WO2023037059A1 - Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation - Google Patents
Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation Download PDFInfo
- Publication number
- WO2023037059A1 WO2023037059A1 PCT/FR2022/051498 FR2022051498W WO2023037059A1 WO 2023037059 A1 WO2023037059 A1 WO 2023037059A1 FR 2022051498 W FR2022051498 W FR 2022051498W WO 2023037059 A1 WO2023037059 A1 WO 2023037059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- water
- pyrolysis
- composition
- strong base
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 150000002430 hydrocarbons Chemical class 0.000 title description 11
- 229930195733 hydrocarbon Natural products 0.000 title description 10
- 239000004215 Carbon black (E152) Substances 0.000 title description 7
- 239000012736 aqueous medium Substances 0.000 title description 5
- 239000000203 mixture Substances 0.000 claims abstract description 68
- 239000004033 plastic Substances 0.000 claims abstract description 59
- 229920003023 plastic Polymers 0.000 claims abstract description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000002585 base Substances 0.000 claims abstract description 47
- 239000003513 alkali Substances 0.000 claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims abstract description 16
- 238000005406 washing Methods 0.000 claims abstract description 15
- 238000009903 catalytic hydrogenation reaction Methods 0.000 claims abstract description 8
- 150000001768 cations Chemical class 0.000 claims abstract description 8
- 239000003921 oil Substances 0.000 claims description 94
- 235000019198 oils Nutrition 0.000 claims description 94
- 238000000197 pyrolysis Methods 0.000 claims description 56
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- 239000003463 adsorbent Substances 0.000 claims description 21
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 18
- -1 alkaline-earth metal cation Chemical class 0.000 claims description 16
- 239000000460 chlorine Substances 0.000 claims description 15
- 229910052801 chlorine Inorganic materials 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 13
- 239000002798 polar solvent Substances 0.000 claims description 13
- 239000002028 Biomass Substances 0.000 claims description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 10
- 229910052794 bromium Inorganic materials 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Substances [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 10
- 239000004927 clay Substances 0.000 claims description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910003294 NiMo Inorganic materials 0.000 claims description 7
- 238000010908 decantation Methods 0.000 claims description 7
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000000806 elastomer Substances 0.000 claims description 7
- 238000005984 hydrogenation reaction Methods 0.000 claims description 7
- 229910052753 mercury Inorganic materials 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 229910021536 Zeolite Inorganic materials 0.000 claims description 6
- 229910001593 boehmite Inorganic materials 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 238000005119 centrifugation Methods 0.000 claims description 6
- 238000004821 distillation Methods 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000010457 zeolite Substances 0.000 claims description 6
- 229910052785 arsenic Inorganic materials 0.000 claims description 5
- 239000011111 cardboard Substances 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 4
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 239000002808 molecular sieve Substances 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 230000001172 regenerating effect Effects 0.000 claims description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 3
- 229910052586 apatite Inorganic materials 0.000 claims description 3
- 229910001680 bayerite Inorganic materials 0.000 claims description 3
- 210000004534 cecum Anatomy 0.000 claims description 3
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 3
- 238000000855 fermentation Methods 0.000 claims description 3
- 230000004151 fermentation Effects 0.000 claims description 3
- 235000013305 food Nutrition 0.000 claims description 3
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 3
- 229960001545 hydrotalcite Drugs 0.000 claims description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 239000002029 lignocellulosic biomass Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 210000002741 palatine tonsil Anatomy 0.000 claims description 3
- 239000011087 paperboard Substances 0.000 claims description 3
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 claims description 3
- 239000011029 spinel Substances 0.000 claims description 3
- 235000019737 Animal fat Nutrition 0.000 claims description 2
- 240000002791 Brassica napus Species 0.000 claims description 2
- 244000188595 Brassica sinapistrum Species 0.000 claims description 2
- 241001520808 Panicum virgatum Species 0.000 claims description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 2
- 239000000292 calcium oxide Substances 0.000 claims description 2
- 239000010763 heavy fuel oil Substances 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 244000005700 microbiome Species 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 239000003549 soybean oil Substances 0.000 claims description 2
- 235000012424 soybean oil Nutrition 0.000 claims description 2
- 239000003784 tall oil Substances 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 2
- 239000008158 vegetable oil Substances 0.000 claims description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims 2
- 241001474374 Blennius Species 0.000 claims 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims 1
- 235000006008 Brassica napus var napus Nutrition 0.000 claims 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims 1
- 229910019440 Mg(OH) Inorganic materials 0.000 claims 1
- 235000004443 Ricinus communis Nutrition 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 229910052783 alkali metal Inorganic materials 0.000 abstract description 3
- 150000001340 alkali metals Chemical class 0.000 abstract description 3
- 238000004230 steam cracking Methods 0.000 abstract description 3
- 238000004523 catalytic cracking Methods 0.000 abstract description 2
- 238000004517 catalytic hydrocracking Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 14
- 239000002699 waste material Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000013502 plastic waste Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 5
- 239000010779 crude oil Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 235000011007 phosphoric acid Nutrition 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 239000012263 liquid product Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000010815 organic waste Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 239000010791 domestic waste Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 2
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- QVHMSMOUDQXMRS-UHFFFAOYSA-N PPG n4 Chemical compound CC(O)COC(C)COC(C)COC(C)CO QVHMSMOUDQXMRS-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- 150000000475 acetylene derivatives Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 238000007324 demetalation reaction Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000001760 fusel oil Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000010808 liquid waste Substances 0.000 description 1
- 239000010807 litter Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/10—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including alkaline treatment as the refining step in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G17/00—Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge
- C10G17/02—Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge with acids or acid-containing liquids, e.g. acid sludge
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G19/00—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
- C10G19/02—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with aqueous alkaline solutions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/08—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/09—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/10—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/32—Selective hydrogenation of the diolefin or acetylene compounds
- C10G45/34—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
- C10G45/36—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/38—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
- C10G55/04—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/34—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
- C10G9/36—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
- C10G2300/1014—Biomass of vegetal origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
Definitions
- TITLE PROCESS FOR PURIFYING HYDROCARBON CHARGE IN AQUEOUS MEDIUM AND USE
- the present invention relates to a process for the purification of hydrocarbon feedstock and its subsequent use in refining and petrochemical processes.
- the process according to the invention makes it possible to purify feedstocks containing plastic pyrolysis oils and/or plastic hydrothermal liquefaction oils, in particular with a view to their use in a steam cracking process.
- Patent JP3776335 discloses a process for dechlorination and denitrogenation of an oil resulting from the catalytic or thermal cracking of plastic waste which is treated at different temperatures up to 425°C for 30 minutes in the presence of an aqueous solution of a compound alkali of an alkali or alkaline earth metal at a pH greater than or equal to 7. All non-radioactive natural alkali or alkaline earth metal hydroxides are tested. The reaction product is then separated from the alkaline aqueous solution by liquid-liquid separation with ethyl ether.
- Patent application WO2012/069467 claims a process for eliminating siloxanes contained in a plastic pyrolysis oil by heat treatment between 200 and 350°C in the presence of an alkali metal hydroxide in the solid state or in solution.
- the use of calcium hydroxide at 5% by weight at 225°C does not make it possible to obtain a reduction in the siloxane content (table 5, p.12 and lines 9 to 11, p.13).
- the pyrolysis oil is separated by distillation under reduced pressure.
- Patent Fl 128848 describes a sequence of processes comprising a heat treatment of a plastic pyrolysis oil at at least 200° C. in the presence of an aqueous alkaline solution. At the end of the reaction, the pyrolysis oil is separated from the alkaline aqueous phase. A final hydrotreatment makes it possible to obtain a steam cracker charge which is optionally washed with an acid solution before introduction into the steam cracker.
- Patent application WO2020/020769 claims a sequence of processes for purifying a composition comprising at least 20 ppm of chlorine. Many recyclable liquid wastes can be treated, including plastic pyrolysis oils. The process sequence comprises a heat treatment of the charge in the presence of an alkali metal hydroxide in order to obtain a reduction of at least 50% of the chlorine content with respect to the charge, followed by a hydrotreatment in order to obtain a new reduction of at least 50% of the chlorine content.
- Patent application WO2021/105326 claims a process for recovering liquefied plastic waste comprising a step of pretreating the liquefied plastic waste by bringing it into contact with an aqueous medium having a pH of at least 7 at a temperature of 200°C or more.
- the proposed solution includes the use of a solution of NaOH in water.
- the separation of the aqueous and organic phases is carried out by physical (centrifugation) or chemical methods (addition of additives to aid separation, for example non-aqueous solvents, addition of an additional quantity of the aqueous medium used for setting in contact with or an aqueous medium having a different alkaline substance concentration), or by gravity.
- the patent application US20140303421 A1 describes a process for treating synthetic crude oils which makes it possible to lower the acid content and/or the presence of particles and contaminants containing heteroatoms.
- the synthetic crude oil is washed with a basic aqueous solution having a pH not higher than 10 in order to avoid saponification.
- the synthetic crude oil is then separated from the aqueous solution.
- the synthetic crude oil is washed with a first solution to remove particulates, contaminants containing metals or metalloids or alkali metals.
- the first solution is acidic to neutralize the alkaline species and absorb acids or metals, metalloids, organic polar molecules or other impurities and/or the first solution contains chelating agents to eliminate the metals.
- the synthetic crude oil thus washed is then separated and then washed with a second basic aqueous solution having a pH not higher than 10 before being separated again.
- Patent application WO2020239729 describes a process for purifying plastic pyrolysis oils which includes a purification step in which the oil is subjected to a hydrothermal treatment at 150-450°C with water or water at pH>7. The oil is then separated from the aqueous phase and then sent without any further intermediate treatment to hydrotreatment, alone or as a mixture, in the presence of a catalyst and hydrogen in order to carry out one or more hydrogenation, hydrodeoxygenation, hydrodesulfurization, hydrodenitrogenation, hydrodechlorination, hydrodearomatization or hydroisomerization.
- the invention aims to propose a process for purifying plastic liquefaction oil making it possible to facilitate its purification by limiting the quantity of strong base used while maintaining high reduction performance, including for the reduction of the content of alkali and/or alkaline-earth metals resulting from the treatment of plastic liquefaction oil with a strong base.
- the invention relates to a process for reducing the heteroatom concentration of a composition comprising a plastic liquefaction oil containing at least 20 ppm by mass of chlorine as measured according to standard ASTM D7359-18, comprising:
- composition bringing said composition into contact with 0.1-50% by mass of a strong base comprising an alkali or alkaline-earth metal cation in the presence of water, for 1 minute to 20 minutes at a temperature of at most 450°C,
- step (b) washing with water at neutral or acidic pH of the product resulting from step (a).
- the plastic liquefaction oil can be a plastic pyrolysis oil, a hydrothermal plastic liquefaction oil or a mixture of the two, for example a plastic pyrolysis oil.
- step (a) is implemented without adding a solvent other than water or a solvent optionally already present in the composition.
- step (a) the composition is brought into contact with 0.1 to 50% by mass of a strong base relative to the mass of the composition introduced.
- the composition is brought into contact with 0.1 to 15% by mass of a strong base in the presence of water, more preferably with 1 to 15% by mass of a strong base, more preferably with 1 to 10% by weight of a strong base.
- the strong base added in step (a) is in solution in water.
- the composition can be brought into contact with an aqueous solution of a strong base comprising an alkali or alkaline-earth metal cation.
- the man of profession will then choose a sufficient quantity of water to dissolve/solubilize the strong base, preferably the smallest possible quantity of water, or just sufficient to saturate the water with the strong base.
- the strong base added in step (a) is in solution in water, and the strong base content of the water is from 0.1 to 50% by mass, preferably from 25% to 50% by mass more preferably from 40 to 50% by mass, even more preferably, the water is saturated with a strong base, in particular the water contains just a sufficient quantity of strong base to obtain a saturated solution.
- the ratio by volume of the strong base in solution in water/composition i.e. the ratio by volume of the mixture (strong base + water)/composition, may be 0.1/99 .9 to 80/20, from 1/99 to 80/20, from 1/99 to 70/30, from 1/99 to 65/35, from 1/99 to 60/40, from 1/99 to 50/ 50, or in any interval defined by any two of the aforementioned terminals.
- the composition may also comprise an oil from the pyrolysis or hydrothermal liquefaction of biomass, in particular an oil from the pyrolysis or hydrothermal liquefaction of biomass such as Panicum virgatum, a tall oil, a waste food oil, an animal fat, an oil vegetable oil such as a rapeseed, canola, castor, palm or soybean oil, an oil extracted from an algae, an oil extracted from a fermentation of oleaginous microorganisms such as oleaginous yeasts, an oil from pyrolysis or hydrothermal liquefaction of biomass such as a lignocellulosic biomass such as an oil from the pyrolysis of wood, paper and/or cardboard, an oil obtained by pyrolysis or hydrothermal liquefaction of crushed used furniture, an oil from the pyrolysis or hydrothermal liquefaction of elastomers, for example possibly vulcanized latex or tires, as well as mixtures thereof.
- the composition may comprise at least 2% by mass of a plastics oil, or even at least 1% by mass of plastics oil. The remainder can then be composed of at most 98% by mass, or even at most 99% by mass of a diluent or solvent such as a hydrocarbon and/or of one or more of the components listed above.
- the composition may comprise at least 5 wt%, preferably at least 10 wt%, more preferably at least 25 wt% plastics oil, preferably at least 50 wt%, more preferably 75% by mass, even more preferably at least 90% by mass of plastics oil.
- the composition may comprise at most 80% m or 90% m or 95% m or 100% m of plastic liquefaction oil.
- the bringing into contact is preferably carried out for a period of 1 minute to 20 minutes, preferably from 1 minute to 16 minutes, at a temperature of 50 to 450° C., preferably of 50 to 350° C. or of 90 to 350°C, more preferably from 150 to 350°C, even more preferably from 50 to 250°C, from 50 to 225°C or from 50 to 200°C, and at an absolute pressure of 0.1 to 100 bar, preferably from 1 to 50 bars.
- the duration of bringing into contact may be longer (for example from 30 minutes to 1 hour, or even more), but does not make it possible to improve the quality of the products obtained.
- the bringing into contact is carried out for a period of 1 minute to 20 minutes, preferably from 1 minute to 16 minutes, at a temperature of at most 250° C., more preferably at most 225°C, even more preferably at most 200°C.
- the contacting can be carried out at a temperature of at least 50°C, preferably of at least 90°C, more preferably of at least 150°C.
- the contacting can be carried out at an absolute pressure of 0.1 to 100 bars, preferably from 1 to 50 bars.
- composition can advantageously be brought into contact with:
- a strong base comprising an alkali or alkaline earth metal cation in the presence of water, preferably with 1 to 15% by mass of a strong base, more preferably with 1 to 10% by mass of a strong base (mass percentages of strong base relative to the composition), and/or
- a preferred strong base can be chosen from LiOH, NaOH, CsOH, Ba(OH)2, Na2 ⁇ D, KOH, K2O, CaO, Ca(OH)2, MgO, Mg(OH)2 and mixtures thereof.
- a more preferred strong base can be chosen from NaOH, KOH and their mixtures, in particular for the implementation of the particularly preferred embodiment.
- the water used does not contain a base and in particular does not contain a strong base comprising an alkali or alkaline-earth metal cation.
- An acid pH can be obtained by adding one or more organic or inorganic acids.
- acids Usable organics include citric acid (CeHsO?), formic acid (CH 2 O 2 ), acetic acid (CH 3 COOH).
- inorganic acids are hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), phosphoric acid (H3PO4), sulfamic acid (H3NSO3).
- Step (b) can be carried out at a temperature of 0° to 80°C, for example from 0° to 60°C, preferably from 0° to 40°C, more preferably from 0° to 30 °C, especially without external heating. Step (b) is typically carried out at atmospheric pressure.
- the water/composition volume ratio with the strong base may be from 10/90 to 90/10, from 20/80 to 80/20, from 30/70 to 70/30, from 35/65 to 65/35, from 35/65 to 60/40, from 40/60 to 60/40, or even within any interval defined by any two of the aforementioned limits.
- Step (b) may comprise, or consist of, bringing the product resulting from step (a) into contact with water by any means known in the prior art.
- the product from step (a) and the water can be introduced into tanks, reactors or mixers commonly used in the profession and the two components can be mixed.
- Contacting may include vigorous agitation of the two components by a mixing device.
- the two components can be mixed together by agitation or by shaking.
- the contacting can be carried out in an enclosure in which the two components circulate against the current. This contacting may occur more than once, in particular under the conditions presented above.
- Step (b) can be implemented on the product directly resulting from step (a) (comprising the strong base in solution in water and the product resulting from bringing the composition into contact), without step intermediate, or on the product resulting from step (a) having undergone a separation step.
- the method according to the invention comprises, between step (a) and (b), a separation step between the strong base comprising the alkali or alkaline-earth metal cation in solution in the water and the product resulting from bringing said composition into contact.
- the product resulting from bringing said composition into contact corresponds to a composition comprising a plastic pyrolysis oil having a lower concentration of heteroatoms than the initial composition. It is thus a purified composition.
- the separation between the strong base in solution in water and the product resulting from stage (a) is advantageously carried out by (i) centrifugation, (ii) decantation, or (iii) by the combination of these two stages.
- this separation step makes it possible to separate an organic phase, corresponding to the product resulting from the contacting of step (a), and an aqueous phase containing the strong base comprising the alkali or alkaline-earth metal cation. It can be preceded by a solids separation step by (i) filtration, (ii) centrifugation or (iii) a combination of the two steps.
- This solids separation step can make it possible to facilitate the subsequent separation of the organic and aqueous phases by eliminating all or part of the solids present in the product resulting from step (a).
- the strong base in solution in the water separated during this separation step can be returned (recycled), partially or totally, in step (a).
- the separation step makes it possible to reduce part of the content of the product resulting from step (a) in alkaline or alkaline-earth cation.
- the remaining alkali or alkaline-earth cation content (or all or substantially all of the alkali or alkaline-earth cation content when this separation step is absent) is removed during washing step (b).
- the composition thus treated can be used without causing deactivation of catalysts used in subsequent catalytic treatment processes.
- Washing step (b) can make it possible to obtain a product having an alkaline or alkaline-earth cation content of less than or equal to 2 ppm (by mass).
- the invention may also comprise an additional step prior to step (a) of bringing into contact, in which said composition is subjected, in particular immediately before step (a), to (i) filtration, (ii) washing with a polar solvent, (iii) distillation, (iv) decantation, or (v) the combination of two, three or four of steps (i) to (iv).
- This preliminary step can make it possible to break down some of the impurities contained in the composition, such as oxygen, nitrogen, chlorine, sulfur or other heteroatoms.
- the reduction in the quantity of oxygen can make it possible to avoid the formation of solid and/or gels during step (b).
- the polar solvent/composition volume ratio can be from 10/90 to 90/10, from 20/80 to 80/20, from 30/70 to 70/30, from 35/65 to 65/35, from 35/65 to 60/40, from 40/60 to 60/40.
- the polar solvent can have a higher or lower density than the density of the composition comprising a plastic oil, in particular a plastic pyrolysis oil.
- the density of the polar solvent can be higher or lower by 3 to 50% than that of the composition.
- the polar solvent is also an immiscible solvent in the composition comprising a pyrolysis oil to be purified.
- the polar solvent (or a mixture of polar solvents where appropriate) is immiscible when its recovery rate is greater than or equal to 0.95.
- This recovery rate is defined as the ratio of the volume of extract to the volume of initial solvent, this extract being a phase containing the solvent, immiscible with the composition containing a pyrolysis oil, recovered after agitation then decantation of a mixture one part by volume of solvent with twenty-five parts by volume of the composition containing a pyrolysis oil to be purified, at atmospheric pressure and at a temperature of 20°C.
- this recovery rate can be determined by following the following procedure:
- polar solvent within the meaning of the present patent application covers all the chemical species, alone or as a mixture, capable of solvating a composition comprising a plastic oil, in particular a plastic pyrolysis oil, and comprising at least one carbon-hydrogen, carbon-halogen, carbon-chalcogen or carbon-nitrogen covalent bond and having a non-zero dipole moment.
- the polar solvent can thus contain one or more heteroatoms, in particular chosen from oxygen, sulfur and nitrogen, preferably oxygen.
- Acceptable polar solvents, immiscible with the composition comprising a plastics oil to be purified include compositions comprising hydrocarbon compounds which have heteroatoms in their molecular structure, for example (i) alcohols such as methanol and ethanol, and mixtures of alcohols resulting from fermentation, for example a mixture of isomers of butanol or a mixture of isomers of pentanol such as fusel oil (ii) ethers, for example cyclopentylmethyl ether or 1,4- dioxane, (iii) sulfur compounds, for example thiophene or dimethylsulfoxide, (iv) nitrogen compounds, for example N,N-dimethylformamide, (v) halogenated compounds, for example dichloromethane or chloroform, or else : water with an acidic, basic or neutral pH.
- hydrocarbon compounds which have heteroatoms in their molecular structure
- alcohols such as methanol and ethanol
- mixtures of alcohols resulting from fermentation for example
- An acid pH can be obtained by adding one or more organic or inorganic acids.
- organic acids include citric acid (CeHsO?), formic acid (CH 2 O 2 ), acetic acid (CH 3 COOH), sulfamic acid (H3NSO3).
- inorganic acids are hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), phosphoric acid (H3PO4).
- a basic pH can be achieved by adding alkali and alkaline earth metal oxides, alkali and alkaline earth hydroxides (e.g. NaOH, KOH, Ca(OH)2) and amines (e.g. triethylamine, ethylenediamine, ammonia).
- glycol ethers including in particular polyethylene glycol of chemical formula HO-(CH2-CH2-O) n -H with a mass-average molar mass of 90 to 800 g/mol, for example diethylene glycol and tetraethylene glycol, polypropylene glycol of chemical formula H[OCH(CH3)CH2] n OH with an average molar mass by mass of 130 to 800 g/mol, for example dipropylene glycol and tetrapropylene glycol, dialkyl formamides, in which the alkyl group can comprise from 1 with 8 or from 1 to 3 carbon atoms, in particular dimethyl formamide (DMF), the dialkyl sulfoxides, in which the alkyl group can comprise from 1 to 8 or from 1 to 3 carbon atoms, in particular dimethyl sulfoxide (DMSO) and sulfolane compounds comprising a furan cycle, cyclic carbonate esters, comprising in particular from 3 to 8 or from 3 to 4 carbon atoms, in particular
- One or more of the aforementioned solvents can be used. However, advantageously, only one of the aforementioned solvents can be used provided that it is immiscible with the composition containing a plastic oil, in particular a plastic pyrolysis oil, to be purified.
- the polar solvent may be a glycol ether, in particular polyethylene glycol with the chemical formula HO-(CH2-CH2-O) n -H with a mass-average molar mass of 90 at 800 g/mol or polypropylene glycol of chemical formula H[OCH(CH3)CH2] n OH with a mass-average molar mass of 130 to 800 g/mol, or a compound comprising a furan cycle, or a cyclic carbonate ester, in in particular propylene or ethylene carbonate, alone or as a mixture, preferably alone.
- a glycol ether in particular polyethylene glycol with the chemical formula HO-(CH2-CH2-O) n -H with a mass-average molar mass of 90 at 800 g/mol or polypropylene glycol of chemical formula H[OCH(CH3)CH2] n OH with a mass-average molar mass of 130 to 800 g/mol, or a compound comprising a furan cycle, or a
- the polar solvent is chosen from propylene carbonate, ethylene carbonate and polyethylene glycol of chemical formula HO-(CH2-CH 2 -O) n -H with an average molar mass by mass of 90 to 800 g/mol, alone or in a mixture, preferably alone.
- the invention may also include an additional step in which:
- step (vs). the product from the washing of step (b) undergoes catalytic hydrogenation in one or two stages.
- stage (c) is carried out in a first stage (c-1) in which the product resulting from the bringing into contact is hydrogenated at a temperature between 20 and 200° C., preferably between 30 and 90° C.
- step (c-2) in which the effluent from the step (c-1) is hydrogenated at a temperature of between 200 and 450°C, preferably between 200 and 340°C in the presence of hydrogen at an absolute pressure of between 20 and 140 bar, preferably between 30 and 60 bars and in the presence of a hydrogenation catalyst comprising NiMo (0.1-60% by weight) and/or CoMo (0.1-60% by weight).
- the product from step (b) or the effluent from step (c) is (d) preferably purified by passage through a solid adsorbent in order to reduce the content of at least one element from F, Cl, Br, I, O, N, S, Se, Si, P, As, Fe, Ca, Na, K, Mg and Hg and/or water content.
- the adsorbent can be operated in regenerative or non-regenerative mode, at a temperature below 400°C, preferably below 100°C, more preferably below 60°C, chosen from: (i) a silica gel, ( ii) a clay, (iii) a crushed clay, (iv) apatite, (v) hydroxyapatite and combinations thereof, (vi) an alumina, for example an alumina obtained by precipitation of boehmite, a calcined alumina such such as Ceralox ® from Sasol, (vii) boehmite, (viii) bayerite, (ix) hydrotalcite, (x) a spinel such as Pural ® or Puralox from Sasol, (xi) a promoted alumina, by example Selexsorb ® from BASF, an acid promoted alumina, an alumina promoted by a zeolite and/or by a metal such as Ni, Co, Mo or a combination of at least two of
- the adsorbent is regenerable, has a specific surface of at least 200 m 2 /g and is operated in a fixed bed reactor at less than 100° C. with a WH of 0.1 to 10 h' 1 .
- At least part of the product resulting from stage (b) or of the effluent resulting from stage (c) or (d) can be:
- WH Hourly Volume Velocity
- Specifying a numeric domain without decimals includes all whole numbers and, where appropriate, fractions thereof (for example, 1 to 5 may include 1 , 2, 3, 4 and 5 when referring to a number of elements, and may also include 1 .5, 2, 2.75 and 3.80, when reference is made to, for example, a measure.). Specifying a decimal also includes the decimal itself (for example, "from 1 .0 to 5.0" includes 1 .0 and 5.0). Any range of numeric values recited here also includes any subrange of numeric values mentioned above.
- % by weight and % by mass have an equivalent meaning and refer to the proportion of the mass of a product relative to 100g of a composition comprising it.
- plastic liquefaction oil or "liquefied plastic oil” or “plastic oil” designates the liquid products resulting from the pyrolysis of plastic and/or the hydrothermal liquefaction of plastic, alone or in a mixture and generally under form of plastic waste, optionally mixed with at least one other waste such as biomass, for example chosen from lignocellulosic biomass, paper and cardboard and/or elastomers, for example optionally vulcanized latex or tires.
- Biomass can be defined as an organic plant or animal product, including organic residues and waste. Biomass thus includes (i) biomass produced by surplus agricultural land, not used for human or animal food: dedicated crops, called energy crops; (ii) biomass produced by deforestation (forest maintenance) or the clearing of agricultural land; (iii) agricultural residues from cereal crops, vines, orchards, olive trees, fruits and vegetables, food residues, etc.; (iv) forest residues from forestry and wood processing; (v) agricultural residues from livestock (manure, slurry, litter, droppings, etc.); (vi) organic household waste (paper, cardboard, green waste, etc.); (vii) ordinary industrial organic waste (paper, cardboard, wood, putrescible waste, etc.).
- the liquefaction oil treated by the invention can be derived from the liquefaction of waste containing at least 1% m/m, optionally 1-50% m/m, 2-30% m/m, or in a range defined by two of these limits, of one or more of the aforementioned biomasses, residues and organic waste, and the remainder consisting of plastic waste, optionally mixed with elastomers, in particular in the form of waste.
- Elastomers are linear or branched polymers transformed by vulcanization into an infusible and insoluble weakly cross-linked three-dimensional network. They include natural or synthetic rubbers. They can be part of tire-type waste or any other household or industrial waste containing elastomers, natural and/or synthetic rubber, mixed or not with other components, such as plastics, plasticizers, fillers, vulcanizing agent, vulcanization accelerators, additives, etc.
- elastomeric polymers include ethylene-propylene copolymers, ethylene-propylene-diene terpolymer (EPDM), polyisoprene (natural or synthetic), polybutadiene, styrene-butadiene copolymers, isobutene-based polymers, chlorinated or brominated isobutylene isoprene copolymers, acrylonitrile butadiene (NBR) copolymers, and polychloroprenes (CR), polyurethanes, silicone elastomers , etc.
- EPDM ethylene-propylene-diene terpolymer
- polyisoprene naturally or synthetic
- polybutadiene polybutadiene
- styrene-butadiene copolymers isobutene-based polymers
- chlorinated or brominated isobutylene isoprene copolymers acrylonitrile butadiene (NBR) copolymers
- the plastic liquefaction oil treated by the invention can come from the liquefaction of waste containing at least 1% m/m, optionally from 1 to 50% m/m, from 2 to 30% m/m or in an interval defined by any two of these limits, of one or more aforementioned elastomers, in particular in the form of waste, the remainder being constituted by plastic waste, optionally mixed with biomass, residues and organic waste.
- plastic pyrolysis oil or “oil resulting from plastic pyrolysis” refers to the liquid products obtained after pyrolysis of thermoplastic, thermosetting or elastomeric polymers, alone or as a mixture and generally under the form of waste.
- the pyrolysis process must be understood as a thermal cracking process, typically carried out at a temperature of 300 to 1000°C or 400 to 700°C, carried out in the presence or not of a catalyst (for example fast pyrolysis, catalytic or not). , etc).
- hydrothermal plastic oil or “oil resulting from the hydrothermal liquefaction of plastic” refers to the liquid products obtained after hydrothermal liquefaction of plastic or waste plastic.
- the hydrothermal liquefaction process is typically carried out at a temperature of 250 to 500°C and at pressures of 10 to 25-40 MPa in the presence of water.
- Plastic pyrolyzed or resulting from hydrothermal liquefaction can be of any type.
- the plastic can be polyethylene, polypropylene, polystyrene, polyester, polyamide, polycarbonate, etc.
- These plastic liquefaction oils contain paraffins, i-paraffins (iso-paraffins), dienes, alkynes, olefins, naphthenes and aromatics.
- Plastic liquefaction oils also contain impurities such as chlorinated, oxygenated and/or silylated organic compounds, metals, salts, phosphorus compounds, sulfur, and nitrogen.
- composition of plastic pyrolysis oil or hydrothermal plastic liquefaction oil depends on the nature of the plastic pyrolyzed or treated by hydrothermal liquefaction and is essentially (in particular at more than 80% m/m, most often more than 90% m/m) consisting of hydrocarbons having 1 to 150 carbon atoms and impurities.
- a plastic liquefaction oil typically comprises 5 to 80% m/m of paraffins (including cyclo-paraffins), 10 to 95% m/m of unsaturated compounds (including olefins, dienes and acetylenes), from 5 to 70% m/m of aromatics. These contents can be determined by gas phase chromatography.
- a plastic liquefaction oil may in particular comprise one or more of the following heteroatom contents: from 0 to 8% m/m of oxygen (measured according to the ASTM D5622 standard), from 1 to 13,000 ppm of nitrogen (measured according to the standard ASTM D4629), from 2 to 10000ppm of sulfur (measured according to standard ISO 20846), from 1 to 10000ppm of metals (measured by ICP), from 50 to 6000ppm of chlorine (measured according to standard ASTM D7359-18), from 0 to 200 ppm bromine (measured according to ASTM D7359-18), 1 to 40 ppm fluorine (measured according to ASTM D7359-18), 1 to 2000 ppm silicon (measured by XRF).
- MAV (acronym for "Maleic Anhydric Value") refers to the UOP326-82 method which is expressed in mg of maleic anhydride which reacts with 1 g of sample to be measured .
- Number of bromine corresponds to the quantity of bromine in grams having reacted on 100 g of sample and can be measured according to the ASTM D1159-07 method.
- Bromine Index is the number of milligrams of bromine that reacts with 100 g of sample and can be measured by the methods ASTM D2710 or ASTM D5776.
- Boiling points as mentioned herein are measured at atmospheric pressure, unless otherwise stated.
- An initial boiling point is defined as the temperature value from which a first bubble of vapor is formed.
- a final boiling point is the highest temperature reachable during distillation. At this temperature, no more vapor can be transported to a condenser.
- the determination of the initial and final points uses techniques known in the art and several methods adapted according to the range of distillation temperatures are applicable, for example NF EN 15199-1 (version 2020) or ASTM D2887 for the measurement of the points of boiling of petroleum fractions by gas chromatography, ASTM D7169 for heavy hydrocarbons, ASTM D7500, D86 or D1160 for disti Hats.
- the concentration of metals in the hydrocarbon matrices can be determined by any known method. Acceptable methods include X-ray fluorescence (XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Specialists in analytical sciences know how to identify the most suitable method for measuring each metal and each hetero-element according to the hydrocarbon matrix considered.
- XRF X-ray fluorescence
- ICP-AES inductively coupled plasma atomic emission spectrometry
- Embodiments of the present invention are illustrated by the following non-limiting examples.
- Example 1 Purification of a plastic pyrolysis oil in the presence of a strong base and water followed by washing with water
- a 1.5 L AISI-316L grade stainless steel autoclave equipped with mechanical stirring is charged with the HPP2 pyrolysis oil, a strong base in the form of NaOH and water, the strong base being dissolved in water before entering the autoclave (Table 2).
- the sum of the volume of pyrolysis oil and the volume of water introduced is approximately 600 mL at ambient temperature, without taking into account any effects of volume variation during their mixing.
- the autoclave is closed and the gas overhead in the autoclave is swept with nitrogen for 30 minutes.
- the autoclave is then heated under autogenous pressure with stirring at a speed of 400 to 1500 rpm at a temperature of 225°C for a period of 1 minute, 10 minutes or 20 minutes depending on the tests, once the target temperature has been reached.
- the temperature rise rate is set at 30° C./10 minutes.
- the resulting purified and washed pyrolysis oil is analyzed for residual impurity content (Table 3).
- Table 3 the mixture discharged from the autoclave is divided into two parts. The first part is washed with water under the same conditions as for tests 1 and 2 and the resulting purified and washed pyrolysis oil is analyzed (test 3A of table 3). The second part is decanted in order to recover the organic phase, which is then centrifuged. The resulting decanted and centrifuged pyrolysis oil is analyzed (test 3B of table 3).
- the sodium content of the pyrolysis oil is high, in particular greater than 1000ppm, which is not acceptable for a treatment later catalytic.
- the pyrolysis oil can either be used as it is, or optionally dried on an adsorbent such as a molecular sieve or an anhydrous salt, for example Na2SC>4, then is distilled under reduced pressure in order to eliminate any possible trace of solid, eg strong base, adsorbent residue, anhydrous/hydrated salt or gums.
- an adsorbent such as a molecular sieve or an anhydrous salt, for example Na2SC>4
- Example 2 Purification of a plastic pyrolysis oil in the presence of a strong base and water followed by washing with water
- HPP8 pyrolysis oil was brought into contact with soda according to a test protocol similar to that of Example 1 under the conditions listed in Table 4. 450g of HPP8 oil were thus brought into contact for 20 minutes at 180° C. with 22.5 g of NaOH dissolved in water.
- Example 3 Hydrotreatment in two stages and steam cracking of the product of example 1
- One of the purified and washed pyrolysis oils of example 1 (from tests 1, 2 or 3A) or of example 2 (test 4 ) can be hydrotreated in two steps according to the following procedure:
- the purified and washed pyrolysis oil can be introduced into a first hydrotreating section (HDT1) essentially to hydrogenate the diolefins and is operated in the liquid phase.
- This step can comprise a plurality of reactors in series and/or parallel if guard reactors are used upstream or downstream of the first hydrogenation reactor. These guard reactors can make it possible to reduce the concentration of certain undesirable chemical species and/or of elements such as chlorine, silicon and metals. Particularly undesirable metals include Na, Ca, Mg, Fe and Hg.
- a second hydrotreating section (HDT2) is dedicated to olefin hydrogenation and demetallation (HDM), desulfurization (HDS), denitrogenation (HDN) and deoxygenation (HDO). HDT2 is operated in the gas phase. This section consists of one or more reactors operated in series, lead-lag or parallel.
- Isolated, lead-lag, series and/or parallel guard reactors can be considered depending on the nature and quantity of the contaminant in the flow to be treated.
- guard reactors to eliminate chlorine and silicon can be operated in the gaseous phase.
- the silicon can also be trapped on the upper bed of a reactor of the HDT2 section or separately, upstream or downstream by the treatment of the hot gases leaving the HDT2 section.
- Chlorine and mercury can be separated by liquid or gas phase guard reactors.
- the operating pressure in each of the HDT1 and HDT2 hydrotreatments is 5-60 bars, preferably 20-30 bars for HDT1 and 20-140 bars, preferably 30-60 bars for HDT2, typically 30-40 bars for HDT2.
- the catalyst for HDT 1 usually comprises Pd (0.1-10 wt%) and/or Ni (0.1-60 wt%) and/or NiMo (0.1-60 wt%).
- Typical temperature range at the HDT2 inlet at the start of the cycle (SOR: start of run): 200-340°C.
- Typical HDT2 output temperature range (SOR): 300-380°C, up to 450°C.
- the catalyst for HDT 2 usually comprises a NiMo (any type of commercial catalyst for refining or petrochemical application), potentially a CoMo in the very last beds at the bottom of the reactor (any type of commercial catalyst for refining or petrochemical application).
- the upper bed of HDT2 should preferably be operated with a NiMo having a hydrogenating capacity as well as a silicon trapping capacity.
- An upper bed of this type can be considered an adsorbent as well as a metal trap also having HDN activity and hydrogenating capacity.
- An example of an acceptable upper bed for this function includes commercially available NIMo catalyst adsorbents such as ACT971, ACT981 from Axens or equivalents from Haldor Topsoe, Axens, Criterion, etc. It is possible to have two separate beds in an HDT2 reactor, with quenching between the two beds or between the two reactors, if the two beds are in two separate reactors, or no quenching at all.
- the intermediate quenching is carried out using cold HDT2 effluent or by adding cold hydrogen, i.e. at a temperature generally ranging from 15 to 30°C, in order to control the exotherm of HDT2.
- cold hydrogen i.e. at a temperature generally ranging from 15 to 30°C
- Dilution by recycle of the hydrocarbon stream to the upper bed of HDT2 is not recommended due to the increased risk of bed fouling.
- the load arriving on the HDT2 catalyst should be completely vaporized at all times, including in variable speed as is the case during starts. Sending liquid hydrocarbons to the upper bed of an HDT2 reactor can generate fouling and an increase in the pressure difference between the inlet and the outlet of said HDT2 reactor and lead to premature shutdown.
- a hydrodemetallization catalyst for example commercial, can be added to the upper bed of the HDT2 section in order to protect the lower catalytic beds from deactivation.
- the hydrotreated pyrolysis oil leaving the HDT2 section can be used as it is or fractionated according to distillation temperature ranges, to supply a steam cracker, an FCC, a hydrocracker, a catalytic reformer or a pool of fuels or fuels such as LPG, gasoline, jet, diesel, fuel oil.
- the treated pyrolysis oil leaving the HDT2 section undergoes an additional purification step by passing it over a capture mass such as an adsorbent, for example (i) a silica gel, (ii) a clay, (iii) a crushed clay, (iv) apatite, (v) hydroxyapatite and combinations thereof, (vi) an alumina, for example an alumina obtained by precipitation of boehmite, a calcined alumina such as Ceralox ® from Sasol, (vii ) boehmite, (viii) bayerite, (ix) hydrotalcite, (x) a spinel such as Pural ® or Puralox from Sasol, (xi) a promoted alumina, for example Selexsorb ® from BASF, an alumina promoted acid, an alumina promoted by a zeolite and/or by a metal such as Ni, Co, Mo or a combination of at least two of them, (xii
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247011692A KR20240095184A (ko) | 2021-09-08 | 2022-07-26 | 수성 매질 중에서 탄화수소 공급원료를 정제하기 위한 방법 및 그의 용도 |
CA3229309A CA3229309A1 (fr) | 2021-09-08 | 2022-07-26 | Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation |
EP22755272.6A EP4399260A1 (fr) | 2021-09-08 | 2022-07-26 | Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2109395 | 2021-09-08 | ||
FR2109395A FR3126710A1 (fr) | 2021-09-08 | 2021-09-08 | Procédé de purification de charge hydrocarbonée en milieu aqueux et utilisation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037059A1 true WO2023037059A1 (fr) | 2023-03-16 |
Family
ID=77999217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2022/051498 WO2023037059A1 (fr) | 2021-09-08 | 2022-07-26 | Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4399260A1 (fr) |
KR (1) | KR20240095184A (fr) |
CA (1) | CA3229309A1 (fr) |
FR (1) | FR3126710A1 (fr) |
WO (1) | WO2023037059A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024213735A1 (fr) * | 2023-04-13 | 2024-10-17 | Basf Se | Procédé de purification d'une huile de pyrolyse |
WO2024213732A1 (fr) * | 2023-04-13 | 2024-10-17 | Basf Se | Procédé de purification d'une huile de pyrolyse |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3776335B2 (ja) | 2001-07-25 | 2006-05-17 | 独立行政法人科学技術振興機構 | 油中の塩素及び窒素の同時除去方法 |
WO2012069467A1 (fr) | 2010-11-22 | 2012-05-31 | Sa Comet Traitements | Procede d'elimination de derives a base de siloxane d'une phase organique liquide |
US20140303421A1 (en) | 2013-04-06 | 2014-10-09 | Agilyx Corporation | Systems and methods for conditioning synthetic crude oil |
WO2020020769A1 (fr) | 2018-07-20 | 2020-01-30 | Neste Oyj | Purification de matière organique recyclée et renouvelable |
WO2020239729A1 (fr) | 2019-05-28 | 2020-12-03 | Neste Oyj | Purification hydrothermale améliorée par un alcali d'huiles de pyrolyse du plastique |
WO2021105326A1 (fr) | 2019-11-29 | 2021-06-03 | Neste Oyj | Procédé en deux étapes pour convertir des déchets plastiques liquéfiés en matière première de vapocraqueur |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI128673B (en) | 2018-06-26 | 2020-10-15 | Pintone Oy | Electric vehicle with weather protection |
-
2021
- 2021-09-08 FR FR2109395A patent/FR3126710A1/fr active Pending
-
2022
- 2022-07-26 WO PCT/FR2022/051498 patent/WO2023037059A1/fr active Application Filing
- 2022-07-26 CA CA3229309A patent/CA3229309A1/fr active Pending
- 2022-07-26 KR KR1020247011692A patent/KR20240095184A/ko unknown
- 2022-07-26 EP EP22755272.6A patent/EP4399260A1/fr active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3776335B2 (ja) | 2001-07-25 | 2006-05-17 | 独立行政法人科学技術振興機構 | 油中の塩素及び窒素の同時除去方法 |
WO2012069467A1 (fr) | 2010-11-22 | 2012-05-31 | Sa Comet Traitements | Procede d'elimination de derives a base de siloxane d'une phase organique liquide |
US20140303421A1 (en) | 2013-04-06 | 2014-10-09 | Agilyx Corporation | Systems and methods for conditioning synthetic crude oil |
WO2020020769A1 (fr) | 2018-07-20 | 2020-01-30 | Neste Oyj | Purification de matière organique recyclée et renouvelable |
WO2020239729A1 (fr) | 2019-05-28 | 2020-12-03 | Neste Oyj | Purification hydrothermale améliorée par un alcali d'huiles de pyrolyse du plastique |
WO2021105326A1 (fr) | 2019-11-29 | 2021-06-03 | Neste Oyj | Procédé en deux étapes pour convertir des déchets plastiques liquéfiés en matière première de vapocraqueur |
Also Published As
Publication number | Publication date |
---|---|
FR3126710A1 (fr) | 2023-03-10 |
EP4399260A1 (fr) | 2024-07-17 |
CA3229309A1 (fr) | 2023-03-16 |
KR20240095184A (ko) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023037059A1 (fr) | Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation | |
EP4334414A1 (fr) | Procede de purification de charge hydrocarbonee en presence d'un solvant et utilisation | |
WO2022234226A1 (fr) | Procede de purification de charge hydrocarbonee et utilisation | |
US20150065762A1 (en) | Catalytic pyrolysis of olive mill waste | |
US11655431B2 (en) | Method for upgrading low-value and waste fats, oils, and greases | |
FR3141696A1 (fr) | Procédé de purification de charge hydrocarbonée par traitement en présence d’une base forte concentrée et utilisation | |
EP4334410A1 (fr) | Procede de traitement simultane d'huiles de pyrolyse de plastiques et d'une charge issue de sources renouvelables | |
WO2024089319A1 (fr) | Procede de purification d'une composition d'huile de liquefaction de plastique | |
WO2024126961A1 (fr) | Procede de traitement d'une composition d'huile de liquefaction de plastique par gazification | |
WO2024023443A1 (fr) | Procede de purification d'une composition d'huile de liquefaction de plastique en regime turbulent et utilisation | |
FR3119399A1 (fr) | Procede de purification d’une huile de pyrolyse en vue de sa valorisation par vapocraquage | |
FR3135274A1 (fr) | Procede de production d’olefines par vapocraquage de charges provenant de dechets plastiques | |
WO2024023444A1 (fr) | Procédé de purification d'une composition d'huile de liquéfaction de plastique par cavitation et utilisation | |
FR3141185A1 (fr) | Procédé de traitement d’une composition comprenant une huile issue de déchets plastiques | |
WO2023214085A1 (fr) | Procede de production de paraffines par hydrotraitement de charges provenant de dechets plastiques | |
WO2024175220A1 (fr) | Procede de production d'olefines par vapocraquage par valorisation d'un gaz de pyrolyse | |
WO2023208636A1 (fr) | Procede de traitement d'huile de pyrolyse de plastiques incluant une etape de recyclage d'h2s | |
WO2024132435A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques et/ou de pneus incluant l'elimination des halogenures par lavage avant une etape d'hydrotraitement | |
WO2024132436A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques et/ou de pneus incluant l'elimination des halogenures avant une etape d'hydrotraitement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22755272 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 3229309 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18690183 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022755272 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022755272 Country of ref document: EP Effective date: 20240408 |