WO2023035831A1 - Alliage d'aluminium pour extrusion et procédé de préparation associé - Google Patents

Alliage d'aluminium pour extrusion et procédé de préparation associé Download PDF

Info

Publication number
WO2023035831A1
WO2023035831A1 PCT/CN2022/110595 CN2022110595W WO2023035831A1 WO 2023035831 A1 WO2023035831 A1 WO 2023035831A1 CN 2022110595 W CN2022110595 W CN 2022110595W WO 2023035831 A1 WO2023035831 A1 WO 2023035831A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
extrusion
aluminum alloy
temperature
refining
Prior art date
Application number
PCT/CN2022/110595
Other languages
English (en)
Chinese (zh)
Inventor
赵立洋
张桓
乔恒
段妍彤
张军
金榕
章安楠
Original Assignee
江苏亨通电力特种导线有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通电力特种导线有限公司 filed Critical 江苏亨通电力特种导线有限公司
Publication of WO2023035831A1 publication Critical patent/WO2023035831A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to the field of aluminum alloy die-casting processing, in particular to an aluminum alloy for extrusion and a preparation method thereof.
  • Aluminum alloy extrusion products are widely used in automobiles, airplanes, home appliances and other fields.
  • the processing cost due to die loss accounts for 30% of the total cost, and the average production of 3.5 tons of extruded products
  • Existing aluminum alloy materials have poor fluidity and ductility, and wall breakage often occurs when extruding thin-walled products, resulting in cost losses.
  • problems such as poor structural continuity, poor corrosion resistance, and coarse grains leading to poor toughness of aluminum alloy materials. Therefore, there is still a need for an aluminum alloy material to improve the extrusion performance of the material, which is suitable for extrusion products with complex structures or thin-wall structures, and prolongs the service life of extrusion dies.
  • the present invention provides an aluminum alloy for extrusion and a preparation method thereof, which have significantly improved corrosion resistance, material strength, fluidity and tissue continuity.
  • the present invention claims to protect an aluminum alloy for extrusion, its components and the mass percentage of each component are: Si 0.1-0.2%, Fe 0.15-0.25%, Mn 1.8-2.4%, Zn 0.05-0.18%, Er 0.03 -0.06%, Ti 0.008-0.04%, Be 0.04-0.08%, V 0.01-0.02%, the rest are Al and unavoidable impurities, and the total amount of impurities does not exceed 0.015%.
  • the components of the aluminum alloy for extrusion and the mass percent of each component are: Si 0.18%, Fe 0.23%, Mn 2.23%, Zn 0.14%, Er 0.05%, Ti 0.02%, Be 0.06%, V 0.015 %, the rest is Al and unavoidable impurities, the total amount of impurities is not more than 0.015%.
  • the preparation method of aluminum alloy for extrusion of the present invention comprises the following steps:
  • S2 Add an intermediate alloy to the first aluminum liquid in the holding furnace, stir for 25-35 minutes, and obtain the second aluminum liquid; wherein, the temperature of the holding furnace is 780-800°C, and the intermediate alloy is one or more types, containing Si , Fe, Mn, Zn, Er, Ti, Be and V;
  • the medium-strength aluminum alloy materials used for extrusion in the industry mainly use Mn as the main element.
  • Mn has the advantages of improving strength and corrosion resistance of materials, but there are the following problems: (1) High slag content, extrusion The material has very strict requirements on the slag content of the structure. During the extrusion process, these impurities will form hard spots, which will increase the wear of the mold, and will destroy the continuity of the structure and affect the quality of the extruded product; (2) The structure is not uniform , High manganese element is easy to segregate, grain growth is uneven after annealing, material properties are unstable, aluminum sticking and wall breaking are easy to occur during extrusion, which reduces mold life and product quality.
  • the present invention obtains a high-strength, high-fluidity, high-ductility and corrosion-resistant aluminum alloy material by improving the raw material composition and proportion of the aluminum alloy, and cooperating with the production process and heat treatment process.
  • step S1 the time for one refining is 35-45 minutes.
  • step S1 or S3 a refining agent is added at a rate of 2-3 kg/t of aluminum liquid.
