received signal indicating a reception result.
  • the control unit controls transmission of the modulated wave by the wave transmitter and obtains a received signal from the wave receiver.
  • the control unit outputs a first transmission signal so as to transmit a modulated wave to the transmitter, and obtains a responding first reception signal.
  • the control unit extracts first phase information indicating a phase defined in correlation between the first transmission signal and the first reception signal based on the first transmission signal and the first reception signal. .
  • the control unit In a second measurement period after the first measurement period, the control unit outputs a second transmission signal so as to transmit a modulated wave to the transmitter, and obtains a responding second reception signal. .
  • the control unit extracts second phase information indicating a phase defined in correlation between the second transmission signal and the second reception signal based on the second transmission signal and the second reception signal. .
  • the controller detects displacement of the object during the first and second measurement periods according to the difference between the first phase information and the second phase information.
  • the present invention can also be realized by methods, computer programs, and combinations thereof.
  • minute displacements of an object can be detected with high accuracy.
  • FIG. 1 is a diagram for explaining an outline of a displacement detection device according to Embodiment 1;
  • FIG. Block diagram showing the configuration of the displacement detection device Block diagram showing the functional configuration of the control unit in the displacement detection device Graph for explaining the analysis signal in the displacement detection device Graphs illustrating the envelope and phase curves of the analytic signal of FIG. Flowchart illustrating the operation of the displacement detection device FIG.
  • FIG. 4 is a diagram illustrating transmission signals and reception signals in a displacement detection device; Diagram for explaining the operation of the displacement detection device 4 is a flowchart illustrating phase extraction processing of an analytic signal in a displacement detection device; Diagram for explaining the phase extraction processing of the analytic signal 4 is a flowchart illustrating inter-frame displacement calculation processing in a displacement detection device; Diagram for explaining displacement calculation processing between frames Diagram for explaining heart rate measurement using a displacement detector A diagram showing the relationship between the measurement frame rate and the localization accuracy in the displacement detection device A diagram showing the relationship between the SNR of the received signal and the localization accuracy in the displacement detection device.
  • Embodiment 1 an example of a displacement detection device configured using a thermophone, which is a thermally excited sound wave generating device, will be described.
  • Configuration 1-1 Overview An overview of the displacement detection device according to the first embodiment will be described with reference to FIG.
  • FIG. 1 is a diagram for explaining the outline of the displacement detection device 1 of this embodiment.
  • the displacement detection device 1 of this embodiment is a device that detects information such as the distance to an object 3 by transmitting and receiving sound waves using a thermophone.
  • the displacement sensing device 1 can be used to measure a patient's heartbeat or respiration, for example in medical applications.
  • the object 3 to be sensed in this case includes, for example, the patient's body surface.
  • the displacement detection device 1 can be applied to various applications other than medical applications.
  • the displacement detection device 1 may detect a driver or an occupant of an automobile in an in-vehicle application.
  • the object 3 to be detected is not limited to a living body such as a person, and may be an article or the like.
  • the displacement detection device 1 may be applied, for example, to inspection of containers in industrial applications, and may be used to measure minute changes in the distance to a portion where a label is attached to the surface of the container.
  • the displacement detection device 1 in detecting information such as a minute distance, a chirp wave whose frequency changes with time is transmitted to the object 3, and the chirp wave is reflected by the object 3, that is, an echo. received.
  • the displacement detection device 1 can generate sound waves having wideband frequency characteristics such as chirp waves.
  • the displacement detection device 1 of this embodiment repeats transmission and reception of sound waves as described above to detect a change in the distance to the object 3, that is, the displacement of the object 3.
  • the details of the configuration of the displacement detection device 1 will be described below.
  • FIG. 2 is a block diagram showing the configuration of the displacement detection device 1. As shown in FIG.
  • the displacement detection device 1 of this embodiment includes, for example, a wave transmitter 10, a wave receiver 11, a control section 13, and a storage section 14, as shown in FIG.
  • the transmitter 10 and the receiver 11 are arranged close to each other on the side of the displacement detection device 1 facing the object 3 .
  • the wave transmitter 10 and the wave receiver 11 are communicably connected to the controller 13 via various signal lines, for example.
  • the wave transmitter 10 of this embodiment includes a thermophone as a sound source.
  • the transmitter 10 generates ultrasonic waves having a frequency of 20 kHz or higher, for example.
  • the wave transmitter 10 can generate a chirp wave whose frequency is modulated in a wide band, such as from 20 kHz to 100 kHz, by a thermophone.
  • the wave transmitter 10 of this embodiment generates a chirp wave by a linear frequency chirp whose frequency linearly changes with time, for example. Further, the transmitter 10 can be made small and lightweight by using a thermophone.
  • the wave transmitter 10 may include a drive circuit for driving the thermophone.
  • the wave transmitter 10 generates sound waves by driving a thermophone with a drive circuit based on, for example, a transmission signal input from the control unit 13 .
  • the drive circuit of the transmitter 10 may set the frequency band of the sound wave to be generated, the chirp length indicating the period for changing the frequency, the intensity, the signal length, the directivity, and the like.
  • the transmitter 10 is not necessarily limited to ultrasonic waves, and may generate sound waves in various frequency bands.
  • Transmitter 10 may be various omnidirectional sound sources without particular directivity, or may be variable or fixed directional sound sources.
  • the wave transmitter 10 includes, for example, a heating element, a heat insulating layer, a substrate, and electrodes as a configuration of a thermophone that heats air to generate sound waves.
  • a heating element and a heat insulating layer are laminated on the substrate.
  • the heating element is composed of a resistor, and generates heat by applying current from the drive circuit through the electrodes.
  • the heating element is provided so as to form a sound emitting surface that contacts air, and expands or contracts the air around the sound emitting surface due to temperature changes. As a result, air pressure, that is, sound waves are generated from the vicinity of the sound emitting surface.
  • the heat insulating layer is provided between the heating element and the substrate, and suppresses heat conduction from the heating element to the side opposite to the sound emitting surface.
  • the substrate dissipates heat transmitted from the heating element.
  • the wave receiver 11 is composed of a microphone such as a MEMS (Micro Electro Mechanical System) microphone, for example.
  • the wave receiver 11 receives the echo from the object 3 and generates a reception signal indicating the reception result.
  • the distance between the wave receiver 11 and the wave transmitter 10 is set in advance in consideration of, for example, the distance from the displacement detection device 1 to the object 3 at the time of assumed detection.
  • the wave receiver 11 is not limited to the MEMS microphone, and may be another microphone having frequency characteristics capable of receiving broadband ultrasonic waves transmitted from the wave transmitter 10, for example.
  • the wave receiver 11 may be a condenser microphone.
  • the wave receiver 11 may be omnidirectional, or may have various directivities as appropriate.
  • the control unit 13 controls the overall operation of the displacement detection device 1.
  • the control unit 13 is composed of, for example, a microcomputer, and cooperates with software to realize predetermined functions.
  • the control unit 13 reads the data and programs stored in the storage unit 14 and performs various arithmetic processing to realize various functions.
  • the control unit 13 generates, for example, a transmission signal for causing the transmitter 10 to generate a chirp wave, and outputs the signal to the transmitter 10 .
  • the control unit 13 holds the generated transmission signal in the storage unit 14, for example. Details of the control unit 13 will be described later.
  • control unit 13 may be a hardware circuit such as a dedicated electronic circuit or a reconfigurable electronic circuit designed to achieve a predetermined function.
  • the control unit 13 may be composed of various semiconductor integrated circuits such as CPU, MPU, DSP, FPGA, and ASIC.
  • control unit 13 may include an analog/digital (A/D) converter and a digital/analog (D/A) converter, and applies A/D conversion or D/A conversion to various signals.
  • A/D analog/digital
  • D/A digital/analog
  • the storage unit 14 is a storage medium for storing programs and data necessary for realizing the functions of the control unit 13, and is composed of a flash memory, for example.
  • the storage unit 14 stores transmission signals generated by the control unit 13 .
  • control unit 13 in the displacement detection device 1 of the present embodiment will be described with reference to FIG.
  • FIG. 3 is a block diagram showing the functional configuration of the control section 13.
  • the control unit 13 includes, for example, FFT units 131a and 131b, a cross spectrum calculation unit 132, a Hilbert transform unit 133, IFFT units 134a and 134b, and an analysis processing unit 135 as functional units, as shown in FIG.
  • Each of the functional units 131 to 135 implements functions of fast Fourier transform (FFT), cross spectrum calculation, Hilbert transform, inverse fast Fourier transform (IFFT), and analysis processing to be described later.
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the control unit 13 receives, for example, the transmission signal Sd from the storage unit 14 and the reception signal Sr from the wave receiver 11, and performs signal processing by each of the functional units 131-135.
  • Each of the functional units 131 to 135 can operate periodically, for example, at a predetermined measurement frame rate (eg, 30 frames/second) as described later.
  • a series of processes from the FFT section 131 to the IFFT section 134 among the functional sections 131 to 135 are performed to generate an analysis signal based on the transmission signal Sd and the reception signal Sr for each frame.
  • the analytic signal is a complex signal composed of a cross-correlation function between the transmission signal Sd and the reception signal Sr, and is used for displacement detection by the displacement detection device 1 .
  • the cross-correlation function shows the correlation between the two signals Sd, Sr in the time domain.
  • the FFT section 131 a performs a fast Fourier transform on the transmission signal Sd input to the control section 13 and outputs the result of transform from the time domain to the frequency domain to the cross spectrum calculation section 132 .
  • the FFT section 131 b performs fast Fourier transform on the received signal Sr input to the control section 13 in the same manner as on the transmitted signal Sd, and outputs the transform result to the cross spectrum computing section 132 .
  • the cross spectrum calculation unit 132 calculates a cross spectrum from the results of the Fourier transform of the signals Sd and Sr by the FFT unit 131, and outputs it to the Hilbert transform unit 133 and the IFFT unit 134b.
  • the cross-spectrum corresponds to the Fourier transform of the cross-correlation function of the transmitted signal Sd and the received signal Sr, and applying the inverse Fourier transform to the cross-spectrum yields the cross-correlation function.
  • the Hilbert transform unit 133 computes the Hilbert transform of the cross spectrum by the cross spectrum computation unit 132, and outputs the transform result obtained by shifting each frequency component of the cross spectrum by ⁇ /2 to the IFFT unit 134a.
  • the IFFT unit 134 a calculates the inverse fast Fourier transform in the cross spectrum to which the Hilbert transform is applied, and outputs the result of transform from the frequency domain to the time domain to the analysis processing unit 135 .
  • the IFFT section 134 b performs an inverse fast Fourier transform on the cross spectrum from the cross spectrum computing section 132 and outputs the transform result to the analysis processing section 135 .
  • the analysis processing unit 135 generates an analytic signal having each signal I and Q as a real part and an imaginary part, respectively, and performs processing related to the analytic signal.
  • the analytic signal generated based on the transmission signal Sd and the reception signal Sd in this way indicates an analytic function in the complex domain.
  • the signals I and Q are hereinafter referred to as an in-phase component I and a quadrature component Q, respectively, of the analytic signal.
  • control unit 13 may be implemented by, for example, programs stored in the storage unit 14, or part or all of the various functions may be implemented by hardware circuits.
  • the cross-correlation function may be calculated directly from the transmission/reception signals Sd and Sr by, for example, sum-of-products calculation processing instead of the processing of calculating the cross spectrum after the Fourier transform and then performing the inverse Fourier transform.
  • the control unit 13 may include a circuit such as an FPGA that performs sum-of-products calculation.
  • the generation of the analytic signal in the control unit 13 is not limited to the Hilbert transform, and may be realized by, for example, a quadrature detection function.
  • FIG. 1 An outline of the operation of detecting the displacement of the object 3 in the displacement detection device 1 of the present embodiment will be described with reference to FIGS. 1, 4 and 5.
  • FIG. 1 An outline of the operation of detecting the displacement of the object 3 in the displacement detection device 1 of the present embodiment will be described with reference to FIGS. 1, 4 and 5.
  • FIG. 1 An outline of the operation of detecting the displacement of the object 3 in the displacement detection device 1 of the present embodiment will be described with reference to FIGS. 1, 4 and 5.
  • the displacement detection device 1 of the present embodiment transmits one chirp wave from the transmitter 10 to the object 3 and receives the echo of the chirp wave with the receiver 11. is one frame of measurement operation, and the measurement operation of each frame is sequentially executed.
