WO2023037059A1 - Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation - Google Patents

Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation Download PDF

Info

Publication number
WO2023037059A1
WO2023037059A1 PCT/FR2022/051498 FR2022051498W WO2023037059A1 WO 2023037059 A1 WO2023037059 A1 WO 2023037059A1 FR 2022051498 W FR2022051498 W FR 2022051498W WO 2023037059 A1 WO2023037059 A1 WO 2023037059A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
pyrolysis
composition
strong base
Prior art date
Application number
PCT/FR2022/051498
Other languages
English (en)
Inventor
Thomas COUSTHAM
Christine LEGRAND
Hélène COULOMBEAU-LEROY
Didrik HAUDEBOURG
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Priority to KR1020247011692A priority Critical patent/KR20240095184A/ko
Priority to CA3229309A priority patent/CA3229309A1/fr
Priority to EP22755272.6A priority patent/EP4399260A1/fr
Publication of WO2023037059A1 publication Critical patent/WO2023037059A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/10Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including alkaline treatment as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G17/00Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge
    • C10G17/02Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge with acids or acid-containing liquids, e.g. acid sludge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/02Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with aqueous alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/38Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • TITLE PROCESS FOR PURIFYING HYDROCARBON CHARGE IN AQUEOUS MEDIUM AND USE
  • the present invention relates to a process for the purification of hydrocarbon feedstock and its subsequent use in refining and petrochemical processes.
  • the process according to the invention makes it possible to purify feedstocks containing plastic pyrolysis oils and/or plastic hydrothermal liquefaction oils, in particular with a view to their use in a steam cracking process.
  • Patent JP3776335 discloses a process for dechlorination and denitrogenation of an oil resulting from the catalytic or thermal cracking of plastic waste which is treated at different temperatures up to 425°C for 30 minutes in the presence of an aqueous solution of a compound alkali of an alkali or alkaline earth metal at a pH greater than or equal to 7. All non-radioactive natural alkali or alkaline earth metal hydroxides are tested. The reaction product is then separated from the alkaline aqueous solution by liquid-liquid separation with ethyl ether.
  • Patent application WO2012/069467 claims a process for eliminating siloxanes contained in a plastic pyrolysis oil by heat treatment between 200 and 350°C in the presence of an alkali metal hydroxide in the solid state or in solution.
  • the use of calcium hydroxide at 5% by weight at 225°C does not make it possible to obtain a reduction in the siloxane content (table 5, p.12 and lines 9 to 11, p.13).
  • the pyrolysis oil is separated by distillation under reduced pressure.
  • Patent Fl 128848 describes a sequence of processes comprising a heat treatment of a plastic pyrolysis oil at at least 200° C. in the presence of an aqueous alkaline solution. At the end of the reaction, the pyrolysis oil is separated from the alkaline aqueous phase. A final hydrotreatment makes it possible to obtain a steam cracker charge which is optionally washed with an acid solution before introduction into the steam cracker.
  • Patent application WO2020/020769 claims a sequence of processes for purifying a composition comprising at least 20 ppm of chlorine. Many recyclable liquid wastes can be treated, including plastic pyrolysis oils. The process sequence comprises a heat treatment of the charge in the presence of an alkali metal hydroxide in order to obtain a reduction of at least 50% of the chlorine content with respect to the charge, followed by a hydrotreatment in order to obtain a new reduction of at least 50% of the chlorine content.
  • Patent application WO2021/105326 claims a process for recovering liquefied plastic waste comprising a step of pretreating the liquefied plastic waste by bringing it into contact with an aqueous medium having a pH of at least 7 at a temperature of 200°C or more.
  • the proposed solution includes the use of a solution of NaOH in water.
  • the separation of the aqueous and organic phases is carried out by physical (centrifugation) or chemical methods (addition of additives to aid separation, for example non-aqueous solvents, addition of an additional quantity of the aqueous medium used for setting in contact with or an aqueous medium having a different alkaline substance concentration), or by gravity.
  • the patent application US20140303421 A1 describes a process for treating synthetic crude oils which makes it possible to lower the acid content and/or the presence of particles and contaminants containing heteroatoms.
  • the synthetic crude oil is washed with a basic aqueous solution having a pH not higher than 10 in order to avoid saponification.
  • the synthetic crude oil is then separated from the aqueous solution.
  • the synthetic crude oil is washed with a first solution to remove particulates, contaminants containing metals or metalloids or alkali metals.
  • the first solution is acidic to neutralize the alkaline species and absorb acids or metals, metalloids, organic polar molecules or other impurities and/or the first solution contains chelating agents to eliminate the metals.
  • the synthetic crude oil thus washed is then separated and then washed with a second basic aqueous solution having a pH not higher than 10 before being separated again.
  • Patent application WO2020239729 describes a process for purifying plastic pyrolysis oils which includes a purification step in which the oil is subjected to a hydrothermal treatment at 150-450°C with water or water at pH>7. The oil is then separated from the aqueous phase and then sent without any further intermediate treatment to hydrotreatment, alone or as a mixture, in the presence of a catalyst and hydrogen in order to carry out one or more hydrogenation, hydrodeoxygenation, hydrodesulfurization, hydrodenitrogenation, hydrodechlorination, hydrodearomatization or hydroisomerization.
  • the invention aims to propose a process for purifying plastic liquefaction oil making it possible to facilitate its purification by limiting the quantity of strong base used while maintaining high reduction performance, including for the reduction of the content of alkali and/or alkaline-earth metals resulting from the treatment of plastic liquefaction oil with a strong base.
  • the invention relates to a process for reducing the heteroatom concentration of a composition comprising a plastic liquefaction oil containing at least 20 ppm by mass of chlorine as measured according to standard ASTM D7359-18, comprising:
  • composition bringing said composition into contact with 0.1-50% by mass of a strong base comprising an alkali or alkaline-earth metal cation in the presence of water, for 1 minute to 20 minutes at a temperature of at most 450°C,
  • step (b) washing with water at neutral or acidic pH of the product resulting from step (a).
  • the plastic liquefaction oil can be a plastic pyrolysis oil, a hydrothermal plastic liquefaction oil or a mixture of the two, for example a plastic pyrolysis oil.
  • step (a) is implemented without adding a solvent other than water or a solvent optionally already present in the composition.
  • step (a) the composition is brought into contact with 0.1 to 50% by mass of a strong base relative to the mass of the composition introduced.
  • the composition is brought into contact with 0.1 to 15% by mass of a strong base in the presence of water, more preferably with 1 to 15% by mass of a strong base, more preferably with 1 to 10% by weight of a strong base.
  • the strong base added in step (a) is in solution in water.
  • the composition can be brought into contact with an aqueous solution of a strong base comprising an alkali or alkaline-earth metal cation.
  • the man of profession will then choose a sufficient quantity of water to dissolve/solubilize the strong base, preferably the smallest possible quantity of water, or just sufficient to saturate the water with the strong base.
  • the strong base added in step (a) is in solution in water, and the strong base content of the water is from 0.1 to 50% by mass, preferably from 25% to 50% by mass more preferably from 40 to 50% by mass, even more preferably, the water is saturated with a strong base, in particular the water contains just a sufficient quantity of strong base to obtain a saturated solution.
  • the ratio by volume of the strong base in solution in water/composition i.e. the ratio by volume of the mixture (strong base + water)/composition, may be 0.1/99 .9 to 80/20, from 1/99 to 80/20, from 1/99 to 70/30, from 1/99 to 65/35, from 1/99 to 60/40, from 1/99 to 50/ 50, or in any interval defined by any two of the aforementioned terminals.
  • the composition may also comprise an oil from the pyrolysis or hydrothermal liquefaction of biomass, in particular an oil from the pyrolysis or hydrothermal liquefaction of biomass such as Panicum virgatum, a tall oil, a waste food oil, an animal fat, an oil vegetable oil such as a rapeseed, canola, castor, palm or soybean oil, an oil extracted from an algae, an oil extracted from a fermentation of oleaginous microorganisms such as oleaginous yeasts, an oil from pyrolysis or hydrothermal liquefaction of biomass such as a lignocellulosic biomass such as an oil from the pyrolysis of wood, paper and/or cardboard, an oil obtained by pyrolysis or hydrothermal liquefaction of crushed used furniture, an oil from the pyrolysis or hydrothermal liquefaction of elastomers, for example possibly vulcanized latex or tires, as well as mixtures thereof.
  • the composition may comprise at least 2% by mass of a plastics oil, or even at least 1% by mass of plastics oil. The remainder can then be composed of at most 98% by mass, or even at most 99% by mass of a diluent or solvent such as a hydrocarbon and/or of one or more of the components listed above.
  • the composition may comprise at least 5 wt%, preferably at least 10 wt%, more preferably at least 25 wt% plastics oil, preferably at least 50 wt%, more preferably 75% by mass, even more preferably at least 90% by mass of plastics oil.
  • the composition may comprise at most 80% m or 90% m or 95% m or 100% m of plastic liquefaction oil.
  • the bringing into contact is preferably carried out for a period of 1 minute to 20 minutes, preferably from 1 minute to 16 minutes, at a temperature of 50 to 450° C., preferably of 50 to 350° C. or of 90 to 350°C, more preferably from 150 to 350°C, even more preferably from 50 to 250°C, from 50 to 225°C or from 50 to 200°C, and at an absolute pressure of 0.1 to 100 bar, preferably from 1 to 50 bars.
  • the duration of bringing into contact may be longer (for example from 30 minutes to 1 hour, or even more), but does not make it possible to improve the quality of the products obtained.
  • the bringing into contact is carried out for a period of 1 minute to 20 minutes, preferably from 1 minute to 16 minutes, at a temperature of at most 250° C., more preferably at most 225°C, even more preferably at most 200°C.
  • the contacting can be carried out at a temperature of at least 50°C, preferably of at least 90°C, more preferably of at least 150°C.
  • the contacting can be carried out at an absolute pressure of 0.1 to 100 bars, preferably from 1 to 50 bars.
  • composition can advantageously be brought into contact with:
  • a strong base comprising an alkali or alkaline earth metal cation in the presence of water, preferably with 1 to 15% by mass of a strong base, more preferably with 1 to 10% by mass of a strong base (mass percentages of strong base relative to the composition), and/or
  • a preferred strong base can be chosen from LiOH, NaOH, CsOH, Ba(OH)2, Na2 ⁇ D, KOH, K2O, CaO, Ca(OH)2, MgO, Mg(OH)2 and mixtures thereof.
  • a more preferred strong base can be chosen from NaOH, KOH and their mixtures, in particular for the implementation of the particularly preferred embodiment.
  • the water used does not contain a base and in particular does not contain a strong base comprising an alkali or alkaline-earth metal cation.
  • An acid pH can be obtained by adding one or more organic or inorganic acids.
  • acids Usable organics include citric acid (CeHsO?), formic acid (CH 2 O 2 ), acetic acid (CH 3 COOH).
  • inorganic acids are hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), phosphoric acid (H3PO4), sulfamic acid (H3NSO3).
  • Step (b) can be carried out at a temperature of 0° to 80°C, for example from 0° to 60°C, preferably from 0° to 40°C, more preferably from 0° to 30 °C, especially without external heating. Step (b) is typically carried out at atmospheric pressure.
  • the water/composition volume ratio with the strong base may be from 10/90 to 90/10, from 20/80 to 80/20, from 30/70 to 70/30, from 35/65 to 65/35, from 35/65 to 60/40, from 40/60 to 60/40, or even within any interval defined by any two of the aforementioned limits.