  • the pore size of the second filter is 60 mesh, and the pore size of the first filter is smaller than 60 mesh, preferably 40 mesh.
  • step S5 the speed of feeding the AlTiC wire is 1.5-2.0 m/min.
  • AlTiC is selected as the refiner to avoid the formation of hard phase, thereby reducing the loss of the die during the extrusion process and increasing the continuity of the product.
  • the titanium content in the molten aluminum can be kept fluctuating within 0.008-0.04%.
  • step S5 horizontal casting is performed on the fourth molten aluminum.
  • step S5 the pore size of the casting filter is 16 mesh.
  • step S6 the flow rate of the rolling emulsion is 35-38 m 3 /h, the pressure is 180-200 kPa, and the final rolling temperature can be adjusted by the flow rate and pressure of the rolling emulsion.
  • step S7 keep warm for 90-96h.
  • the present invention also claims extruded products prepared using the aforementioned aluminum alloys.
  • the present invention has at least the following advantages:
  • Mn can improve the corrosion resistance of aluminum alloys. Its maximum solid solubility in aluminum is 1.82%. Excessive Mn content can easily lead to intragranular segregation. The content of Mn in the medium can achieve corrosion resistance. By adding Fe, it can form FeMnAl 6 phase with Mn, reduce the solid solution of Mn in the aluminum matrix, and improve the ductility of the alloy. At the same time, cooperate with Zn and Er to further reduce the solid solution of Mn And reduce the segregation phenomenon, refine the coarse phase in the structure, and significantly improve the mechanical properties of the material.
  • the present invention matches the heat treatment process of the present invention by adding Er, Si, and Be to heat treatment at low temperature for a long time, so that the compound dissolved in the aluminum matrix is slowly precipitated, the amount of manganese element precipitation is promoted, and the growth of the precipitated phase is suppressed at the same time.
  • Large, to realize the fine and dispersed distribution of the second phase improve the extrusion fluidity of the alloy material, avoid the coarse grains caused by high temperature annealing, and provide an alloy material with excellent toughness.
  • Figure 1 shows the aluminum alloys prepared in Example 1 and Comparative Examples 2, 8, and 9.
  • the components of aluminum alloy for extrusion and the mass percentage of each component are: Si 0.18%, Fe 0.23%, Mn 2.23%, Zn 0.14%, Er 0.05%, Ti 0.02%, Be 0.06%, V 0.015%, the rest Al and unavoidable impurities, the total amount of impurities is not more than 0.015%.
  • the preparation method of aluminum alloy for extrusion comprises the following steps:
  • the components of the aluminum alloy for extrusion and the mass percentage of each component are: Si 0.1%, Fe 0.16%, Mn 1.8%, Zn 0.18%, Er 0.06%, Ti 0.015%, Be 0.08%, V 0.02%, the rest Al and unavoidable impurities, the total amount of impurities is not more than 0.015%.
  • the preparation method of aluminum alloy for extrusion comprises the following steps:
  • S5 Continuously cast the molten aluminum after the online treatment of S4, adopt horizontal casting, and add a 16-mesh casting filter to filter the scale at the gate, control the casting temperature to 710°C, the casting speed to 6.5t/h, and the cooling water temperature 35°C, and the billet temperature is 520°C.
  • the components of aluminum alloy for extrusion and the mass percentage of each component are: Si 0.2%, Fe 0.2%, Mn 2%, Zn 0.05%, Er 0.03%, Ti 0.04%, Be 0.04%, V 0.01%, the rest Al and unavoidable impurities, the total amount of impurities is not more than 0.015%.
  • the preparation method of aluminum alloy for extrusion comprises the following steps:
  • a filter plate which is respectively the 40 mesh filter plate of the front channel and the 60 mesh filter plate of the rear channel, performs double-stage filtration.
  • S5 Continuously cast the molten aluminum after S4 on-line treatment, adopt horizontal casting, and add a 16-mesh casting filter to filter the scale at the gate, control the casting temperature to 720°C, the casting speed to 7.5t/h, and the cooling water temperature 25°C, and the billet temperature is 550°C.
  • Si is not added to the composition of the aluminum alloy for extrusion, and the rest is the same as in Example 1.
  • the temperature during the annealing treatment in S7 was 560° C., and the rest were the same as in Example 1.
  • the time during the annealing treatment in S7 was 85h (a) and 103h (b), and the rest were the same as in Example 1.
  • Example 1 has increased respectively compared with Comparative Examples 1-9: 9.52%, 8.49%, 8.49%, 16.16%, 7.48%, 9.52%, 17.35%, 15%, 15% (a), 12.75% (b); From elongation aspect, embodiment 1 has improved respectively compared with example 1-9: 30.56%, 34.29%, 30.56%, 56.67%, 27.03%, 38.24%, 56.67%, 38.24% %, 42.42% (a), 38.24% (b); from the aspect of product qualified rate, the unqualified rate of embodiment 1 has reduced respectively compared with comparative example 1-9: 82.76%, 79.17%, 81.48%, 84.38%, 79.17% %, 80%, 82.76%, 77.27%, 82.14% (a), 82.76% (b); from the aspect of mold life, embodiment 1 has improved respectively compared with comparative example 1-9: 27.91%, 25%, 22.22%, 197.3%, 26.44%,
  • embodiment 1 has improved 2.4 compared with comparative example 1, and embodiment 1 has improved 2.2 compared with comparative example 2, and embodiment 1 has improved 2 compared with comparative example 3, and embodiment 1 has improved 7.3 compared with comparative example 4 , the difference sum of comparative examples 1-3 and embodiment 1 is 6.4 (7.3 less than the difference value 7.3 of comparative example 4 and embodiment 1), it can be seen that the combined effect of Er, Si and Be improves the sum of the effect of using separately than respectively up 10.61%.
  • the present invention increases the content of manganese element, forms FeMnAl 6 phase by adding Zn, Fe, Er, reduces the solid solution of Mn in the aluminum matrix, and improves the ductility of the alloy. At the same time, it cooperates with Zn and Er to further reduce the solid solution of Mn and reduce the segregation phenomenon, refine the coarse phase in the structure, and solve the problem of high segregation and unevenness of Mn element.
  • Zn and Er can assist in the elimination of Si element Existing broken wall or shrinkage porosity problem, Zn, Fe, Er can significantly improve the processing performance of aluminum alloy material; From the above table we can know (also taking extrusion die life as an example), embodiment 1 has improved 2.4% compared with comparative example 1 , embodiment 1 has improved 2.3 compared with comparative example 5, and embodiment 1 has improved 2.1 compared with comparative example 6, and embodiment 1 has improved 7.5 compared with comparative example 7, and the difference sum of comparative examples 1,5,6 and embodiment 1 is 6.8 (7.5 less than the difference between Comparative Example 7 and Example 1), it can be seen that the combined effect of Er, Fe and Zn is 10.29% higher than the sum of the effects of separate use. Therefore, there is a synergistic effect among various elements in the present invention, which improves the comprehensive performance of the aluminum alloy material, and each component is indispensable.
  • the present invention improves the performance of the material by optimizing the production process and heat treatment process: during the production process, refining is carried out in both the smelting furnace and the holding furnace, two-stage filtration is added and casting filter screens are added to filter most of the impurities, and the substrate is purified with Er and other elements; the heat treatment process Among them, the inventors have found through a large number of experiments that the optimal heat treatment condition is to keep warm at 450-460°C for 88-100h, and the grains grow uniformly after annealing, as shown in Figure 1 (A is the aluminum alloy prepared in Example 1, and B is the The aluminum alloy prepared in Example 8, C is the aluminum alloy b prepared in Comparative Example 9, and D is the aluminum alloy prepared in Comparative Example 2), the grain size in A is uniform, while the extruded walls of B-D are uneven, and C is due to the excessive holding time Long, coarse grains, and segregation phenomenon occurs in the preparation process, the material performance is unstable during extrusion, and aluminum sticking and wall breaking appear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Continuous Casting (AREA)

Abstract

La présente invention concerne un alliage d'aluminium destiné à l'extrusion. Les constituants de l'alliage d'aluminium et le pourcentage en masse de chaque constituant sont les suivants : 0,1-0,2 % de Si, 0,15-0,25 % de Fe, 1,8-2,4 % de Mn, 0,05-0,18 % de Zn, 0,03-0,06 % d'Er, 0,008-0,04 % de Ti, 0,04-0,08 % de Be et 0,01-0,02 % de V, le reste étant de l'Al et des impuretés inévitables, la quantité totale des impuretés étant inférieure ou égale à 0,015 %. L'alliage d'aluminium est préparé au moyen des étapes du processus comprenant la fusion, l'alliage, l'affinage, le traitement en ligne de l'aluminium fondu, la coulée continue, le laminage continu, le refroidissement et la reprise, le traitement de recuit, etc. L'alliage d'aluminium de la présente invention est amélioré considérablement quant à la résistance à la corrosion, la résistance du matériau, la fluidité et la continuité structurale, de sorte que la capacité de support de pression d'un matériau d'extrusion préparé soit améliorée considérablement, et que sa durée de vie soit prolongée.
PCT/CN2022/110595 2021-09-08 2022-08-05 Alliage d'aluminium pour extrusion et procédé de préparation associé WO2023035831A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111050518.2 2021-09-08
CN202111050518.2A CN113846249B (zh) 2021-09-08 2021-09-08 一种挤压用铝合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2023035831A1 true WO2023035831A1 (fr) 2023-03-16

Family

ID=78973462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110595 WO2023035831A1 (fr) 2021-09-08 2022-08-05 Alliage d'aluminium pour extrusion et procédé de préparation associé

Country Status (2)

Country Link
CN (1) CN113846249B (fr)
WO (1) WO2023035831A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555606A (zh) * 2023-05-15 2023-08-08 上海萨新东台热传输材料有限公司 一种耐磨型铝合金管道的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846249B (zh) * 2021-09-08 2022-07-08 江苏亨通电力特种导线有限公司 一种挤压用铝合金及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177638A1 (fr) * 2008-10-15 2010-04-21 "Impexmetal" S.A. Alliage d'aluminium, en particulier pour la fabrication d'échangeurs thermiques
CN102286679A (zh) * 2011-09-02 2011-12-21 上海交通大学 用于热交换器的稀土铝合金及其制备方法
CN103103404A (zh) * 2013-01-28 2013-05-15 华峰铝业股份有限公司 一种耐蚀铝锰合金及其制备方法
JP2018178170A (ja) * 2017-04-06 2018-11-15 三菱アルミニウム株式会社 耐エロージョン性に優れる薄肉フィン材、耐エロージョン性に優れる薄肉フィン材の製造方法および熱交換器の製造方法
CN108977699A (zh) * 2018-08-17 2018-12-11 江苏亨通电力特种导线有限公司 一种挤压成型用铝材的制备方法及对应的铝合金材料
CN109371295A (zh) * 2018-11-23 2019-02-22 沈阳航空航天大学 一种高Mn含量Al-Mn合金及其制备方法
CN113846249A (zh) * 2021-09-08 2021-12-28 江苏亨通电力特种导线有限公司 一种挤压用铝合金及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254054A (ja) * 1985-09-02 1987-03-09 Showa Alum Corp 冷間加工性に優れたアルミニウム合金
CN105296816B (zh) * 2015-12-08 2016-09-14 江苏东强股份有限公司 高导电铝合金材料及其铝合金电缆导体的制备方法
CN109439977A (zh) * 2018-12-06 2019-03-08 广东兴发铝业有限公司 一种高强韧抗腐蚀的铝合金及其制备和挤压方法
CN111424194B (zh) * 2020-05-14 2021-07-06 永杰新材料股份有限公司 铝锰合金及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177638A1 (fr) * 2008-10-15 2010-04-21 "Impexmetal" S.A. Alliage d'aluminium, en particulier pour la fabrication d'échangeurs thermiques
CN102286679A (zh) * 2011-09-02 2011-12-21 上海交通大学 用于热交换器的稀土铝合金及其制备方法
CN103103404A (zh) * 2013-01-28 2013-05-15 华峰铝业股份有限公司 一种耐蚀铝锰合金及其制备方法
JP2018178170A (ja) * 2017-04-06 2018-11-15 三菱アルミニウム株式会社 耐エロージョン性に優れる薄肉フィン材、耐エロージョン性に優れる薄肉フィン材の製造方法および熱交換器の製造方法
CN108977699A (zh) * 2018-08-17 2018-12-11 江苏亨通电力特种导线有限公司 一种挤压成型用铝材的制备方法及对应的铝合金材料
CN109371295A (zh) * 2018-11-23 2019-02-22 沈阳航空航天大学 一种高Mn含量Al-Mn合金及其制备方法
CN113846249A (zh) * 2021-09-08 2021-12-28 江苏亨通电力特种导线有限公司 一种挤压用铝合金及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555606A (zh) * 2023-05-15 2023-08-08 上海萨新东台热传输材料有限公司 一种耐磨型铝合金管道的制备方法
CN116555606B (zh) * 2023-05-15 2024-01-02 上海萨新东台热传输材料有限公司 一种耐磨型铝合金管道的制备方法

