WO2023037607A1 - データ伝送装置およびデータ伝送システム - Google Patents

データ伝送装置およびデータ伝送システム Download PDF

Info

Publication number
WO2023037607A1
WO2023037607A1 PCT/JP2022/010491 JP2022010491W WO2023037607A1 WO 2023037607 A1 WO2023037607 A1 WO 2023037607A1 JP 2022010491 W JP2022010491 W JP 2022010491W WO 2023037607 A1 WO2023037607 A1 WO 2023037607A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
data transmission
hpf
transmission
Prior art date
Application number
PCT/JP2022/010491
Other languages
English (en)
French (fr)
Inventor
英雄 諸橋
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023546753A priority Critical patent/JPWO2023037607A1/ja
Priority to CN202280059417.8A priority patent/CN117957808A/zh
Publication of WO2023037607A1 publication Critical patent/WO2023037607A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present technology relates to a data transmission device and a data transmission system, and more particularly to a data transmission device and a data transmission system capable of realizing more suitable data transmission.
  • Patent Literature 1 describes a data transmission/reception device that transmits data using a coaxial cable as a transmission line in addition to a differential cable.
  • This technology has been developed in view of this situation, and is intended to make it possible to achieve more suitable data transmission.
  • a data transmission device transmits a first signal and a second signal having a frequency band different from that of the first signal, which is transmitted in a direction opposite to that of the first signal.
  • a receiving circuit for receiving the first signal from the transmission line via the common terminal; and a transmitter for transmitting the second signal via the common terminal. circuit.
  • a data transmission system transmits a first signal and a second signal transmitted in a direction opposite to the first signal and having a frequency band different from that of the first signal.
  • a common terminal connected to a transmission line connected to a downstream signal receiving circuit for receiving the first signal from the transmission line via the common terminal; and transmitting the second signal via the common terminal.
  • a data receiving device comprising an uplink signal transmission circuit that transmits the first signal; a downlink signal transmission circuit that transmits the first signal; and an uplink signal reception circuit that receives the second signal from the transmission line.
  • transmission in which a first signal and a second signal having a frequency band different from that of the first signal, which is transmitted in the opposite direction to the first signal, are transmitted
  • the first signal from the transmission line is received via a common terminal connected to the line and the second signal is transmitted via the common terminal.
  • transmission in which a first signal and a second signal having a frequency band different from that of the first signal, which is transmitted in the opposite direction to the first signal, are transmitted A data receiver having a common terminal connected to a line receives the first signal from the transmission line via the common terminal and transmits the second signal via the common terminal. Also, the data transmission device transmits the first signal and receives the second signal from the transmission line.
  • FIG. 1 is a block diagram showing a configuration example of a data transmission system according to an embodiment of the present technology
  • FIG. FIG. 4 is a diagram showing a specific circuit configuration example of a downstream signal transmission circuit and an upstream signal reception circuit of a source device
  • FIG. 10 is a diagram showing a specific circuit configuration example of an uplink signal transmission circuit and a downlink signal reception circuit of a conventional sink device
  • FIG. 4 is a diagram showing a specific circuit configuration example of an upstream signal transmission circuit and a downstream signal reception circuit of a sink device of the present technology
  • FIG. 3 is a diagram showing an example of transmission bands for uplink signals and downlink signals
  • FIG. 4 is a diagram showing the flow of uplink signals and downlink signals in the data transmission system of the present technology
  • FIG. 1 is a block diagram showing a configuration example of a data transmission system according to an embodiment of the present technology.
  • a data transmission system uses a pair of signal lines to transmit a differential signal, an in-phase signal, or the like from a device on the transmission side (source device 1) to a device on the reception side (sink device 2). It is a transmission system. In signal transmission using this pair of signal lines, high-speed data transfer from the source device 1 to the sink device 2 is performed.
  • the data transmission system uses serial data transmission technology to transmit and receive digital video and audio data.
  • 24-bit gradation VGA Video Graphics Array
  • WVGA wide VGA
  • SVGA Super VGA
  • XGA Extended Graphics Array
  • WXGA Wide XGA
  • SXGA Super XGA
  • UXGA digital video and audio data
  • GVIF registered trademark
  • the data transmission system is composed of a source device 1, a sink device 2, and a transmission line 3, which is a route for data to be transmitted.
  • a source device 1 to the sink device 2 is downward, and the direction from the sink device to the source device is upward.
  • the downlink signal generally handles video signals and the like
  • the uplink signal handles low-speed signals such as control signals.
  • a shielded pair cable, for example, is used as the transmission line 3 .
  • the source device 1 is composed of a downstream transmission processing unit 11, a downstream signal transmission circuit 12, an upstream signal reception circuit 13, and an upstream reception processing unit .
  • the downstream transmission processing unit 11 determines data to be transmitted from the source device 1 to the sink device 2 and supplies the determined data to the downstream signal transmission circuit 12 . For example, when transmitting downstream data to the sink device 2, the downstream transmission processing unit 11 synchronizes the downstream data with a transmission clock TCLK, which is a clock for transmission, and sends the synchronized downstream data to the downstream signal transmission circuit. 12.
  • TCLK transmission clock
  • the downstream transmission processing unit 11 supplies a clock obtained by dividing the transmission clock TCLK by N to the downstream signal transmission circuit 12 as a reference clock.
  • the downstream signal transmission circuit 12 generates a signal for serially transferring the signal supplied from the downstream transmission processing unit 11 through the transmission path 3 .
  • the downstream signal transmission circuit 12 generates, for example, a pair of signals (differential signals) having mutually opposite phases, and transmits them to the sink device 2 via the transmission line 3 .
  • the uplink signal receiving circuit 13 has an LPF (Low-Pass Filter) 21 .
  • the LPF 21 is a filter circuit that attenuates the signal output from the downstream signal transmission circuit 12 and passes the signal transmitted from the sink device 2 through the transmission line 3 .
  • the downlink signal transmitted from the source device 1 to the sink device 2 and the uplink signal transmitted from the sink device 2 to the source device 1 have different frequency bands.
  • a downstream signal is transmitted as a high frequency
  • an upstream signal is transmitted as a low frequency. Therefore, the LPF 21 has the characteristic of separating the upstream signal and the downstream signal by frequency by passing the upstream signal and attenuating the downstream signal.
  • the upstream signal reception circuit 13 supplies the signal that has passed through the LPF to the upstream reception processing unit 14 .
  • the upstream reception processing unit 14 analyzes the signal supplied from the upstream signal reception circuit 13 and outputs the analysis result. For example, when the signal supplied by the uplink signal receiving circuit 13 is uplink signal data (herein, referred to as user data), the uplink reception processing unit 14 performs a circuit (not shown) that uses user data in the source device 1 . user data). The upstream reception processing unit 14 supplies the upstream data clk to a circuit (not shown) that uses the upstream data clk in the source device 1 .
  • uplink signal data herein, referred to as user data
  • the upstream reception processing unit 14 supplies the upstream data clk to a circuit (not shown) that uses the upstream data clk in the source device 1 .
  • the uplink reception processing unit 14 sends a reference clock transmission command to the downlink transmission processing unit 11. supply.
  • the configuration of the upstream reception processing unit 14 is not limited to a specific one.
  • the upstream reception processing unit 14 compares, for example, the signal supplied from the upstream signal receiving circuit 13 with a reference potential, which is a predetermined potential, and converts the comparison result to a predetermined clock generated in the source device 1. It is configured to have the ability to detect data by comparison.
  • the sink device 2 is composed of an upstream transmission processing unit 41, an upstream signal transmission circuit 42, a downstream signal reception circuit 43, and a downstream reception processing unit 44.
  • the upstream transmission processing unit 41 determines data to be transmitted from the sink device 2 to the source device 1 and supplies the determined data to the upstream signal transmission circuit 42 . For example, when the reference clock request transmission command is supplied from the downstream reception processing unit 44 , the upstream transmission processing unit 41 supplies the reference clock request signal to the upstream signal transmission circuit 42 .
  • the upstream transmission processing unit 41 supplies the user data to the upstream signal transmission circuit 42 when the reference clock request transmission command is not supplied and the user data which is the data to be transmitted is supplied.
  • the uplink transmission processing unit 41 synchronizes user data with an uplink transmission clock (uplink data clk), which is a clock for uplink data transmission, and supplies the synchronized user data to the uplink signal transmission circuit 42 . do.
  • the upstream signal transmission circuit 42 generates a signal for transferring the signal supplied from the upstream transmission processing unit 41 through the transmission line 3 .
  • the uplink signal transmission circuit 42 generates, for example, a differential signal and supplies it to the uplink signal reception circuit 13 of the source device 1 via the transmission path 3 .
  • the downlink signal receiving circuit 43 has a HPF (High-Pass Filter) 51.
  • the HPF 51 is a filter circuit that attenuates the signal output from the upstream signal transmission circuit 42 and passes the signal transmitted from the source device 1 through the transmission line 3 .
  • the HPF 51 has the characteristic of separating the upstream signal and the downstream signal by frequency by attenuating the upstream signal and passing the downstream signal.
  • the downstream signal receiving circuit 43 receives the signal supplied via the transmission line 3 and passed through the HPF 51 . That is, the downstream signal receiving circuit 43 receives the signal transmitted from the downstream signal transmitting circuit 12 of the source device 1 and supplies it to the downstream reception processing unit 44 .
  • the downstream reception processing unit 44 analyzes the signal supplied from the downstream signal reception circuit 43 and outputs the analysis result. For example, when downlink data is transmitted, the downlink reception processing unit 44 supplies the downlink data and the transmission clock TCLK to a circuit (not shown) that uses the downlink data in the sink device 2 .
  • the downlink reception processing unit 44 supplies a signal (reference clock request transmission command) for executing transmission of the reference clock request signal to the uplink transmission processing unit 41 when reception of the reference clock is required.
  • the downstream reception processing unit 44 Upon receiving the reference clock, the downstream reception processing unit 44 synchronizes the clock (reference clock) used when the downstream reception processing unit 44 detects downstream data with the reference clock.
  • the downstream reception processing unit 44 supplies the transmission clock TCLK to a circuit (not shown) that uses the transmission clock TCLK in the sink device 2 .
  • FIG. 2 is a diagram showing a specific circuit configuration example of the downstream signal transmission circuit 12 and the upstream signal reception circuit 13 of the source device 1 .
  • the downstream signal transmission circuit 12 is, for example, a differential circuit.
  • a resistance element R ⁇ b>1 is provided in the subsequent stage of the downstream signal transmission circuit 12 .
  • the upstream signal receiving circuit 13 can receive only the upstream signal by inserting the LPF 21 in the preceding stage to attenuate the downstream signal component.
  • FIG. 3 is a diagram showing a specific circuit configuration example of an upstream signal transmission circuit 42A and a downstream signal reception circuit 43A of a conventional sink device.
  • the upstream signal transmission circuit 42A has a push-pull configuration, and has a configuration in which current flows in and out by switching the switches 75 to 78 with respect to the current sources 71 to 74 .
  • the switches 75 to 78 for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are used.
  • the upstream signal transmission circuit 42A is provided with a resistive element R11 for dividing the power supply in order to determine the DC position when the current is cut off. These currents flow through the transmission line 3 to the resistance element R1 of the downstream signal transmission circuit 12, and the voltage changes.
  • An FB (ferrite bead) 201 is provided after the upstream signal transmission circuit 42A.
  • the FB 201 is an element that has high impedance at high frequencies and low impedance at low frequencies, and is inserted to reduce the influence of the load on the upstream signal transmission circuit 42A side.
  • the input of the downstream signal receiving circuit 43A is terminated with a resistive element R21.
  • a capacitive element C11 is placed in the preceding stage of this resistive element R21 to form one HPF.
  • a capacitive element C51 for cutting a DC component is inserted ahead of it, and this constitutes a further HPF.
  • FIG. 4 is a diagram showing a specific circuit configuration example of the upstream signal transmission circuit 42 and the downstream signal reception circuit 43 of the sink device 2 of the present technology.
  • the FB 201 outside the IC (Integrated Circuit) provided with the upstream signal transmission circuit 42A and the downstream signal reception circuit 43A. Since the FB 201 is provided outside the IC, the output terminal of the upstream signal transmission circuit 42A and the input terminal of the downstream signal reception circuit 43A are provided as separate terminals on the IC. This increases the number of IC terminals. In addition, since parts such as the FB 201 are provided outside the output terminal of the upstream signal transmission circuit 42A, a mounting area including peripheral parts is required.
  • the upstream signal transmission circuit 42 and the downstream signal reception circuit 43 are connected to the transmission path 3 via the common terminal 81 of the IC. That is, the upstream signal transmission circuit 42 transmits an upstream signal via the common terminal 81 , and the downstream signal reception circuit 43 receives the downstream signal from the transmission path 3 via the common terminal 81 . Therefore, it is possible to reduce the number of IC terminals. Also, by reducing the number of peripheral components, it is possible to reduce the mounting area.
  • the resistance element R31 cannot reduce the impedance at low frequencies and increase the impedance at high frequencies, and the impedance is constant regardless of the frequency. Therefore, the voltage amplitude at the end of the upstream signal transmission circuit 42 increases, and the performance of the MOS transistor constituting the current source is lowered, so the resistance value of the resistance element R31 cannot be increased. For this reason, it is difficult to achieve isolation between the downstream side and the upstream side as compared with the conventional technology. In other words, the upstream signal component is likely to interfere with the downstream signal.
  • the reverse phase signal is generated from the replica circuit 62 of the main circuit 61 that generates the upstream signal, and the downstream signal and the reverse phase signal are added to obtain the upstream signal included in the downstream signal.
  • a circuit is provided to cancel the components.
  • the upstream signal transmission circuit 42 is composed of a main circuit 61 and a replica circuit 62 .
  • This circuit 61 has a circuit configuration similar to that of the upstream signal transmission circuit 42A described with reference to FIG. For example, the switches 75 and 78 are turned on when they are high and turned off when they are low. The switches 76 and 77 are turned on when they are Low and turned off when they are High.
  • the replica circuit 62 is a replica circuit obtained by reducing the output current of the circuit 61 at a predetermined reduction ratio.
  • a circuit obtained by downscaling the output current of the circuit 61 to, for example, 1/40 is used. By using a circuit with downscaled output current, the circuit area of the replica circuit 62 can be reduced.
  • the replica circuit 62 it is possible to use a circuit having the same size as the main circuit 61. FIG.
  • the replica circuit 62 has a push-pull configuration similar to the circuit 61, and has a configuration in which current flows in and out by switching the switches 95 to 98 with respect to the current sources 91 to 94.
  • the output currents I11/I12 of the current sources 91 to 94 are values obtained by reducing the output currents I1/I2 of the current sources 71 to 74 of the circuit 61 by a reduction ratio of 1/40.
  • MOSFETs are used as the switches 95 to 98.
  • the switches 95 and 98 are turned on when they are high and turned off when they are low.
  • the switches 96 and 97 are turned on when they are Low and turned off when they are High.
  • the replica circuit 62 is provided with a resistive element R12 corresponding to the resistive element R11.
  • the input of the downstream signal receiving circuit 43 is connected to the output side of the main circuit 61 via the resistance element R31.
  • the input of the downstream signal receiving circuit 43 is terminated with a resistive element R41.
  • a capacitive element C11 is placed in the preceding stage of the resistive element R41, and this constitutes the HPF 51 on the main circuit 61 side.
  • This HPF 51 attenuates the upstream signal from this circuit 61 that is input to the downstream signal receiving circuit 43 .
  • the resistive element R21 is grounded to GND.
  • an NMOS Negative-channel MOS
  • the DC component is cut by the HPF formed by the capacitive element C51 in the latter stage, and a separate VDD-based bias circuit is provided.
  • the downstream signal receiving circuit 43 of the present technology can also have a similar configuration, but the addition of two-stage capacitive elements in series may increase the ratio of signals attenuated by parasitic capacitance.
  • the resistive element R41 is grounded with an LDO (Low Dropout) circuit biased to VDD-V11. This makes it possible to create a bias for the next-stage circuit with one-stage capacitive element.
  • a resistance element R51 is provided on the output side of the replica circuit 62 .
  • the output of the replica circuit 62 is terminated at the resistance element R52 and terminated at the resistance element R61 via the capacitance element C21.
  • the HPF 52 on the replica circuit 62 side is configured by the capacitive element C21 and the resistive element R61. This HPF 52 attenuates the output signal from the replica circuit 62 that is input to the downstream signal receiving circuit 43 .
  • Resistive element R61 is also grounded with the LOD circuit biased at VDD-V11.
  • the capacitive element C11 that constitutes the HPF 51 on the main circuit 61 side has a capacitance value that requires a corresponding area when mounted on an IC.
  • the capacitance value of the capacitive element C21 constituting the HPF 52 on the replica circuit 62 side is downscaled to 1/40, which is the reduction ratio of the output current of the replica circuit 62.
  • the mounting area of the element C11 is reduced.
  • the resistance element R61 constituting the HPF 52 is adjusted to be 40 times the resistance value of the resistance element R41 forming the HPF51.
  • a cutoff frequency HPF-fc of the HPF 52 is given by the following equation (2).
  • the replica circuit 62 side HPF 52 input voltage level must be adjusted by resistive elements R51 and R52.
  • downstream signal receiving circuit 43 the downstream signal containing the upstream signal component that has passed through the HPF 51 and the opposite phase signal of the output signal from the replica circuit 62 that has passed through the HPF 52 are supplied to the canceller circuit 101 .
  • the canceller circuit 101 adds the downstream signal and the opposite phase signal of the output signal from the replica circuit 62 .
  • FIG. 5 is a diagram showing an example of transmission bands for uplink signals and downlink signals.
  • the dashed line in FIG. 5 indicates the filter characteristics of the HPF.
  • FIG. 5A shows an example of transmission bands for upstream and downstream signals in a conventional data transmission system.
  • the frequency band of the attenuation band of the HPF provided in the downstream signal receiving circuit 43A is used as the transmission band of the upstream signal
  • the transmission band of the downstream signal is the passband of the HPF.
  • a frequency band in the transition band is used.
  • the transmission bands of the upstream signal and the downstream signal are widened, as shown in FIG. 5B.
  • the resistance element R31 is provided between the upstream signal transmission circuit 42 and the downstream signal reception circuit 43. Therefore, the upstream signal component is transferred to the downstream signal. It becomes easy to interfere.
  • the frequency band of, for example, the transition band of the HPF 51 provided in the downstream signal receiving circuit 43 is used as part of the transmission band of the upstream signal.
  • the signal cannot be completely attenuated. If only the HPF 51 is used to separate the upstream signal and the downstream signal, the upstream signal component that has passed through the HPF 51 becomes noise to the downstream signal receiving circuit 43, degrading the reception sensitivity of the downstream signal receiving circuit 43.
  • FIG. 6 is a diagram showing the flow of upstream and downstream signals in the data transmission system of this technology.
  • the downstream signal from the downstream signal transmission circuit 12 passes through the HPF 51 and is supplied to the canceller circuit 101 of the downstream signal reception circuit 43 . Also, part of the downstream signal passes through the LPF 21 and is supplied to the upstream signal receiving circuit 13 .
  • the upstream signal from the main circuit 61 of the upstream signal transmission circuit 42 passes through the LPF 21 and is supplied to the upstream signal reception circuit 13 . Also, part of the upstream signal passes through the HPF 51 and is supplied to the canceller circuit 101 .
  • part of the output signal from the replica circuit 62 of the upstream signal transmission circuit 42 passes through the HPF 52, and the reverse phase signal of the output signal passed through the HPF 52 is supplied to the canceller circuit 101. be done.
  • the canceller circuit 101 adds the signal that has passed through the HPF 51 and the reverse phase signal of the signal that has passed through the HPF 52, thereby canceling the upstream signal component contained in the signal that has passed through the HPF 51 and reducing noise. becomes possible.
  • the resistance element R41 constituting the HPF 51 is grounded by the LDO circuit. Attenuation can be suppressed.
  • the transmission line 3 which is a bidirectional transmission line AC-coupled using a pair of signal lines. Therefore, even when the frequency difference between the transmission bands of the uplink signal and the downlink signal is small, it is possible to realize high-speed communication using high-frequency signals, thereby realizing more suitable data transmission.
  • a system means a set of multiple components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing, are both systems. .
  • a common terminal connected to a transmission line through which a first signal and a second signal transmitted in a direction opposite to the first signal and having a different frequency band from the first signal are transmitted; a receiving circuit that receives the first signal from the transmission line via the common terminal; and a transmission circuit that transmits the second signal via the common terminal.
  • the reception circuit includes a filter circuit that separates the first signal and the second signal transmitted via the common terminal by frequency.
  • the filter circuit attenuates the second signal.
  • the filter circuit is a first HPF configured with a first capacitor and a first resistor.
  • the reception circuit further includes a canceller circuit that adds the signal that has passed through the first HPF and a reverse phase signal of the output signal from the replica circuit of the transmission circuit.
  • the transmission circuit includes the replica circuit.
  • the replica circuit is a circuit obtained by reducing the output current of the transmission circuit by a predetermined reduction ratio.
  • the receiving circuit further comprises a second HPF having the same cutoff frequency as the cutoff frequency of the first HPF,
  • the data transmission device according to (7), wherein the canceller circuit adds the signal that has passed through the first HPF and the reverse phase signal of the output signal from the replica circuit that has passed through the second HPF.
  • the second HPF includes a second capacitor obtained by reducing the capacitance value of the first capacitor by a reduction ratio of the output current of the replica circuit, and the resistance value of the first resistor as the output of the replica circuit.
  • the receiving circuit converts the voltage level based on the voltage level of the output signal of the replica circuit input to the second HPF to the voltage of the second signal from the transmitting circuit transmitted via the common terminal.
  • (11) The data transmission device according to any one of (4) to (10), wherein the first resistor is grounded via an LDO circuit biased to a predetermined voltage.
  • (12) The data transmission device according to any one of (1) to (11), wherein the data transmitted through the transmission line is video data.
  • the data transmission device according to (12) or (13), wherein the video data is transmitted based on the GVIF (registered trademark) standard.
  • a common terminal connected to a transmission line through which a first signal and a second signal transmitted in a direction opposite to the first signal and having a different frequency band from the first signal are transmitted; a downstream signal receiving circuit that receives the first signal from the transmission line via the common terminal; an upstream signal transmission circuit that transmits the second signal via the common terminal; and a downstream signal transmission circuit that transmits the first signal;
  • a data transmission system comprising: an uplink signal receiving circuit that receives the second signal from the transmission path; and a data transmission device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Dc Digital Transmission (AREA)
  • Bidirectional Digital Transmission (AREA)

Abstract

本技術は、より好適なデータ伝送を実現することができるようにするデータ伝送装置およびデータ伝送システムに関する。 本技術のデータ伝送装置は、第1の信号と、第1の信号と逆方向に伝送される、第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子と、伝送路からの第1の信号を共通端子を介して受信する受信回路と、第2の信号を共通端子を介して送信する送信回路とを備える。本技術は、例えば、AC結合された伝送路を介して映像データを伝送するデータ伝送システムに適用することができる。

Description

データ伝送装置およびデータ伝送システム
 本技術は、データ伝送装置およびデータ伝送システムに関し、特に、より好適なデータ伝送を実現することができるようにしたデータ伝送装置およびデータ伝送システムに関する。
 大容量のデータを高速に伝送するために1対の信号線を用いて信号を伝送する装置がある。例えば、特許文献1には、差動ケーブルに加えて同軸ケーブルを伝送路として使用してデータを伝送するデータ送受信装置が記載されている。
国際公開第2019/049524号
 昨今のさらなるデータの大容量化により、より好適なデータ伝送が求められている。
 本技術はこのような状況に鑑みてなされたものであり、より好適なデータ伝送を実現することができるようにするものである。
 本技術の第1の側面のデータ伝送装置は、第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子と、前記伝送路からの前記第1の信号を前記共通端子を介して受信する受信回路と、前記第2の信号を前記共通端子を介して送信する送信回路とを備える。
 本技術の第2の側面のデータ伝送システムは、第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子と、前記伝送路からの前記第1の信号を前記共通端子を介して受信する下り信号受信回路と、前記第2の信号を前記共通端子を介して送信する上り信号送信回路とを備えるデータ受信装置と、前記第1の信号を送信する下り信号送信回路と、前記伝送路からの前記第2の信号を受信する上り信号受信回路とを備えるデータ送信装置とを有する。
 本技術の第1の側面においては、第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子を介して、前記伝送路からの前記第1の信号が受信され、前記第2の信号が前記共通端子を介して送信される。
 本技術の第2の側面においては、第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子を備えるデータ受信装置により、前記伝送路からの前記第1の信号が前記共通端子を介して受信され、前記第2の信号が前記共通端子を介して送信される。また、データ送信装置により、前記第1の信号が送信され、前記伝送路からの前記第2の信号が受信される。
本技術の一実施形態に係るデータ伝送システムの構成例を示すブロック図である。 ソース機器の下り信号送信回路と上り信号受信回路の具体的な回路構成例を示す図である。 従来のシンク機器の上り信号送信回路と下り信号受信回路の具体的な回路構成例を示す図である。 本技術のシンク機器の上り信号送信回路と下り信号受信回路の具体的な回路構成例を示す図である。 上り信号と下り信号の伝送帯域の例を示す図である。 本技術のデータ伝送システムにおける上り信号と下り信号の流れを示す図である。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.データ伝送システムの概要
 2.回路構成例
<1.データ伝送システムの概要>
 図1は、本技術の一実施形態に係るデータ伝送システムの構成例を示すブロック図である。
 本技術の一実施形態に係るデータ伝送システムは、1対の信号線を用いて差動信号や同相信号などを送信側の機器(ソース機器1)から受信側の機器(シンク機器2)に伝送するシステムである。この1対の信号線を用いた信号の伝送では、ソース機器1からシンク機器2への高速なデータ転送が行われる。
 データ伝送システムは、例えば、シリアルデータ伝送技術を用いてデジタル映像や音声データの送受信を行う。デジタル映像や音声データとして、24ビット階調VGA(Video Graphics Array)、WVGA(wide VGA)、SVGA(Super VGA)、XGA(eXtended Graphics Array)、WXGA(Wide XGA)、SXGA(Super XGA)、UXGA(Ultra XGA)などの動画像が、例えばGVIF(登録商標)規格に基づいて伝送される。
 図1に示すように、データ伝送システムは、ソース機器1、シンク機器2、および、伝送されるデータの経路である伝送路3により構成される。以下の説明では、ソース機器1からシンク機器2の方向を下り、シンク機器からソース機器の方向を上りとする。以下では、下り信号は一般的に映像信号などを扱い、上り信号は制御信号などの低速な信号を扱うケースで説明する。伝送路3としては例えばシールデッドペアケーブルが用いられる。
 ソース機器1は、下り送信処理部11、下り信号送信回路12、上り信号受信回路13、および上り受信処理部14により構成される。
 下り送信処理部11は、ソース機器1からシンク機器2に送信するデータを決定し、その決定したデータを下り信号送信回路12に供給する。例えば、下り送信処理部11は、下りデータをシンク機器2に送信する場合には、伝送するためのクロックである送信クロックTCLKに下りデータを同期させ、この同期させた下りデータを下り信号送信回路12に供給する。
 また、下り送信処理部11は、参照クロック送信命令が上り受信処理部14から供給された場合、送信クロックTCLKをN分周したクロックを、参照クロックとして下り信号送信回路12に供給する。
 下り信号送信回路12は、下り送信処理部11から供給された信号を伝送路3でシリアル転送するために信号を生成する。下り信号送信回路12は、例えば、互いに逆位相となる対の信号(差動信号)を生成し、伝送路3を介してシンク機器2に送信する。
 上り信号受信回路13はLPF(Low-Pass Filter)21を備える。LPF21は、下り信号送信回路12から出力される信号を減衰させて、伝送路3を通じてシンク機器2から伝送されてくる信号を通過させるフィルタ回路である。
 本技術のデータ伝送システムにおいては、ソース機器1からシンク機器2へ伝送される下り信号と、シンク機器2からソース機器1へ伝送される上り信号とで、周波数帯が異なる。ここでは、下り信号が高周波として伝送され、上り信号が低周波として伝送される。したがって、LPF21は、上り信号を通過させ、下り信号を減衰させることで、上り信号と下り信号を周波数で分離する特性を有している。
 上り信号受信回路13は、LPFを通過した信号を上り受信処理部14に供給する。
 上り受信処理部14は、上り信号受信回路13から供給された信号を解析し、解析結果を出力する。例えば、上り受信処理部14は、上り信号受信回路13により供給された信号が上り信号のデータ(ここでは、ユーザデータと称する)である場合、ソース機器1におけるユーザデータを使用する回路(図示せず)にユーザデータを供給する。上り受信処理部14は、上りデータclkを、ソース機器1における上りデータclkを使用する回路(図示せず)に供給する。
 また、上り受信処理部14は、上り信号受信回路13により供給された信号が、参照クロックを要求する信号(参照クロック要求信号)である場合には、参照クロック送信命令を下り送信処理部11に供給する。
 上り受信処理部14の構成は特定のものに限定されない。上り受信処理部14は、例えば、上り信号受信回路13から供給された信号と、所定の電位である参照電位とを比較し、その比較結果と、ソース機器1において発生させた所定のクロックとを比較することでデータを検出する機能を有するように構成される。
 シンク機器2は、上り送信処理部41、上り信号送信回路42、下り信号受信回路43、および下り受信処理部44により構成される。
 上り送信処理部41は、シンク機器2からソース機器1に送信するデータを決定し、その決定したデータを上り信号送信回路42に供給する。例えば、上り送信処理部41は、参照クロック要求送信命令が下り受信処理部44から供給されている場合、参照クロック要求信号を上り信号送信回路42に供給する。
 また、上り送信処理部41は、参照クロック要求送信命令が供給されておらず、送信対象のデータであるユーザデータが供給された場合、ユーザデータを上り信号送信回路42に供給する。この場合、上り送信処理部41は、上り方向のデータ送信のためのクロックである上り送信クロック(上りデータclk)にユーザデータを同期させ、この同期させたユーザデータを上り信号送信回路42に供給する。
 上り信号送信回路42は、上り送信処理部41から供給された信号を伝送路3で転送するために信号を生成する。上り信号送信回路42は、例えば、差動信号を生成し、ソース機器1の上り信号受信回路13に伝送路3を介して供給する。
 下り信号受信回路43はHPF(High-Pass Filter)51を備える。HPF51は、上り信号送信回路42から出力される信号を減衰させて、伝送路3を通じてソース機器1から伝送されてくる信号を通過させるフィルタ回路である。上述したように、本技術のデータ伝送システムにおいては、下り信号と上り信号で、周波数帯が異なる。したがって、HPF51は、上り信号を減衰させ、下り信号を通過させることで、上り信号と下り信号を周波数で分離する特性を有している。
 下り信号受信回路43は、伝送路3を介して供給され、HPF51を通過した信号を受信する。すなわち、下り信号受信回路43は、ソース機器1の下り信号送信回路12から送信されてくる信号を受信して、下り受信処理部44に供給する。
 下り受信処理部44は、下り信号受信回路43から供給された信号を解析し、解析結果を出力する。例えば、下り受信処理部44は、下りデータが伝送されてきた場合には、下りデータや送信クロックTCLKを、シンク機器2における下りデータを使用する回路(図示せず)に供給する。
 また、下り受信処理部44は、参照クロックの受信が必要である場合には、参照クロック要求信号の送信を実行するための信号(参照クロック要求送信命令)を、上り送信処理部41に供給する。
 下り受信処理部44は、参照クロックを受信した場合、下り受信処理部44が下りデータを検出する際に用いるクロック(基準クロック)を参照クロックに同期させる。下り受信処理部44は、送信クロックTCLKを、シンク機器2における送信クロックTCLKを使用する回路(図示せず)に供給する。
<2.回路構成例>
・ソース機器1側の回路構成例
 図2は、ソース機器1の下り信号送信回路12と上り信号受信回路13の具体的な回路構成例を示す図である。
 下り信号送信回路12は、例えば差動回路である。下り信号送信回路12の後段には、抵抗素子R1が設けられている。
 上り信号受信回路13には下り信号も入力されてしまうため、前段にLPF21を入れて、下り信号成分を減衰させることで、上り信号受信回路13が、上り信号のみを受信できる構成となる。
・シンク機器2側の回路構成例
 ここで、本技術のシンク機器2の回路構成について詳細に説明する前に、従来のシンク機器の回路構成について説明する。図3は、従来のシンク機器の上り信号送信回路42Aと下り信号受信回路43Aの具体的な回路構成例を示す図である。
 上り信号送信回路42Aは、プッシュプル構成であり、電流源71乃至74に対するスイッチ75乃至78のスイッチングにより、電流が流れ出たり流れ込んだりする構成を有する。スイッチ75乃至78としては、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が用いられる。
 上り信号送信回路42Aには、電流が切れた際にDC位置を定めるために、電源を分圧するための抵抗素子R11が設けられる。これらの電流が伝送路3を介して、下り信号送信回路12の抵抗素子R1に流れ、電圧が変化する。
 上り信号送信回路42Aの後段には、FB(フェライトビーズ)201が設けられる。FB201は、高周波でインピーダンスが高く、低周波でインピーダンスが低い素子であり、上り信号送信回路42A側の負荷の影響を小さくするために挿入されているものである。
 下り信号受信回路43Aの入力は、抵抗素子R21で終端されている。この抵抗素子R21の前段に容量素子C11が入っており、1つのHPFを構成している。さらにその先に直流成分をカットするための容量素子C51が入っており、これがさらなるHPFを構成している。これらのHPFが、下り信号受信回路43Aに入力される上り信号を減衰させる。
 図4は、本技術のシンク機器2の上り信号送信回路42と下り信号受信回路43の具体的な回路構成例を示す図である。
 従来のシンク機器においては、上り信号送信回路42Aと下り信号受信回路43Aが設けられたIC(Integrated Circuit)の外にFB201を設ける必要があった。FB201がICの外に設けられるため、上り信号送信回路42Aの出力端子と下り信号受信回路43Aの入力端子とが、それぞれ別の端子としてICに設けられる。これにより、ICの端子数が増加してしまう。また、上り信号送信回路42Aの出力端子の外にFB201などの部品が設けられるため、周辺部品を含めた実装面積が必要となっていた。