  • Step (b) may comprise, or consist of, bringing the product resulting from step (a) into contact with water by any means known in the prior art.
  • the product from step (a) and the water can be introduced into tanks, reactors or mixers commonly used in the profession and the two components can be mixed.
  • Contacting may include vigorous agitation of the two components by a mixing device.
  • the two components can be mixed together by agitation or by shaking.
  • the contacting can be carried out in an enclosure in which the two components circulate against the current. This contacting may occur more than once, in particular under the conditions presented above.
  • Step (b) can be implemented on the product directly resulting from step (a) (comprising the strong base in solution in water and the product resulting from bringing the composition into contact), without step intermediate, or on the product resulting from step (a) having undergone a separation step.
  • the method according to the invention comprises, between step (a) and (b), a separation step between the strong base comprising the alkali or alkaline-earth metal cation in solution in the water and the product resulting from bringing said composition into contact.
  • the product resulting from bringing said composition into contact corresponds to a composition comprising a plastic pyrolysis oil having a lower concentration of heteroatoms than the initial composition. It is thus a purified composition.
  • the separation between the strong base in solution in water and the product resulting from stage (a) is advantageously carried out by (i) centrifugation, (ii) decantation, or (iii) by the combination of these two stages.
  • this separation step makes it possible to separate an organic phase, corresponding to the product resulting from the contacting of step (a), and an aqueous phase containing the strong base comprising the alkali or alkaline-earth metal cation. It can be preceded by a solids separation step by (i) filtration, (ii) centrifugation or (iii) a combination of the two steps.
  • This solids separation step can make it possible to facilitate the subsequent separation of the organic and aqueous phases by eliminating all or part of the solids present in the product resulting from step (a).
  • the strong base in solution in the water separated during this separation step can be returned (recycled), partially or totally, in step (a).
  • the separation step makes it possible to reduce part of the content of the product resulting from step (a) in alkaline or alkaline-earth cation.
  • the remaining alkali or alkaline-earth cation content (or all or substantially all of the alkali or alkaline-earth cation content when this separation step is absent) is removed during washing step (b).
  • the composition thus treated can be used without causing deactivation of catalysts used in subsequent catalytic treatment processes.
  • Washing step (b) can make it possible to obtain a product having an alkaline or alkaline-earth cation content of less than or equal to 2 ppm (by mass).
  • the invention may also comprise an additional step prior to step (a) of bringing into contact, in which said composition is subjected, in particular immediately before step (a), to (i) filtration, (ii) washing with a polar solvent, (iii) distillation, (iv) decantation, or (v) the combination of two, three or four of steps (i) to (iv).
  • This preliminary step can make it possible to break down some of the impurities contained in the composition, such as oxygen, nitrogen, chlorine, sulfur or other heteroatoms.
  • the reduction in the quantity of oxygen can make it possible to avoid the formation of solid and/or gels during step (b).
  • the polar solvent/composition volume ratio can be from 10/90 to 90/10, from 20/80 to 80/20, from 30/70 to 70/30, from 35/65 to 65/35, from 35/65 to 60/40, from 40/60 to 60/40.
  • the polar solvent can have a higher or lower density than the density of the composition comprising a plastic oil, in particular a plastic pyrolysis oil.
  • the density of the polar solvent can be higher or lower by 3 to 50% than that of the composition.
  • the polar solvent is also an immiscible solvent in the composition comprising a pyrolysis oil to be purified.
  • the polar solvent (or a mixture of polar solvents where appropriate) is immiscible when its recovery rate is greater than or equal to 0.95.
  • This recovery rate is defined as the ratio of the volume of extract to the volume of initial solvent, this extract being a phase containing the solvent, immiscible with the composition containing a pyrolysis oil, recovered after agitation then decantation of a mixture one part by volume of solvent with twenty-five parts by volume of the composition containing a pyrolysis oil to be purified, at atmospheric pressure and at a temperature of 20°C.
  • this recovery rate can be determined by following the following procedure:
  • polar solvent within the meaning of the present patent application covers all the chemical species, alone or as a mixture, capable of solvating a composition comprising a plastic oil, in particular a plastic pyrolysis oil, and comprising at least one carbon-hydrogen, carbon-halogen, carbon-chalcogen or carbon-nitrogen covalent bond and having a non-zero dipole moment.
  • the polar solvent can thus contain one or more heteroatoms, in particular chosen from oxygen, sulfur and nitrogen, preferably oxygen.
  • Acceptable polar solvents, immiscible with the composition comprising a plastics oil to be purified include compositions comprising hydrocarbon compounds which have heteroatoms in their molecular structure, for example (i) alcohols such as methanol and ethanol, and mixtures of alcohols resulting from fermentation, for example a mixture of isomers of butanol or a mixture of isomers of pentanol such as fusel oil (ii) ethers, for example cyclopentylmethyl ether or 1,4- dioxane, (iii) sulfur compounds, for example thiophene or dimethylsulfoxide, (iv) nitrogen compounds, for example N,N-dimethylformamide, (v) halogenated compounds, for example dichloromethane or chloroform, or else : water with an acidic, basic or neutral pH.
  • hydrocarbon compounds which have heteroatoms in their molecular structure
  • alcohols such as methanol and ethanol
  • mixtures of alcohols resulting from fermentation for example
  • An acid pH can be obtained by adding one or more organic or inorganic acids.
  • organic acids include citric acid (CeHsO?), formic acid (CH 2 O 2 ), acetic acid (CH 3 COOH), sulfamic acid (H3NSO3).
  • inorganic acids are hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), phosphoric acid (H3PO4).
  • a basic pH can be achieved by adding alkali and alkaline earth metal oxides, alkali and alkaline earth hydroxides (e.g. NaOH, KOH, Ca(OH)2) and amines (e.g. triethylamine, ethylenediamine, ammonia).
  • glycol ethers including in particular polyethylene glycol of chemical formula HO-(CH2-CH2-O) n -H with a mass-average molar mass of 90 to 800 g/mol, for example diethylene glycol and tetraethylene glycol, polypropylene glycol of chemical formula H[OCH(CH3)CH2] n OH with an average molar mass by mass of 130 to 800 g/mol, for example dipropylene glycol and tetrapropylene glycol, dialkyl formamides, in which the alkyl group can comprise from 1 with 8 or from 1 to 3 carbon atoms, in particular dimethyl formamide (DMF), the dialkyl sulfoxides, in which the alkyl group can comprise from 1 to 8 or from 1 to 3 carbon atoms, in particular dimethyl sulfoxide (DMSO) and sulfolane compounds comprising a furan cycle, cyclic carbonate esters, comprising in particular from 3 to 8 or from 3 to 4 carbon atoms, in particular
  • One or more of the aforementioned solvents can be used. However, advantageously, only one of the aforementioned solvents can be used provided that it is immiscible with the composition containing a plastic oil, in particular a plastic pyrolysis oil, to be purified.
  • the polar solvent may be a glycol ether, in particular polyethylene glycol with the chemical formula HO-(CH2-CH2-O) n -H with a mass-average molar mass of 90 at 800 g/mol or polypropylene glycol of chemical formula H[OCH(CH3)CH2] n OH with a mass-average molar mass of 130 to 800 g/mol, or a compound comprising a furan cycle, or a cyclic carbonate ester, in in particular propylene or ethylene carbonate, alone or as a mixture, preferably alone.
  • a glycol ether in particular polyethylene glycol with the chemical formula HO-(CH2-CH2-O) n -H with a mass-average molar mass of 90 at 800 g/mol or polypropylene glycol of chemical formula H[OCH(CH3)CH2] n OH with a mass-average molar mass of 130 to 800 g/mol, or a compound comprising a furan cycle, or a
  • the polar solvent is chosen from propylene carbonate, ethylene carbonate and polyethylene glycol of chemical formula HO-(CH2-CH 2 -O) n -H with an average molar mass by mass of 90 to 800 g/mol, alone or in a mixture, preferably alone.
  • the invention may also include an additional step in which:
  • step (vs). the product from the washing of step (b) undergoes catalytic hydrogenation in one or two stages.
  • stage (c) is carried out in a first stage (c-1) in which the product resulting from the bringing into contact is hydrogenated at a temperature between 20 and 200° C., preferably between 30 and 90° C.
  • step (c-2) in which the effluent from the step (c-1) is hydrogenated at a temperature of between 200 and 450°C, preferably between 200 and 340°C in the presence of hydrogen at an absolute pressure of between 20 and 140 bar, preferably between 30 and 60 bars and in the presence of a hydrogenation catalyst comprising NiMo (0.1-60% by weight) and/or CoMo (0.1-60% by weight).
  • the product from step (b) or the effluent from step (c) is (d) preferably purified by passage through a solid adsorbent in order to reduce the content of at least one element from F, Cl, Br, I, O, N, S, Se, Si, P, As, Fe, Ca, Na, K, Mg and Hg and/or water content.
  • the adsorbent can be operated in regenerative or non-regenerative mode, at a temperature below 400°C, preferably below 100°C, more preferably below 60°C, chosen from: (i) a silica gel, ( ii) a clay, (iii) a crushed clay, (iv) apatite, (v) hydroxyapatite and combinations thereof, (vi) an alumina, for example an alumina obtained by precipitation of boehmite, a calcined alumina such such as Ceralox ® from Sasol, (vii) boehmite, (viii) bayerite, (ix) hydrotalcite, (x) a spinel such as Pural ® or Puralox from Sasol, (xi) a promoted alumina, by example Selexsorb ® from BASF, an acid promoted alumina, an alumina promoted by a zeolite and/or by a metal such as Ni, Co, Mo or a combination of at least two of
  • the adsorbent is regenerable, has a specific surface of at least 200 m 2 /g and is operated in a fixed bed reactor at less than 100° C. with a WH of 0.1 to 10 h' 1 .
  • At least part of the product resulting from stage (b) or of the effluent resulting from stage (c) or (d) can be:
  • WH Hourly Volume Velocity
  • Specifying a numeric domain without decimals includes all whole numbers and, where appropriate, fractions thereof (for example, 1 to 5 may include 1 , 2, 3, 4 and 5 when referring to a number of elements, and may also include 1 .5, 2, 2.75 and 3.80, when reference is made to, for example, a measure.). Specifying a decimal also includes the decimal itself (for example, "from 1 .0 to 5.0" includes 1 .0 and 5.0). Any range of numeric values recited here also includes any subrange of numeric values mentioned above.
  • % by weight and % by mass have an equivalent meaning and refer to the proportion of the mass of a product relative to 100g of a composition comprising it.
  • plastic liquefaction oil or "liquefied plastic oil” or “plastic oil” designates the liquid products resulting from the pyrolysis of plastic and/or the hydrothermal liquefaction of plastic, alone or in a mixture and generally under form of plastic waste, optionally mixed with at least one other waste such as biomass, for example chosen from lignocellulosic biomass, paper and cardboard and/or elastomers, for example optionally vulcanized latex or tires.
  • Biomass can be defined as an organic plant or animal product, including organic residues and waste. Biomass thus includes (i) biomass produced by surplus agricultural land, not used for human or animal food: dedicated crops, called energy crops; (ii) biomass produced by deforestation (forest maintenance) or the clearing of agricultural land; (iii) agricultural residues from cereal crops, vines, orchards, olive trees, fruits and vegetables, food residues, etc.; (iv) forest residues from forestry and wood processing; (v) agricultural residues from livestock (manure, slurry, litter, droppings, etc.); (vi) organic household waste (paper, cardboard, green waste, etc.); (vii) ordinary industrial organic waste (paper, cardboard, wood, putrescible waste, etc.).
  • the liquefaction oil treated by the invention can be derived from the liquefaction of waste containing at least 1% m/m, optionally 1-50% m/m, 2-30% m/m, or in a range defined by two of these limits, of one or more of the aforementioned biomasses, residues and organic waste, and the remainder consisting of plastic waste, optionally mixed with elastomers, in particular in the form of waste.