Also Published As

Publication number Publication date
CN113846249B (zh) 2022-07-08
CN113846249A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2023035831A1 (fr) Alliage d'aluminium pour extrusion et procédé de préparation associé
WO2021018203A1 (fr) Procédé de production de coulée continue sans vide de brames d'alliage de cuivre-fer
CN108425050B (zh) 一种高强高韧铝锂合金及其制备方法
US11326241B2 (en) Plastic wrought magnesium alloy and preparation method thereof
CN109881058B (zh) 一种Al-Zn-Cu-Mg大规格扁铸锭的制备方法
WO2020113944A1 (fr) Alliage d'aluminium à haute résistance pour pièces externes de produit électronique et procédé de préparation d'alliage d'aluminium à haute résistance
CN108251722B (zh) 一种细小等轴晶粒Al-Zn-Mg系铝合金及其制备方法
CN111304473B (zh) 一种无粗晶环易切削铝合金挤压棒材的制备方法
WO2022228548A1 (fr) Coffrage de construction en alliage d'aluminium et son procédé de préparation
US8752613B2 (en) Use of aluminum—zirconium—titanium—carbon intermediate alloy in wrought processing of magnesium and magnesium alloys
CN111440974B (zh) 一种高强度铝合金及其制造方法
CN115466888B (zh) 高强低淬火敏感性铝合金以及铝合金和铝合金型材的制备方法
CN111826561A (zh) Al-Zn-Mg-Cu合金及制备工艺
CN109161730B (zh) 母线槽用铝合金导体材料及其制备方法
CN111763860B (zh) 一种超高强铝合金线及其生产工艺
CN114231802A (zh) 锻造铝合金轮毂用稀土铝合金棒材及其制备方法
JP2007126717A (ja) 強度および耐肌荒れ性に優れたアルミニウム合金箔およびその製造方法
CN112708811A (zh) 一种铝合金及其制备方法和应用
CN115627396B (zh) 一种超高强韧、耐腐蚀的超长铝合金板材及其制备方法
CN115449683B (zh) 一种镁合金及其制备方法
CN112813295B (zh) 一种汽车外饰件用铝合金铸棒的晶粒细化剂添加方法
CN114672698A (zh) 耐热铝合金单线及其制造方法
WO2023015608A1 (fr) Alliage d'aluminium haute résistance et de haute conductivité résistant à la corrosion intergranulaire, et son procédé de préparation
CN114000020A (zh) 一种大规格模锻件用铸锭及其制备方法
CN115717208B (zh) 一种航空用铝合金材料及生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE