WO2023035863A1 - 一种大跨度转换桁架-剪力墙结构及施工工艺 - Google Patents

一种大跨度转换桁架-剪力墙结构及施工工艺 Download PDF

Info

Publication number
WO2023035863A1
WO2023035863A1 PCT/CN2022/112353 CN2022112353W WO2023035863A1 WO 2023035863 A1 WO2023035863 A1 WO 2023035863A1 CN 2022112353 W CN2022112353 W CN 2022112353W WO 2023035863 A1 WO2023035863 A1 WO 2023035863A1
Authority
WO
WIPO (PCT)
Prior art keywords
truss
construction
shear wall
shear
conversion
Prior art date
Application number
PCT/CN2022/112353
Other languages
English (en)
French (fr)
Inventor
兰涛
张博雅
秦广冲
李然
李泽旭
门进杰
Original Assignee
中国船舶重工集团国际工程有限公司
西安建筑科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶重工集团国际工程有限公司, 西安建筑科技大学 filed Critical 中国船舶重工集团国际工程有限公司
Publication of WO2023035863A1 publication Critical patent/WO2023035863A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/342Structures covering a large free area, whether open-sided or not, e.g. hangars, halls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/562Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with fillings between the load-bearing elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/58Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/58Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal
    • E04B2/60Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal characterised by special cross-section of the elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/64Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of concrete
    • E04B2/68Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of concrete made by filling-up wall cavities
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/08Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G25/02Shores or struts; Chocks non-telescopic