  • Elastomers are linear or branched polymers transformed by vulcanization into an infusible and insoluble weakly cross-linked three-dimensional network. They include natural or synthetic rubbers. They can be part of tire-type waste or any other household or industrial waste containing elastomers, natural and/or synthetic rubber, mixed or not with other components, such as plastics, plasticizers, fillers, vulcanizing agent, vulcanization accelerators, additives, etc.
  • elastomeric polymers include ethylene-propylene copolymers, ethylene-propylene-diene terpolymer (EPDM), polyisoprene (natural or synthetic), polybutadiene, styrene-butadiene copolymers, isobutene-based polymers, chlorinated or brominated isobutylene isoprene copolymers, acrylonitrile butadiene (NBR) copolymers, and polychloroprenes (CR), polyurethanes, silicone elastomers , etc.
  • EPDM ethylene-propylene-diene terpolymer
  • polyisoprene naturally or synthetic
  • polybutadiene polybutadiene
  • styrene-butadiene copolymers isobutene-based polymers
  • chlorinated or brominated isobutylene isoprene copolymers acrylonitrile butadiene (NBR) copolymers
  • the plastic liquefaction oil treated by the invention can come from the liquefaction of waste containing at least 1% m/m, optionally from 1 to 50% m/m, from 2 to 30% m/m or in an interval defined by any two of these limits, of one or more aforementioned elastomers, in particular in the form of waste, the remainder being constituted by plastic waste, optionally mixed with biomass, residues and organic waste.
  • plastic pyrolysis oil or “oil resulting from plastic pyrolysis” refers to the liquid products obtained after pyrolysis of thermoplastic, thermosetting or elastomeric polymers, alone or as a mixture and generally under the form of waste.
  • the pyrolysis process must be understood as a thermal cracking process, typically carried out at a temperature of 300 to 1000°C or 400 to 700°C, carried out in the presence or not of a catalyst (for example fast pyrolysis, catalytic or not). , etc).
  • hydrothermal plastic oil or “oil resulting from the hydrothermal liquefaction of plastic” refers to the liquid products obtained after hydrothermal liquefaction of plastic or waste plastic.
  • the hydrothermal liquefaction process is typically carried out at a temperature of 250 to 500°C and at pressures of 10 to 25-40 MPa in the presence of water.
  • Plastic pyrolyzed or resulting from hydrothermal liquefaction can be of any type.
  • the plastic can be polyethylene, polypropylene, polystyrene, polyester, polyamide, polycarbonate, etc.
  • These plastic liquefaction oils contain paraffins, i-paraffins (iso-paraffins), dienes, alkynes, olefins, naphthenes and aromatics.
  • Plastic liquefaction oils also contain impurities such as chlorinated, oxygenated and/or silylated organic compounds, metals, salts, phosphorus compounds, sulfur, and nitrogen.
  • composition of plastic pyrolysis oil or hydrothermal plastic liquefaction oil depends on the nature of the plastic pyrolyzed or treated by hydrothermal liquefaction and is essentially (in particular at more than 80% m/m, most often more than 90% m/m) consisting of hydrocarbons having 1 to 150 carbon atoms and impurities.
  • a plastic liquefaction oil typically comprises 5 to 80% m/m of paraffins (including cyclo-paraffins), 10 to 95% m/m of unsaturated compounds (including olefins, dienes and acetylenes), from 5 to 70% m/m of aromatics. These contents can be determined by gas phase chromatography.
  • a plastic liquefaction oil may in particular comprise one or more of the following heteroatom contents: from 0 to 8% m/m of oxygen (measured according to the ASTM D5622 standard), from 1 to 13,000 ppm of nitrogen (measured according to the standard ASTM D4629), from 2 to 10000ppm of sulfur (measured according to standard ISO 20846), from 1 to 10000ppm of metals (measured by ICP), from 50 to 6000ppm of chlorine (measured according to standard ASTM D7359-18), from 0 to 200 ppm bromine (measured according to ASTM D7359-18), 1 to 40 ppm fluorine (measured according to ASTM D7359-18), 1 to 2000 ppm silicon (measured by XRF).
  • MAV (acronym for "Maleic Anhydric Value") refers to the UOP326-82 method which is expressed in mg of maleic anhydride which reacts with 1 g of sample to be measured .
  • Number of bromine corresponds to the quantity of bromine in grams having reacted on 100 g of sample and can be measured according to the ASTM D1159-07 method.
  • Bromine Index is the number of milligrams of bromine that reacts with 100 g of sample and can be measured by the methods ASTM D2710 or ASTM D5776.
  • Boiling points as mentioned herein are measured at atmospheric pressure, unless otherwise stated.
  • An initial boiling point is defined as the temperature value from which a first bubble of vapor is formed.
  • a final boiling point is the highest temperature reachable during distillation. At this temperature, no more vapor can be transported to a condenser.
  • the determination of the initial and final points uses techniques known in the art and several methods adapted according to the range of distillation temperatures are applicable, for example NF EN 15199-1 (version 2020) or ASTM D2887 for the measurement of the points of boiling of petroleum fractions by gas chromatography, ASTM D7169 for heavy hydrocarbons, ASTM D7500, D86 or D1160 for disti Hats.
  • the concentration of metals in the hydrocarbon matrices can be determined by any known method. Acceptable methods include X-ray fluorescence (XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Specialists in analytical sciences know how to identify the most suitable method for measuring each metal and each hetero-element according to the hydrocarbon matrix considered.
  • XRF X-ray fluorescence
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • Embodiments of the present invention are illustrated by the following non-limiting examples.
  • Example 1 Purification of a plastic pyrolysis oil in the presence of a strong base and water followed by washing with water
  • a 1.5 L AISI-316L grade stainless steel autoclave equipped with mechanical stirring is charged with the HPP2 pyrolysis oil, a strong base in the form of NaOH and water, the strong base being dissolved in water before entering the autoclave (Table 2).
  • the sum of the volume of pyrolysis oil and the volume of water introduced is approximately 600 mL at ambient temperature, without taking into account any effects of volume variation during their mixing.
  • the autoclave is closed and the gas overhead in the autoclave is swept with nitrogen for 30 minutes.
  • the autoclave is then heated under autogenous pressure with stirring at a speed of 400 to 1500 rpm at a temperature of 225°C for a period of 1 minute, 10 minutes or 20 minutes depending on the tests, once the target temperature has been reached.
  • the temperature rise rate is set at 30° C./10 minutes.
  • the resulting purified and washed pyrolysis oil is analyzed for residual impurity content (Table 3).
  • Table 3 the mixture discharged from the autoclave is divided into two parts. The first part is washed with water under the same conditions as for tests 1 and 2 and the resulting purified and washed pyrolysis oil is analyzed (test 3A of table 3). The second part is decanted in order to recover the organic phase, which is then centrifuged. The resulting decanted and centrifuged pyrolysis oil is analyzed (test 3B of table 3).
  • the sodium content of the pyrolysis oil is high, in particular greater than 1000ppm, which is not acceptable for a treatment later catalytic.
  • the pyrolysis oil can either be used as it is, or optionally dried on an adsorbent such as a molecular sieve or an anhydrous salt, for example Na2SC>4, then is distilled under reduced pressure in order to eliminate any possible trace of solid, eg strong base, adsorbent residue, anhydrous/hydrated salt or gums.
  • an adsorbent such as a molecular sieve or an anhydrous salt, for example Na2SC>4
  • Example 2 Purification of a plastic pyrolysis oil in the presence of a strong base and water followed by washing with water
  • HPP8 pyrolysis oil was brought into contact with soda according to a test protocol similar to that of Example 1 under the conditions listed in Table 4. 450g of HPP8 oil were thus brought into contact for 20 minutes at 180° C. with 22.5 g of NaOH dissolved in water.
  • Example 3 Hydrotreatment in two stages and steam cracking of the product of example 1
  • One of the purified and washed pyrolysis oils of example 1 (from tests 1, 2 or 3A) or of example 2 (test 4 ) can be hydrotreated in two steps according to the following procedure:
  • the purified and washed pyrolysis oil can be introduced into a first hydrotreating section (HDT1) essentially to hydrogenate the diolefins and is operated in the liquid phase.
  • This step can comprise a plurality of reactors in series and/or parallel if guard reactors are used upstream or downstream of the first hydrogenation reactor. These guard reactors can make it possible to reduce the concentration of certain undesirable chemical species and/or of elements such as chlorine, silicon and metals. Particularly undesirable metals include Na, Ca, Mg, Fe and Hg.
  • a second hydrotreating section (HDT2) is dedicated to olefin hydrogenation and demetallation (HDM), desulfurization (HDS), denitrogenation (HDN) and deoxygenation (HDO). HDT2 is operated in the gas phase. This section consists of one or more reactors operated in series, lead-lag or parallel.
  • Isolated, lead-lag, series and/or parallel guard reactors can be considered depending on the nature and quantity of the contaminant in the flow to be treated.
  • guard reactors to eliminate chlorine and silicon can be operated in the gaseous phase.
  • the silicon can also be trapped on the upper bed of a reactor of the HDT2 section or separately, upstream or downstream by the treatment of the hot gases leaving the HDT2 section.
  • Chlorine and mercury can be separated by liquid or gas phase guard reactors.
  • the operating pressure in each of the HDT1 and HDT2 hydrotreatments is 5-60 bars, preferably 20-30 bars for HDT1 and 20-140 bars, preferably 30-60 bars for HDT2, typically 30-40 bars for HDT2.
  • the catalyst for HDT 1 usually comprises Pd (0.1-10 wt%) and/or Ni (0.1-60 wt%) and/or NiMo (0.1-60 wt%).
  • Typical temperature range at the HDT2 inlet at the start of the cycle (SOR: start of run): 200-340°C.
  • Typical HDT2 output temperature range (SOR): 300-380°C, up to 450°C.
  • the catalyst for HDT 2 usually comprises a NiMo (any type of commercial catalyst for refining or petrochemical application), potentially a CoMo in the very last beds at the bottom of the reactor (any type of commercial catalyst for refining or petrochemical application).
  • the upper bed of HDT2 should preferably be operated with a NiMo having a hydrogenating capacity as well as a silicon trapping capacity.
  • An upper bed of this type can be considered an adsorbent as well as a metal trap also having HDN activity and hydrogenating capacity.
  • An example of an acceptable upper bed for this function includes commercially available NIMo catalyst adsorbents such as ACT971, ACT981 from Axens or equivalents from Haldor Topsoe, Axens, Criterion, etc. It is possible to have two separate beds in an HDT2 reactor, with quenching between the two beds or between the two reactors, if the two beds are in two separate reactors, or no quenching at all.
  • the intermediate quenching is carried out using cold HDT2 effluent or by adding cold hydrogen, i.e. at a temperature generally ranging from 15 to 30°C, in order to control the exotherm of HDT2.
  • cold hydrogen i.e. at a temperature generally ranging from 15 to 30°C
  • Dilution by recycle of the hydrocarbon stream to the upper bed of HDT2 is not recommended due to the increased risk of bed fouling.
  • the load arriving on the HDT2 catalyst should be completely vaporized at all times, including in variable speed as is the case during starts. Sending liquid hydrocarbons to the upper bed of an HDT2 reactor can generate fouling and an increase in the pressure difference between the inlet and the outlet of said HDT2 reactor and lead to premature shutdown.
  • a hydrodemetallization catalyst for example commercial, can be added to the upper bed of the HDT2 section in order to protect the lower catalytic beds from deactivation.
  • the hydrotreated pyrolysis oil leaving the HDT2 section can be used as it is or fractionated according to distillation temperature ranges, to supply a steam cracker, an FCC, a hydrocracker, a catalytic reformer or a pool of fuels or fuels such as LPG, gasoline, jet, diesel, fuel oil.
  • the treated pyrolysis oil leaving the HDT2 section undergoes an additional purification step by passing it over a capture mass such as an adsorbent, for example (i) a silica gel, (ii) a clay, (iii) a crushed clay, (iv) apatite, (v) hydroxyapatite and combinations thereof, (vi) an alumina, for example an alumina obtained by precipitation of boehmite, a calcined alumina such as Ceralox ® from Sasol, (vii ) boehmite, (viii) bayerite, (ix) hydrotalcite, (x) a spinel such as Pural ® or Puralox from Sasol, (xi) a promoted alumina, for example Selexsorb ® from BASF, an alumina promoted acid, an alumina promoted by a zeolite and/or by a metal such as Ni, Co, Mo or a combination of at least two of them, (xii