  • the controller 13 generates an analysis signal for each measurement frame so as to analyze the correlation between the transmission signal and the reception signal.
  • FIG. 4 is a graph for explaining the analytic signal z(t) in the displacement detection device 1.
  • FIG. 4 illustrates the analytic signal z(t) for one frame.
  • the analytic signal z(t) is complexed by including an in-phase component I(t) representing the cross-correlation function between the transmitted signal and the received signal as a real part and a corresponding quadrature component Q(t) as an imaginary part. , has a range of complex numbers.
  • the peak time t0 is the timing at which the amplitude
  • a method of measuring the amount of displacement by analyzing only the envelope E(t) of the analytic signal z(t) has been conventionally proposed.
  • This measuring method measures the amount of displacement by detecting the peak time of the envelope E(t) for each frame and comparing the respective peak times of two consecutive frames.
  • the resolution for detecting the peak time from the envelope E(t) becomes the measurement limit of the amount of displacement, or the noise in the envelope E(t) influences, resulting in a minute displacement. It may be difficult to detect with high accuracy.
  • the displacement detection device 1 of the present embodiment analyzes the phase ⁇ z(t), which is information not included in the envelope E(t), in the analytic signal z(t) obtained by complexing the cross-correlation function.
  • FIG. 5(a) illustrates the envelope E(t) of the analytic signal z(t) of FIG.
  • FIG. 5(b) illustrates the phase curve ⁇ (t) of the analytic signal z(t) of FIG.
  • the phase curve ⁇ (t) shows the correspondence relationship between the phase ⁇ z(t) defined in the range of complex numbers in the analytic signal z(t) and the time t.
  • the phase curve ⁇ (t) exemplified in FIG. 5(b) has a steep slope in a sawtooth graph shape linked to the vibration of the envelope E(t) in FIG. 5(a).
  • the slope of the phase curve ⁇ (t) is defined by the frequency (that is, the instantaneous frequency) of the analytic signal z(t) at each time t.
  • phase curve ⁇ (t) of the analytic signal z(t) for each frame the phase ⁇ z(t 0 ) at the peak time t 0 of the frame is theoretically a zero value, and various noises on implementation It is considered to have a corresponding offset value.
  • phase curve ⁇ (t) has relatively high linearity in the vicinity of the peak time t0 of the envelope E(t).
  • the displacement detection device 1 of the present embodiment calculates the phase difference between two consecutive frames with reference to the peak time t0 in one frame, and converts the phase difference into the displacement of the object 3. Measure quantity.
  • the displacement of the object 3 can be detected with high precision, for example, to a finer range than the resolution described above. For example, in conversion from such a phase difference, it is possible to calculate a small amount of displacement according to the steepness of the gradient of the phase curve ⁇ (t).
  • FIG. 1 Details of Operation Details of the operation of the displacement detection device 1 of the present embodiment will be described with reference to FIGS. 3 to 12.
  • FIG. 1 Details of Operation Details of the operation of the displacement detection device 1 of the present embodiment will be described with reference to FIGS. 3 to 12.
  • FIG. 1 Details of Operation Details of the operation of the displacement detection device 1 of the present embodiment will be described with reference to FIGS. 3 to 12.
  • FIG. 1 Details of Operation Details of the operation of the displacement detection device 1 of the present embodiment will be described with reference to FIGS. 3 to 12.
  • FIG. 6 is a flowchart illustrating the operation of the displacement detection device 1.
  • FIG. 7 is a diagram illustrating the transmission signal Sd and the reception signal Sr in the displacement detection device 1.
  • FIG. 8A and 8B are diagrams for explaining the operation of the displacement detection device 1.
  • FIG. Each process shown in the flowchart of FIG. 6 is repeatedly executed by the control unit 13 of the displacement detection device 1 at a predetermined cycle, such as every two frames.
  • FIG. 7(a) illustrates a transmission signal Sd for generating a chirp wave from the wave transmitter 10.
  • FIG. 7(b) illustrates the received signal Sr of the wave receiver 11 in response to FIG. 7(a).
  • FIG. 8A illustrates envelopes E1 and E2 of the analytic signals z(t) of the first and second frames.
  • FIG. 8B illustrates phase curves ⁇ 1 and ⁇ 2 of the analytic signals z(t) of the first and second frames.
  • FIG. 8 shows five points near the peak time t0 among the sampling points of the analytic signal z(t) on the envelope E1 and the phase curve ⁇ 1 of the first frame.
  • a sampling point indicates a signal value z(t i ) at each time t i in the analytic signal z(t) generated as a discrete signal.
  • the control unit 13 of the displacement detection device 1 outputs the transmission signal Sd to the transmitter 10, and controls the transmitter 10 to transmit a chirp wave based on the transmission signal Sd. (S1).
  • a chirp wave whose frequency changes with time over the chirp length Tc is transmitted from the transmitter 10 .
  • the chirp length Tc is set to a period shorter than the time interval between frames.
  • the displacement detection device 1 of this embodiment uses a chirp signal by pulse interval modulation as the transmission signal Sd. Pulse interval modulation temporally changes the interval between successive pulses, as illustrated in FIG. 7(a).
  • the drive circuit consumes a large amount of power during the period when each pulse is in the ON state. Pulse interval modulation can reduce power consumption in the transmitter 10 .
  • the transmission signal Sd is a down-chirp signal whose frequency decreases temporally, but may be an up-chirp signal whose frequency increases temporally. According to such a chirp wave, it is possible to suppress the attenuation when propagating in the air and to detect the displacement with high accuracy, compared to using an ultrasonic wave with a high frequency single frequency as in Non-Patent Document 1, for example. can.
  • the control unit 13 acquires the reception signal Sr indicating the reception result of the first frame from the wave receiver 11 (S2).
  • the reception result of the first frame shows an echo responding to the chirp wave transmitted in step S1.
  • the received signal Sr is received delayed according to the time difference from the rise of the continuous pulse in FIG. ing.
  • the control unit 13 generates the analytic signal z(t) by calculating the cross-correlation function between the signals Sd and Sr based on the transmitted signal Sd and the received signal Sr of the first frame, and the analytic signal z At (t), a process of extracting phase information is performed (S3).
  • a process of extracting phase information is performed (S3).
  • the control unit 13 for example, based on the transmission signal Sd held in the storage unit 14 and the reception signal Sr acquired in step S2, each of the functional units 131 to 135 in FIG. , to generate and process the analytic signal z(t).
  • a cross-correlation function c( ⁇ ) between the signals Sd and Sr is expressed by the following equation.
  • T is the period for one frame
  • is the delay time.
  • a cross-correlation function c( ⁇ ) indicates the correlation when two signals Sd and Sr have a delay time ⁇ .
  • the control unit 13 detects the peak time t0 from the envelope E(t) of the analytic signal z(t), and extracts the peak time t0 from the phase ⁇ z(t). Extract the phase information, including the phase ⁇ z(t 0 ).
  • FIGS. 8(a) and 8(b) show an enlarged view of the vicinity of the peak time t0 corresponding to FIGS. 5(a) and 5(b).
  • the peak time t0 is detected in the envelope E1 of the first frame.
  • Phase information is extracted based on the peak time t0 from the phase ⁇ z(t) on the phase curve ⁇ 1 of the first frame shown in FIG. 8(b). The details of the analytic signal phase extraction process (S3) will be described later.
  • control unit 13 transmits and receives a chirp wave for the second time, and receives the reception signal Sr corresponding to the transmission signal Sd of the second frame (S4, S5).
  • the control unit 13 uses the phase information difference between the two frames.
  • a process of calculating the displacement amount ⁇ x of the object 3 is performed (S6).
  • the control unit 13 generates the analysis signal z(t) of the second frame as each of the functional units 131 to 135 shown in FIG. Extract.
  • the control unit 13 functions, for example, as the analysis processing unit 135 in FIG. 3 and calculates the phase information difference of each frame.
  • the control unit 13 calculates the phase information of the second frame from the phase ⁇ z(t) on the phase curve ⁇ 2 of the second frame shown in FIG. to extract
  • the control unit 13 calculates the phase difference ⁇ between the frames at the peak time t0 from the difference in the phase information of each frame.
  • the control unit 13 calculates the displacement amount ⁇ x between frames by conversion from such a peak phase difference ⁇ .
  • the amount of displacement ⁇ x between frames is represented by the following equation (1).
  • c is the speed of sound
  • is the circular constant
  • fc is the center frequency of the analytic signal z(t).
  • fc is determined from the analytic signal z(t) of the first frame in the inter-frame displacement calculation process (S6) in this embodiment, and is the gradient of the phase ⁇ z(t 0 ) at the peak time t 0 (that is, the instantaneous frequency ).
  • the details of the inter-frame displacement calculation process (S6) will be described later.
  • the displacement detection device 1 extracts the phase information of the analytic signal z(t) from the first transmission/reception (S1, S2) of the chirp wave (S3), and extracts the phase information from the second transmission/reception (S4, S5).
  • a displacement amount ⁇ x converted from the peak phase difference ⁇ with the analytic signal z(t) is calculated (S6).
  • the distance to the object 3 is estimated twice based on the change in the peak time of the analytic signal z(t), and the difference in distance between each time is calculated as the amount of displacement ⁇ x. It has been known.
  • the change in the peak time is the time interval between sampling points of the analytic signal z(t) as shown in FIG. , it is difficult to detect the displacement.
  • the displacement detection device 1 of the present embodiment even in such a case, the peak phase difference ⁇ obtained by transmitting and receiving the chirp wave is converted into the displacement amount ⁇ x, and the minute displacement can be detected with high accuracy.
  • the displacement detection device 1 of the present embodiment directly calculates the displacement amount ⁇ x for a short period of time, such as between frames, without depending on distance estimation. As a result, the displacement can be detected with high accuracy from the viewpoint of suppressing the influence of air currents on the propagation period, for example.
  • the displacement detection device 1 may detect the peak time of the analytic signal z(t) of the second frame, for example, and use it together with the peak time t0 of the first frame to calculate the displacement amount ⁇ x. , may be used for phase extraction processing (S3) of the analytic signal in the next execution cycle. Also, in the inter-frame displacement calculation process (S6), the peak phase difference may be calculated based on the peak time of the second frame. The displacement detection device 1 may detect the peak time in the analytic signal z(t) of the second frame instead of the first frame, for example.
  • FIG. 6 has been described as being executed in a cycle of every two frames, but it may be executed in a cycle other than the above example.
  • the processing of FIG. 6 may be executed for each frame, and the transmission/reception signals Sd and Sr in the second chirp wave transmission/reception (S4, S5) are held, and each held signal is stored in the next execution cycle.
  • the analysis signal phase extraction process (S3) may be started based on the signals Sd and Sr.
  • FIG. 9 is a flowchart illustrating the phase extraction processing (S3) of the analytic signal in the displacement detection device 1 of this embodiment.
  • FIG. 10 is a diagram for explaining the phase extraction processing (S3) of the analytic signal.
  • FIGS. 10A and 10B respectively show the amplitude
  • the process shown in the flowchart of FIG. 9 is started, for example, while the transmission signal Sd and reception signal Sr of the first frame in steps S1 and S2 of FIG. 6 are held.
  • the control unit 13 of the displacement detection device 1 detects the peak time t0 in the amplitude
  • is maximum as the peak time t 0 argmax
  • the control unit 13 specifies a predetermined number (for example, 5 points) of sampling points of the analytic signal z(t) in the vicinity of the peak time t0 , and uses the phase ⁇ z(t) of each sampling point as phase information. Extract (S12).
  • a predetermined number for example, 5 points
  • five points of the analytic signal at two sampling times t ⁇ 2 , t ⁇ 1 , t 1 and t 2 before and after the peak time t 0 are specified as sampling points.
  • FIG. 10(b) as the phase ⁇ z(t) at each sampling point specified in FIG .
  • ⁇ ⁇ 1 , ⁇ 0 , ⁇ 1 and ⁇ 2 are extracted.
  • ⁇ z(t i ) arctan(Q(t i )/I(t i ))
  • the control unit 13 holds the sampling times t ⁇ 2 to t 2 near the peak time t 0 and the phases ⁇ ⁇ 2 to ⁇ 2 of the extracted sampling points in the storage unit 14, for example.
  • the control unit 13 calculates, for example, the least-squares method, the slope of the regression line with respect to the phases ⁇ ⁇ 2 to ⁇ 2 of the extracted sampling points, that is, the regression coefficient, as the instantaneous frequency fc corresponding to the center frequency of the analytic signal z(t). (S13).
  • the slope of the regression line L1 with respect to the phases ⁇ ⁇ 2 to ⁇ 2 is calculated as the instantaneous frequency fc.
  • the control unit 13 stores, for example, the calculated instantaneous frequency fc in the storage unit 14, and ends the analytic signal phase extraction process (S3). After that, the process proceeds to step S4 in FIG.
  • analytic signal phase extraction processing (S3), after detecting the peak time t0 at the amplitude
  • the instantaneous frequency fc can be calculated with high accuracy, and the inter-frame displacement calculation processing (S6) can be performed. can be done.
  • phase extraction processing (S3) of the analytic signal described above an example has been described in which five sampling points near the peak are specified and used to extract the phase ⁇ z(t).
  • the number of sampling points in the vicinity of the peak is not limited to 5 points.
  • 3 points, ie, the peak time t0 and one sampling time before and after the peak time t0 may be used.
  • FIG. 11 is a flowchart illustrating the inter-frame displacement calculation process (S6) in the displacement detection device 1 of this embodiment.
  • FIG. 12 is a diagram for explaining the inter-frame displacement calculation process (S6).
  • FIG. 12 shows phase curves ⁇ 1 and ⁇ 2 of each analytic signal z(t) of the first and second frames.
  • the control unit 13 shifts the phase at each sampling time t ⁇ 2 to t 2 near the peak time t 0 of the first frame to 2 It is calculated as the phase information of the frame (S21).
  • the control unit 13 generates the analytic signal z(t) for the second frame, for example, in the same manner as the analytic signal z(t) for the first frame in the analytic signal phase extraction process (S3).
  • the phases ⁇ -2 , ⁇ ⁇ 1 , ⁇ 0 , ⁇ 1 and ⁇ 2 are calculated.