Definitions

  • the invention generally relates to the field of building structure engineering, and mainly relates to a large-span conversion truss-shear wall structure and construction technology.
  • truss transfer structures are mainly used in structures with large spans, bearing upper vertical members and transmitting large loads.
  • the truss transfer layer not only needs to bear the vertical load force transmitted by the upper part of the structure, but also bears the load force in the horizontal direction of the structure.
  • the internal stress members of the truss transfer structure are mainly subjected to axial force, the overall performance of the truss structure is good, and the force transmission route of the members is clear.
  • the members of the transfer layer of the truss transfer structure are lighter, and the cross-sectional size of the members is easier to control, so it can effectively reduce the burden on the lower members of the structure, and at the same time effectively control the overall stiffness of the transfer layer.
  • the shear wall structure Compared with the frame structure, the shear wall structure has superiority in bearing capacity and lateral stiffness.
  • the transfer truss adopts the arrangement of cross diagonal members, which can reduce the force of the diagonal members of the truss layer, but will increase the burden of the steel plate composite shear wall, making Shear failure or bending failure may occur on the steel plate composite shear wall.
  • the purpose of the present invention is to propose a large-span conversion truss-shear wall structure and construction technology, which can effectively reduce the bending moment of the shear walls at both ends of the large-span conversion truss, and pass the
  • the pre-camber of the truss and the jack at the lower part of the truss adjust the force and deformation of the truss, and the method of changing the joint form of the truss and the steel plate composite shear wall is used to improve the flexural bearing capacity of the steel plate composite shear wall and enhance the safety performance of the components.
  • the comprehensive cost is low, the structure is simple, and the construction is convenient. It can be widely used in high-rise building structures with large spans, bearing upper vertical components and large transfer loads.
  • the present invention firstly provides a large-span transfer truss-shear wall structure, including a shear wall and a transfer truss, wherein,
  • the shear walls are located on both sides of the structure
  • the two ends of the conversion truss are connected to the shear walls on both sides through the upper connection node and the lower connection node, and:
  • the conversion truss is supported by a lower bracket and a jack, the upper connection node is connected by bolts between the conversion truss and the shear wall, and the lower connection node is disconnected;
  • the transfer truss continues to be supported by the lower bracket and the jack, and the upper main structure is constructed on the transfer truss until the construction is completed;
  • the lower connection node is connected by bolts between the conversion truss and the shear wall, and the lower support and the jack are removed.
  • the shear wall is a steel plate composite shear wall, including edge reinforcement columns, upper and lower wall beams and a central wall, the center wall is between the upper and lower wall beams, and the upper and lower wall beams are welded to the edge reinforcement columns .
  • the edge reinforced column is a square steel pipe poured concrete column
  • the central wall includes an outer steel plate, concrete and a shear connector
  • the outer steel plate is welded to the edge reinforced column
  • the shear connector is welded on the outer wall.
  • the concrete is poured inside the outer steel plate.
  • the shear connector is one or more of studs, panels, T-shaped stiffeners, and tension bolts.
  • the conversion truss includes an upper chord, a lower chord, a vertical web and a cross diagonal member
  • the upper connection node is a connection node between the upper chord, the cross diagonal member and the shear wall
  • the lower connection node is the connection node between the lower chord and the cross diagonal member and the shear wall.
  • the first construction stage is that after the conversion truss is hoisted, at the upper connection node, the upper chord and cross diagonal members are connected with the shear wall by bolts, and at the lower connection node At the connection node, the bottom chord and the cross diagonal are not assembled.
  • the conversion truss has a pre-camber
  • the second construction stage is to adjust the internal force and deformation of the truss structure through the pre-camber and jacks after every two to three floors of construction are completed to ensure that the upper At the end of the construction of the main structure, the deflection of the truss structure is negligible.
  • the third construction stage is that after the construction of the upper main structure is completed and the force and displacement of the conversion truss are stable, the lower chord and cross diagonal members are assembled at the lower connection node, and the lower chord The bolts are used to fix the connection between the cross diagonal rod and the shear wall, and then the lower bracket and jack are removed.
  • the bottom chord and the cross diagonal member are connected and fixed with the shear wall by reaming bolts.
  • the present invention further provides a construction technique for a large-span conversion truss-shear wall structure, comprising the following steps:
  • Step 1 constructing the lower main structure and shear walls
  • Step 2 set up the lower bracket and place the jack
  • Step 3 hoisting and converting the truss, reserve the pre-camber when making the truss, and assemble the upper chord, lower chord, vertical web and cross diagonal web of the truss as a whole on site, and do not assemble the lower connection nodes for the time being.
  • the lower chord and the cross diagonal member are then hoisted to the design elevation as a whole or in sections, so that the upper chord and the cross diagonal member at the upper connection node are bolted and fixed with the shear wall;
  • Step 4 construct the upper main structure, construct the upper main structure on the transfer truss, and adjust the internal force and deformation of the truss structure through the truss pre-camber and the jack to ensure the construction of the upper main structure.
  • the overall truss structure is level, and its downward deflection is negligible;
  • Step 5 assembling the lower chord and the cross diagonal member at the lower connection node, and bolting it to the shear wall;
  • Step six remove the jack and the lower bracket, and the construction is completed.
  • the present invention has the beneficial effects that: in the first construction stage, the method converts the joint connection mode between the truss and the steel plate shear wall by changing the original design, and in the second construction stage through the truss pre-camber and The jack at the lower part of the truss adjusts the force and deformation of the truss to reduce the bending moment of the steel plate shear wall in the original design calculation and enhance the safety performance of the components. Finally, in the third construction stage, the lower connecting nodes of the truss and the shear wall are bolted and fixed, so as to retain the advantages of the rigid connection of the nodes in the original design and improve the overall seismic performance.
  • This construction method can be widely used in high-rise building structures with large spans, upper vertical components and large transfer loads. Specifically, it has at least the following practical effects:
  • the force and deformation of the truss are adjusted through the pre-camber of the truss and the jack at the lower part of the truss to reduce the bending moment of the shear wall at this layer.
  • the lower connecting nodes and The shear wall is connected by reaming bolts, which reduces the internal force of the members at the lower connection node, improves the structural ductility, and improves the seismic performance of the structure.
  • the construction difficulty of this method is relatively low, and the construction time is short.
  • This construction method can greatly reduce the bending moment of the steel plate shear wall, continuously adjust the overall force and deformation of the truss through the pre-camber of the truss and the jack at the bottom of the truss, and connect the lower nodes of the truss and the composite shear wall after the main body construction is completed, so as to This reduces the deflection of the truss structure and improves the structural ductility and seismic performance.
  • the overall connection between the transfer truss and the steel plate shear wall can be defined as a rigid connection, that is, the upper and lower connection nodes are connected with the composite shear wall by bolts for structural design, and when the key components are designed in detail , the overall connection between the transfer truss and the steel plate shear wall can be defined as a hinge joint, in which the upper connection node and the composite shear wall end column are connected by bolts, and the lower connection node is disconnected to consider, and then select the appropriate working condition to review Whether the shear wall components meet the design requirements.
  • FIG. 1 is the overall structural representation of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the connection between a steel plate shear wall and a transfer truss according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a section AA of a steel plate shear wall according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the connection between the shear wall and the truss during the construction stage of the transfer layer according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the force wall 4 is connected through nodes, and the nodes include an upper connection node 6 and a lower connection node 7 .
  • the whole structure can be divided into the long-span transfer truss layer 1 in height, the lower main structure 2 below the long-span transfer truss layer 1, and the upper main structure 3 above the long-span transfer truss layer 1.
  • the layers are clear, which can meet different design and use requirements.
  • the lower main structure 2 is a shear wall structure to provide stable shear and seismic bearing strength for the lower part
  • the upper main structure 3 is a frame-shear wall structure to provide Sufficient use of space, and can save engineering costs.
  • the shear wall 4 is a steel plate composite shear wall, including edge reinforcement columns 4a, upper and lower wall beams 4b, and a central wall 4c, between the upper and lower wall beams 4b is the central wall 4c, and the upper and lower wall beams 4b are connected to the edge reinforcement Column 4a is connected by welding seam.
  • the edge reinforcement column 4a is a square steel pipe poured concrete column, and the square steel pipe poured concrete column can provide a wall peripheral frame with sufficient strength for the shear wall 4, and is connected to the shear wall 4 by the conversion truss 5 Convenience is provided.
  • the central wall 4c includes an outer steel plate 4d, concrete 4e and shear connector 4f, the outer steel plate 4d is welded to the edge reinforcement column 4a, the shear connector 4f is welded on the inner surface of the outer steel plate 4d, and the concrete 4e is poured inside the outer steel plate 4d , the outer cladding steel plate 4d and the concrete 4e are connected through a shear connector 4f.
  • T-shaped stiffeners are used as the shear connector 4f, and other connection methods such as studs, trim plates, and tension bolts, or a combination of these connection methods can also be used.
  • the present invention improves the construction of the upper connection node 6 and the lower connection node 7 between the conversion truss 5 and the shear wall 4, divides the construction stages during the construction process, and adjusts the lower part by setting the truss pre-camber in different construction stages
  • the height of the jack 9, combined with the method of connecting the nodes 6 and 7 at different construction stages, is expected to greatly reduce the bending moment of the walls at both ends of the long-span transition truss.
  • connection node 6 is bolted, and the lower connection node 7 is disconnected.
  • a conversion truss 5 of the present invention includes an upper chord 5d, a lower chord 5a, a vertical web 5c and a cross diagonal 5b, and the upper connection node 6 is the same shear of the upper chord 5d and the cross diagonal 5b.
  • the connection node between the force walls 4, the lower connection node 7 is the connection node between the lower chord 5a and the cross diagonal member 5b and the shear wall 4.
  • the width of the upper chord 5d, the lower chord 5a and the cross diagonal 5b is smaller than the width of the edge reinforcement column 4a, so as to reserve welding space for the subsequent construction stage.
  • the conversion truss 5 reserves the pre-camber during production, and the truss upper chord 5d, lower chord 5a, vertical web 5c and cross diagonal web 5b are integrally spliced on the ground; Release the positioning edge of the web, and install the web according to the position of the edge.
  • a steel pipe support 10 is set up at the lower part of the conversion truss 5, and steel pipes are used to erect, and fasteners are used to fix the steel pipes.
  • a jack 9 is placed on the steel pipe support 10, and the conversion truss 5 is temporarily supported by the jack 9 and the steel pipe support 10 and maintained at Design elevation. After the overall splicing of the conversion truss 5 is completed, the entire truss or sections are hoisted to the design elevation of the support.
  • the upper chord 5d and the cross diagonal member 5b are bolted and fixed with the shear wall 4, specifically, the upper chord 5d and the cross diagonal member 5b are connected to the shear wall 4
  • the edge reinforcement column 4a is fixed by bolting, which is the first construction stage.
  • the upper connection nodes of the conversion truss 5 and the shear wall 4 are connected by bolts, and the lower connection nodes are not connected, so as to reduce the truss bending moment effect on the shear wall 4 in this construction stage.
  • the bottom chord 5a, the cross diagonal 5b and the shear wall 4 are connected and fixed by reaming bolts.
  • Reaming bolts can improve the energy consumption and deformation capacity of nodes. Since the lower bracket needs to be removed in the third construction stage, in order to ensure the connection performance of nodes and prevent brittle fracture of bolts, the present invention adopts reaming bolt connection form to improve structural safety.
  • the construction technique of the large-span conversion truss-shear wall structure of the present invention comprises the following steps:
  • Step 1 constructing the lower main structure 2 and the shear wall 4;
  • Step 2 set up the steel pipe support 10 at the lower part of the truss and place the jack 9;
  • Step 3 hoisting the conversion truss 5, reserve the pre-camber when making the truss, and assemble the upper chord 5d, the lower chord 5a, the vertical web 5c and the cross diagonal 5b of the truss as a whole on site, but do not assemble the truss for the time being.
  • the lower chord and the cross diagonal rod at the lower connection node 7 are lifted to the design elevation as a whole or in sections and temporarily fixed with the jack 9 so that the upper chord at the upper connection node 6 and the cross diagonal rod are sheared at the same time.
  • the force wall 4 is bolted and fixed;
  • Step 4 construct the upper main structure 3, construct the upper main structure 3 on the conversion truss 5, and adjust the internal force and deformation of the truss structure through the pre-camber of the truss and the jack 9 every time the construction of two to three floors is completed, wherein the jack
  • the displacement control amount of is calculated by the design software, the purpose is to ensure that after the upper construction is completed, and the stress and displacement of the conversion truss 5 are stable, the overall level of the truss structure is negligible;
  • Step 5 assembling the lower chord and the cross diagonal rod at the lower connecting node 6, and connecting and fixing it with the shear wall 4 by reaming bolts;
  • Step 6 remove the jack 9 and the steel pipe support 10 at the lower part of the truss, and the construction is completed.
  • the construction technology of the large-span conversion truss-shear wall structure proposed by the present invention can effectively reduce the bending moment of the shear walls at both ends of the large-span conversion truss, improve the flexural bearing capacity of the steel plate composite shear wall, and enhance the safety performance of the components , and the comprehensive cost is low, the structure is simple, and the construction is convenient, and it can be widely used in high-rise building structures with large spans, upper vertical components and large transfer loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

本发明涉及一种大跨度转换桁架-剪力墙结构及施工工艺,包括剪力墙和转换桁架,剪力墙位于结构两侧;转换桁架两端与两侧的剪力墙通过上部连接节点和下部连接节点连接,在第一施工阶段,转换桁架由下部支架和千斤顶支撑,上部连接节点与剪力墙栓接,下部连接节点断开;在第二施工阶段,转换桁架由下部支架和千斤顶支撑,施工上部主体结构;在第三施工阶段,下部连接节点采用扩孔螺栓连接固定。本发明可有效减小大跨度转换桁架两端剪力墙的弯矩,提高钢板组合剪力墙的抗弯承载力,增强构件安全性能,且综合成本低、构造简单、施工方便,可在跨度较大、承担上部竖向构件且传递荷载较大的高层建筑结构中广泛应用。

Description

一种大跨度转换桁架-剪力墙结构及施工工艺
本申请要求2021年9月8日向中国专利局提交的、申请号为2021110513598、发明名称“一种大跨度转换桁架-剪力墙结构及施工工艺”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明总体上涉及建筑结构工程领域,主要涉及一种大跨度转换桁架-剪力墙结构及施工工艺。
背景技术
目前,桁架转换结构主要应用在跨度较大、承担上部竖向构件且传递荷载较大的结构中。桁架转换层不仅需要承受结构上部构件传递的竖向荷载作用力,而且还要承担结构水平方向的荷载作用力。桁架转换结构内部的受力构件以受轴力为主,桁架结构的整体性能良好,构件受力传力路线明确。另外,桁架转换结构转换层构件较轻,构件的截面尺寸较容易控制,因此可以有效降低结构下部构件的负担,同时有效控制转换层的整体刚度。然而,在大跨度、大空间、大悬挑的结构体系中,由于桁架转换层的存在使得结构上部竖向构件不连续,桁架为转换层提供较大的抗侧移刚度的同时,也导致结构整体刚度不均匀突变,因此,在转换层容易发生内力和位移的突变,结构整体的承载能力及构件的承载力均会减弱。
剪力墙结构相较于框架结构,其承载力及抗侧刚度均具有优越性。在桁架-钢板组合剪力墙转换结构中,转换桁架采用交叉斜腹杆的布置形式,这种形式可减小桁架层斜腹杆的受力,但会增加钢板组合剪力墙的负担,使得钢板组合剪力墙上可能会出现剪切破坏或弯曲破坏。
发明内容
鉴于现有技术的不足,本发明的目的在于提出一种大跨度转换桁架-剪力墙结构及施工工艺,可有效减小大跨度转换桁架两端剪力墙的弯矩,在施工过程中通过桁架预拱度及桁架下部千斤顶调整桁架受力及变形,改变桁架与钢板组合剪力墙连接节点形式的方法共同来提高钢板组合剪力墙的抗弯承载力,增强构件安全性能。综合成本低、构造简单、施 工方便,可在跨度较大、承担上部竖向构件且传递荷载较大的高层建筑结构中广泛应用。
为实现上述目的,本发明的技术方案如下:
本发明首先提供一种大跨度转换桁架-剪力墙结构,包括剪力墙和转换桁架,其中,
所述剪力墙位于结构两侧;
所述转换桁架两端与两侧的剪力墙通过上部连接节点和下部连接节点连接,并且:
在第一施工阶段,所述转换桁架由下部支架和千斤顶支撑,所述上部连接节点为转换桁架与剪力墙之间采用螺栓连接,所述下部连接节点断开;
在第二施工阶段,所述转换桁架继续由下部支架和千斤顶支撑,并在转换桁架上施工上部主体结构直至施工完成;
在第三施工阶段,所述下部连接节点为转换桁架与剪力墙之间采用螺栓连接,并且拆除下部支架和千斤顶。
在一个实施例中,所述剪力墙为钢板组合剪力墙,包括边缘加强柱、上下墙梁以及中心墙体,上下墙梁之间为中心墙体,上下墙梁与边缘加强柱焊接连接。
在一个实施例中,所述边缘加强柱为方钢管灌注混凝土柱,所述中心墙体包括外包钢板、混凝土以及抗剪连接件,外包钢板与边缘加强柱焊接连接,抗剪连接件焊接在外包钢板内表面,混凝土浇筑在外包钢板内部。
在一个实施例中,所述抗剪连接件为栓钉、缀板、T型加劲肋、对拉螺栓中的一种或多种。
在一个实施例中,所述转换桁架包括上弦杆、下弦杆、竖向腹杆以及交叉斜腹杆,所述上部连接节点为上弦杆与交叉斜腹杆同剪力墙之间的连接节点,下部连接节点为下弦杆与交叉斜腹杆同剪力墙之间的连接节点。
在一个实施例中,所述第一施工阶段为所述转换桁架吊装完成后,在所述上部连接节点处,上弦杆与交叉斜腹杆同剪力墙之间采用螺栓连接,在所述下部连接节点处,下弦杆与交叉斜腹杆不组装。
在一个实施例中,所述转换桁架具有预拱度,所述第二施工阶段为每完成两到三层的施工后,通过预拱度和千斤顶对桁架结构内力及变形进行调整,保证在上部主体结构施工结束时,桁架结构的下挠可忽略不计。
在一个实施例中,所述第三施工阶段为上部主体结构施工完成且所述转换桁架受力及位移稳定后,在所述下部连接节点处,组装下弦杆与交叉斜腹杆,并且下弦杆与交叉斜腹杆同剪力墙之间采用螺栓连接固定,然后拆除下部支架和千斤顶。
在一个实施例中,所述下弦杆与交叉斜腹杆同剪力墙之间采用扩孔螺栓连接固定。
本发明进一步提供一种大跨度转换桁架-剪力墙结构的施工工艺,包括如下步骤:
步骤一,施工下部主体结构及剪力墙;
步骤二,搭设下部支架并放置千斤顶;
步骤三,吊装转换桁架,在制作桁架时预留预拱度,将桁架上弦杆、下弦杆、竖向腹杆以及交叉斜腹杆在现场进行整体组装,暂不组装所述下部连接节点处的下弦杆与交叉斜腹杆,然后整榀或分段吊装至设计标高,使所述上部连接节点处的上弦杆与交叉斜腹杆同剪力墙栓接固定;
步骤四,施工上部主体结构,在所述转换桁架上施工上部主体结构,每完成两到三层的施工,通过桁架预拱度和千斤顶对桁架结构内力及变形进行调整,确保在上部主体结构施工完成且所述转换桁架受力及位移稳定后,桁架结构整体水平,其下挠可忽略不计;
步骤五,组装所述下部连接节点处的下弦杆与交叉斜腹杆,并将其同剪力墙栓接固定;
步骤六,拆除千斤顶和下部支架,施工完成。
本发明相对于现有技术的有益效果是:该方法在第一施工阶段通过改变原设计时转换桁架与钢板剪力墙之间节点的连接方式,并在第二施工阶段通过桁架预拱度及桁架下部千斤顶调整桁架受力及变形,来降低钢板剪力墙在原设计计算时的弯矩,增强构件安全性能。最后在第三施工阶段,将桁架与剪力墙的下部连接节点栓接固定,保留原设计中节点刚接时的优势,提高整体抗震性能。该施工方法可广泛应用于跨度较大、承担上部竖向构件且传递荷载较大的高层建筑结构中。具体而言,至少具有如下实际效果:
(1)施工方法的优越性
在转换桁架吊装及主体结构施工阶段,通过桁架预拱度及桁架下部千斤顶调整桁架受力及变形,来降低该层剪力墙的弯矩,在主体结构施工完成后,再将下部连接节点与剪力墙采用扩孔螺栓连接,减小下部连接节点处杆件内力,改善结构延性,提高结构抗震性能。
(2)施工方便
相较于采用其他方式来加强剪力墙的抗弯承载力,或在连接节点处采用其他特殊构件耗能,该方法施工难度较低,施工时间短。
(3)对减小剪力墙弯矩的效果显著
该施工方法能大幅降低钢板剪力墙的弯矩,通过桁架预拱度及桁架底部千斤顶不断调整桁架整体受力及变形,并在主体施工完成后连接桁架与组合剪力墙的下部节点,以此减小桁架结构挠度,提高结构延性及抗震性能。
(4)整体控制难度减小
在整体设计时,可将转换桁架与钢板剪力墙之间整体连接定义为刚接,即上部及下部连接节点均与组合剪力墙采用螺栓连接来进行结构设计,而在关键构件深化设计时,可将转换桁架与钢板剪力墙之间整体连接定义为铰接,其中上部连接节点与组合剪力墙端柱采用螺栓连接,下部连接节点断开来考虑,然后选择合适的工况,来复核剪力墙构件是否满足设计要求。
本发明的特征及优点将通过实例结合附图进行详细说明。
附图说明
[根据细则91更正 06.09.2022] 
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
[根据细则91更正 06.09.2022] 
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容涵盖的范围内。
[根据细则91更正 06.09.2022] 
图1为本发明一个实施例的整体结构示意图;
[根据细则91更正 06.09.2022] 
图2为本发明一个实施例的钢板剪力墙与转换桁架连接示意图;
[根据细则91更正 06.09.2022] 
图3为本发明一个实施例的钢板剪力墙A-A截面示意图;
[根据细则91更正 06.09.2022] 
图4为本发明一个实施例转换层施工阶段剪力墙与桁架连接示意图。
[根据细则91更正 06.09.2022] 
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,但不构成对本发明的限定。图中:
[根据细则91更正 06.09.2022] 
1—转换桁架层,2—下部主体结构,3—上部主体结构,4—剪力墙,4a—边缘加强柱,4b—墙梁,4c—中心墙体,4d—外包钢板,4e—混凝土,4f—抗剪连接件,5—转换桁架,5a—下弦杆,5b一交叉斜腹杆,5c—竖向腹杆,5d—上弦杆,6—上部连接节点,7—下部连接节点,8—斜腹杆交叉节点,9一千斤顶,10—钢管支撑。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明实施例作进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要理解的是,术语“包括/包含”、“由……组成”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的产品、设备、过程或方法不仅包括那些要素,而且需要时还可以包括没有明确列出的其他要素,或者是还包括为这种产品、设备、过程或方法所固有的要素。在没有更多限制的情况下,由语句“包括/包含……”、“由……组成”限定的要素,并不排除在包括所述要素的产品、设备、过程或方法中还存在另外的相同要素。
还需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置、部件或结构必须具有特定的方位、以特定的方位构造或操作,不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个 或两个以上,除非另有明确具体的限定。
下面参照附图对本发明的技术方案进行具体阐述。
如图1,本发明提供的一种大跨度转换桁架-剪力墙结构,包括剪力墙4和转换桁架5,剪力墙4位于结构的两侧,转换桁架5两端与两侧的剪力墙4通过节点连接,节点包括上部连接节点6和下部连接节点7。
整个结构在高度上可划分为大跨度转换桁架层1,以及位于大跨度转换桁架层1下方的下部主体结构2、位于大跨度转换桁架层1上方的上部主体结构3,整个结构在高度空间上层次分明,能够满足不同的设计和使用需求。
在本实例中,下部主体结构2为剪力墙结构,以提供下部稳固的抗剪和抗震承载强度,上部主体结构3为框架-剪力墙结构,在满足抗剪和抗震性能要求的同时提供充足的使用空间,并能够节省工程成本。
参见图2,剪力墙4为钢板组合剪力墙,包括边缘加强柱4a、上下墙梁4b以及中心墙体4c,上下墙梁4b之间为中心墙体4c,上下墙梁4b与边缘加强柱4a采用焊缝连接。
又如图3所示,边缘加强柱4a为方钢管灌注混凝土柱,采用方钢管灌注混凝土柱能够为剪力墙4提供足够强度的墙体周边框架,且为转换桁架5与剪力墙4连接提供了便利。
中心墙体4c包括外包钢板4d、混凝土4e以及抗剪连接件4f,外包钢板4d与边缘加强柱4a焊接连接,抗剪连接件4f焊接在外包钢板4d内表面,混凝土4e浇筑在外包钢板4d内部,外包钢板4d与混凝土4e之间通过抗剪连接件4f连接。
本发明中采用T型加劲肋作为抗剪连接件4f,也可采用栓钉、缀板、对拉螺栓等其他连接方式,或者这些连接方式的组合。
本发明对转换桁架5与剪力墙4之间的上部连接节点6和下部连接节点7的施工进行改进,在施工过程中划分施工阶段,在不同的施工阶段通过设置桁架预拱度和调整下部千斤顶9的高度,结合在不同施工阶段连接节点6和节点7的方法,期望能够大幅降低大跨度转换桁架两端墙体的弯矩。
具体而言:在第一施工阶段,上部连接节点6栓接,下部连接节点7断开。
继续参见图2,本发明的一种转换桁架5包括上弦杆5d、下弦杆5a、竖向腹杆5c以及交叉斜腹杆5b,上部连接节点6为上弦杆5d与交叉斜腹杆5b同剪力墙4之间的连接节点,下部连接节点7为下弦杆5a与交叉斜腹杆5b同剪力墙4之间的连接节点。
上弦杆5d、下弦杆5a以及交叉斜腹杆5b宽度小于边缘加强柱4a的宽度,以为后续施工阶段预留焊接空间。
转换桁架5在制作时预留预拱度,将桁架上弦杆5d、下弦杆5a、竖向腹杆5c以及交叉斜腹杆5b,在地面进行整体拼接;拼接时,在弦杆内侧节点位置测放出腹杆的定位边线,腹杆按照边线的位置进行安装。
如图4所示,整体拼接转换桁架5时,在下部连接节点7处,下弦杆5a与交叉斜腹杆5b暂时不拼接,即暂不拼装下弦杆5a以及斜腹杆交叉节点8处的交叉斜腹杆5b,为后续施工做准备。
本发明中,在转换桁架5下部搭设钢管支撑10,采用钢管搭设,钢管之间采用扣件固定,在钢管支撑10上放置千斤顶9,通过千斤顶9和钢管支撑10临时支撑转换桁架5并维持在设计标高。转换桁架5整体拼接完成后,整榀或分段吊装至支座的设计标高。
转换桁架5吊装完成后,在上部连接节点6处,上弦杆5d与交叉斜腹杆5b同剪力墙4之间栓接固定,具体为上弦杆5d与交叉斜腹杆5b同剪力墙4的边缘加强柱4a采用栓接固定,此即为第一施工阶段。在此施工阶段,通过将转换桁架5与剪力墙4的上部连接节点采用螺栓连接,下部连接节点不连接的形式,来降低此施工阶段剪力墙4所承受的桁架弯矩作用。
转换桁架5吊装完成并与千斤顶9临时固定后,继续进行上部主体结构施工。在结构自重以及施工荷载作用下,每完成两到三层的施工就通过桁架预拱度以及千斤顶9,对桁架结构内力及变形进行调整,保证在上部主体结构施工结束时,桁架结构的下挠可忽略不计,此为第二施工阶段。
当上部主体结构施工完成,且转换桁架5受力及位移稳定后,在下部连接节点7处,将此前暂时未拼接的下弦杆5a与交叉斜腹杆5b组装好,并且下弦杆5a与交叉斜腹杆5b同剪力墙4之间采用螺栓连接固定,拆除桁架下部的钢管支撑10,此为第三施工阶段。
较佳的,下弦杆5a与交叉斜腹杆5b同剪力墙4之间采用扩孔螺栓连接固定。扩孔螺栓能够提高节点的耗能变形能力,由于在第三施工阶段需要拆除下部支架,为保证节点的连接性能,防止发生螺栓脆性断裂,本发明采用扩孔螺栓连接形式来提高结构安全性。
本发明的大跨度转换桁架-剪力墙结构的施工工艺包括如下步骤:
步骤一,施工下部主体结构2和剪力墙4;
步骤二,搭设桁架下部钢管支撑10并放置千斤顶9;
步骤三,吊装转换桁架5,在制作桁架时预留预拱度,将桁架上弦杆5d、下弦杆5a、竖向腹杆5c以及交叉斜腹杆5b在现场进行整体组装,但暂不组装所述下部连接节点7处的下弦杆与交叉斜腹杆,然后整榀或分段吊装至设计标高并与千斤顶9临时固定,使所述 上部连接节点6处的上弦杆与交叉斜腹杆同剪力墙4栓接固定;
步骤四,施工上部主体结构3,在所述转换桁架5上施工上部主体结构3,每完成两到三层的施工,通过桁架预拱度以及千斤顶9对桁架结构内力及变形进行调整,其中千斤顶的位移控制量由设计软件计算得到,目的是保证在上部施工完成,且所述转换桁架5受力及位移稳定后,桁架结构整体水平,其下挠可忽略不计;
步骤五,组装所述下部连接节点6处的下弦杆与交叉斜腹杆,并将其同剪力墙4采用扩孔螺栓连接固定;
步骤六,拆除桁架下部的千斤顶9及钢管支撑10,施工完成。
本发明提出的大跨度转换桁架-剪力墙结构的施工工艺,可有效减小大跨度转换桁架两端剪力墙的弯矩,提高钢板组合剪力墙的抗弯承载力,增强构件安全性能,且综合成本低、构造简单、施工方便,可在跨度较大、承担上部竖向构件且传递荷载较大的高层建筑结构中广泛应用。
本领域技术人员容易理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
至此,本领域技术人员应认识到,虽本文已详尽示出和描述了本发明的示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍然可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (1)