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé de purification d'une composition comprenant une huile de liquéfaction de plastique comprenant un traitement par une base forte en présence d'eau suivi d'un lavage à l'eau. Le procédé est utile pour abattre la concentration en hétéro-éléments et en particulier en cations de métal alcalin et alcalino-terreux dans ladite composition en vue de la rendre compatible pour introduction comme charge dans des procédés de conversion tels que le vapocraquage, le craquage catalytique en lit fluidisé, l'hydrogénation catalytique ou l'hydrocraquage, notamment sans désactivation de catalyseurs utilisés dans ces procédés.

Description

TITRE : PROCEDE DE PURIFICATION DE CHARGE HYDROCARBONEE EN MILIEU AQUEUX ET UTILISATION
Domaine technique de l’invention
La présente invention concerne un procédé de purification de charge hydrocarbonée et son utilisation subséquente dans des procédés de raffinage et de pétrochimie. Le procédé selon l’invention permet de purifier des charges contenant des huiles de pyrolyse de plastique et/ou des huiles de liquéfaction hydrothermale de plastique notamment en vue de leur utilisation dans un procédé de vapocraquage.
Arrière-plan technologique
Le brevet JP3776335 divulgue un procédé de déchloration et de désazotation d’une huile issue du craquage catalytique ou thermique de déchets plastiques qui est traitée à différentes températures jusqu’à 425°C pendant 30 minutes en présence d’une solution aqueuse d’un composé alcalin d’un métal alcalin ou alcalino-terreux à un pH supérieur ou égal à 7. Tous les hydroxydes de métaux alcalins ou alcalino-terreux naturels non radioactifs sont testés. Le produit de la réaction est ensuite séparé de la solution aqueuse alcaline par séparation liquide-liquide avec de l’éther éthylique.
La demande de brevet WO2012/069467 revendique un procédé d’élimination de siloxanes contenus dans une huile de pyrolyse de plastique par traitement thermique entre 200 et 350°C en présence d’un hydroxyde de métal alcalin à l’état solide ou en solution. L’utilisation d’hydroxyde de calcium à 5% en poids à 225°C ne permet pas d’obtenir de réduction du contenu en siloxanes (tableau 5, p.12 et lignes 9 à 11 , p.13). A l’issue de la réaction, l’huile de pyrolyse est séparée par distillation sous pression réduite.
Le brevet Fl 128848 décrit un enchaînement de procédé comprenant un traitement thermique d’une huile de pyrolyse de plastique à au moins 200°C en présence d’une solution aqueuse alcaline. A l’issue de la réaction, l’huile de pyrolyse est séparée de la phase aqueuse alcaline. Un hydrotraitement final permet d’obtenir une charge de vapocraqueur qui est éventuellement lavée par une solution acide avant introduction dans le vapocraqueur.
La demande de brevet W02020/020769 revendique un enchaînement de procédé de purification d’une composition comprenant au moins 20 ppm de chlore. De nombreux déchets liquides recyclables peuvent être traités, dont des huiles de pyrolyse de plastique. L’enchaînement de procédé comprend un traitement thermique de la charge en présence d’un hydroxyde de métal alcalin afin d’obtenir un abattement d’au moins 50% du contenu en chlore par rapport à la charge, suivi d’un hydrotraitement afin d’obtenir un nouvel abattement d’au moins 50% du contenu en chlore. La demande de brevet WO2021/105326 revendique un procédé de valorisation de déchets plastiques liquéfiés comprenant une étape de prétraitement des déchets plastiques liquéfiés par mise en contact avec un milieu aqueux ayant un pH d'au moins 7 à une température de 200°C ou plus, suivi d'une séparation liquide-liquide dans laquelle la phase aqueuse est séparée de la phase organique, pour produire une matière plastique de déchets liquéfiés prétraitée. La solution proposée comprend l’utilisation d’une solution de NaOH dans l’eau. La séparation des phases aqueuse et organique est mise en oeuvre par des méthodes physiques (centrifugation) ou chimiques (ajout d’additifs d’aides à la séparation, par exemple des solvants non aqueux, ajout de quantité supplémentaire du milieu aqueux utilisé pour la mise en contact ou d’un milieu aqueux ayant une concentration en substance alcaline différente), ou par gravité.
La demande de brevet US20140303421 A1 décrit un procédé de traitement d’huiles brutes synthétiques permettant d’abaisser la teneur en acides et/ou la présence de particules et de contaminants contenant des hétéroatomes. L’huile brute synthétique est lavée avec une solution aqueuse basique présentant un pH pas plus élevé que 10 afin d’éviter une saponification. L’huile brute synthétique est ensuite séparée de la solution aqueuse. Dans un mode de réalisation illustré par la figure 3, l’huile brute synthétique est lavée avec une première solution afin d’éliminer les particules, les contaminants contenant des métaux ou des métalloïdes ou des métaux alcalins. A cet effet, la première solution est acide pour neutraliser les espèces alcalines et absorber les acides ou métaux, métalloïdes des molécules polaires organiques ou d’autres impuretés et/ou la première solution contient des agents chélatant pour éliminer les métaux. L’huile brute synthétique ainsi lavée est ensuite séparée puis lavée avec une deuxième solution aqueuse basique présentant un pH pas plus élevé que 10 avant d’être à nouveau séparée.
La demande de brevet WO2020239729 décrit un procédé de purification d’huiles de pyrolyse de plastique qui comprend une étape de purification dans laquelle l’huile est soumise à un traitement hydrothermal à 150-450°C avec de l’eau ou de l’eau à pH>7. L’huile est ensuite séparée de la phase aqueuse puis envoyée sans autre traitement intermédiaire en hydrotraitement, seule ou en mélange, en présence d’un catalyseur et d’hydrogène afin de réaliser une ou plusieurs réactions d’hydrogénation, d’hydrodéoxygénation, d’hydrodésulfuration, d’hydrodéazotation, d’hydrodéchloration, d’hydrodéaromatisation ou d’hydroisomérisation.
Ces documents ne présentent pas de moyens pour abaisser la teneur en métaux alcalins/alcalino terreux présents dans l’huile de pyrolyse de plastique et/ou dans l’huile de liquéfaction hydrothermale de plastique après prétraitement par une base forte. Or, il est connu que la présence de métaux alcalins/alcalino terreux peut entrainer la désactivation de catalyseurs utilisés dans les procédés catalytiques de traitement d’huile de plastique prétraitée.
Résumé de l’invention
L’invention vise à proposer un procédé de purification d’huile de liquéfaction de plastique permettant de faciliter sa purification en limitant la quantité de base forte utilisée tout en maintenant des performances d’abattement élevées, y compris pour l’abattement de la teneur en métaux alcalins et/ou alcalino-terreux résultant du traitement de l’huile de liquéfaction de plastique par une base forte.
A cet effet, l’invention concerne un procédé de diminution de la concentration en hétéroatomes d’une composition comprenant une huile de liquéfaction de plastique contenant au moins 20 ppm en masse de chlore tel que mesuré selon la norme ASTM D7359-18, comprenant :
(a). une mise en contact de ladite composition avec 0,1-50% en masse d’une base forte comprenant un cation de métal alcalin ou alcalino-terreux en présence d’eau, pendant 1 minute à 20 minutes à une température d’au plus 450°C,
(b). un lavage avec de l’eau à pH neutre ou acide du produit issu de l’étape (a).
L’huile de liquéfaction de plastique peut être une huile de pyrolyse de plastique, une huile de liquéfaction hydrothermale de plastique ou un mélange des deux, par exemple une huile de pyrolyse de plastique.
Notamment, l’étape (a) est mise en oeuvre sans ajout de solvant autre que l’eau ou qu’un solvant éventuellement déjà présent dans la composition.
Lors de l’étape (a), la composition est mise en contact avec 0,1 à 50% en masse d’une base forte par rapport à la masse de la composition introduite.
Avantageusement, lors de l’étape (a), la composition est mise en contact avec 0,1 à 15% en masse d’une base forte en présence d’eau, davantage de préférence avec 1 à 15% en masse d’une base forte, de manière encore préférée avec 1 à 10% en masse d’une base forte.
Avantageusement, la base forte ajoutée à l’étape (a) est en solution dans l’eau. Ainsi, au cours de l’étape (a), la composition peut être mise en contact avec une solution aqueuse d’une base forte comprenant un cation de métal alcalin ou alcalino-terreux. L’homme du métier choisira alors une quantité d’eau suffisante pour dissoudre/solubiliser la base forte, de préférence une quantité d’eau la plus faible possible, ou juste suffisante pour saturer l’eau en base forte.
Avantageusement, la base forte ajoutée à l’étape (a) est en solution dans l’eau, et la teneur en base forte de l’eau est de 0,1 à 50% en masse, de préférence de 25% à 50% en masse davantage de préférence de 40 à 50% en masse, de manière encore plus préférée, l’eau est saturée en base forte, notamment l’eau contient une quantité juste suffisante de base forte pour obtenir une solution saturée.
Lors de l’étape (a), le ratio en volume de la base forte en solution dans l’eau / composition, i.e. le ratio en volume du mélange (base forte + eau)/composition, pourra être de 0,1/99,9 à 80/20, de 1/99 à 80/20, de 1/99 à 70/30, de 1/99 à 65/35, de 1/99 à 60/40, de 1/99 à 50/50, ou encore dans tout intervalle défini par deux quelconques des bornes précitées.
La composition peut comprendre en outre une huile de pyrolyse ou de liquéfaction hydrothermale de biomasse, notamment une huile de pyrolyse ou de liquéfaction hydrothermale de biomasse telle que de Panicum virgatum, une huile de tall, une huile alimentaire usagée, une graisse animale, une huile végétale telle qu’une huile de colza, de canola, de ricin, de palme, de soja, une huile extraite d’une algue, une huile extraite d’une fermentation de microorganismes oléagineux tels que des levures oléagineuses, une huile de pyrolyse ou de liquéfaction hydrothermale de biomasse telle qu’une biomasse lignocellulosique telle qu’une huile de pyrolyse de bois, de papier et/ou de carton, une huile obtenue par pyrolyse ou liquéfaction hydrothermale de meubles usagés broyés, une huile de pyrolyse ou liquéfaction hydrothermale d’élastomères par exemple du latex éventuellement vulcanisé ou des pneus, ainsi que leurs mélanges.
La composition peut comprendre au moins 2% en masse d’une huile de plastique, voire au moins 1% en masse d’huile de plastique. Le reste peut alors être composé d’au plus 98% en masse, voire d’au plus 99% en masse d’un diluant ou solvant tel qu’un hydrocarbure et/ou d’un ou plusieurs des composants listés ci-dessus. Dans un mode de réalisation, la composition peut comprendre au moins 5%m, de préférence au moins 10%m, davantage de préférence au moins 25 % en masse d'huile de plastique, de préférence au moins 50 % en masse, plus préférablement 75 % en masse, encore plus préférablement au moins 90 % en masse d'huile de plastique. La composition peut comprendre au plus 80%m ou 90%m ou 95%m ou 100%m d’huile de liquéfaction de plastique II est également possible d'utiliser uniquement de l'huile de plastique. La mise en contact s’effectue de préférence pendant une durée de 1 minute à 20 minutes, de préférence de 1 minute à 16 minutes, à une température de 50 à 450°C, de préférence de 50 à 350°C ou de 90 à 350°C, plus préférentiellement de 150 à 350°C, encore plus préférentiellement de 50 à 250°C, de 50 à 225°C ou de 50 à 200°C, et à une pression absolue de 0,1 à 100 bars, de préférence de 1 à 50 bars. A noter que la durée de mise en contact peut être plus longue (par exemple de 30 minutes à 1 heure, voire plus, mais ne permet pas d’améliorer la qualité des produits obtenus.
Dans un mode de réalisation particulièrement préféré, la mise en contact s’effectue pendant une durée de 1 minute à 20 minutes, de préférence de 1 minute à 16 minutes, à une température d’au plus 250°C, davantage de préférence d’au plus 225°C, de manière encore plus préférée d’au plus 200°C. Dans ce mode de réalisation particulièrement préféré, la mise en contact peut être réalisée à une température d’au moins 50°C, de préférence d’au moins 90°C, plus préférentiellement d’au moins 150°C. Dans ce mode de réalisation particulièrement préféré, la mise en contact peut être réalisée à une pression absolue de 0,1 à 100 bars, de préférence de 1 à 50 bars.
Dans ce mode de réalisation particulièrement préféré, la composition peut avantageusement être mise en contact avec :
- 0,1 à 15% en masse d’une base forte comprenant un cation de métal alcalin ou alcalino- terreux en présence d’eau, de préférence avec 1 à 15% en masse d’une base forte, davantage de préférence avec 1 à 10% en masse d’une base forte (pourcentages massiques de base forte par rapport à la composition), et/ou
- avec de l’eau contenant de 25 à 50% en masse de base forte, de préférence de 25% à 50% en masse, davantage de préférence de 40 à 50% en masse (pourcentages massiques de base forte par rapport à l’eau), de manière encore plus préférée avec de l’eau saturée en base forte.
Une base forte préférée peut être choisie parmi LiOH, NaOH, CsOH, Ba(OH)2, Na2<D, KOH, K2O, CaO, Ca(OH)2, MgO, Mg(OH)2 et leurs mélanges. Une base forte davantage préférée peut être choisie parmi NaOH, KOH et leurs mélanges, notamment pour la mise en oeuvre du mode de réalisation particulièrement préféré.
L’eau utilisée lors de l’étape (b) peut présenter un pH acide (PH<7) ou neutre (pH=7). En particulier, l’eau utilisée ne contient pas de base et notamment ne contient pas de base forte comprenant un cation de métal alcalin ou alcalino-terreux. Un pH acide peut être obtenu par addition d’un ou plusieurs acides organiques ou inorganiques. Des exemples d’acides organiques utilisables comprennent l’acide citrique (CeHsO?), l'acide formique (CH2O2), l'acide acétique (CH3COOH). Des exemples d’acides inorganiques sont l’acide chlorhydrique (HCl), l'acide nitrique (HNO3), l'acide sulfurique (H2SO4), l'acide phosphorique (H3PO4), l'acide sulfamique (H3NSO3).
L’étape (b) peut être réalisée à une température de 0° à 80°C, par exemple de 0° à 60°C, de préférence de 0° à 40°C, d’avantage de préférence de 0° à 30°C, notamment sans chauffage externe. L’étape (b) est typiquement mise en oeuvre à la pression atmosphérique.
Lors de l’étape (b), le ratio en volume eau / composition avec la base forte pourra être de 10/90 à 90/10, de 20/80 à 80/20, de 30/70 à 70/30, de 35/65 à 65/35, de 35/65 à 60/40, de 40/60 à 60/40, ou encore dans tout intervalle défini par deux quelconques des bornes précitées.
L’étape (b) peut comprendre, ou consister en, la mise en contact du produit issu de l’étape (a) avec de l’eau par tout moyen connu dans l’art antérieur.
Par exemple, le produit issu de l’étape (a) et l’eau peuvent être introduits dans des cuves, des réacteurs ou des mélangeurs couramment utilisés dans la profession et les deux composants peuvent être mélangés. La mise en contact peut comprendre une agitation vigoureuse des deux composants par un dispositif de mélange. Par exemple, les deux composants peuvent être mélangés ensemble par agitation ou par secouage. Alternativement, la mise en contact peut être réalisée dans une enceinte dans laquelle les deux composants circulent à contre-courant. Cette mise en contact peut se produire plus d’une fois, notamment dans les conditions présentées ci-dessus.
L’étape (b) peut être mise en oeuvre sur le produit directement issu de l’étape (a) (comprenant la base forte en solution dans l’eau et le produit issu de la mise en contact de la composition), sans étape intermédiaire, ou sur le produit issu de l’étape (a) ayant subi une étape de séparation.
Ainsi, dans un mode de réalisation, le procédé selon l’invention comprend, entre l’étape (a) et (b), une étape de séparation entre la base forte comprenant le cation de métal alcalin ou alcalino-terreux en solution dans l’eau et le produit issu de la mise en contact de ladite composition. Le produit issu de la mise en contact de ladite composition correspond à une composition comprenant une huile de pyrolyse de plastique présentant une concentration en hétéroatomes plus faible que la composition initiale. Il s’agit ainsi d’une composition purifiée. La séparation entre la base forte en solution dans l’eau et le produit issu de l’étape (a) s’effectue avantageusement par (i) centrifugation, (ii) décantation, ou (iii) par la combinaison de ces deux étapes.
Typiquement, cette étape de séparation permet de séparer une phase organique, correspondant au produit issu de la mise en contact de l’étape (a), et une phase aqueuse contenant la base forte comprenant le cation de métal alcalin ou alcalino-terreux. Elle peut être précédée d’une étape de séparation des solides par (i) filtration, (ii) centrifugation ou (iii) une combinaison des deux étapes. Cette étape de séparation des solides peut permettre de faciliter la séparation des phases organique et aqueuse ultérieure en éliminant tout ou partie des solides présents dans le produit issu de l’étape (a).
Aussi, avantageusement, la base forte en solution dans l’eau séparée au cours de cette étape de séparation peut être renvoyée (recyclée), partiellement ou en totalité, dans l’étape (a).
L’étape de séparation permet d’abattre une partie de la teneur du produit issu de l’étape (a) en cation alcalin ou alcalino-terreux. La teneur restante en cation alcalin ou alcalino-terreux (ou la totalité ou quasi-totalité de la teneur en cation alcalin ou alcalino-terreux lorsque cette étape de séparation est absente) est éliminée lors de l’étape (b) de lavage. La composition ainsi traitée peut être utilisée sans provoquer de désactivation de catalyseurs utilisés dans des procédés catalytiques de traitement ultérieurs.
L’étape (b) de lavage peut permettre d’obtenir un produit présentant une teneur en cation alcalin ou alcalino-terreux inférieure ou égale à 2 ppm (en masse).
L’invention peut également comprendre une étape additionnelle préalable à l’étape (a) de mise en contact, dans laquelle ladite composition est soumise, notamment immédiatement avant l’étape (a), à (i) une filtration, (ii) un lavage avec un solvant polaire, (iii) une distillation, (iv) une décantation, ou (v) à la combinaison de deux, trois ou quatre des étapes (i) à (iv). Cette étape préalable peut permettre d’abattre une partie des impuretés contenues dans la composition telles que l’oxygène, l’azote, le chlore, le soufre ou autres hétéroatomes. Notamment la réduction de la quantité d’oxygène peut permettre d’éviter la formation de solide et/ou de gels lors de l’étape (b). Lors de l’étape additionnelle préalable de lavage (ii), le ratio en volume solvant polaire/composition peut être de 10/90 à 90/10, de 20/80 à 80/20, de 30/70 à 70/30, de 35/65 à 65/35, de 35/65 à 60/40, de 40/60 à 60/40.
Le solvant polaire peut présenter une densité supérieure ou inférieure à la densité de la composition comprenant une huile de plastique, notamment une huile de pyrolyse de plastique.
En particulier, la densité du solvant polaire peut être supérieure ou inférieure de 3 à 50% à celle de la composition.
Le solvant polaire est en outre un solvant non miscible dans la composition comprenant une huile de pyrolyse à purifier.
Dans la présente invention, on pourra considérer que le solvant polaire (ou qu’un mélange de solvants polaires le cas échéant) est non miscible lorsque son taux de récupération est supérieur ou égal à 0,95. Ce taux de récupération est défini comme le rapport du volume d’extrait sur le volume de solvant initial, cet extrait étant une phase contenant le solvant, non miscible avec la composition contenant une huile de pyrolyse, récupérée après agitation puis décantation d’un mélange d’une partie par volume de solvant avec vingt cinq parties par volume de la composition contenant une huile de pyrolyse à purifier, à pression atmosphérique et à une température de 20°C.
On pourra notamment déterminer ce taux de récupération en suivant la procédure suivante :
■ Introduction de 50 mL de composition contenant une huile de pyrolyse dans un ballon à fond plat d’un volume de 100mL, à l’aide d’une pipette de précision de +/-0,5mL,
■ Introduire 2 mL de solvant dans le ballon, à l’aide d’une pipette de précision +/-0,1 mL,
■ Introduire un barreau aimanté, fermer le ballon avec un bouchon en polypropylène,
■ Agiter le mélange sur une plaque d’agitation mécanique à une vitesse 500 tours/min pendant 5min,
■ A la fin des 5 minutes, arrêter l’agitation, retirer le barreau aimanté à l’aide d’une tige aimantée,
■ Transférer le contenu du ballon dans un tube gradué présentant une précision de +/- 0,05 mL pour un volume inférieur ou égal à 2mL et une précision de +/-0,1 mL pour un volume supérieur à 2mL. Attendre la démixtion complète par décantation et mesurer le volume des 2 phases à l’aide des graduations. On considère que la démixtion complète est atteinte lorsque les volumes des deux phases ne varient plus.
L’expression « solvant polaire » au sens de la présente demande de brevet recouvre toutes les espèces chimiques, seules ou en mélange, susceptibles de solvater une composition comprenant une huile de plastique, notamment une huile de pyrolyse de plastique, et comportant au moins une liaison covalente carbone-hydrogène, carbone-halogène, carbone- chalcogène ou carbone-azote et ayant un moment dipolaire non nul. Le solvant polaire peut ainsi contenir un ou plusieurs hétéroatomes, en particulier choisi parmi l’oxygène, le soufre et l’azote, de préférence l’oxygène. Des solvants polaires acceptables, non miscibles avec la composition comprenant une huile de plastique à purifier, incluent des compositions comprenant des composés hydrocarbonés qui comportent des hétéroatomes dans leur structure moléculaire, par exemple (i) des alcools tels que le méthanol et l’éthanol, et des mélanges d’alcools issus de fermentation, par exemple un mélange d’isomères de butanol ou un mélange d’isomères de pentanol tel qu’une huile de fusel (ii) des éthers, par exemple le cyclopentylméthyléther ou le 1 ,4-dioxane, (iii) des composés soufrés, par exemple le thiophène ou le diméthylsulfoxyde, (iv) des composés azotés, par exemple le N,N- diméthylformamide, (v) des composés halogénés, par exemple le dichlorométhane ou le chloroforme, ou encore : l’eau présentant un pH acide, basique ou neutre. Un pH acide peut être obtenu par addition d’un ou plusieurs acides organiques ou inorganiques. Des exemples d’acides organiques utilisables comprennent l’acide citrique (CeHsO?), l'acide formique (CH2O2), l'acide acétique (CH3COOH), l'acide sulfamique (H3NSO3). Des exemples d’acides inorganiques sont l’acide chlorhydrique (HCl), l'acide nitrique (HNO3), l'acide sulfurique (H2SO4), l'acide phosphorique (H3PO4). Un pH basique peut être obtenu par addition d’oxydes de métaux alcalins et alcalino-terreux, d’hydroxydes alcalins et alcalino-terreux (par exemple NaOH, KOH, Ca(OH)2) et des amines (par exemple triéthylamine, éthylènediamine, ammoniaque). les éthers de glycol, incluant notamment le polyéthylène glycol de formule chimique HO-(CH2-CH2-O)n-H de masse molaire moyenne en masse de 90 à 800g/mol, par exemple le diéthylène glycol et le tétraéthylène glycol, le polypropylène glycol de formule chimique H[OCH(CH3)CH2]nOH de masse molaire moyenne en masse de 130 à 800g/mol, par exemple le dipropylène glycol et le tétrapropylène glycol, les dialkyl formamides, dans lesquels le groupe alkyl peut comprendre de 1 à 8 ou de 1 à 3 atomes de carbones, notamment le diméthyl formamide (DMF), les dialkyl sulfoxydes, dans lesquels le groupe alkyl peut comprendre de 1 à 8 ou de 1 à 3 atomes de carbones, notamment le diméthylsulfoxyde (DMSO) et le sulfolane les composés comprenant un cycle furane, les esters de carbonate cycliques, comprenant notamment de 3 à 8 ou de 3 à 4 atomes de carbones, notamment le carbonate de propylène et le carbonate d’éthylène.
Un ou plusieurs des solvants précités peut être utilisé. Toutefois, avantageusement, un seul des solvants précités peut être utilisé pourvu qu’il soit non miscible avec la composition contenant une huile de plastique, notamment une huile de pyrolyse de plastique, à purifier.
De préférence, le solvant polaire peut être un éther de glycol, en particulier le polyéthylène glycol de formule chimique HO-(CH2-CH2-O)n-H de masse molaire moyenne en masse de 90 à 800g/mol ou le polypropylène glycol de formule chimique H[OCH(CH3)CH2]nOH de masse molaire moyenne en masse de 130 à 800g/mol, ou un composé comprenant un cycle furane, ou un ester de carbonate cyclique, en particulier le carbonate de propylène ou d’éthylène, seuls ou en mélange, de préférence seuls.
Dans un mode de réalisation préféré, le solvant polaire est choisi parmi le carbonate de propylène, le carbonate d’éthylène et le polyéthylène glycol de formule chimique HO-(CH2- CH2-O)n-H de masse molaire moyenne en masse de 90 à 800g/mol, seuls ou en mélange, de préférence seuls.
L’invention peut également comprendre une étape additionnelle dans laquelle :
(c). le produit issu du lavage de l’étape (b) subit une hydrogénation catalytique en une ou deux étapes.
Dans le cas où l’hydrogénation catalytique s’effectue en deux étapes, l’étape (c) s’effectue en une première étape (c-1 ) dans laquelle le produit issu de la mise en contact est hydrogéné à une température comprise entre 20 et 200°C, de préférence entre 30 et 90°C en présence d’hydrogène à une pression absolue comprise entre 5 et 60 bars, de préférence entre 20 et 30 bars et en présence d’un catalyseur d’hydrogénation comprenant Pd (0.1-10 % en poids) et/ou Ni (0.1-60 % en poids) et/ou NiMo (0.1-60 % en poids), et en une deuxième étape (c-2) dans laquelle l’effluent issu de l’étape (c-1 ) est hydrogéné à une température comprise entre 200 et 450°C, de préférence entre 200 et 340°C en présence d’hydrogène à une pression absolue comprise entre 20 et 140 bars, de préférence entre 30 et 60 bars et en présence d’un catalyseur d’hydrogénation comprenant NiMo (0.1-60 % en poids) et/ou CoMo (0.1-60 % en poids).
Le produit issu de l’étape (b) ou l’effluent issu de l’étape (c) est (d) de préférence purifié par passage sur un adsorbant solide afin de diminuer la teneur en au moins un élément parmi F, Cl, Br, I, O, N, S, Se, Si, P, As, Fe, Ca, Na, K, Mg et Hg et/ou la teneur en eau.
L’adsorbant peut être opéré en mode régénératif ou non régénératif, à une température inférieure à 400°C, de préférence inférieure à 100°C, plus préférentiellement inférieure à 60°C, choisi parmi : (i) un gel de silice, (ii) une argile, (iii) une argile pilée, (iv) de l’apatite, (v) de l’hydroxyapatite et leurs combinaisons, (vi) une alumine par exemple une alumine obtenue par précipitation de boehmite, une alumine calcinée telle que Ceralox ® de Sasol, (vii) de la boehmite, (viii) de la bayerite, (ix) de l’hydrotalcite, (x) un spinelle tel que Pural ® ou Puralox de Sasol, (xi) une alumine promue, par exemple Selexsorb ® de BASF, une alumine promue acide, une alumine promue par une zéolithe et/ou par un métal tel que Ni, Co, Mo ou une combinaison d’au moins deux d’entre eux, (xii) une argile traitée par un acide telle que Tonsil ® de Clariant, (xiii) un tamis moléculaire sous la forme d’un aluminosilicate contenant un cation alcalin ou alcalino-terreux par exemple les tamis 3A, 4A, 5A, 13X, par exemple commercialisés sous la marque Siliporite ® de Ceca, (xiv) une zéolithe, (xv) un charbon actif, ou la combinaison d’au moins deux adsorbants, l’adsorbant ou les au moins deux adsorbants retenant au moins 20% en poids, de préférence au moins 50% en poids d’au moins un élément parmi F, Cl, Br, I, O, N, S, Se, Si, P, As, Fe, Ca, Na, K, Mg et Hg et/ou de l’eau.
Selon un mode de réalisation préféré, l’adsorbant est régénérable, a une surface spécifique d’au moins 200 m2/g et est opéré dans un réacteur à lit fixe à moins de 100°C avec une WH de 0,1 à 10 h’1.
Selon un mode de réalisation supplémentaire, au moins une partie du produit issu de l’étape (b) ou de l’effluent issu de l’étape (c) ou (d) peut être :
(e). traité dans un vapocraqueur, et/ou
(f). traité dans un craqueur catalytique en lit fluidisé, et/ou
(g). traité dans un hydrocraqueur, et/ou
(h). traité dans une unité d’hydrogénation catalytique, et/ou
(i). utilisé tel quel ou séparé en des flux utilisables pour la préparation de carburants et combustibles tels que GPL, essence, diesel, fuel lourd et/ou pour la préparation de lubrifiants.
Les étapes précédemment décrites du procédé selon l’invention peuvent être mises en oeuvre les unes après les autres sans étape intermédiaire hormis les étapes additionnelles optionnelles décrites.
Définitions
La Vitesse Volumique Horaire (WH) est définie comme le volume horaire de flux de charge par unité de volume catalytique et est exprimée ici en h’1.
Les termes « comprenant » et « comprend » tels qu’utilisés ici sont synonymes avec « incluant », « inclut » ou « contient », « contenant », et sont inclusifs ou sans bornes et n’excluent pas de caractéristiques additionnelles, d’éléments ou d’étapes de méthodes non spécifiés.
La spécification d’un domaine numérique sans décimales inclut tous les nombres entiers et, lorsque c’est approprié, des fractions de ces derniers (par exemple, 1 à 5 peut inclure 1 , 2, 3, 4 et 5 lorsque référence est faite à un nombre d’éléments, et peut aussi inclure 1 ,5, 2, 2,75 et 3,80, lorsque référence est faite à, par exemple, une mesure.). La spécification d’une décimale comprend également la décimale elle-même (par exemple, « de 1 ,0 à 5,0 » inclut 1 ,0 et 5,0). Toute plage de valeurs numériques récitée ici comprend également toute sous-plage de valeurs numériques mentionnée ci-dessus.
Les expressions % en poids et % en masse ont une signification équivalente et se réfèrent à la proportion de la masse d’un produit rapportée à 100g d’une composition le comprenant.
Sauf indication contraire, les mesures données en parties par million (ppm) sont exprimées en poids.
L’expression " huile de liquéfaction de plastique " ou " huile de plastique liquéfié " ou « huile de plastique » désigne les produits liquides résultant de la pyrolyse du plastique et/ou de la liquéfaction hydrothermale de plastique, seul ou en mélange et généralement sous forme de déchets plastiques, éventuellement en mélange avec au moins un autre déchet tel que de la biomasse, par exemple choisie parmi la biomasse lignocellulosique, le papier et le carton et/ou des élastomères, par exemple du latex éventuellement vulcanisé ou des pneus .
La biomasse peut être définie comme un produit organique végétal ou animal, y compris les résidus et les déchets organiques. La biomasse comprend ainsi (i) la biomasse produite par le surplus des terres agricoles, non utilisées pour l’alimentation humaine ou animale : cultures dédiées, appelées cultures énergétiques ; (ii) la biomasse produite par le déboisement (entretien de forêt) ou le nettoyage de terres agricoles ; (iii) les résidus agricoles issus des cultures de céréales, vignes, vergers, oliviers, fruits et légumes, résidus de l’agroalimentaire,... ; (iv) les résidus forestiers issus de la sylviculture et de la transformation du bois ; (v) les résidus agricoles issus de l’élevage (fumier, lisier, litières, fientes,...) ; (vi) les déchets organiques des ménages (papiers, cartons, déchets verts,...) ; (vii) les déchets organiques industriels banals (papiers, cartons, bois, déchets putrescibles,...). L'huile de liquéfaction traitée par l'invention peut être dérivée de la liquéfaction de déchets contenant au moins 1%m/m, éventuellement 1-50%m/m, 2-30%m/m, ou dans une gamme définie par deux de ces limites, d'une ou plusieurs des biomasses, résidus et déchets organiques précités, et le reste étant constitué de déchets plastiques, optionnellement en mélange avec des élastomères, notamment sous forme de déchets.
Les élastomères sont des polymères linéaires ou ramifiés transformés par vulcanisation en un réseau tridimensionnel faiblement réticulé infusible et insoluble. Ils incluent les caoutchoucs naturels ou synthétiques. Ils peuvent faire partie de déchets de type pneu ou de tout autre déchet ménager ou industriel contenant des élastomères, du caoutchouc naturel et/ou synthétique, en mélange ou non avec d’autres composants, tels que plastiques, plastifiants, charges, agent vulcanisant, accélérateurs de vulcanisation, additifs, etc. Des exemples de polymères élastomères incluent les copolymères éthylène-propylène, le terpolymère éthylène-propylène-diène (EPDM), le polyisoprène (naturel ou synthétique), le polybutadiène, les copolymères styrène-butadiène, les polymères à base d’isobutène, les copolymères d'isobutylène isoprène, chlorés ou bromés, les copolymères de butadiène acrylonitrile (NBR), et les polychloroprènes (CR), les polyuréthanes, les élastomères de silicone, etc. L’huile de liquéfaction de plastique traitée par l’invention peut provenir de la liquéfaction de déchets contenant au moins 1%m/m, optionnellement de 1 à 50% m/m, de 2 à 30%m/m ou dans un intervalle défini par deux quelconques de ces limites, d’un ou plusieurs élastomères précités, notamment sous forme de déchets, le reste étant constitué de déchets plastiques, optionnellement en mélange avec des biomasses, résidus et déchets organiques.
L’expression « huile de pyrolyse de plastique » ou « huile résultant de la pyrolyse de plastique » fait référence aux produits liquides obtenus à l’issue d’une pyrolyse de polymères thermoplastiques, thermodurcissables ou élastomères, seuls ou en mélange et généralement sous la forme de déchets. Le procédé de pyrolyse doit être compris comme un procédé de craquage thermique, typiquement réalisé à une température de 300 à 1000°C ou de 400 à 700°C, mis en oeuvre en présence ou non de catalyseur (par exemple pyrolyse rapide catalytique ou non, etc...).
L'expression "huile de plastique hydrothermale" ou "huile résultant de la liquéfaction hydrothermale du plastique" désigne les produits liquides obtenus après liquéfaction hydrothermale de plastique ou de déchets de plastique. Le procédé de liquéfaction hydrothermale est typiquement réalisé à une température de 250 à 500 °C et à des pressions de 10 à 25-40 MPa en présence d’eau.
Le plastique pyrolysé ou résultant de la liquéfaction hydrothermale peut être de n’importe quel type. Par exemple, le plastique peut être du polyéthylène, du polypropylène, du polystyrène, un polyester, un polyamide, un polycarbonate, etc. Ces huiles de liquéfaction de plastique contiennent des paraffines, i-paraffines (iso-paraffines), diènes, alcynes, oléfines, naphtènes et aromatiques. Les huiles de liquéfaction de plastique contiennent également des impuretés telles que des composés organiques chlorés, oxygénés et/ou silylés, des métaux, des sels, des composés du phosphore, du soufre, et de l’azote.
La composition de l’huile de pyrolyse de plastique ou de l’huile de liquéfaction hydrothermale de plastique est dépendante de la nature du plastique pyrolysé ou traité par liquéfaction hydrothermale et est essentiellement (notamment à plus de 80%m/m, le plus souvent à plus de 90%m/m) constituée d’hydrocarbures ayant de 1 à 150 atomes de carbone et d’impuretés.
Une huile de liquéfaction de plastique comprend typiquement de 5 à 80%m/m de paraffines (y compris les cyclo-paraffines), de 10 à 95% m/m de composés insaturés (comprenant des oléfines, des diènes et des acétylènes), de 5 à 70%m/m d’aromatiques. Ces teneurs peuvent être déterminées par chromatographie en phase gazeuse.
Une huile de liquéfaction de plastique peut notamment comprendre une ou plusieurs des teneurs en hétéroatomes suivantes : de 0 à 8% m/m d’oxygène (mesuré selon la norme ASTM D5622), de 1 à 13000 ppm d’azote (mesuré selon la norme ASTM D4629), de 2 à 10000ppm de soufre (mesuré selon la norme ISO 20846), de 1 à 10000ppm de métaux (mesuré par ICP), de 50 à 6000ppm de chlore (mesuré selon la norme ASTM D7359-18), de 0 à 200ppm de brome (mesuré selon la norme ASTM D7359-18), de 1 à 40ppm de fluor (mesuré selon la norme ASTM D7359-18), 1 à 2000 ppm de silicium (mesuré par XRF).
L’expression « MAV » (acronyme de « Maleic Anhydric Value » pour « indice d’anhydride maléique ») fait référence à la méthode UOP326-82 qui est exprimée en mg d’anhydride maléique qui réagissent avec 1 g d’échantillon à mesurer.
L’expression « Nombre de brome » correspond à la quantité de brome en grammes ayant réagi sur 100 g d’échantillon et peut être mesuré selon la méthode ASTM D1159-07.
L’expression « Indice de brome » est le nombre de milligrammes de brome qui réagissent avec 100 g d’échantillon et peut être mesuré selon les méthodes ASTM D2710 ou ASTM D5776.
Les points d’ébullition tels que mentionnés ici sont mesurés à pression atmosphérique, sauf indication contraire. Un point d’ébullition initial est défini comme la valeur de température à partir de laquelle une première bulle de vapeur est formée. Un point d’ébullition final est la plus haute température atteignable lors d’une distillation. A cette température, plus aucune vapeur ne peut être transportée vers un condensateur. La détermination des points initial et final fait appel à des techniques connues du métier et plusieurs méthodes adaptées en fonction du domaine de températures de distillation sont applicables, par exemple NF EN 15199-1 (version 2020) ou ASTM D2887 pour la mesure des points d’ébullition de fractions pétrolières par chromatographie en phase gazeuse, ASTM D7169 pour les hydrocarbures lourds, ASTM D7500, D86 ou D1160 pour les d isti Hats.
La concentration en métaux dans les matrices hydrocarbonées peut être déterminée par toute méthode connue. Des méthodes acceptables incluent la fluorescence X (XRF) et la spectrométrie d’émission atomique à plasma à couplage inductif (ICP-AES). Les spécialistes en sciences analytiques savent identifier la méthode la plus adaptée à la mesure de chaque métal et chaque hétéro-élément en fonction de la matrice hydrocarbonée considérée.
Les caractéristiques particulières, structures, propriétés, modes de réalisation de l’invention peuvent être combinés librement en un ou plusieurs modes de réalisation non spécifiquement décrits ici, comme cela peut être apparent à des spécialistes du traitement des huiles de pyrolyse de plastique mettant en oeuvre leurs connaissances générales. Description de l’invention
Exemples
Les modes de réalisation de la présente invention sont illustrés par les exemples non- limitatifs suivants.
Exemple 1 : Purification d’une huile de pyrolyse de plastique en présence d’une base forte et d’eau suivie d’un lavage à l’eau
Les caractéristiques physico-chimiques de l’huile de pyrolyse plastique utilisée sont décrites dans le tableau 1 , ci-dessous:
Tableau 1
Figure imgf000016_0001
Protocole d’essai :
Un autoclave en acier inoxydable de grade AISI-316L de 1 ,5 L équipé d’une agitation mécanique est chargé avec l’huile de pyrolyse HPP2, une base forte sous la forme de NaOH et de l’eau, la base forte étant solubilisée dans l’eau avant son introduction dans l’autoclave (tableau 2). La somme du volume d’huile de pyrolyse et du volume d’eau introduits est d’environ 600 mL à température ambiante, sans tenir compte des effets éventuels de variation volumique lors de leur mélange. L’autoclave est fermé et le ciel gazeux dans l’autoclave est balayé à l’azote pendant 30 minutes. L’autoclave est ensuite chauffé sous pression autogène sous agitation à une vitesse de 400 à 1500 tours/minute à une température de 225 °C pendant une durée de 1 minute, 10 minutes ou 20 minutes selon les essais, une fois que la température cible a été atteinte. La vitesse de montée en température est fixée à 30°C/10 minutes.
Tableau 2
Figure imgf000016_0002
Figure imgf000017_0001
A l’issue de la réaction, l’autoclave est refroidi à température ambiante puis, pour les essais 1 et 2, le mélange est déchargé et lavé trois fois avec de l’eau avec, à chaque lavage, un ratio en volume eau/charge = 40/60, pour éliminer les résidus de base forte et les impuretés solubles dans l’eau. L’huile de pyrolyse purifiée et lavée résultante est analysée pour mesurer la teneur en impuretés résiduelles (tableau 3). Pour l’essai 3, le mélange déchargé de l’autoclave est divisé en deux parties. La première partie est lavée avec de l’eau dans les mêmes conditions que pour les essais 1 et 2 et l’huile de pyrolyse purifiée et lavée résultante est analysée (essai 3A du tableau 3). La deuxième partie est décantée afin de récupérer la phase organique, laquelle est ensuite centrifugée. L’huile de pyrolyse décantée et centrifugée résultante est analysée (essai 3B du tableau 3).
Tableau 3
Figure imgf000017_0002
Figure imgf000018_0001
Les données du tableau 3 montrent que l’utilisation de soude en présence d’eau suivie d’un lavage permet de réduire notablement les impuretés contenues initialement dans l’huile de pyrolyse ainsi que le sodium introduit par le traitement à la soude, même pour une durée courte de traitement à la soude.
Notamment, on a observé qu’en absence de lavage, par exemple après une simple décantation/ centrifugation, la teneur en sodium de l’huile de pyrolyse est élevée, en particulier supérieure à 1000ppm, ce qui n’est pas acceptable pour un traitement ultérieur catalytique.
L’huile de pyrolyse peut être, soit utilisée telle quelle, soit éventuellement séchée sur un adsorbant tel qu’un tamis moléculaire ou un sel anhydre, par exemple Na2SC>4, puis est distillée sous pression réduite afin d’éliminer toute trace éventuelle de solide, par exemple de base forte, de résidu d’adsorbant, de sel anhydre/hydraté ou de gommes.
Exemple 2 : Purification d’une huile de pyrolyse de plastique en présence d’une base forte et d’eau suivie d’un lavage à l’eau
Une autre huile de pyrolyse HPP8 a été mise en contact avec de la soude suivant un protocole d’essai similaire à celui de l’exemple 1 dans les conditions rassemblées dans le tableau 4. 450g d’huile HPP8 ont ainsi été mis en contact pendant 20 minutes à 180°C avec 22,5g de NaOH solubilisé dans l’eau.
Tableau 4
Figure imgf000018_0002
A l’issue de la réaction, l’autoclave est refroidi à température ambiante puis, le mélange est déchargé et lavé trois fois avec de l’eau avec, à chaque lavage, un ratio en volume eau/charge = 40/60, pour éliminer les résidus de base forte et les impuretés solubles dans l’eau.
Les données du tableau 5 montrent que l’utilisation de soude en présence d’eau suivie d’un lavage permet de réduire notablement les impuretés contenues initialement dans l’huile de pyrolyse ainsi que le sodium introduit par le traitement à la soude, même pour une température de traitement à la soude inférieure à 200°C.
Tableau 5
Figure imgf000019_0001
Exemple 3 : Hydrotraitement en deux étapes et vapocraquaqe du produit de l’exemple 1 L’une des huiles de pyrolyse purifiées et lavées de l’exemple 1 (issue des essais 1 , 2 ou 3A) ou de l’exemple 2 (essai 4) peut être hydrotraitée en deux étapes selon la procédure suivante :
L’huile de pyrolyse purifiée et lavée peut être introduite dans une première section d’hydrotraitement (HDT1) essentiellement pour hydrogéner les dioléfines et est opérée en phase liquide. Cette étape peut comprendre une pluralité de réacteurs en série et/ou parallèle si des réacteurs de garde sont utilisés en amont ou en aval du premier réacteur d’hydrogénation. Ces réacteurs de garde peuvent permettre de réduire la concentration en certaines espèces chimiques indésirables et/ou en éléments tels que le chlore, le silicium et les métaux. Des métaux particulièrement indésirables incluent Na, Ca, Mg, Fe et Hg. Une seconde section d’hydrotraitement (HDT2) est dédiée à l’hydrogénation des oléfines et à la démétallation (HDM), la désulfuration (HDS), la désazotation (HDN) et la désoxygénation (H DO). HDT2 est opérée en phase gazeuse. Cette section consiste en un ou plusieurs réacteurs opérés en série, en avance-retard (« lead-lag ») ou en parallèle.
Comme les réactions d’hydrotraitement dans les sections HDT1 et HDT2 sont exothermiques, une trempe par de l’hydrogène froid peut être utilisée pour modérer l’accroissement de température et contrôler la réaction.
Des réacteurs de garde isolés, en avance-retard (« lead-lag »), en série et/ou en parallèle peuvent être envisagés selon la nature et la quantité du contaminant dans le flux à traiter.
Dans l’hypothèse où le traitement de l’exemple 1 ne permettrait pas d’obtenir un abattement suffisant en impuretés, des réacteurs de garde pour éliminer le chlore et le silicium peuvent être opérés en phase gazeuse. Le silicium peut aussi être piégé sur le lit supérieur d’un réacteur de la section HDT2 ou séparément, en amont ou en aval par le traitement des gaz chauds quittant la section HDT2.
Le chlore et le mercure peuvent être séparés par des réacteurs de garde en phase liquide ou gazeuse.
Il peut y avoir des trempes intermédiaires entre les lits ou entre les réacteurs HDT1 et HDT2 ou pas de trempe. Dans ce dernier cas, un recyclage d’une partie du flux sortant du HDT1 ou du HDT2 doit être réalisé pour contrôler la température. Un contrôle strict de la température dans HDT1 doit être conduit, afin d’éviter le bouchage du réacteur et la dégradation des conditions d’hydrogénation catalytique.
La pression opératoire dans chacun des hydrotraitements HDT1 et HDT2 est de 5-60 bars, de préférence 20-30 bars pour HDT1 et 20-140 bars, de préférence 30-60 bars pour HDT2, typiquement 30-40 bars pour HDT2.
Plage de température typique à l’entrée de HDT1 en début de cycle (SOR : start of run) : 150-200°C. Le catalyseur pour HDT 1 comprend habituellement Pd (0,1-10% poids) et/ou Ni (0,1-60% poids) et/ou NiMo (0,1-60% poids).
Plage de température typique à l’entrée de HDT2 en début de cycle (SOR : start of run) : 200-340°C. Domaine typique de température de sortie de HDT2 (SOR) : 300-380°C, jusqu’à 450°C. Le catalyseur pour HDT 2 comprend habituellement un NiMo (tout type de catalyseur commercial pour application raffinage ou pétrochimie), potentiellement un CoMo dans les tout derniers lits en fond de réacteur (tout type de catalyseur commercial pour application raffinage ou pétrochimie).
Le lit supérieur du HDT2 devrait être opéré de préférence avec un NiMo ayant une capacité hydrogénante ainsi qu’une capacité de piégeage de silicium. Un lit supérieur de ce type peut être considéré comme un adsorbant ainsi qu’un piège à métaux ayant aussi une activité HDN et une capacité hydrogénante. Un exemple de lit supérieur acceptable pour cette fonction comprend les adsorbents catalyseurs NIMo commercialement disponibles tels que ACT971 , ACT981 d’Axens ou équivalents chez Haldor Topsoe, Axens, Criterion, etc. Il est possible d’avoir deux lits séparés dans un réacteur HDT2, avec une trempe entre les deux lits ou entre les deux réacteurs, si les deux lits sont dans deux réacteurs distincts, ou pas de trempe du tout. Idéalement, la trempe intermédiaire est effectuée au moyen d’effluent froid d’HDT2 ou par un apport d’hydrogène froid, c’est-à-dire à une température allant généralement de 15 à 30°C, afin de contrôler l’exotherme du HDT2. Une dilution par recycle du flux d’hydrocarbure vers le lit supérieur d’HDT2 n’est pas recommandé en raison des risques accrus d’encrassement du lit. La charge arrivant sur le catalyseur d’HDT2 devrait être totalement vaporisée à tout moment, y-compris en régime variable comme c’est le cas lors des démarrages. L’envoi d’hydrocarbures liquides sur le lit supérieur d’un réacteur HDT2 peut générer de l’encrassement et un accroissement de la différence de pression entre l’entrée et la sortie dudit réacteur HDT2 et conduire à un arrêt prématuré.
En fonction des métaux présents dans l’huile de pyrolyse à hydrotraiter, un catalyseur d’hydrodémétallation, par exemple commercial, peut être ajouté sur le lit supérieur de la section HDT2 afin de protéger de la désactivation les lits catalytiques inférieurs.
L’huile de pyrolyse hydrotraitée quittant la section HDT2 peut être utilisée telle quelle ou fractionnée selon des plages de température de distillation, pour alimenter un vapocraqueur, un FCC, un hydrocraqueur, un reformeur catalytique ou un pool de carburants ou combustibles tels que GPL, essence, jet, diesel, fuel.
Alternativement, l’huile de pyrolyse traitée quittant la section HDT2 subit une étape de purification supplémentaire par passage sur une masse de captation telle qu’un adsorbant, par exemple (i) un gel de silice, (ii) une argile, (iii) une argile pilée, (iv) de l’apatite, (v) de l’hydroxyapatite et leurs combinaisons, (vi) une alumine par exemple une alumine obtenue par précipitation de boehmite, une alumine calcinée telle que Ceralox ® de Sasol, (vii) de la boehmite, (viii) de la bayerite, (ix) de l’hydrotalcite, (x) un spinelle tel que Pural ® ou Puralox de Sasol, (xi) une alumine promue, par exemple Selexsorb ® de BASF, une alumine promue acide, une alumine promue par une zéolithe et/ou par un métal tel que Ni, Co, Mo ou une combinaison d’au moins deux d’entre eux, (xii) une argile traitée par un acide telle que Tonsil ® de Clariant, (xiii) un tamis moléculaire sous la forme d’un aluminosilicate contenant un cation alcalin ou alcalino-terreux par exemple les tamis 3A, 4A, 5A, 13X, par exemple commercialisés sous la marque Siliporite ® de Ceca, (xiv) une zéolithe, (xv) un charbon actif, ou la combinaison d’au moins deux adsorbants, l’adsorbant ou les au moins deux adsorbants retenant au moins 20% en poids, de préférence au moins 50% en poids d’au moins un élément parmi F, Cl, Br, I, O, N, S, Se, Si, P, As, Fe, Ca, Na, K, Mg et Hg et/ou de l’eau. Idéalement, l’adsorbant est régénérable, a une surface spécifique d’au moins 200 m2/g et est opéré dans un réacteur à lit fixe à moins de 100°C avec une WH de 0,1 à 10 h-1.