  • the control unit 13 calculates the inter-frame phase difference at each sampling time t ⁇ 2 to t 2 (S22).
  • the differences between the phases ⁇ ⁇ 2 to ⁇ 2 of the first frame and the phases ⁇ ⁇ 2 to ⁇ 2 of the second frame are phase differences ⁇ ⁇ 2 , Calculated as ⁇ ⁇ 1 , ⁇ 0 , ⁇ 1 and ⁇ 2 .
  • the control unit 13 calculates the average of the phase differences ⁇ ⁇ 2 to ⁇ 2 between the first frame and the second frame at each sampling time t ⁇ 2 to t 2 as the inter-frame peak phase difference ⁇ (S23).
  • control unit 13 uses, for example, the instantaneous frequency fc of the first frame to calculate the inter-frame displacement amount ⁇ x by conversion shown in the above equation (1) (S24).
  • the peak phase difference ⁇ is calculated from the phase difference ⁇ ⁇ 2 to ⁇ 2 from the second frame at sampling times t ⁇ 2 to t 2 near the peak of the first frame. (S21 to S23), and the displacement amount ⁇ x between frames is calculated according to the peak phase difference ⁇ (S24).
  • the peak phase difference ⁇ can be estimated using the phase differences ⁇ ⁇ 2 to ⁇ 2 at a plurality of sampling points, and the displacement can be accurately detected based on the peak phase difference ⁇ .
  • the peak phase difference ⁇ is not limited to the above example, and for example, the inter-frame phase difference ⁇ 0 at the peak time t0 of the first frame may be used. Further, for example, by the same processing as step S11 of the analytic signal phase extraction processing (S3), the peak time is also detected for the analytic signal z(t) of the second frame, and the phase difference in the vicinity of the peak time of the second frame is calculated.
  • the peak phase difference ⁇ may be calculated by averaging the sum of .
  • the peak phase difference ⁇ is calculated from the regression line L1 of the first frame illustrated in FIG. may be
  • step S24 an example of calculating the displacement amount ⁇ x using the instantaneous frequency fc of the first frame has been described.
  • step S24 not only the instantaneous frequency fc of the first frame, but also the phase ⁇ z
  • An instantaneous frequency may be calculated from (t) and used to calculate the displacement amount ⁇ x.
  • the average of the instantaneous frequency fc of the first frame and the instantaneous frequency of the second frame may be used to calculate the displacement amount ⁇ x.
  • the displacement detection device 1 of this embodiment includes the wave transmitter 10 , the wave receiver 11 , and the controller 13 .
  • the wave transmitter 10 transmits a chirp wave as an example of a modulated wave having multiple frequencies to the object 3 .
  • the wave receiver 11 receives a reflected wave (that is, an echo) from the object 3 and generates a reception signal Sr indicating the reception result.
  • the control unit 13 controls the chirp wave transmission by the wave transmitter 10 and acquires the received signal Sr from the wave receiver.
  • the control unit 13 outputs the first transmission signal Sd so as to transmit a chirp wave to the transmitter 10 (S1), and responds with the first transmission signal Sd.
  • a received signal Sr is obtained (S2). Based on the first transmission signal Sd and the first reception signal Sr, the control unit 13 generates a first signal indicating a phase defined in the correlation between the first transmission signal Sd and the first reception signal Sr. Phase information is extracted (S3). In the second frame, which is an example of the second measurement period after the first measurement period, the control unit 13 outputs the second transmission signal Sd so as to transmit a chirp wave to the transmitter 10 ( S4), and acquires the responding second received signal Sr (S5). Based on the second transmission signal Sd and the second reception signal Sr, the control unit 13 generates a second signal indicating a phase defined in the correlation between the second transmission signal Sd and the second reception signal Sr. Phase information is extracted (S6). The control unit 13 calculates the displacement of the object between the first frame and the second frame as an example of the first and second measurement periods according to the difference between the first phase information and the second phase information. is detected (S6).
  • a minute displacement can be accurately detected according to the steepness of the gradient of the phase.
  • the control unit 13 controls the amplitude defined in the correlation between the first transmission signal Sd and the first reception signal Sr.
  • and a phase ⁇ z(t) is generated. phases ⁇ ⁇ 2 to ⁇ 2 of are extracted (S3, S11 to 12).
  • the control unit 13 determines the amplitude
  • ⁇ 2 is extracted (S6, S21). Accordingly, the phase ⁇ z(t) can be analyzed separately from the amplitude
  • the control unit 13 sets the analytic signal z(t) of the first frame as an example of the timing when at least one of the amplitude of the first analytic signal and the amplitude of the second analytic signal becomes maximum. is detected (S3, S11), and based on the detected timing , an example of the difference between the first phase information and the second phase information is calculated (S6, S21 to S24). Thereby, the peak phase difference ⁇ can be calculated based on the timing corresponding to the reflection by the object 3 in the transmission and reception of the chirp wave of the frame.
  • the control unit 13 controls the peak phase difference ⁇ , which is an example of the difference between the first phase information and the second phase information, and the phase ⁇ Based on the instantaneous frequency fc, which is an example of the gradient of z(t), a displacement amount ⁇ x indicating the displacement of the object 3 is measured (S6, S24). Thereby, the peak phase difference ⁇ can be converted into the displacement amount ⁇ x using the instantaneous frequency fc.
  • the control unit 13 uses the envelope of the analytic signal z(t) of the first frame as an example of at least one of the envelope of the first analytic signal and the envelope of the second analytic signal.
  • the line E(t) is calculated, and the peak time t0 , which is an example of the timing at which the amplitude
  • the peak time t0 can be detected with high accuracy.
  • control unit 13 is configured to complex the cross-correlation function between the first transmission signal Sd and the first reception signal Sr based on the first transmission signal Sd and the first reception signal Sr. to generate the first analytic signal z(t) (S3), and based on the second transmission signal Sd and the second reception signal Sr, the second transmission signal Sd and the second reception signal
  • the cross-correlation function with Sr is calculated so as to be complex to generate the second analytic signal z(t) (S6).
  • the phase ⁇ z(t) defined in the range of complex numbers of the complex analytic signal z(t) is calculated from the cross-correlation function that indicates the correlation between the transmission signal Sd and the reception signal Sr in the time domain. be able to.
  • each transmission signal Sd causes the transmitter 10 to transmit a modulated wave by linear frequency chirp (S1, S4). Accordingly, displacement can be detected with high accuracy using information obtained from different frequencies, for example.
  • the wave transmitter 10 includes a thermophone that transmits chirp waves, which are an example of sound waves having a plurality of frequencies, as modulated waves.
  • the transmitter 10 can transmit chirp waves of broadband ultrasonic waves of, for example, about 20 kHz to 100 kHz.
  • the displacement detection method controls a transmitter 10 that transmits a chirp wave (an example of a modulated wave) having a plurality of frequencies to an object 3, and a wave receiver 11 that receives a reflected wave from the object 3. is executed by the control unit 13 that acquires the received signal indicating the reception result from the .
  • the control unit 13 In the first frame, which is an example of the first measurement period, the control unit 13 outputs the first transmission signal Sd so as to transmit a chirp wave to the transmitter 10 (S1), and responds with the first transmission signal Sd.
  • a received signal Sr is acquired (S2).
  • the control unit 13 Based on the first transmission signal Sd and the first reception signal Sr, the control unit 13 generates a first signal indicating a phase defined in the correlation between the first transmission signal Sd and the first reception signal Sr. Phase information is extracted (S3). In the second frame, which is an example of the second measurement period after the first measurement period, the control unit 13 outputs the second transmission signal Sd so as to transmit a chirp wave to the transmitter 10 ( S4), and acquires the responding second received signal Sr (S5). Based on the second transmission signal Sd and the second reception signal Sr, the control unit 13 generates a second signal indicating a phase defined in the correlation between the second transmission signal Sd and the second reception signal Sr. Phase information is extracted (S6). The control unit 13 detects the displacement of the object in the first and second measurement periods according to the peak phase difference ⁇ , which is an example of the difference between the first phase information and the second phase information (S6 ).
  • a program is provided for causing the control unit 13 to execute the displacement detection method as described above. According to the displacement detection method and program described above, minute displacements of the object 3 can be detected with high accuracy.
  • FIG. 13 is a diagram for explaining heartbeat measurement using the displacement detection device 1 of this embodiment.
  • FIG. 13(a) shows a configuration example of a heartbeat measurement system using the displacement detection device 1.
  • FIG. 13(b) shows the results of measurement by the heartbeat measurement system of FIG. 13(a).
  • 14 and 15 show simulation results of the operation of the displacement detection device 1.
  • FIG. 13(a) shows a configuration example of a heartbeat measurement system using the displacement detection device 1.
  • FIG. 13(b) shows the results of measurement by the heartbeat measurement system of FIG. 13(a).
  • 14 and 15 show simulation results of the operation of the displacement detection device 1.
  • FIG. 13(a) shows a configuration example of a heartbeat measurement system using the displacement detection device 1.
  • FIG. 13(b) shows the results of measurement by the heartbeat measurement system of FIG. 13(a).
  • 14 and 15 show simulation results of the operation of the displacement detection device 1.
  • FIG. 13(a) shows a configuration example of a heartbeat measurement system using the displacement detection device
  • the heartbeat measurement system 2 illustrated in FIG. 13A measures the heartbeat of the subject 30 in a non-contact state by detecting a minute displacement of the body surface due to the heartbeat of the subject 30 wearing clothes, for example, using the displacement detection device 1.
  • the heartbeat of the subject 30 is measured not only by the displacement detection device 1 but also by the reference electrocardiograph 4 .
  • FIG. 13(b) shows the displacement R1 between frames detected by the displacement detection device 1 and the heartbeat waveform R0 measured by the electrocardiograph 4.
  • FIG. 13(b) the horizontal axis represents time (in seconds), the left vertical axis represents displacement (in millimeters), and the right vertical axis represents voltage of the heartbeat waveform (in volts).
  • FIG. 13(b) a displacement R1 that changes with time in synchronization with the heartbeat waveform R0 is detected.
  • the displacement detection device 1 of the present embodiment can accurately detect minute displacement such as body movement due to heartbeat.
  • FIG. 14 shows a simulation result of the relationship between the measurement frame rate and localization (displacement detection) accuracy in the displacement detection device 1 .
  • the chirp length Tc of the transmission signal Sd as shown in FIG. 7(a) is set to 10 milliseconds, and the frequency band is set to 80 kHz to 20 kHz, and numerical simulations are performed on changes in localization accuracy due to changes in the measurement frame rate.
  • the localization accuracy indicates the dispersion of measured values when the measurement is repeated a predetermined number of times without changing the measurement conditions, and 3 ⁇ (three times the standard deviation of the measured values) is used.
  • the relationship shown in FIG. 14 indicates that a measurement frame rate of 30 frames/second (fps) or more should be used.
  • the period of one frame is about 33 milliseconds.
  • the maximum chirp length indicates the upper limit of chirp length Tc that can be used for one frame of transmission signal Sd.
  • FIG. 15 shows a simulation result of the relationship between SNR of a received signal and localization accuracy in the displacement detection device 1 .
  • the chirp length Tc of the transmission signal Sd was set to 30 milliseconds, and the frequency band was set to 100 kHz to 20 kHz to numerically simulate changes in localization accuracy due to changes in the SNR of the received signal.
  • the relationship shown in FIG. 15 indicates that the SNR should be 0 decibel (dB) or more.
  • the SNR of the received signal can be set according to the measurement environment, for example, by using the drive voltage for driving the drive circuit of the transmitter 10 .
  • Embodiment 1 has been described as an example of the present invention. However, the present invention is not limited to this and can be applied to other embodiments. Other embodiments are exemplified below.
  • the wave transmitter 10 is composed of a thermophone.
  • the wave transmitter 10 is not limited to a thermophone, and may be configured by, for example, a ribbon-type tweeter. Further, the transmitter 10 may be an ultrasonic transducer or the like using a piezoelectric vibrator.
  • the wave transmitter 10 may generate a chirp wave by, for example, a linear period chirp whose period linearly changes with time. Further, the wave transmitter 10 may generate a wideband modulated wave using a spreading code such as an M-sequence code or a Gold code.
  • a spreading code such as an M-sequence code or a Gold code.
  • the displacement detection device 1 may generate the transmission signal Sd not only by pulse interval modulation, but also by pulse width modulation that temporally changes the time width of each pulse in continuous pulses.
  • the wave transmitter 10 generates sound waves.
  • the transmitter 10 for generating not only sound waves but also electromagnetic waves, for example may be used. Even in this case, by analyzing the phase difference of the analysis signal using the signal obtained by transmitting and receiving broadband electromagnetic waves whose frequency changes over time, it is possible to accurately detect minute displacements of objects. It is possible.
  • the displacement detection device 1 includes one transmitter 10 and one receiver 11 has been described.
  • the displacement detection device 1 may include a plurality of one or both of the wave transmitters and wave receivers.
  • Embodiment 1 descriptions of items common to Embodiment 1 have been omitted, and only different points have been described.
  • Each embodiment is an example, and it goes without saying that partial substitutions or combinations of configurations shown in different embodiments are possible.
  • the present invention is applicable to displacement detection devices, methods and programs, and is particularly applicable to detection of minute displacements of objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

変位検知装置は、物体に複数の周波数を有する変調波を送信する送波器と、物体からの反射波を受信して受信結果を示す受信信号を生成する受波器と、送波器による変調波の送信を制御して受波器から受信信号を取得する制御部とを備える。制御部は、第1の測定期間において送波器に変調波を送信するように第1の送信信号を出力して応答する第1の受信信号を取得し、第1の送信信号及び受信信号の間の相関において規定される位相を示す第1の位相情報を抽出し、第1の測定期間の後の第2の測定期間において送波器に第2の送信信号を出力して応答する第2の受信信号を取得し、第2の送信信号及び受信信号の間の相関における位相を示す第2の位相情報を抽出し、第1の位相情報と第2の位相情報との間の差分に応じて、第1及び第2の測定期間における物体の変位を検知する。

Description

変位検知装置及び方法
 本発明は、広帯域超音波等の送受信に基づき物体の微小な変位を検知する変位検知装置及び方法に関する。
 非特許文献1は、超音波診断において心臓壁の微小振動による微小変位を経皮測定する方法を開示している。非特許文献1の方法は、胸部表面の超音波トランスデューサにより少なくとも2回、超音波高周波信号を送信して、心臓壁で反射した受信信号を受信する。位相差トラッキング法を用いる当該方法は、2回分の各受信信号を直交復調して得られた複素信号の位相差を計算し、受信信号の位相変化から、受信信号の遅延時間の変化を推定する。これにより、非特許文献1の方法は、超音波トランスデューサと接触した体表面における微小変位の検知を図っている。
H. Kanai, M. Sato, Y. Koiwa and N. Chubachi, "Transcutaneous measurement and spectrum analysis of heart wall vibrations," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 5, pp. 791-810, Sept. 1996, doi: 10.1109/58.535480.
 本発明の目的は、物体の微小な変位を精度良く検知することができる変位検知装置及び方法を提供することにある。
 本発明に係る変位検知装置は、送波器と、受波器と、制御部とを備える。送波器は、物体に、複数の周波数を有する変調波を送信する。受波器は、物体からの反射波を受信して、受信結果を示す受信信号を生成する。制御部は、送波器による変調波の送信を制御して、受波器から受信信号を取得する。制御部は、第1の測定期間において、送波器に変調波を送信するように第1の送信信号を出力して、応答する第1の受信信号を取得する。制御部は、第1の送信信号と第1の受信信号とに基づき、第1の送信信号と第1の受信信号との間の相関において規定される位相を示す第1の位相情報を抽出する。制御部は、第1の測定期間の後の第2の測定期間において、送波器に変調波を送信するように第2の送信信号を出力して、応答する第2の受信信号を取得する。制御部は、第2の送信信号と第2の受信信号とに基づき、第2の送信信号と第2の受信信号との間の相関において規定される位相を示す第2の位相情報を抽出する。制御部は、第1の位相情報と第2の位相情報との間の差分に応じて、第1及び第2の測定期間における物体の変位を検知する。
 本発明は、方法及びコンピュータプログラム、並びにこれらの組み合わせによっても、実現可能である。
 本発明に係る変位検知装置及び方法によると、物体の微小な変位を精度良く検知することができる。
実施形態1における変位検知装置の概要を説明するための図 変位検知装置の構成を示すブロック図 変位検知装置における制御部の機能的構成を示すブロック図 変位検知装置における解析信号を説明するためのグラフ 図4の解析信号の包絡線及び位相曲線を例示するグラフ 変位検知装置の動作を例示するフローチャート 変位検知装置における送信信号及び受信信号を例示する図 変位検知装置の動作を説明するための図 変位検知装置における解析信号の位相抽出処理を例示するフローチャート 解析信号の位相抽出処理を説明するための図 変位検知装置におけるフレーム間の変位算出処理を例示するフローチャート フレーム間の変位算出処理を説明するための図 変位検知装置を用いた心拍計測を説明するための図 変位検知装置における測定フレームレートと定位精度の関係を示す図 変位検知装置における受信信号のSNRと定位精度の関係を示す図
 以下、添付の図面を参照して本発明に係る変位検知装置の実施の形態を説明する。
(実施形態1)
 実施形態1では、熱励起型の音波発生デバイスであるサーモホンを用いて構成される変位検知装置の一例を説明する。
1.構成
1-1.概要
 実施形態1に係る変位検知装置の概要を、図1を用いて説明する。
 図1は、本実施形態の変位検知装置1の概要を説明するための図である。本実施形態の変位検知装置1は、サーモホンを用いた音波の送受信により、物体3までの距離等の情報を検知する装置である。
 変位検知装置1は、例えば医療用途において、患者の心拍または呼吸を測定するために利用可能である。この場合の検知対象の物体3は、例えば患者の体表面を含む。また、変位検知装置1は、医療用途に限らず種々の用途に適用可能である。例えば、車載用途において自動車の運転者または乗員等が、変位検知装置1の検知対象であってもよい。また、検知対象の物体3は人物等の生体に限らず、物品等であってもよい。変位検知装置1は、例えば工業用途において容器の検品等に適用されてもよく、容器表面にラベルが貼付けされた部分までの微小な距離の変化を測定するために利用されてもよい。
 変位検知装置1では、このような微小な距離等の情報の検知において、周波数が時間的に変化するチャープ波が物体3に送信され、チャープ波が物体3で反射された反射波、即ちエコーが受信される。変位検知装置1では、サーモホンを用いることで、チャープ波のような広帯域の周波数特性を有する音波の発生が可能である。
 本実施形態の変位検知装置1は、上記のような音波の送受信を繰り返して、物体3までの距離の変化、すなわち物体3の変位を検知する。以下、変位検知装置1の構成の詳細を説明する。
1-2.装置構成
 本実施形態の変位検知装置1の構成を、図1及び図2を用いて説明する。図2は、変位検知装置1の構成を示すブロック図である。
 本実施形態の変位検知装置1は、例えば図2に示すように、送波器10と、受波器11と、制御部13と、記憶部14とを備える。送波器10と受波器11とは、例えば図1に示すように、変位検知装置1において物体3と対向する側面に、互いに近接して配置される。送波器10及び受波器11は、例えば各種信号線を介して制御部13と通信可能に接続される。
 本実施形態の送波器10は、サーモホンを音源として含んで構成される。送波器10は、例えば20kHz以上の周波数を有する超音波を発生させる。送波器10は、サーモホンにより、例えば20kHzから100kHz程度までのような広帯域において周波数を変調させたチャープ波を発生可能である。本実施形態の送波器10は、例えば時間とともに周波数が線形に変化するリニア周波数チャープによるチャープ波を発生させる。また、送波器10は、サーモホンを用いることで小型かつ軽量に構成可能である。
 送波器10は、サーモホンを駆動する駆動回路などを含んでもよい。送波器10は、例えば制御部13から入力された送信信号に基づいて、駆動回路によりサーモホンを駆動することで、音波を発生させる。送波器10の駆動回路により、発生させる音波の周波数帯域、周波数を変化させる期間を示すチャープ長、強度、信号長、及び指向性等が設定されてもよい。送波器10は、必ずしも超音波に限らず、種々の周波数帯の音波を発生させてもよい。送波器10は、特に指向性を持たない各種の無指向性音源であってもよく、可変又は固定の指向性音源であってもよい。
 送波器10は、空気を加熱して音波を発生させるサーモホンの構成として、例えば発熱体と、断熱層と、基板と、電極とを備える。発熱体及び断熱層は、基板上に積層される。発熱体は、抵抗体で構成され、電極を介して駆動回路からの電流を流すことで発熱する。発熱体は、空気に接触する放音面を形成するように設けられ、放音面の周囲の空気を温度変化により膨張又は収縮させる。これにより、放音面の近傍から空気の圧力即ち音波が発生する。断熱層は、発熱体と基板との間に設けられ、発熱体から放音面とは反対側への熱伝導を抑制する。基板は、発熱体から伝動した熱を放熱する。
 受波器11は、例えばMEMS(Micro Electro Mechanical System)マイクロホン等のマイクロホンで構成される。受波器11は、物体3からのエコーを受信して、受信結果を示す受信信号を生成する。受波器11と送波器10との間隔は、例えば想定される検知時の変位検知装置1から物体3までの距離を考慮して、予め設定される。受波器11は、MEMSマイクロホンに限らず、例えば送波器10から送信される広帯域の超音波を受信可能な周波数特性を有する他のマイクロホンで構成されてもよい。例えば受波器11には、コンデンサマイクロホンが用いられてもよい。受波器11は、無指向性であってもよいし、種々の指向性を適宜、有してもよい。
 制御部13は、変位検知装置1の全体動作を制御する。制御部13は、例えばマイクロコンピュータで構成され、ソフトウェアと協働して所定の機能を実現する。制御部13は、記憶部14に格納されたデータ及びプログラムを読み出して種々の演算処理を行い、各種の機能を実現する。制御部13は、例えば送波器10にチャープ波を発生させるための送信信号を生成して、送波器10に出力する。制御部13は、例えば生成した送信信号を記憶部14に保持する。制御部13の詳細については後述する。
 なお、制御部13は、所定の機能を実現するように設計された専用の電子回路や再構成可能な電子回路などのハードウェア回路であってもよい。制御部13は、CPU、MPU、DSP、FPGA、ASIC等の種々の半導体集積回路で構成されてもよい。また、制御部13は、アナログ/デジタル(A/D)コンバータ及びデジタル/アナログ(D/A)コンバータを含んで構成されてもよく、各種信号にA/D変換またはD/A変換を適用してもよい。
 記憶部14は、制御部13の機能を実現するために必要なプログラム及びデータを記憶する記憶媒体であり、例えばフラッシュメモリで構成される。例えば記憶部14は、制御部13により生成された送信信号を記憶する。
1-3.制御部について
 本実施形態の変位検知装置1における制御部13の詳細を、図3を用いて説明する。
 図3は、制御部13の機能的構成を示すブロック図である。制御部13は、例えば機能部として、図3に示すように、FFT部131a,131b、クロススペクトル演算部132、ヒルベルト変換部133、IFFT部134a,134b、及び解析処理部135を含む。各機能部131~135は、それぞれ高速フーリエ変換(FFT)、クロススペクトル演算、ヒルベルト変換、逆高速フーリエ変換(IFFT)、及び後述する解析処理の各機能をそれぞれ実現する。
 制御部13は、例えば記憶部14から送信信号Sd、及び受波器11から受信信号Srを入力して、各機能部131~135による信号処理を行う。各機能部131~135は、例えば後述するような所定の測定フレームレート(例えば、30フレーム/秒)で周期的に動作可能である。
 各機能部131~135のうち、FFT部131からIFFT部134までによる一連の処理は、フレーム毎の送信信号Sdと受信信号Srとに基づく解析信号を生成するために行われる。解析信号は、送信信号Sdと受信信号Srとの相互相関関数により構成される複素信号であり、変位検知装置1における変位の検知に用いられる。相互相関関数は、2つの信号Sd,Sr間の相関を時間領域において示す。
 FFT部131aは、制御部13に入力された送信信号Sdにおいて、高速フーリエ変換を演算し、時間領域から周波数領域に変換した変換結果をクロススペクトル演算部132に出力する。FFT部131bは、制御部13に入力された受信信号Srにおいて、送信信号Sdと同様に高速フーリエ変換を演算し、変換結果をクロススペクトル演算部132に出力する。
 クロススペクトル演算部132は、FFT部131による各信号Sd,Srのフーリエ変換の結果からクロススペクトルを演算して、ヒルベルト変換部133及びIFFT部134bに出力する。クロススペクトルは、送信信号Sdと受信信号Srとの相互相関関数のフーリエ変換に対応し、クロススペクトルにフーリエ逆変換を適用することで、相互相関関数が得られる。
 ヒルベルト変換部133は、クロススペクトル演算部132によるクロススペクトルのヒルベルト変換を演算して、クロススペクトルの各周波数成分をπ/2ずつシフトした変換結果をIFFT部134aに出力する。
 IFFT部134aは、ヒルベルト変換が適用されたクロススペクトルにおいて、逆高速フーリエ変換を演算して、周波数領域から時間領域に変換した変換結果を解析処理部135に出力する。IFFT部134bは、クロススペクトル演算部132によるクロススペクトルにおいて、逆高速フーリエ変換を演算して、変換結果を解析処理部135に出力する。
 以上の演算処理により、IFFT部134bによる変換結果として、送受信信号Sd,Sr間の相互相関関数を示す信号Iが出力され、IFFT部134aによる変換結果として、信号Iと直交関係にある信号Qが出力される。
 解析処理部135は、各信号I,Qをそれぞれ実数部及び虚数部として有する解析信号を生成し、解析信号に関する処理を行う。このように送信信号Sdと受信信号Sdとに基づいて生成された解析信号は、複素領域における解析関数を示す。以下では、上記各信号I,Qをそれぞれ解析信号の同相成分I及び直交成分Qという。
 以上のような制御部13の各種機能は、例えば記憶部14に格納されたプログラムにより実現されてもよく、各種機能の一部または全部がハードウェア回路により実現されてもよい。また、制御部13において、相互相関関数は、フーリエ変換後にクロススペクトルを演算後に逆フーリエ変換を行う処理に代えて、例えば送受信信号Sd,Srから直接に積和演算処理により計算されてもよい。例えば制御部13は、積和演算を行うFPGA等の回路を備えてもよい。また、制御部13における解析信号の生成は、ヒルベルト変換に限らず、例えば直交検波の機能により実現されてもよい。
2.動作
 以上のように構成される変位検知装置1の動作について、以下説明する。
2-1.動作の概要
 本実施形態の変位検知装置1において物体3の変位を検知する動作の概要について、図1、図4及び図5を用いて説明する。
 本実施形態の変位検知装置1は、例えば図1に示すように、送波器10から1回のチャープ波を物体3に送信して、当該チャープ波のエコーを受波器11で受信する動作を1フレームの測定動作として、各フレームの測定動作を順次実行する。変位検知装置1において、制御部13は、測定フレーム毎に、送信信号と受信信号との相関を解析するように解析信号を生成する。
 図4は、変位検知装置1における解析信号z(t)を説明するためのグラフである。図4では、1フレーム分の解析信号z(t)を例示する。解析信号z(t)は、送信信号と受信信号との相互相関関数を示す同相成分I(t)を実部として含み、対応する直交成分Q(t)を虚部として含むことで複素化され、複素数の値域を有する。
 変位検知装置1は、例えば解析信号z(t)の包絡線E(t)=|z(t)|を求めて、ピーク時刻tを検出する。ピーク時刻tは、1フレームの解析信号z(t)において振幅|z(t)|が最大となるタイミングであり、当該フレームのチャープ波の送受信において物体3による反射時に対応するタイミングと考えられる。
 ここで、解析信号z(t)の包絡線E(t)のみの解析による変位量の測定手法が、従来提案されている。この測定手法は、フレーム毎に包絡線E(t)のピーク時刻を検出して、連続2フレームの各ピーク時刻を互いに比較することで変位量を測定する。しかしながら、この測定手法では、包絡線E(t)からピーク時刻を検出するための分解能が変位量の測定限界となったり、包絡線E(t)における雑音が影響したりして、微小な変位を精度良く検知し難い事態が考えられる。
 そこで、本実施形態の変位検知装置1は、相互相関関数を複素化した解析信号z(t)において、包絡線E(t)には含まれない情報である位相∠z(t)を解析する。図5(a)は、図4の解析信号z(t)の包絡線E(t)を例示する。図5(b)は、図4の解析信号z(t)の位相曲線θ(t)を例示する。
 位相曲線θ(t)は、解析信号z(t)における複素数の値域において規定される位相∠z(t)と、時刻tとの対応関係を示す。図5(b)に例示する位相曲線θ(t)は、図5(a)の包絡線E(t)における振動に連動した鋸状のグラフ形状において、急峻な勾配を有している。位相曲線θ(t)の勾配は、解析信号z(t)における時刻t毎の周波数(即ち瞬時周波数)で規定される。
 フレーム毎の解析信号z(t)の位相曲線θ(t)において、当該フレームのピーク時刻tにおける位相∠z(t)は、理論的にはゼロ値であり、実装上の各種雑音に応じたオフセット値を有すると考えられる。また、位相曲線θ(t)において、包絡線E(t)のピーク時刻t近傍では比較的、線形性が高いと理論上考えられる。
 本実施形態の変位検知装置1は、例えば、連続する2フレーム間で一方のフレームにおけるピーク時刻tを基準として2フレーム間の位相差を算出して、位相差からの換算により物体3の変位量を測定する。これにより、例えば上述した分解能よりも微小な範囲まで高精度に物体3の変位を検知できる。例えば、こうした位相差からの換算では、位相曲線θ(t)の勾配の急峻さに応じて微小な変位量を算出可能である。
2-2.動作の詳細
 本実施形態の変位検知装置1の動作の詳細について、図3~図12を用いて説明する。
 図6は、変位検知装置1の動作を例示するフローチャートである。図7は、変位検知装置1における送信信号Sd及び受信信号Srを例示する図である。図8は、変位検知装置1の動作を説明するための図である。図6のフローチャートに示す各処理は、変位検知装置1の制御部13によって、例えば2フレーム毎といった所定の周期で繰り返し実行される。
 図7(a)は、送波器10からのチャープ波を発生させる送信信号Sdを例示する。図7(b)は、図7(a)に応答する受波器11の受信信号Srを例示する。図8(a)は、1フレーム目及び2フレーム目の各解析信号z(t)の包絡線E1,E2を例示する。図8(b)は、1フレーム目及び2フレーム目の各解析信号z(t)の位相曲線θ1,θ2を例示する。図8では、1フレーム目の包絡線E1及び位相曲線θ1において、解析信号z(t)のサンプリング点のうちピーク時刻t近傍の5点を図示している。サンプリング点は、離散信号として生成される解析信号z(t)における各時刻tの信号値z(t)を示す。
 図6のフローチャートにおいて、まず、変位検知装置1の制御部13は、送信信号Sdを送波器10に出力して、送信信号Sdに基づくチャープ波を送信するように送波器10を制御する(S1)。図7(a)の送信信号Sdによれば、送波器10から、チャープ長Tcにわたり周波数が時間的に変化するチャープ波が送信される。チャープ長Tcは、フレーム間の時間間隔より短い期間に設定される。
 本実施形態の変位検知装置1は、送信信号Sdとして、パルス間隔変調によるチャープ信号を用いる。パルス間隔変調は、図7(a)に例示するように、連続するパルス同士の間隔を時間的に変化させる。本実施形態においてサーモホンで構成される送波器10では、各パルスがオン状態である期間において、駆動回路による電力の消費が大きい。パルス間隔変調によれば、送波器10における消費電力を抑制することができる。
 図7(a)の例では、送信信号Sdは、周波数が時間的に減少するダウンチャープ信号であるが、周波数が時間的に増加するアップチャープ信号であってもよい。こうしたチャープ波によれば、例えば非特許文献1のように高周波の単一周波数による超音波を用いるよりも、空気中を伝搬する際の減衰を抑制して、精度良く変位の検知を行うことができる。
 図6に戻り、チャープ波の送信後(S1)、制御部13は、受波器11から1フレーム目の受信結果を示す受信信号Srを取得する(S2)。1フレーム目の受信結果は、ステップS1で送信されたチャープ波に応答するエコーを示す。図7(b)では、図7(a)の連続パルスの立ち上がりから、チャープ波の送信時からエコーの受信時までの時間差、即ちチャープ波の伝搬期間に応じて遅れた受信信号Srが受信されている。
 次に、制御部13は、1フレーム目の送信信号Sd及び受信信号Srに基づいて、信号Sd,Sr間の相互相関関数を演算することで解析信号z(t)を生成し、解析信号z(t)において位相情報を抽出する処理を行う(S3)。こうした解析信号の位相抽出処理(S3)において、制御部13は、例えば記憶部14に保持された送信信号Sd、及びステップS2で取得した受信信号Srに基づき、図3の各機能部131~135として、解析信号z(t)の生成及び処理を行う。
 信号Sd,Sr間の相互相関関数c(τ)は、次式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Tは1フレーム分の周期、τは遅延時間である。相互相関関数c(τ)は、2つの信号Sd,Srが遅延時間τを有するときの相関を示す。
 制御部13は、例えば図3のFFT部131、クロススペクトル演算部132及びIFFT部134bとして機能して、信号Sd,Sr間のクロススペクトルから逆フーリエ変換を演算することで、相互相関関数c(τ)を示す同相成分I(t)を出力する。また、制御部13は、FFT部131、クロススペクトル演算部132、ヒルベルト変換部133及びIFFT部134aとして機能して、クロススペクトルのヒルベルト変換から逆フーリエ変換を演算することで、相互相関関数c(τ)のヒルベルト変換を示す直交成分Q(t)を出力する。これにより、各成分I(t),Q(t)から解析信号z(t)=I(t)+jQ(t)が得られる(jは虚数単位)。
 解析信号の位相抽出処理(S3)では、制御部13は、解析信号z(t)の包絡線E(t)からピーク時刻tを検出し、位相∠z(t)からピーク時刻tの位相∠z(t)を含む位相情報を抽出する。図8(a),(b)は、図5(a),(b)に対応して、ピーク時刻t付近を拡大して示す。図8(a)の例では、1フレーム目の包絡線E1においてピーク時刻tが検出されている。図8(b)に示す1フレーム目の位相曲線θ1上の位相∠z(t)からは、ピーク時刻tを基準として位相情報が抽出される。解析信号の位相抽出処理(S3)の詳細は後述する。
 続いて、制御部13は、ステップS1,S2と同様に、2回目のチャープ波の送受信を行い、2フレーム目の送信信号Sdに応じた受信信号Srを受信する(S4,S5)。
 制御部13は、1フレーム目の位相情報と、2フレーム目の送受信信号Sd,Srから生成した解析信号z(t)の位相情報とを用いて、2フレーム間の位相情報の差分に応じて物体3の変位量Δxを算出する処理を行う(S6)。こうしたフレーム間の変位算出処理(S6)において、制御部13は、例えば図3に示す各機能部131~135として2フレーム目の解析信号z(t)を生成し、2フレーム目の位相情報を抽出する。
 フレーム間の変位算出処理(S6)において、制御部13は、例えば図3の解析処理部135として機能して、各フレームの位相情報の差分を演算する。まず、制御部13は、図8(b)に示す2フレーム目の位相曲線θ2上の位相∠z(t)から、例えば1フレーム目のピーク時刻tを基準として、2フレーム目の位相情報を抽出する。次に、制御部13は、各フレームの位相情報の差分により、ピーク時刻tにおけるフレーム間の位相差Δφを演算する。制御部13は、このようなピーク位相差Δφからの換算により、フレーム間の変位量Δxを算出する。
 フレーム間の変位量Δxは、次式(1)のように表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、cは音速、πは円周率、fcは解析信号z(t)の中心周波数である。fcは、本実施形態におけるフレーム間の変位算出処理(S6)では、1フレーム目の解析信号z(t)から決定され、ピーク時刻tにおける位相∠z(t)の勾配(即ち瞬時周波数)として算出される。フレーム間の変位算出処理(S6)の詳細は後述する。
 以上の処理によると、変位検知装置1は、1回目のチャープ波の送受信(S1,S2)による解析信号z(t)の位相情報を抽出し(S3)、2回目の送受信(S4,S5)による解析信号z(t)とのピーク位相差Δφから換算した変位量Δxを算出する(S6)。これにより、例えば受信信号Srの空気中における減衰及びノイズの重畳などに起因する検知誤差を低減でき、物体3と非接触の状態においても物体3の微小な変位を精度良く検知することができる。さらに、このような変位検知装置1によれば、物体3と非接触の状態において検知が可能であるため、微小な変位を検知し易くすることができる。
 変位の検知においては、従来から、解析信号z(t)のピーク時刻の変化に基づき物体3までの距離を推定することを2回分行って、各回の距離の差分を変位量Δxとして算出する方法が知られている。こうしたピーク時刻から距離を推定する方法では、微小な変位の検知において、ピーク時刻の変化が、例えば図8(a)に示すような解析信号z(t)のサンプリング点の時間間隔、即ちサンプリングレートよりも小さい場合に、変位を検知することが困難である。これに対して、本実施形態の変位検知装置1によれば、このような場合であっても、チャープ波の送受信により得られたピーク位相差Δφから変位量Δxに換算して、微小な変位を精度良く検知することができる。
 さらに、上記の距離を推定する従来法では、気流等による音波の伝搬期間が変動すると推定精度の低下を招く。これに対して、本実施形態の変位検知装置1では、距離の推定によらず、フレーム間といった短期間の変位量Δxを直接算出する。これにより、例えば気流等による伝搬期間への影響を抑制できる観点からも、精度良く変位の検知を行うことができる。
 上記のフレーム間の変位算出処理(S6)では、2フレーム目の解析信号z(t)については位相情報のみを用いる例を説明した。これに代えて、変位検知装置1は、例えば2フレーム目の解析信号z(t)においてもピーク時刻を検出して、1フレーム目のピーク時刻tとともに変位量Δxの算出に用いてもよく、次の実行周期における解析信号の位相抽出処理(S3)に用いてもよい。また、フレーム間の変位算出処理(S6)において、2フレーム目のピーク時刻を基準にピーク位相差が算出されてもよい。変位検知装置1は、例えば1フレーム目に代えて、2フレーム目の解析信号z(t)においてピーク時刻を検出してもよい。
 また、上記の図6の処理は、2フレーム毎の周期で実行される例を説明したが、上記の例とは別の周期で実行されてもよい。例えば図6の処理は、1フレーム毎に実行されてもよく、2回目のチャープ波の送受信(S4,S5)における送受信信号Sd,Srを保持しておき、次の実行周期では保持された各信号Sd,Srに基づいて解析信号の位相抽出処理(S3)から開始されてもよい。
2-2-1.解析信号の位相抽出処理
 図6のステップS3における解析信号の位相抽出処理の詳細を、図9及び図10を用いて説明する。
 図9は、本実施形態の変位検知装置1における解析信号の位相抽出処理(S3)を例示するフローチャートである。図10は、解析信号の位相抽出処理(S3)を説明するための図である。図10(a),(b)は、それぞれピーク時刻t近傍の時間範囲における解析信号z(t)の振幅│z(t)│及び位相∠z(t)を示す。
 図9のフローチャートに示す処理は、例えば図6のステップS1,S2における1フレーム目の送信信号Sd及び受信信号Srが保持された状態で開始される。
 まず、変位検知装置1の制御部13は、送信信号Sd及び受信信号Srによる解析信号z(t)の振幅│z(t)│においてピーク時刻tを検出する(S11)。制御部13は、例えば図3に示すFFT部131~IFFT部134として、送信信号Sd及び受信信号Srから同相成分Iと直交成分Qとを算出する。制御部13は、例えば図3の解析処理部135として、同相成分Iと直交成分Qとの2乗和の平方根により、包絡線E(t)=│z(t)│を算出する。制御部13は、包絡線E(t)に基づき、振幅│z(t)│が最大となる時刻をピーク時刻t=argmax│z(t)│として検出する。
 次に、制御部13は、ピーク時刻tの近傍における解析信号z(t)のサンプリング点を所定数(例えば5点)特定して、各サンプリング点の位相∠z(t)を位相情報として抽出する(S12)。図10(a)の例では、ピーク時刻tを中心に、前後2つずつのサンプリング時刻t-2,t-1,t及びtにおける解析信号の5点がサンプリング点として特定される。図10(b)では、図10(a)で特定された各サンプリング点の位相∠z(t)として、各サンプリング時刻t-2~tにおける解析信号z(t)の位相φ-2,φ-1,φ,φ及びφが抽出される。
 時刻tにおける解析信号の位相φ=∠z(t)は、時刻tの同相成分I(t)及び直交成分Q(t)により次式のように表される。
∠z(t)=arctan(Q(t)/I(t))
 制御部13は、例えば記憶部14に、ピーク時刻t近傍のサンプリング時刻t-2~t、及び抽出したサンプリング点の位相φ-2~φを保持する。
 制御部13は、例えば最小二乗法により、抽出したサンプリング点の位相φ-2~φに対する回帰直線の傾き即ち回帰係数を、解析信号z(t)の中心周波数に対応する瞬時周波数fcとして算出する(S13)。図10(b)の例では、瞬時周波数fcとして、位相φ-2~φに対する回帰直線L1の傾きが算出される。
 制御部13は、例えば算出した瞬時周波数fcを記憶部14に保持して、解析信号の位相抽出処理(S3)を終了する。その後、図6のステップS4へ進む。
 以上の解析信号の位相抽出処理(S3)によると、解析信号z(t)の振幅│z(t)│におけるピーク時刻tを検出後(S11)、ピーク時刻t近傍のサンプリング点の位相φ-2~φが抽出される(S12)。そして、抽出した各サンプリング点の位相への回帰直線L1から、解析信号z(t)の瞬時周波数fcが算出される(S13)。これにより、解析信号z(t)において、複数のサンプリング点の位相φ-2~φを用いることで、精度良く瞬時周波数fcを算出して、フレーム間の変位算出処理(S6)を行うことができる。
 上記の解析信号の位相抽出処理(S3)では、ピーク近傍における5点のサンプリング点を特定して、位相∠z(t)の抽出に用いる例を説明した。ピーク近傍のサンプリング点は、5点に限らず、例えばピーク時刻tと、ピーク時刻tの前後1つずつのサンプリング時刻との3点が用いられてもよい。
2-2-2.フレーム間の変位算出処理
 図6のステップS6におけるフレーム間の変位算出処理の詳細を、図11及び図12を用いて説明する。
 図11は、本実施形態の変位検知装置1におけるフレーム間の変位算出処理(S6)を例示するフローチャートである。図12は、フレーム間の変位算出処理(S6)を説明するための図である。図12は、1フレーム目及び2フレーム目の各解析信号z(t)の位相曲線θ1,θ2を示す。
 図11のフローチャートに示す各処理は、例えば図6のステップS3~S5で得られた1フレーム目の解析信号z(t)の位相φ-2~φ及びピーク近傍のサンプリング時刻t-2~t、及び2フレーム目の送受信信号Sd,Srを保持した状態で開始される。
 まず、制御部13は、2フレーム目の送受信信号Sd,Srによる解析信号z(t)において、例えば1フレーム目のピーク時刻t近傍の各サンプリング時刻t-2~tにおける位相を、2フレーム目の位相情報として算出する(S21)。制御部13は、例えば解析信号の位相抽出処理(S3)における1フレーム目の解析信号z(t)の生成と同様に、2フレーム目の解析信号z(t)を生成する。図12の例では、生成された2フレーム目の解析信号z(t)において、位相曲線θ2上の位相∠z(t)のうちの各サンプリング時刻t-2~tの位相ψ-2,ψ-1,ψ,ψ及びψが算出される。
 次に、制御部13は、各サンプリング時刻t-2~tにおけるフレーム間の位相差を算出する(S22)。図12では、サンプリング時刻t-2~t毎に、1フレーム目の位相φ-2~φと2フレーム目の位相ψ-2~ψとの差分が、それぞれ位相差Δφ-2,Δφ-1,Δφ,Δφ及びΔφとして算出される。
 制御部13は、各サンプリング時刻t-2~tにおける1フレーム目と2フレーム目との位相差Δφ-2~Δφの平均を、フレーム間のピーク位相差Δφとして算出する(S23)。
 制御部13は、ピーク位相差Δφから、例えば1フレーム目の瞬時周波数fcを用いて、上述した式(1)に示す換算によりフレーム間の変位量Δxを算出する(S24)。
 以上のフレーム間の変位算出処理(S6)によると、1フレーム目のピーク近傍のサンプリング時刻t-2~tにおける2フレーム目との位相差Δφ-2~Δφから、ピーク位相差Δφが算出され(S21~S23)、ピーク位相差Δφに応じてフレーム間の変位量Δxが算出される(S24)。これにより、複数のサンプリング点の位相差Δφ-2~Δφを用いてピーク位相差Δφを推定して、ピーク位相差Δφに基づき精度良く変位を検知することができる。
 上記のフレーム間の変位算出処理(S6)では、ピーク位相差Δφとして各サンプリング時刻t-2~tの位相差Δφ-2~Δφの平均を用いる例を説明した。ピーク位相差Δφは上記の例に限らず、例えば1フレーム目のピーク時刻tにおけるフレーム間の位相差Δφが用いられてもよい。また、例えば解析信号の位相抽出処理(S3)のステップS11と同様の処理により、2フレーム目の解析信号z(t)についてもピーク時刻を検出し、2フレーム目のピーク時刻の近傍における位相差も加えた平均により、ピーク位相差Δφが算出されてもよい。ピーク位相差Δφは、図10(B)に例示する1フレーム目の回帰直線L1、及び2フレーム目の位相∠z(t)について回帰直線L1と同様に演算可能な回帰直線を示す関数から算出されてもよい。
 上記のステップS24では、1フレーム目の瞬時周波数fcを用いて変位量Δxを算出する例を説明した。ステップS24では、1フレーム目の瞬時周波数fcに限らず、例えば解析信号の位相抽出処理(S3)のステップS11~S13と同様の処理により、2フレーム目の解析信号z(t)の位相∠z(t)から瞬時周波数が算出され、変位量Δxの算出に用いられてもよい。また、1フレーム目の瞬時周波数fc及び2フレーム目の瞬時周波数の平均が変位量Δxの算出に用いられてもよい。
3.まとめ
 以上のように、本実施形態の変位検知装置1は、送波器10と、受波器11と、制御部13とを備える。送波器10は、物体3に、複数の周波数を有する変調波の一例としてチャープ波を送信する。受波器11は、物体3からの反射波(即ち、エコー)を受信して、受信結果を示す受信信号Srを生成する。制御部13は、送波器10によるチャープ波の送信を制御して、受波器から受信信号Srを取得する。制御部13は、第1の測定期間の一例である1フレーム目において、送波器10にチャープ波を送信するように第1の送信信号Sdを出力して(S1)、応答する第1の受信信号Srを取得する(S2)。制御部13は、第1の送信信号Sdと第1の受信信号Srとに基づき、第1の送信信号Sdと第1の受信信号Srとの間の相関において規定される位相を示す第1の位相情報を抽出する(S3)。制御部13は、第1の測定期間の後の第2の測定期間の一例である2フレーム目において、送波器10にチャープ波を送信するように第2の送信信号Sdを出力して(S4)、応答する第2の受信信号Srを取得する(S5)。制御部13は、第2の送信信号Sdと第2の受信信号Srとに基づき、第2の送信信号Sdと第2の受信信号Srとの間の相関において規定される位相を示す第2の位相情報を抽出する(S6)。制御部13は、第1の位相情報と第2の位相情報との間の差分に応じて、第1及び第2の測定期間の一例として1フレーム目と2フレーム目のフレーム間における物体の変位を検知する(S6)。
 以上の変位検知装置1によると、第1の位相情報と第2の位相情報の差分に応じて、第1及び第2の測定期間における物体3の変位を検知することで、例えば図5(b)に示すような位相の勾配の急峻さに応じて微小な変位を精度良く検知することができる。
 本実施形態において、制御部13は、第1の送信信号Sdと第1の受信信号Srとに基づき、第1の送信信号Sdと第1の受信信号Srとの間の相関において規定される振幅│z(t)│及び位相∠z(t)を含む第1の解析信号z(t)を生成して、第1の解析信号z(t)から第1の位相情報の一例として1フレーム目の位相φ-2~φを抽出する(S3,S11~12)。制御部13は、第2の送信信号Sdと第2の受信信号Srとに基づき、第2の送信信号Sdと第2の受信信号Srとの間の相関において規定される振幅│z(t)│及び位相∠z(t)を含む第2の解析信号z(t)を生成して、第2の解析信号z(t)から第2の位相情報の一例として2フレーム目の位相ψ-2~ψを抽出する(S6,S21)。これにより、解析信号z(t)において振幅│z(t)│とは別に位相∠z(t)を解析して、位相情報を抽出することができる。
 本実施形態において、制御部13は、第1の解析信号の振幅と第2の解析信号の振幅との少なくとも一方の振幅が最大となるタイミングの一例として、1フレーム目の解析信号z(t)の振幅|z(t)|が最大となるピーク時刻tを検出し(S3,S11)、検出したタイミングを基準として、第1の位相情報と第2の位相情報との間の差分の一例であるピーク位相差Δφを算出する(S6,S21~S24)。これにより、当該フレームのチャープ波の送受信において物体3による反射時に対応するタイミングを基準として、ピーク位相差Δφを算出することができる。
 本実施形態において、制御部13は、第1の位相情報と第2の位相情報との間の差分の一例であるピーク位相差Δφと、ピーク時刻t(基準のタイミングの一例)における位相∠z(t)の勾配の一例である瞬時周波数fcとに基づいて、物体3の変位を示す変位量Δxを測定する(S6,S24)。これにより、瞬時周波数fcを用いて、ピーク位相差Δφから変位量Δxに換算することができる。
 本実施形態において、制御部13は、第1の解析信号の包絡線と第2の解析信号の包絡線との少なくとも一方の包絡線の一例として、1フレーム目の解析信号z(t)の包絡線E(t)を演算して、演算した包絡線E(t)に基づき振幅|z(t)|が最大となるタイミングの一例であるピーク時刻tを検出する(S11)。これにより、同相成分Iと直交成分Qとの両成分から得られる包絡線E(t)において、ピーク時刻tを精度良く検出することができる。
 本実施形態において、制御部13は、第1の送信信号Sdと第1の受信信号Srとに基づき、第1の送信信号Sdと第1の受信信号Srとの相互相関関数を複素化するように演算して、第1の解析信号z(t)を生成し(S3)、第2の送信信号Sdと第2の受信信号Srとに基づき、第2の送信信号Sdと第2の受信信号Srとの相互相関関数を複素化するように演算して、第2の解析信号z(t)を生成する(S6)。これにより、送信信号Sdと受信信号Srとの相関を時間領域において示す相互相関関数から、複素化された解析信号z(t)の複素数の値域において規定される位相∠z(t)を演算することができる。
 本実施形態において、各送信信号Sdは、リニア周波数チャープにより変調波を送波器10に送信させる(S1,S4)。これにより、例えば異なる周波数から得られる情報を用いて、精度良く変位を検知することができる。
 本実施形態において、送波器10は、変調波として複数の周波数を有する音波の一例であるチャープ波を送信するサーモホンを含む。これにより、送波器10は、例えば20kHz~100kHz程度の広帯域超音波によるチャープ波を送信することができる。
 本実施形態における変位検知方法は、複数の周波数を有するチャープ波(変調波の一例)を物体3に送信する送波器10を制御して、物体3からの反射波を受信する受波器11から受信結果を示す受信信号を取得する制御部13により実行される。制御部13は、第1の測定期間の一例である1フレーム目において、送波器10にチャープ波を送信するように第1の送信信号Sdを出力して(S1)、応答する第1の受信信号Srを取得する(S2)。制御部13は、第1の送信信号Sdと第1の受信信号Srとに基づき、第1の送信信号Sdと第1の受信信号Srとの間の相関において規定される位相を示す第1の位相情報を抽出する(S3)。制御部13は、第1の測定期間の後の第2の測定期間の一例である2フレーム目において、送波器10にチャープ波を送信するように第2の送信信号Sdを出力して(S4)、応答する第2の受信信号Srを取得する(S5)。制御部13は、第2の送信信号Sdと第2の受信信号Srとに基づき、第2の送信信号Sdと第2の受信信号Srとの間の相関において規定される位相を示す第2の位相情報を抽出する(S6)。制御部13は、第1の位相情報と第2の位相情報との間の差分の一例であるピーク位相差Δφに応じて、第1及び第2の測定期間における物体の変位を検知する(S6)。
 本実施形態において、以上のような変位検知方法を制御部13に実行させるためのプログラムが提供される。以上の変位検知方法及びプログラムによると、物体3の微小な変位を精度良く検知することができる。
(実施例)
 以上の実施形態1に関する実施例について、図13~図15を用いて説明する。
 図13は、本実施形態の変位検知装置1を用いた心拍計測を説明するための図である。図13(a)は、変位検知装置1を用いた心拍計測システムの構成例を示す。図13(b)は、図13(a)の心拍計測システムによる計測結果を示す。図14及び図15は、変位検知装置1の動作についてのシミュレーション結果を示す。
 図13(a)に例示する心拍計測システム2は、変位検知装置1により、例えば着衣の被験者30において心拍による体表面の微小な変位を検知することで、被験者30の心拍を非接触状態で計測するために用いられる。図13(a)の心拍計測システム2においては、変位検知装置1による計測とともに、参照用の心電計4によっても被験者30の心拍が計測される。
 図13(b)は、変位検知装置1により検知されたフレーム間の変位R1と、心電計4により計測された心拍波形R0とを示す。図13(b)の横軸は時間(秒単位)、左側の縦軸は変位(ミリメートル単位)、右側の縦軸は心拍波形の電圧(ボルト単位)を示す。図13(b)では、心拍波形R0と同期して時間的に変化する変位R1が検知されている。このように、本実施形態の変位検知装置1によると、心拍による体動のような微小な変位を精度良く検知できることが確認された。
 図13に示すような心拍計測において好ましい測定条件を特定するため、変位検知装置1の動作について以下のシミュレーションを行った。
(1)測定フレームレートと定位精度の関係について
 図14は、変位検知装置1における測定フレームレートと定位(変位検知)精度の関係についてのシミュレーション結果を示す。図14では、図7(a)に示すような送信信号Sdのチャープ長Tcを10ミリ秒、周波数帯域を80kHz~20kHzとして、測定フレームレートの変化に伴う定位精度の変化を数値シミュレーションした。本実施例では、定位精度は、測定条件を変えずに所定回数、測定を繰り返したときの測定値のばらつきを示し、3σ(測定値の標準偏差の3倍)を用いた。
 例えば、心拍計測において20μm(即ち、0.02mm)程度の定位精度が望ましい場合、図14に示す関係では、30フレーム/秒(fps)以上の測定フレームレートを用いればよいことがわかる。また、当該測定フレームレートでは、1フレームの期間は約33ミリ秒であることから、変位検知装置1から検知対象の物体3までの距離が50cmであれば、音波の伝搬期間(約3ミリ秒)を考慮した最大チャープ長は30ミリ秒である。最大チャープ長は、1フレームの送信信号Sdに用い得るチャープ長Tcの上限を示す。
(2)受信信号のSNRと定位精度の関係について
 図15は、変位検知装置1における受信信号のSNRと定位精度の関係についてのシミュレーション結果を示す。図15では、送信信号Sdのチャープ長Tcを30ミリ秒、周波数帯域を100kHz~20kHzとして、受信信号のSNRの変化に伴う定位精度の変化を数値シミュレーションした。
 例えば、心拍計測において20μm程度の定位精度が望ましい場合、図15に示す関係では、SNRを0デシベル(dB)以上にすればよいことがわかる。受信信号のSNRは、例えば送波器10の駆動回路を駆動する駆動電圧により、測定環境に応じて設定可能である。
(他の実施形態)
 以上のように、本発明の例示として、実施の形態1を説明した。しかしながら本発明は、これに限らず、他の実施の形態にも適用可能である。以下、他の実施の形態を例示する。
 実施形態1では、送波器10がサーモホンで構成される例を説明した。送波器10は、サーモホンに限らず、例えばリボン型ツイータ等で構成されてもよい。また、送波器10は、圧電振動子を用いた超音波トランスデューサ等であってもよい。
 実施形態1では、送波器10がリニア周波数チャープによるチャープ波を発生させる例を説明した。本実施形態では、送波器10は、例えば時間とともに周期が線形に変化するリニア周期チャープによるチャープ波を発生させてもよい。また、送波器10は、例えばM系列符号またはGold符号などの拡散符号を用いた広帯域変調波を発生させてもよい。
 実施形態1では、変位検知装置1における送信信号Sdとして、パルス間隔変調によるチャープ信号を用いる例を説明した。本実施形態では、変位検知装置1は、送信信号Sdをパルス間隔変調に限らず、例えば連続パルスにおける各パルスの時間幅を時間的に変化させるパルス幅変調により生成してもよい。
 実施形態1では、送波器10が音波を発生させる例を説明した。本実施形態の変位検知装置1では、必ずしも音波に限らず、例えば電磁波を発生させる送波器10を用いてもよい。この場合であっても、時間的に周波数が変化する広帯域の電磁波を送受信して得られる信号を用いて、解析信号の位相差を解析することにより、物体の微小な変位の検知を精度良く実現可能である。
 実施形態1では、変位検知装置1が、送波器10及び受波器11をそれぞれ1つ備える例を説明した。本実施形態では、変位検知装置1が、送波器及び受波器の一方または両方を複数備えてもよい。
 以上の他の実施形態では実施形態1と共通の事項についての記述を省略し、異なる点についてのみ説明した。各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
 本発明は、変位検知装置、方法及びプログラムに適用可能であり、特に物体の微小な変位の検知に適用可能である。
 1 変位検知装置
 10 送波器
 11 受波器
 13 制御部

Claims (10)

  1.  物体に、複数の周波数を有する変調波を送信する送波器と、
     前記物体からの反射波を受信して、受信結果を示す受信信号を生成する受波器と、
     前記送波器による前記変調波の送信を制御して、前記受波器から前記受信信号を取得する制御部と、を備え、
     前記制御部は、
     第1の測定期間において、前記送波器に前記変調波を送信するように第1の送信信号を出力して、応答する第1の受信信号を取得し、
     前記第1の送信信号と前記第1の受信信号とに基づき、前記第1の送信信号と前記第1の受信信号との間の相関において規定される位相を示す第1の位相情報を抽出し、
     前記第1の測定期間の後の第2の測定期間において、前記送波器に前記変調波を送信するように第2の送信信号を出力して、応答する第2の受信信号を取得し、
     前記第2の送信信号と前記第2の受信信号とに基づき、前記第2の送信信号と前記第2の受信信号との間の相関において規定される位相を示す第2の位相情報を抽出し、
     前記第1の位相情報と前記第2の位相情報との間の差分に応じて、前記第1及び第2の測定期間における前記物体の変位を検知する
    変位検知装置。
  2.  前記制御部は、
     前記第1の送信信号と前記第1の受信信号とに基づき、前記第1の送信信号と前記第1の受信信号との間の相関において規定される振幅及び位相を含む第1の解析信号を生成して、前記第1の解析信号から前記第1の位相情報を抽出し、
     前記第2の送信信号と前記第2の受信信号とに基づき、前記第2の送信信号と前記第2の受信信号との間の相関において規定される振幅及び位相を含む第2の解析信号を生成して、前記第2の解析信号から前記第2の位相情報を抽出する
    請求項1に記載の変位検知装置。
  3.  前記制御部は、
     前記第1の解析信号の振幅と前記第2の解析信号の振幅との少なくとも一方の振幅が最大となるタイミングを検出し、
     検出したタイミングを基準として、前記第1の位相情報と前記第2の位相情報との間の差分を算出する
    請求項2に記載の変位検知装置。
  4.  前記制御部は、前記第1の位相情報と前記第2の位相情報との間の差分と、前記基準のタイミングにおける前記位相の勾配とに基づいて、前記物体の変位を示す変位量を測定する
    請求項3に記載の変位検知装置。
  5.  前記制御部は、前記第1の解析信号の包絡線と前記第2の解析信号の包絡線との少なくとも一方の包絡線を演算して、演算した包絡線に基づき前記振幅が最大となるタイミングを検出する
    請求項2から4のいずれか1項に記載の変位検知装置。
  6.  前記制御部は、
     前記第1の送信信号と前記第1の受信信号とに基づき、前記第1の送信信号と前記第1の受信信号との相互相関関数を複素化するように演算して、前記第1の解析信号を生成し、
     前記第2の送信信号と前記第2の受信信号とに基づき、前記第2の送信信号と前記第2の受信信号との相互相関関数を複素化するように演算して、前記第2の解析信号を生成する
    請求項2から5のいずれか1項に記載の変位検知装置。
  7.  前記送波器は、前記変調波として複数の周波数を有する音波を送信するサーモホンを含む
    請求項1から6のいずれか1項に記載の変位検知装置。
  8.  前記各送信信号は、リニア周波数チャープにより前記変調波を前記送波器に送信させる
    請求項1から7のいずれか1項に記載の変位検知装置。
  9.  複数の周波数を有する変調波を物体に送信する送波器を制御して、前記物体からの反射波を受信する受波器から受信結果を示す受信信号を取得する制御部が、
     第1の測定期間において、前記送波器に前記変調波を送信するように第1の送信信号を出力して、応答する第1の受信信号を取得し、
     前記第1の送信信号と前記第1の受信信号とに基づき、前記第1の送信信号と前記第1の受信信号との間の相関において規定される位相を示す第1の位相情報を抽出し、
     前記第1の測定期間の後の第2の測定期間において、前記送波器に前記変調波を送信するように第2の送信信号を出力して、応答する第2の受信信号を取得し、
     前記第2の送信信号と前記第2の受信信号とに基づき、前記第2の送信信号と前記第2の受信信号との間の相関において規定される位相を示す第2の位相情報を抽出し、
     前記第1の位相情報と前記第2の位相情報との間の差分に応じて、前記第1及び第2の測定期間における前記物体の変位を検知する
    変位検知方法。
  10.  請求項9に記載の変位検知方法を前記制御部に実行させるためのプログラム。
PCT/JP2022/010878 2021-09-09 2022-03-11 変位検知装置及び方法 WO2023037613A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022003506.4T DE112022003506T5 (de) 2021-09-09 2022-03-11 Vorrichtung und Verfahren zur Verschiebungsdetektion
CN202280049214.0A CN117642651A (zh) 2021-09-09 2022-03-11 位移感测装置以及方法
JP2023546758A JPWO2023037613A1 (ja) 2021-09-09 2022-03-11
US18/536,530 US20240118415A1 (en) 2021-09-09 2023-12-12 Displacement detection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147107 2021-09-09
JP2021-147107 2021-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/536,530 Continuation US20240118415A1 (en) 2021-09-09 2023-12-12 Displacement detection device and method

Publications (1)

Publication Number Publication Date
WO2023037613A1 true WO2023037613A1 (ja) 2023-03-16

Family

ID=85507468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010878 WO2023037613A1 (ja) 2021-09-09 2022-03-11 変位検知装置及び方法

Country Status (5)

Country Link
US (1) US20240118415A1 (ja)
JP (1) JPWO2023037613A1 (ja)
CN (1) CN117642651A (ja)
DE (1) DE112022003506T5 (ja)
WO (1) WO2023037613A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483795A (en) * 1977-12-16 1979-07-04 Yaskawa Denki Seisakusho Kk Displacement measuring system
JPH09166661A (ja) * 1995-12-18 1997-06-24 Japan Radio Co Ltd 変位測定方法及び変位測定装置
JP2004191145A (ja) * 2002-12-10 2004-07-08 Japan Science & Technology Agency 超音波変位測定装置及び超音波変位測定方法
CN104808170A (zh) * 2015-04-24 2015-07-29 重庆大学 一种多点位移同时测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483795A (en) * 1977-12-16 1979-07-04 Yaskawa Denki Seisakusho Kk Displacement measuring system
JPH09166661A (ja) * 1995-12-18 1997-06-24 Japan Radio Co Ltd 変位測定方法及び変位測定装置
JP2004191145A (ja) * 2002-12-10 2004-07-08 Japan Science & Technology Agency 超音波変位測定装置及び超音波変位測定方法
CN104808170A (zh) * 2015-04-24 2015-07-29 重庆大学 一种多点位移同时测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. KANAI ; M. SATO ; Y. KOIWA ; N. CHUBACHI: "Transcutaneous measurement and spectrum analysis of heart wall vibrations", IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, IEEE, USA, vol. 43, no. 5, 1 September 1996 (1996-09-01), USA, pages 791 - 810, XP011437439, ISSN: 0885-3010, DOI: 10.1109/58.535480 *

Also Published As

Publication number Publication date
JPWO2023037613A1 (ja) 2023-03-16
DE112022003506T5 (de) 2024-05-02
US20240118415A1 (en) 2024-04-11
CN117642651A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11435242B2 (en) Increasing sensitivity of a sensor using an encoded signal
EP2133026B1 (en) Ultrasonographic device
EP2525238B1 (en) Velocity/distance detection system, velocity/distance detection apparatus, and velocity/distance detection method
JP2544342B2 (ja) 超音波ドップラ―診断装置
US20170016983A1 (en) Target extraction system, target extraction method, information processing apparatus, and control method and control program of information processing apparatus
JP2014228291A (ja) 無線検出装置及び無線検出方法
JP2015017942A (ja) ドップラーイメージング信号送信装置、ドップラーイメージング信号受信装置、ドップラーイメージングシステム及び方法
JP6926775B2 (ja) 移動目標探知システム及び移動目標探知方法
JP7349661B2 (ja) 推定方法、推定装置およびプログラム
WO2018038128A1 (ja) 移動目標探知システム及び移動目標探知方法
WO2023037613A1 (ja) 変位検知装置及び方法
Rong et al. Novel Respiration-Free Heartbeat Detection Algorithm Using Millimeter-Wave Radar
US8679017B2 (en) Biological information measurement apparatus and method
Ekimov et al. Human motion analyses using footstep ultrasound and Doppler ultrasound
WO2023058272A1 (ja) 物体検知装置及び方法
Roy Through-the-wall hb100 radar signal processing for estimating frequency of vibrating diaphragm
JP5260897B2 (ja) 超音波診断装置
JP2010110503A (ja) 超音波診断装置
KR101117544B1 (ko) 탄성영상 형성을 위한 초음파 진단 시스템 및 방법
JP6696639B2 (ja) 周波数測定器、周波数測定方法及び周波数測定プログラム
JP2009207603A (ja) 超音波診断装置
Ashhar et al. Doppler correction in moving narrowband ultrasonic ranging sensors for small-scale motion tracking
US20240118407A1 (en) Sensor, estimation method, and sensor system
WO2023119699A1 (ja) 物体検知装置
WO2024024153A1 (ja) 物体検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546758

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280049214.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022003506

Country of ref document: DE