 FB201と同じスペックの部品をIC内に実装するためには、数百nHクラスのインダクタが必要であり、このインダクタをIC内に設けることは現実的ではない。そこで、本技術のシンク機器2においては、図4に示すように、FB201の代わりに抵抗素子R31がIC内に設けられる。部品がIC内に実装されることにより、上り信号送信回路42と下り信号受信回路43は、ICの共通端子81を介して伝送路3と接続される。すなわち、上り信号送信回路42は、共通端子81を介して上り信号を送信し、下り信号受信回路43は、伝送路3からの下り信号を共通端子81を介して受信する。したがって、ICの端子を削減することが可能となる。また、周辺部品を削減することにより実装面積を小さくすることが可能となる。
 しかしながら、抵抗素子R31は、FB201のように、低周波ではインピーダンスを小さくし、高周波ではインピーダンスを高くすることができず、インピーダンスが周波数によらずに一定である。したがって、上り信号送信回路42端で電圧振幅が大きくなり、電流源を構成するMOSトランジスタの能力を低下させることになるため、抵抗素子R31の抵抗値を大きくすることができない。このため、従来と比べて、下り側と上り側のアイソレーションを取ることが難しい。つまり、上り信号成分が下り信号に干渉しやすくなってしまう。
 そこで、本技術のシンク機器2においては、上り信号を生成する本回路61のレプリカ回路62から逆相信号を生成し、下り信号と逆相信号を加算することで、下り信号に含まれる上り信号成分をキャンセルする回路が設けられる。このような回路が設けられることにより、下り信号受信回路43は、上り信号成分が取り除かれた下り信号を後段に出力することが可能となる。
 はじめに、上り信号送信回路42の具体的な回路構成について説明する。上り信号送信回路42は、本回路61とレプリカ回路62により構成される。
 本回路61は、図3を参照して説明した上り信号送信回路42Aの構成と同様の回路構成を有する。例えば、スイッチ75とスイッチ78は、Highの状態でオンとなり、Lowの状態でオフとなる。スイッチ76とスイッチ77は、Lowの状態でオンとなり、Highの状態でオフとなる。
 レプリカ回路62は、本回路61の出力電流を所定の縮小率で縮小したレプリカの回路である。レプリカ回路62として、本回路61の出力電流を例えば1/40にダウンスケーリングした回路が使用される。出力電流をダウンスケーリングした回路が使用されることにより、レプリカ回路62の回路面積を削減することが可能となる。レプリカ回路62として、本回路61のサイズと同じサイズの回路を使用することも可能である。
 レプリカ回路62は、本回路61と同様に、プッシュプル構成であり、電流源91乃至94に対するスイッチ95乃至98のスイッチングにより電流が流れ出たり流れ込んだりする構成を有する。電流源91乃至94の出力電流I11/I12は、本回路61の電流源71乃至74の出力電流I1/I2を1/40の縮小率で縮小した値となる。
 スイッチ95乃至98としては、例えば、MOSFETが用いられる。例えば、スイッチ95とスイッチ98は、Highの状態でオンとなり、Lowの状態でオフとなる。スイッチ96とスイッチ97は、Lowの状態でオンとなり、Highの状態でオフとなる。レプリカ回路62には、抵抗素子R11に対応する抵抗素子R12が設けられる。
 次に、下り信号受信回路43の具体的な回路構成について説明する。下り信号受信回路43の入力は、抵抗素子R31を介して、本回路61の出力側と接続される。下り信号受信回路43の入力は、抵抗素子R41で終端されている。この抵抗素子R41の前段に容量素子C11が入っており、これが本回路61側のHPF51を構成している。このHPF51が、下り信号受信回路43に入力される本回路61からの上り信号を減衰させる。
 図3を参照して説明した下り信号受信回路43Aにおいては、抵抗素子R21がGNDに接地されている。この構成の場合、次段の回路の入力にNMOS(Negative-channel MOS)を設けることができず、高周波回路を組む上で不利となる。そのため、後段の容量素子C51で構成されるHPFで直流成分をカットし、別途VDD基準のバイアス回路を設けた構成とされている。
 本技術の下り信号受信回路43においても、同様の構成にすることも可能だが、2段の容量素子がシリーズに入ることで、寄生容量により減衰される信号の割合が増えてしまうことがある。これを避けるため、抵抗素子R41は、VDD-V11にバイアスされたLDO(Low Dropout)回路で接地される。これにより、1段の容量素子で次段の回路のバイアスを作ることが可能となる。
 レプリカ回路62の出力側には、抵抗素子R51が設けられる。レプリカ回路62の出力は、抵抗素子R52で終端され、容量素子C21を介して抵抗素子R61で終端されている。容量素子C21と抵抗素子R61により、レプリカ回路62側のHPF52が構成される。このHPF52が、下り信号受信回路43に入力されるレプリカ回路62からの出力信号を減衰させる。抵抗素子R61も、VDD-V11にバイアスされたLOD回路で接地される。
 本回路61側のHPF51を構成する容量素子C11は、ICに実装する際に相応の面積を必要とするような容量値を有する。下り信号受信回路43においては、レプリカ回路62側のHPF52を構成する容量素子C21の容量値を、レプリカ回路62の出力電流の縮小率である1/40にダウンスケーリングした値とすることによって、容量素子C11の実装面積が削減される。
 また、下り信号受信回路43においては、HPF52のカットオフ周波数HPF-fcを、次式(1)により示されるHPF51のカットオフ周波数HPF-fcと同じにするために、HPF52を構成する抵抗素子R61の抵抗値が、HPF51を構成する抵抗素子R41の抵抗値の40倍の値となるように調整される。HPF52のカットオフ周波数HPF-fcは、次式(2)により示される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、レプリカ回路62の出力電流が本回路61の出力電流の1/40の値になるように調整されているため、本回路61側のHPF51の入力の電圧レベルに基づいて、レプリカ回路62側のHPF52の入力の電圧レベルが、抵抗素子R51,R52により調整される必要がある。
 例えば、次式(3)により示されるレプリカ回路62側のHPF52の入力の電圧レベルが、次式(4)により示される本回路61側のHPF51の入力の電圧レベルと略同じになるように、抵抗素子R51と抵抗素子R52の抵抗値が決定される。なお、式(3)と式(4)において、IBCは、本回路61の出力電流を示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 下り信号受信回路43において、HPF51を通過した、上り信号成分を含む下り信号と、HPF52を通過したレプリカ回路62からの出力信号の逆相信号は、キャンセラ回路101に供給される。
 キャンセラ回路101は、下り信号と、レプリカ回路62からの出力信号の逆相信号とを加算する。
 図5は、上り信号と下り信号の伝送帯域の例を示す図である。図5の破線は、HPFのフィルタ特性を示す。
 図5のAにおいては、従来のデータ伝送システムにおける上り信号と下り信号の伝送帯域の例が示されている。従来、図5のAに示すように、上り信号の伝送帯域として、下り信号受信回路43Aに設けられたHPFの減衰域の周波数帯が用いられ、下り信号の伝送帯域として、HPFの通過域と遷移域の周波数帯が用いられる。
 昨今の映像の高画素化の流れにより、図5のBに示すように、上り信号と下り信号の伝送帯域はそれぞれ広帯域化されている。また、上述したように、本技術のシンク機器2においては、FB201の代わりに抵抗素子R31が、上り信号送信回路42と下り信号受信回路43の間に設けられるため、上り信号成分が下り信号に干渉しやすくなってしまう。
 したがって、図5の楕円で囲んで示すように、上り信号の伝送帯域の一部として、下り信号受信回路43に設けられたHPF51の例えば遷移域の周波数帯が用いられることになり、HPF51により上り信号を完全に減衰させることができない。上り信号と下り信号を分離するためにHPF51のみを用いると、HPF51を通過した上り信号成分が、下り信号受信回路43へのノイズとなり、下り信号受信回路43の受信感度が劣化することになる。
 図6は、本技術のデータ伝送システムにおける上り信号と下り信号の流れを示す図である。
 図6の白抜き矢印に示すように、下り信号送信回路12からの下り信号は、HPF51を通過して下り信号受信回路43のキャンセラ回路101に供給される。また、下り信号の一部は、LPF21を通過して上り信号受信回路13に供給される。
 図6の色付き矢印に示すように、上り信号送信回路42の本回路61からの上り信号は、LPF21を通過して上り信号受信回路13に供給される。また、上り信号の一部は、HPF51を通過してキャンセラ回路101に供給される。
 さらに、図6の色付き矢印に示すように、上り信号送信回路42のレプリカ回路62からの出力信号の一部がHPF52を通過し、HPF52を通過した出力信号の逆相信号がキャンセラ回路101に供給される。
 キャンセラ回路101は、HPF51を通過してきた信号と、HPF52を通過してきた信号の逆相信号を加算することで、HPF51を通過してきた信号に含まれる上り信号成分をキャンセルし、ノイズを低減することが可能となる。
 また、上述したように、下り信号受信回路43においては、HPF51を構成する抵抗素子R41がLDO回路で接地されるため、1段の容量素子によりHPF51を構成することができ、寄生容量による信号の減衰を抑制することが可能となる。
 以上のように、1対の信号線を用いてAC結合された双方向伝送路である伝送路3を介して、高周波の信号を伝送する際に生じるノイズを低減することができる。したがって、上り信号と下り信号の伝送帯域間の周波数差が小さい場合においても、高周波の信号を用いて高速な通信を実現することが可能となり、より好適なデータ伝送を実現することができる。
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
<構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子と、
 前記伝送路からの前記第1の信号を前記共通端子を介して受信する受信回路と、
 前記第2の信号を前記共通端子を介して送信する送信回路と
 を備えるデータ伝送装置。
(2)
 前記受信回路は、前記共通端子を介して伝送される前記第1の信号と前記第2の信号を周波数で分離するフィルタ回路を備える
 前記(1)に記載のデータ伝送装置。
(3)
 前記フィルタ回路は、前記第2の信号を減衰させる
 前記(2)に記載のデータ伝送装置。
(4)
 前記フィルタ回路は、第1の容量と第1の抵抗により構成される第1のHPFである
 前記(3)に記載のデータ伝送装置。
(5)
 前記受信回路は、前記第1のHPFを通過した信号と、前記送信回路のレプリカ回路からの出力信号の逆相信号とを加算するキャンセラ回路をさらに備える
 前記(4)に記載のデータ伝送装置。
(6)
 前記送信回路は、前記レプリカ回路を備える
 前記(5)に記載のデータ伝送装置。
(7)
 前記レプリカ回路は、前記送信回路の出力電流を所定の縮小率で縮小した回路である
 前記(5)または(6)に記載のデータ伝送装置。
(8)
 前記受信回路は、前記第1のHPFのカットオフ周波数と同じカットオフ周波数を有する第2のHPFをさらに備え、
 前記キャンセラ回路は、前記第1のHPFを通過した信号と、前記第2のHPFを通過した前記レプリカ回路からの出力信号の逆相信号とを加算する
 前記(7)に記載のデータ伝送装置。
(9)
 前記第2のHPFは、前記第1の容量の容量値を、前記レプリカ回路の出力電流の縮小率で縮小した第2の容量と、前記第1の抵抗の抵抗値を、前記レプリカ回路の出力電流の縮小率に対応する倍率で増大させた第2の抵抗とにより構成される
 前記(8)に記載のデータ伝送装置。
(10)
 前記受信回路は、前記第2のHPFに入力される前記レプリカ回路の出力信号の電圧レベルに基づく電圧レベルを、前記共通端子を介して伝送される前記送信回路からの前記第2の信号の電圧レベルに調整する抵抗をさらに備える
 前記(8)または(9)に記載のデータ伝送装置。
(11)
 前記第1の抵抗は、所定の電圧にバイアスされたLDO回路を介して接地される
 前記(4)乃至(10)のいずれかに記載のデータ伝送装置。
(12)
 前記伝送路で伝送されるデータは映像データである
 前記(1)乃至(11)のいずれかに記載のデータ伝送装置。
(13)
 前記映像データの受信先の装置である
 前記(12)に記載のデータ伝送装置。
(14)
 前記映像データは、GVIF(登録商標)規格に基づいて伝送される
 前記(12)または(13)に記載のデータ伝送装置。
(15)
  第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子と、
  前記伝送路からの前記第1の信号を前記共通端子を介して受信する下り信号受信回路と、
  前記第2の信号を前記共通端子を介して送信する上り信号送信回路と
 を備えるデータ受信装置と、
  前記第1の信号を送信する下り信号送信回路と、
  前記伝送路からの前記第2の信号を受信する上り信号受信回路と
 を備えるデータ送信装置と
 を有するデータ伝送システム。
 1 ソース機器, 2 シンク機器, 3 伝送路, 11 下り送信処理部, 12 下り信号送信回路, 13 上り信号受信回路, 14 上り受信処理部, 21 LPF, 41 上り送信処理部, 42 上り信号送信回路, 43 下り信号受信回路, 44 下り受信処理部, 51,52 HPF, 61 本回路, 62 レプリカ回路, 81 共通端子, 101 キャンセラ回路

Claims (15)

  1.  第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子と、
     前記伝送路からの前記第1の信号を前記共通端子を介して受信する受信回路と、
     前記第2の信号を前記共通端子を介して送信する送信回路と
     を備えるデータ伝送装置。
  2.  前記受信回路は、前記共通端子を介して伝送される前記第1の信号と前記第2の信号を周波数で分離するフィルタ回路を備える
     請求項1に記載のデータ伝送装置。
  3.  前記フィルタ回路は、前記第2の信号を減衰させる
     請求項2に記載のデータ伝送装置。
  4.  前記フィルタ回路は、第1の容量と第1の抵抗により構成される第1のHPFである
     請求項3に記載のデータ伝送装置。
  5.  前記受信回路は、前記第1のHPFを通過した信号と、前記送信回路のレプリカ回路からの出力信号の逆相信号とを加算するキャンセラ回路をさらに備える
     請求項4に記載のデータ伝送装置。
  6.  前記送信回路は、前記レプリカ回路を備える
     請求項5に記載のデータ伝送装置。
  7.  前記レプリカ回路は、前記送信回路の出力電流を所定の縮小率で縮小した回路である
     請求項5に記載のデータ伝送装置。
  8.  前記受信回路は、前記第1のHPFのカットオフ周波数と同じカットオフ周波数を有する第2のHPFをさらに備え、
     前記キャンセラ回路は、前記第1のHPFを通過した信号と、前記第2のHPFを通過した前記レプリカ回路からの出力信号の逆相信号とを加算する
     請求項7に記載のデータ伝送装置。
  9.  前記第2のHPFは、前記第1の容量の容量値を、前記レプリカ回路の出力電流の縮小率で縮小した第2の容量と、前記第1の抵抗の抵抗値を、前記レプリカ回路の出力電流の縮小率に対応する倍率で増大させた第2の抵抗とにより構成される
     請求項8に記載のデータ伝送装置。
  10.  前記受信回路は、前記第2のHPFに入力される前記レプリカ回路の出力信号の電圧レベルに基づく電圧レベルを、前記共通端子を介して伝送される前記送信回路からの前記第2の信号の電圧レベルに調整する抵抗をさらに備える
     請求項8に記載のデータ伝送装置。
  11.  前記第1の抵抗は、所定の電圧にバイアスされたLDO回路を介して接地される
     請求項4に記載のデータ伝送装置。
  12.  前記伝送路で伝送されるデータは映像データである
     請求項1に記載のデータ伝送装置。
  13.  前記映像データの受信先の装置である
     請求項12に記載のデータ伝送装置。
  14.  前記映像データは、GVIF(登録商標)規格に基づいて伝送される
     請求項12に記載のデータ伝送装置。
  15.   第1の信号と、前記第1の信号と逆方向に伝送される、前記第1の信号と異なる周波数帯域を有する第2の信号とが伝送される伝送路に接続される共通端子と、
      前記伝送路からの前記第1の信号を前記共通端子を介して受信する下り信号受信回路と、
      前記第2の信号を前記共通端子を介して送信する上り信号送信回路と
     を備えるデータ受信装置と、
      前記第1の信号を送信する下り信号送信回路と、
      前記伝送路からの前記第2の信号を受信する上り信号受信回路と
     を備えるデータ送信装置と
     を有するデータ伝送システム。
PCT/JP2022/010491 2021-09-08 2022-03-10 データ伝送装置およびデータ伝送システム WO2023037607A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023546753A JPWO2023037607A1 (ja) 2021-09-08 2022-03-10
CN202280059417.8A CN117957808A (zh) 2021-09-08 2022-03-10 数据传输设备及数据传输系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021145925 2021-09-08
JP2021-145925 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023037607A1 true WO2023037607A1 (ja) 2023-03-16

Family

ID=85507458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010491 WO2023037607A1 (ja) 2021-09-08 2022-03-10 データ伝送装置およびデータ伝送システム

Country Status (3)

Country Link
JP (1) JPWO2023037607A1 (ja)
CN (1) CN117957808A (ja)
WO (1) WO2023037607A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505211A (ja) * 2002-10-30 2006-02-09 カオス テレコム,インク. 周波数分割二重化方式またはそうでないデジタル通信システム用の多段非線形エコーキャンセラ
WO2020070974A1 (ja) * 2018-10-02 2020-04-09 ソニーセミコンダクタソリューションズ株式会社 送信装置、受信装置及び送受信システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505211A (ja) * 2002-10-30 2006-02-09 カオス テレコム,インク. 周波数分割二重化方式またはそうでないデジタル通信システム用の多段非線形エコーキャンセラ
WO2020070974A1 (ja) * 2018-10-02 2020-04-09 ソニーセミコンダクタソリューションズ株式会社 送信装置、受信装置及び送受信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SALERNO S., MACII E., PONCINO M.: "Energy-efficient bus encoding for LCD digital display interfaces", IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 51, no. 2, 1 May 2005 (2005-05-01), NEW YORK, NY, US , pages 624 - 634, XP093043861, ISSN: 0098-3063, DOI: 10.1109/TCE.2005.1468010 *

Also Published As

Publication number Publication date
CN117957808A (zh) 2024-04-30
JPWO2023037607A1 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
US8222919B2 (en) Multichannel interfacing device having a termination circuit
US9077527B2 (en) Full-duplex differential serial link interface for data transferring
KR100672987B1 (ko) 고속 아날로그 인벨롭 디텍터
JP2013038646A (ja) 信号伝送装置、受信回路、及び、電子機器
US8346096B2 (en) Amplifier, optical receiver circuit, optical module and data exchange system
EP0664937A1 (en) Line driver with adaptive output impedance
US7864718B2 (en) Echo cancellation device for full duplex communication systems
WO2005112286A2 (en) Wireless transceiver and method of operating the same
US11894959B2 (en) Ultra-high-speed PAM-N CMOS inverter serial link
US9985684B2 (en) Passive equalizer capable of use in high-speed data communication
JP2002344300A (ja) インピーダンス調整回路
EP3526903B1 (en) Coaxial data communication with reduced emi
WO2023037607A1 (ja) データ伝送装置およびデータ伝送システム
JP2009290843A (ja) 信号伝送装置
US6970515B1 (en) Line driver for asymmetric digital subscriber line system
US8063696B2 (en) Receiving circuit and receiving system
US7307965B2 (en) Echo cancellation device for full duplex communication systems
US9459648B2 (en) AC coupled single-ended LVDS receiving circuit comprising low-pass filter and voltage regulator
US10528324B2 (en) Virtual hybrid for full duplex transmission
US8030966B2 (en) Very high efficiency transmission line driver
EP1122923A2 (en) Line driver with transformer coupling and impedance control
JP2011130281A (ja) 受信装置および送受信システム
WO2013094416A1 (ja) 高周波モジュール及びそれを用いた携帯端末
JP2006157445A (ja) 送信切り換え回路および半導体集積回路
JPH0211045A (ja) デジタル通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546753

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059417.8

Country of ref document: CN