Claims

Revendications
1. Procédé de diminution de la concentration en hétéroatomes d’une composition comprenant une huile de liquéfaction de plastique contenant au moins 20 ppm en masse de chlore tel que mesuré selon la norme ASTM D7359-18, comprenant :
(a). une mise en contact de ladite composition avec 0,1-50% en masse d’une base forte comprenant un cation de métal alcalin ou alcalino-terreux, en présence d’eau, pendant 1 minute à 20 minutes à une température d’au plus 450°C,
(b). un lavage avec de l’eau à pH neutre ou acide du produit issu de l’étape (a),
(c). le produit issu du lavage de l’étape (b) subit une hydrogénation catalytique en une ou deux étapes.
2. Procédé selon la revendication 1 , dans lequel la composition comprend en outre une huile de pyrolyse ou de liquéfaction hydrothermale de biomasse, notamment une huile de pyrolyse ou de liquéfaction hydrothermale de biomasse telle que de Panicum virgatum, une huile de tall, une huile alimentaire usagée, une graisse animale, une huile végétale telle qu’une huile de colza, de canola, de ricin, de palme, de soja, une huile extraite d’une algue, une huile extraite d’une fermentation de microorganismes oléagineux tels que des levures oléagineuses, une huile de pyrolyse ou de liquéfaction hydrothermale de biomasse telle qu’une biomasse lignocellulosique telle qu’une huile de pyrolyse de bois, de papier et/ou de carton, une huile obtenue par pyrolyse ou liquéfaction hydrothermale de meubles usagés broyés, une huile de pyrolyse d’élastomères par exemple du latex éventuellement vulcanisé ou des pneus, ainsi que leurs mélanges.
3. Procédé selon la revendication 1 ou 2, comprenant entre l’étape (a) et (b) une étape de séparation entre la base forte comprenant le cation de métal alcalin ou alcalino-terreux en solution dans l’eau et le produit issu de la mise en contact de ladite composition.
4. Procédé selon la revendication 3, dans lequel l’étape de séparation s’effectue par (i) centrifugation, (ii) décantation, ou (iii) par la combinaison de ces deux étapes.
5. Procédé selon la revendication 3 ou 4, dans lequel la base forte en solution dans l’eau séparée au cours de l’étape de séparation est renvoyée, partiellement ou en totalité, dans l’étape (a) de mise en contact.
6. Procédé selon l’une des revendications 3 à 5, dans lequel l’étape de séparation est précédée d’une étape de séparation des solides par (i) filtration, (ii) centrifugation ou (iii) une combinaison des deux étapes. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel la mise en contact s’effectue pendant une durée de 1 minute à 20 minutes, de préférence de 1 minute à 16 minutes, à une température de 50 à 450°C, de préférence de 50 à 350°C ou de 90 à 350°C, plus préférentiellement de 150 à 350°C, encore plus préférentiellement de 50 à 250°C ou de 50 à 225°C ou 50 à 200°C, et à une pression absolue de 0,1 à 100 bars, de préférence de 1 à 50 bars. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel la base forte est choisie parmi LiOH, NaOH, CsOH, Ba(OH)2, Na2O, KOH, K2O, CaO, Ca(OH)2, MgO, Mg(OH)2 et leurs mélanges. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel, préalablement à la mise en contact de l’étape (a), ladite composition est soumise à (i) une filtration, (ii) un lavage avec un solvant polaire, (iii) une distillation, (iv) une décantation, ou (v) à la combinaison de deux, trois ou quatre des étapes (i) à (iv). Procédé selon l’une des revendications 1 à 9, dans lequel l’hydrogénation catalytique de l’étape (c) s’effectue en une première étape (c-1 ) dans laquelle le produit issu de la mise en contact est hydrogéné à une température comprise entre 20 et 200°C, de préférence entre 30 et 90°C en présence d’hydrogène à une pression absolue comprise entre 5 et 60 bars, de préférence entre 20 et 30 bars et en présence d’un catalyseur d’hydrogénation comprenant Pd (0.1-10 % en poids) et/ou Ni (0.1-60 % en poids) et/ou NiMo (0.1-60 % en poids), et en une deuxième étape (c-2) dans laquelle l’effluent issu de l’étape (c-1 ) est hydrogéné à une température comprise entre 200 et 450°C, de préférence entre 200 et 340°C en présence d’hydrogène à une pression absolue comprise entre 20 et 140 bars, de préférence entre 30 et 60 bars et en présence d’un catalyseur d’hydrogénation comprenant NiMo (0.1-60 % en poids) et/ou CoMo (0.1-60 % en poids). Procédé selon l’une quelconque des revendications 1 à 10, dans lequel le produit issu de l’étape (b) ou l’effluent issu de l’étape (c) est (d) purifié par passage sur un adsorbant solide afin de diminuer la teneur en au moins un élément parmi F, Cl, Br, I, O, N, S, Se, Si, P, As, Fe, Ca, Na, K, Mg et Hg et/ou la teneur en eau. Procédé selon la revendication 11 , dans lequel l’adsorbant est opéré en mode régénératif ou non régénératif, à une température inférieure à 400°C, de préférence inférieure à 100°C, plus préférentiellement inférieure à 60°C choisi parmi : (i) un gel de silice, (ii) une argile, (iii) une argile pilée, (iv) de l’apatite, (v) de l’hydroxyapatite et leurs combinaisons, (vi) une alumine par exemple une alumine obtenue par précipitation de boehmite, une alumine calcinée telle que Ceralox ® de Sasol, (vii) de la boehmite, (viii) de la bayerite, (ix) de l’hydrotalcite, (x) un spinelle tel que Pural ® ou Puralox de Sasol, (xi) une alumine promue, par exemple Selexsorb ® de BASF, une alumine promue acide, une alumine promue par une zéolithe et/ou par un métal tel que Ni, Co, Mo ou une combinaison d’au moins deux d’entre eux, (xii) une argile traitée par un acide telle que Tonsil ® de Clariant, (xiii) un tamis moléculaire sous la forme d’un aluminosilicate contenant un cation alcalin ou alcalino-terreux par exemple les tamis 3A, 4A, 5A, 13X, par exemple commercialisés sous la marque Siliporite ® de Ceca, (xiv) une zéolithe, (xv) un charbon actif, ou la combinaison d’au moins deux adsorbants, l’adsorbant ou les au moins deux adsorbants retenant au moins 20% en poids, de préférence au moins 50% en poids d’au moins un élément parmi F, Cl, Br, I, O, N, S, Se, Si, P, As, Fe, Ca, Na, K, Mg et Hg et/ou de l’eau. Procédé selon la revendication 12, dans lequel l’adsorbant est régénérable, a une surface spécifique d’au moins 200 m2/g et est opéré dans un réacteur à lit fixe à moins de 100°C avec une WH de 0,1 à 10 h’1. Procédé selon l’une quelconque des revendications 1 à 13, dans lequel au moins une partie du produit issu de l’étape (b) ou de l’effluent issu de l’étape (c) ou (d) est :
(e) traité dans un vapocraqueur, et/ou
(f) traité dans un craqueur catalytique en lit fluidisé, et/ou
(g) traité dans un hydrocraqueur, et/ou
(h) traité dans une unité d’hydrogénation catalytique, et/ou
(i) utilisé tel quel ou séparé en des flux utilisables pour la préparation de carburants et combustibles tels que GPL, essence, diesel, fuel lourd et/ou pour la préparation de lubrifiants.
PCT/FR2022/051498 2021-09-08 2022-07-26 Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation WO2023037059A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247011692A KR20240095184A (ko) 2021-09-08 2022-07-26 수성 매질 중에서 탄화수소 공급원료를 정제하기 위한 방법 및 그의 용도
CA3229309A CA3229309A1 (fr) 2021-09-08 2022-07-26 Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation
EP22755272.6A EP4399260A1 (fr) 2021-09-08 2022-07-26 Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2109395 2021-09-08
FR2109395A FR3126710A1 (fr) 2021-09-08 2021-09-08 Procédé de purification de charge hydrocarbonée en milieu aqueux et utilisation

Publications (1)

Publication Number Publication Date
WO2023037059A1 true WO2023037059A1 (fr) 2023-03-16

Family

ID=77999217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051498 WO2023037059A1 (fr) 2021-09-08 2022-07-26 Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation

Country Status (5)

Country Link
EP (1) EP4399260A1 (fr)
KR (1) KR20240095184A (fr)
CA (1) CA3229309A1 (fr)
FR (1) FR3126710A1 (fr)
WO (1) WO2023037059A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024213735A1 (fr) * 2023-04-13 2024-10-17 Basf Se Procédé de purification d'une huile de pyrolyse
WO2024213732A1 (fr) * 2023-04-13 2024-10-17 Basf Se Procédé de purification d'une huile de pyrolyse

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776335B2 (ja) 2001-07-25 2006-05-17 独立行政法人科学技術振興機構 油中の塩素及び窒素の同時除去方法
WO2012069467A1 (fr) 2010-11-22 2012-05-31 Sa Comet Traitements Procede d'elimination de derives a base de siloxane d'une phase organique liquide
US20140303421A1 (en) 2013-04-06 2014-10-09 Agilyx Corporation Systems and methods for conditioning synthetic crude oil
WO2020020769A1 (fr) 2018-07-20 2020-01-30 Neste Oyj Purification de matière organique recyclée et renouvelable
WO2020239729A1 (fr) 2019-05-28 2020-12-03 Neste Oyj Purification hydrothermale améliorée par un alcali d'huiles de pyrolyse du plastique
WO2021105326A1 (fr) 2019-11-29 2021-06-03 Neste Oyj Procédé en deux étapes pour convertir des déchets plastiques liquéfiés en matière première de vapocraqueur

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI128673B (en) 2018-06-26 2020-10-15 Pintone Oy Electric vehicle with weather protection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776335B2 (ja) 2001-07-25 2006-05-17 独立行政法人科学技術振興機構 油中の塩素及び窒素の同時除去方法
WO2012069467A1 (fr) 2010-11-22 2012-05-31 Sa Comet Traitements Procede d'elimination de derives a base de siloxane d'une phase organique liquide
US20140303421A1 (en) 2013-04-06 2014-10-09 Agilyx Corporation Systems and methods for conditioning synthetic crude oil
WO2020020769A1 (fr) 2018-07-20 2020-01-30 Neste Oyj Purification de matière organique recyclée et renouvelable
WO2020239729A1 (fr) 2019-05-28 2020-12-03 Neste Oyj Purification hydrothermale améliorée par un alcali d'huiles de pyrolyse du plastique
WO2021105326A1 (fr) 2019-11-29 2021-06-03 Neste Oyj Procédé en deux étapes pour convertir des déchets plastiques liquéfiés en matière première de vapocraqueur

Also Published As

Publication number Publication date
FR3126710A1 (fr) 2023-03-10
EP4399260A1 (fr) 2024-07-17
CA3229309A1 (fr) 2023-03-16
KR20240095184A (ko) 2024-06-25

Similar Documents

Publication Publication Date Title
WO2023037059A1 (fr) Procede de purification de charge hydrocarbonee en milieu aqueux et utilisation
EP4334414A1 (fr) Procede de purification de charge hydrocarbonee en presence d&#39;un solvant et utilisation
WO2022234226A1 (fr) Procede de purification de charge hydrocarbonee et utilisation
US20150065762A1 (en) Catalytic pyrolysis of olive mill waste
US11655431B2 (en) Method for upgrading low-value and waste fats, oils, and greases
FR3141696A1 (fr) Procédé de purification de charge hydrocarbonée par traitement en présence d’une base forte concentrée et utilisation
EP4334410A1 (fr) Procede de traitement simultane d&#39;huiles de pyrolyse de plastiques et d&#39;une charge issue de sources renouvelables
WO2024089319A1 (fr) Procede de purification d&#39;une composition d&#39;huile de liquefaction de plastique
WO2024126961A1 (fr) Procede de traitement d&#39;une composition d&#39;huile de liquefaction de plastique par gazification
WO2024023443A1 (fr) Procede de purification d&#39;une composition d&#39;huile de liquefaction de plastique en regime turbulent et utilisation
FR3119399A1 (fr) Procede de purification d’une huile de pyrolyse en vue de sa valorisation par vapocraquage
FR3135274A1 (fr) Procede de production d’olefines par vapocraquage de charges provenant de dechets plastiques
WO2024023444A1 (fr) Procédé de purification d&#39;une composition d&#39;huile de liquéfaction de plastique par cavitation et utilisation
FR3141185A1 (fr) Procédé de traitement d’une composition comprenant une huile issue de déchets plastiques
WO2023214085A1 (fr) Procede de production de paraffines par hydrotraitement de charges provenant de dechets plastiques
WO2024175220A1 (fr) Procede de production d&#39;olefines par vapocraquage par valorisation d&#39;un gaz de pyrolyse
WO2023208636A1 (fr) Procede de traitement d&#39;huile de pyrolyse de plastiques incluant une etape de recyclage d&#39;h2s
WO2024132435A1 (fr) Procede de traitement d&#39;huiles de pyrolyse de plastiques et/ou de pneus incluant l&#39;elimination des halogenures par lavage avant une etape d&#39;hydrotraitement
WO2024132436A1 (fr) Procede de traitement d&#39;huiles de pyrolyse de plastiques et/ou de pneus incluant l&#39;elimination des halogenures avant une etape d&#39;hydrotraitement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755272

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 3229309

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18690183

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022755272

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022755272

Country of ref document: EP

Effective date: 20240408