  1. 一种大跨度转换桁架-剪力墙结构的施工工艺,包括如下步骤:
    步骤一,施工下部主体结构及剪力墙;
    步骤二,搭设下部支架并放置千斤顶;
    步骤三,吊装转换桁架,在制作桁架时预留预拱度,将桁架上弦杆、下弦杆、竖向腹杆以及交叉斜腹杆在现场进行整体组装,暂不组装转换桁架两端同剪力墙连接的下弦杆与交叉斜腹杆,然后整榀或分段吊装至设计标高,使转换桁架两端同剪力墙连接的上弦杆与交叉斜腹杆同剪力墙栓接固定;
    步骤四,施工上部主体结构,在所述转换桁架上施工上部主体结构,每完成两到三层的施工,通过桁架预拱度和千斤顶对桁架结构内力及变形进行调整,确保在上部主体结构施工完成且所述转换桁架受力及位移稳定后,桁架结构整体水平,其下挠可忽略不计;
    步骤五,组装转换桁架两端同剪力墙连接的下弦杆与交叉斜腹杆,并将其同剪力墙栓接固定;
    步骤六,拆除千斤顶和下部支架,施工完成。
PCT/CN2022/112353 2021-09-08 2022-08-15 一种大跨度转换桁架-剪力墙结构及施工工艺 WO2023035863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111051359.8 2021-09-08
CN202111051359.8A CN113494148B (zh) 2021-09-08 2021-09-08 一种大跨度转换桁架-剪力墙结构及施工工艺

Publications (1)

Publication Number Publication Date
WO2023035863A1 true WO2023035863A1 (zh) 2023-03-16

Family

ID=77997125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112353 WO2023035863A1 (zh) 2021-09-08 2022-08-15 一种大跨度转换桁架-剪力墙结构及施工工艺

Country Status (2)

Country Link
CN (1) CN113494148B (zh)
WO (1) WO2023035863A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113494148B (zh) * 2021-09-08 2021-12-07 中国船舶重工集团国际工程有限公司 一种大跨度转换桁架-剪力墙结构及施工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403230A (en) * 2003-06-26 2004-12-29 Harvey Peter Principal roof truss for loft conversion
CN101736700A (zh) * 2009-12-15 2010-06-16 中交路桥华北工程有限公司 宽幅钢箱梁悬臂吊装施工方法
CN112227715A (zh) * 2020-10-21 2021-01-15 贵州建工集团第一建筑工程有限责任公司 一种型钢混凝土转换桁架剪力墙施工方法
CN113494148A (zh) * 2021-09-08 2021-10-12 中国船舶重工集团国际工程有限公司 一种大跨度转换桁架-剪力墙结构及施工工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691813B (zh) * 2009-09-11 2011-07-20 上海建工(集团)总公司 用于超高结构施工的标高同步补偿装置及方法
CN105442722A (zh) * 2015-11-03 2016-03-30 刘坤 桁架隔震转换层
WO2017121315A1 (zh) * 2016-01-12 2017-07-20 广州机施建设集团有限公司 一种建筑桁架及楼板的施工方法
CN107460948B (zh) * 2017-08-16 2019-09-13 长安大学 一种后浇上部结构的双层rc板式转换层及施工方法
CN108343157A (zh) * 2018-01-22 2018-07-31 燕山大学 用于钢桁架转换层施工控制的逆施工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403230A (en) * 2003-06-26 2004-12-29 Harvey Peter Principal roof truss for loft conversion
CN101736700A (zh) * 2009-12-15 2010-06-16 中交路桥华北工程有限公司 宽幅钢箱梁悬臂吊装施工方法
CN112227715A (zh) * 2020-10-21 2021-01-15 贵州建工集团第一建筑工程有限责任公司 一种型钢混凝土转换桁架剪力墙施工方法
CN113494148A (zh) * 2021-09-08 2021-10-12 中国船舶重工集团国际工程有限公司 一种大跨度转换桁架-剪力墙结构及施工工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG JIHAI, WANG XIANG’AN; WANG HENG; SHAN YUKUN; WEI QIANG; LIU YANRU; MENG FANHUI: "Structural design of main building of Hebei United University Library", BUILDING STRUCTURE, 10 February 2016 (2016-02-10), pages 70 - 74, XP093046525, ISSN: 1002-848X, DOI: 10.19701/j.jzjg.2016.03.013 *
ZHAO JIANMIN, ZHANG JIANPING; WU ZHAOHUA: "Analysis and design of large-span transfer truss structure", BUILDING STRUCTURE, vol. 46, no. 11, 10 June 2016 (2016-06-10), pages 21 - 26, XP093046526, ISSN: 1002-848X, DOI: 10.19701/j.jzjg.2016.11.004 *

Also Published As

Publication number Publication date
CN113494148A (zh) 2021-10-12
CN113494148B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN210031457U (zh) 一种波形钢腹板-桁式弦杆uhpc组合箱梁
WO2023035863A1 (zh) 一种大跨度转换桁架-剪力墙结构及施工工艺
CN111075015A (zh) 套接式预制钢-混凝土节点
CN108222480B (zh) 一种高空悬挑主桁架式钢模架施工平台
CN112320553A (zh) 一种筒体四周悬挑结构的提升安装方法及其提升工装
CN218912214U (zh) 一种超长附墙转换支座
CN218437691U (zh) 一种应用于钢筋混凝土框架的轻型装配式楼盖体系
CN116837967A (zh) 一种大跨度索承桁架结构建造方法
CN216042835U (zh) 一种具有轻质墙板的挑高框架结构的加层装置
CN219137410U (zh) 装配式悬臂盖梁支架及其模块化预制变高桁架梁
WO2023123321A1 (zh) 一种大跨度预制装配式结构
CN112962455B (zh) 一种先缆后梁的节段吊装自锚式悬索桥施工方法
CN114960452A (zh) 一种大倾角混凝土塔柱的模板结构及塔柱施工方法
CN114319854A (zh) 一种用于悬挑结构的平台梁
CN113802741A (zh) 一种基于正交波纹钢板抗弯拉结组合楼板的栓钉抗剪连接装配式梁板组合体系
CN112144866A (zh) 一种钢筋桁架楼承板的支撑结构
CN111485630A (zh) 框架结构建筑及施工方法
CN111593874A (zh) 超高层住宅转换层超重外挑悬空构件支撑系统及施工方法
CN219219450U (zh) 一种采用浆锚搭接的叠合剪力墙
CN220450682U (zh) 一种基于新桥系梁的临时施工支架
CN220486865U (zh) 大跨度免撑叠合板
CN217579809U (zh) 连续梁装配式托架
CN212223579U (zh) 一种适用于中小跨径的钢-超高性能混凝土组合桥梁结构
CN216920694U (zh) 一种三段梁与柱钢混结构和三段梁与柱组合框架钢混结构
CN217601778U (zh) 一种部品化排钢管混凝土结构体系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE