WO2023035810A1 - 一种竖直墙面施工方法及施工机器人 - Google Patents

一种竖直墙面施工方法及施工机器人 Download PDF

Info

Publication number
WO2023035810A1
WO2023035810A1 PCT/CN2022/109638 CN2022109638W WO2023035810A1 WO 2023035810 A1 WO2023035810 A1 WO 2023035810A1 CN 2022109638 W CN2022109638 W CN 2022109638W WO 2023035810 A1 WO2023035810 A1 WO 2023035810A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction
obstacle
vertical wall
module
size information
Prior art date
Application number
PCT/CN2022/109638
Other languages
English (en)
French (fr)
Inventor
邓煜
Original Assignee
深圳大方智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大方智能科技有限公司 filed Critical 深圳大方智能科技有限公司
Publication of WO2023035810A1 publication Critical patent/WO2023035810A1/zh
Priority to US18/597,915 priority Critical patent/US20240208061A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems

Definitions

  • the invention relates to the technical field of construction robots, in particular to a vertical wall construction method and a construction robot.
  • the adsorption-type facade cleaning robot adsorbs the robot to the exterior wall through electrostatic adsorption, magnetic adsorption, vacuum adsorption and other adsorption structures, and the robot construction module performs work such as polishing and cleaning the exterior wall.
  • the hanging basket type facade cleaning robot sets a fixed structure on the top floor and puts down the hanging basket.
  • the hanging basket is equipped with a construction device, which completes the work of grinding and cleaning the outer wall during the vertical lifting process.
  • Lifting wall treatment equipment includes single-function grinding, puttying, and painting equipment. Each time the equipment is lifted, the construction device is raised. During the lifting process, the construction device completes the vertical grinding, puttying, and painting functions.
  • the inner wall treatment part includes grinding the cement wall surface to remove the burrs on the cement surface; scraping putty on the cement wall surface, and the putty layer makes the wall surface smoother as a whole; grinding the wall surface of the putty layer to remove the Joints, etc., make the putty layer more smooth; spray or brush paint on the putty layer.
  • non-construction areas should be avoided, such as doors, windows, obstacles and non-construction areas designated by the owner.
  • Existing adsorption-type facade cleaning robots are not suitable for indoor wall construction scenarios.
  • the walls are non-magnetic, relatively rough, and cannot be adsorbed.
  • the existing hanging basket-type external façade leave-asking robot is not suitable for indoor wall construction scenarios, and the indoor height of 0-6m is used to arrange the height of hanging baskets accounting for nearly 30%.
  • Obstacles divide the vertical wall into different parts, and about 50% of the parts contain obstacles such as doors, windows, switches, etc. If they cannot be identified intelligently, even if the equipment can be automated, a large amount of manual participation is required, and the construction efficiency is still limited. to qualitative improvement.
  • Obstacles divide the vertical wall into different parts. About 50% of the parts contain obstacles such as doors, windows, and switches. If they cannot be identified intelligently, even if the equipment can be automated, a large amount of manual participation is required, resulting in low construction efficiency.
  • a vertical wall construction method and a construction robot are proposed.
  • the position and size information of obstacles are obtained, and the types of obstacles are determined, thereby Guide the construction module of the construction robot to avoid obstacles to continue construction, improve the construction efficiency of the construction robot, and solve the problem that the existing construction robot cannot avoid obstacles when constructing on the vertical wall.
  • a method for constructing a vertical wall comprising the steps of:
  • the construction module constructs the indoor vertical wall so that the construction direction of the construction module is parallel to the vertical wall;
  • the construction method further includes the steps of:
  • the perception module detects the construction coverage wall to obtain the construction effect
  • the construction robot moves to the vertical wall to be constructed according to the path planning
  • the lifting unit drives the construction module to carry out construction along the direction parallel to the vertical wall.
  • the perception module detects the position and size information of obstacles in the construction process, and determines the type of obstacles
  • the obstacle is a first obstacle, detecting the vertical distance from the construction module to the first obstacle;
  • the first obstacle is a ceiling or a top obstacle.
  • the steps: determine the obstacle type according to the obstacle position and size information, plan the construction path, avoid the obstacle and determine the re-construction location also includes substeps:
  • the obstacle is a second obstacle, calculating first position and size information of the second obstacle;
  • the first position and size information determine the end position of this construction, the distance to retreat to avoid the second obstacle, and the starting position of another construction
  • the second obstacle is an obstacle located on the vertical wall.
  • the size information includes a horizontal length Wb, a vertical height H, and a protrusion height T from a vertical wall.
  • the steps: determine the obstacle type according to the obstacle position and size information, plan the construction path, avoid the obstacle and determine the re-construction location also includes substeps:
  • the obstacle is a third obstacle, detecting the distance from the current position to a vertical wall connected to the third obstacle;
  • path planning it is determined whether the connected vertical wall is a construction wall and the route and distance W3 to be moved horizontally are calculated;
  • the third obstacle is the inner corner/external corner of the wall.
  • a vertical wall construction robot comprising:
  • the perception module communicates with the control module, and is used to detect the position and size information of obstacles during the construction process, and determine the type of obstacles;
  • the control module is used to plan the construction path according to the obstacle type, position and size information, so as to avoid the obstacle for construction.
  • the construction module is used to construct the predetermined ceiling wall according to the construction path planned by the control module, and the construction module includes:
  • the vertical lifting unit is used to vertically move the construction module to the construction height H position close to the ceiling wall surface for construction;
  • the horizontal movement unit is used to drive the construction module to move horizontally according to the planned path or control instructions to carry out construction on the corresponding ceiling wall;
  • the AGV navigation unit is used to move the robot machine or the construction module horizontally and vertically to navigate.
  • the obstacles detected by the perception module include a first obstacle, a second obstacle and a third obstacle, and the first The obstacle is a ceiling or a top obstacle, the second obstacle is an obstacle located on the vertical wall, and the third obstacle is an inside/outside corner obstacle on the wall.
  • Fig. 1 is the first embodiment schematic diagram of a kind of vertical wall surface construction method of the present invention
  • Fig. 2 is a schematic diagram of a second embodiment of a vertical wall construction method of the present invention.
  • Fig. 3 is a schematic diagram of a third embodiment of a vertical wall construction method of the present invention.
  • Fig. 4 is a schematic diagram of a fourth embodiment of a vertical wall construction method of the present invention.
  • Fig. 5 is a schematic diagram of a fifth embodiment of a vertical wall construction method of the present invention.
  • Fig. 6 is a schematic diagram of a sixth embodiment of a vertical wall construction method of the present invention.
  • Fig. 7 is a schematic diagram of a seventh embodiment of a vertical wall construction method of the present invention.
  • Fig. 8 is a schematic diagram of the eighth embodiment of a vertical wall construction method of the present invention.
  • Fig. 9 is a schematic composition diagram of an embodiment of a vertical wall construction robot according to the present invention.
  • Fig. 10 is a schematic composition diagram of a construction module embodiment of a vertical wall construction robot of the present invention
  • 100 vertical wall construction robot
  • 110 perception module
  • 120 control module
  • 130 construction module
  • 131 AGV navigation unit
  • 132 vertical lifting unit
  • 133 horizontal moving unit.
  • Obstacles divide the vertical wall into different parts. About 50% of the parts contain obstacles such as doors, windows, and switches. If they cannot be identified intelligently, even if the equipment can be automated, a large amount of manual participation is required, resulting in low construction efficiency.
  • FIG. 1 is a kind of vertical wall construction method first embodiment schematic diagram of the present invention, comprises steps:
  • Fig. 8 is a schematic diagram of the eighth embodiment of a vertical wall construction method according to the present invention, and steps before step S1 include:
  • the vertical wall refers to the indoor partition wall.
  • the vertical moving speed V in the construction direction determines the thickness of the grinding, the thickness of the putty and the thickness of the spray paint. The faster the speed, the thinner the thickness.
  • the construction coverage width W1 is the width of one construction. In order to ensure that there are no obvious joints between the two constructions, it is generally required that 10% of the adjacent two constructions overlap.
  • the construction module 130 constructs the indoor vertical wall so that the construction direction of the construction module 130 is parallel to the vertical wall.
  • the construction direction of the construction module 130 is parallel to the vertical wall surface, and the vertical lifting unit 132 drives the construction module 130 to move up and down in the vertical direction for construction.
  • the perception module 110 detects the position and size information of obstacles in the construction direction.
  • the perception module 110 can include two perception units.
  • the perception unit can be composed of an RGB camera consisting of a laser radar, a millimeter wave radar, an ultrasonic radar, a depth camera, and an RGB camera. And one or more components of the infrared camera.
  • the sensing unit transmits the data to the control module 120, and the control module 120 calculates the data to plan the construction path.
  • the control module 120 includes a CPU or GPU, the control module 120 plans the construction path, and transmits instructions to the construction module 130 through the communication unit to move construction.
  • Figure 2 is a schematic diagram of a second embodiment of a vertical wall construction method of the present invention, the construction method also includes the steps:
  • the perception module 110 detects the construction coverage wall surface to acquire the construction effect.
  • the vertical moving speed V in the construction direction determines the thickness of grinding, puttying and painting, the faster the speed, the thinner the thickness.
  • the construction coverage width is W1. In order to ensure that there are no obvious joints between the two constructions, two adjacent construction areas need to overlap some areas, and the overlapping range can be 10%-30%.
  • step S1 includes sub-steps:
  • the construction robot 100 moves to the front of the vertical wall to be constructed according to the path planning;
  • the lifting unit drives the construction module 130 to carry out construction in a direction parallel to the vertical wall.
  • Fig. 4 is a schematic diagram of a fourth embodiment of a vertical wall construction method of the present invention
  • step S3 includes sub-steps s:
  • the perception module 110 detects the position and size information of the obstacle during the construction process, and determines the type of the obstacle;
  • the first obstacle is a ceiling or a top obstacle.
  • the control module 120 plans the construction path, specifically, calculates the distance Dceiling between the current construction module 130 and the ceiling, and further determines the termination position Dceiling--end of this construction.
  • step S3 also includes sub-steps:
  • the second obstacle is an obstacle located on a vertical wall.
  • step S31b includes sub-steps:
  • the obstacles protruding from the wall on the indoor side wall account for about 50% of the overall area.
  • the position and size information of the obstacles can be obtained, and the type of obstacles can be determined. Determined, thereby guiding the construction module 130 of the construction robot 100 to avoid obstacles to continue construction, improving the construction efficiency of the construction robot 100, and solving the problem that the existing construction robot 100 cannot avoid obstacles when constructing on vertical walls.
  • step S3 also includes sub-steps:
  • S31c If the obstacle is the third obstacle, detect the distance from the current position to the vertical wall connected to the third obstacle; S32c. Determine whether the vertical wall connected to the third obstacle is a construction wall according to the path planning and Calculate the route and distance W3 that need to move horizontally;
  • the third obstacle is the inner corner/external corner of the wall.
  • a vertical wall construction robot 100 as shown in Figure 9, Figure 9 is a schematic diagram of an embodiment of a vertical wall construction robot 100 according to the present invention, including a sensing module 110, a control module 120 and a construction module 130; the sensing module 110 and The control module 120 is connected by communication, and is used to detect the position and size information of obstacles in the construction process, and determine the type of obstacles; the control module 120 is used to plan the construction path according to the obstacle type, position and size information, so as to avoid obstacles for construction.
  • the construction module 130 is used to construct the predetermined ceiling wall according to the construction path planned by the control module, as shown in Figure 10, which is a schematic diagram of the composition of an embodiment of the construction module 130 of a vertical wall construction robot 100 of the present invention
  • the construction module 130 includes an AGV navigation unit 131, a vertical lifting unit 132 and a horizontal moving unit 133;
  • the vertical lifting unit 132 is used to vertically move the construction module 130 to the construction height H position close to the ceiling wall for construction;
  • the horizontal moving unit 133 is used Drive the construction module 130 to move horizontally according to the planned path or control instructions to carry out construction on the corresponding ceiling wall;
  • the AGV navigation unit 131 is used to navigate the horizontal movement and vertical movement of the robot 100 or the construction module 130.
  • the obstacles detected by the sensing module 110 include a first obstacle, a second obstacle and a third obstacle, the first obstacle is a ceiling or top obstacle, the second obstacle is an obstacle located on a vertical wall, and the second obstacle is an obstacle located on a vertical wall.
  • the three obstacles are obstacles in the inner/outer corners of the wall.
  • a vertical wall construction method and the construction robot 100 implementing the present invention detect the obstacles in the vertical wall construction process, obtain the position and size information of the obstacles, and determine the types of obstacles, thereby Guide the construction module 130 of the construction robot 100 to avoid obstacles to continue construction, improve the construction efficiency of the construction robot 100, and solve the problem that the existing construction robot 100 cannot avoid obstacles when constructing on vertical walls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种竖直墙面施工方法及施工机器人。该方法包括:施工模块(130)对室内竖直墙面施工(S1);检测施工方向上的障碍物,获取障碍物的位置及尺寸信息(S2);根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置(S3);感知模块(110)对施工覆盖墙面进行检测,获取施工效果(S4),根据施工效果,确定相邻两次施工的重合面积比例(S5)。该方法通过对竖直墙面施工过程中的障碍物进行检测,获知障碍物的位置、尺寸信息及类型,引导施工模块(130)避开障碍物继续施工,提高了施工机器人效率,解决了无法进行避障施工的问题。

Description

一种竖直墙面施工方法及施工机器人 技术领域
本发明涉及施工机器人技术领域,特别涉及一种竖直墙面施工方法及施工机器人。
背景技术
随着建筑行业智能化技术的发展,涌现出多种建筑施工机器人,用于替代人工,实现安全、高效地施工。例如,吸附式外立面清洁机器人,通过静电力吸附、磁力吸附以及真空吸附等吸附结构将机器人吸附于外墙面,机器人施工模块对外墙面进行打磨、清洗等工作。吊篮式外立面清洁机器人,在顶楼设置固定结构,放下吊篮。吊篮中装有施工装置,在竖直升降过程中完成对外墙面的打磨、清洗等工作。抬升式墙面处理设备,包括单一功能的打磨、抹腻子、喷漆设备,每次设备抬升使得施工装置升高,在升高过程中施工装置完成竖直方向的打磨、抹腻子、喷漆功能。
现有抬升式自动化设备无法完成竖直抬升方向的避障,无法自动规划水平移动距离,不具备智能化施工能力。但是在内墙处理部分,包括对水泥墙面的打磨,去除水泥面的毛刺;在水泥墙面抹刮腻子,腻子层使得墙面整体更加平整;对腻子层墙面的打磨,去除腻子层的接缝等,使得腻子层更加平整;在腻子层上进行喷漆或刷漆。在施工过程中均要避开非施工区域,如门、窗、障碍物及业主指定的非施工区域。
现有的吸附式外立面清洁机器人不适用于室内墙面施工场景,墙面无磁性,较为粗糙,无法吸附。现有的吊篮式外立面请假机器人不适用于室内墙面施工场景,0-6m的室内高度用于布置吊篮的高度占比接近30%。
障碍物将竖直墙面划分为不同部分,约有50%的部分包含门、窗、开关等障碍物,如果不能智能识别,即使设备可以自动化施工,也需要大量人工参与,施工效率仍然得不到质的提升。
技术问题
障碍物将竖直墙面划分为不同部分,约有50%的部分包含门、窗、开关等障碍物,如果不能智能识别,即使设备可以自动化施工,也需要大量人工参与,施工效率低下。
技术解决方案
针对上述问题,提出一种竖直墙面施工方法及施工机器人,通过对竖直墙面施工过程中的障碍物进行检测,获知障碍物的位置及尺寸信息,对障碍物的类型进行确定,从而引导施工机器人的施工模块避开障碍物继续施工,提高了施工机器人的施工效率,解决了现有施工机器人在竖直墙面施工无法避障的问题。
一种竖直墙面施工方法,包括步骤:
施工模块对室内竖直墙面施工,使所述施工模块施工方向与所述竖直墙面平行;
检测施工过程中遇到的障碍物,获取所述障碍物的位置及尺寸信息;
根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置。
结合本发明所述的竖直墙面施工方法,第一种可能的实施方式中,所述施工方法还包括步骤:
感知模块对施工覆盖墙面进行检测,获取施工效果;
根据所述施工效果,确定相邻两次施工的重合面积比例。
结合本发明第一种可能的实施方式,第二种可能的实施方式中,所述步骤:施工模块对室内竖直墙面施工,使所述施工模块施工方向与所述竖直墙面平行,包括子步骤:
施工机器人根据路径规划,移动到要施工的竖直墙面前;
升降单元带动施工模块沿与竖直墙面平行方向进行施工。
结合本发明第二种可能的实施方式,第三种可能的实施方式中,所述步骤:根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置,包括子步骤:
感知模块检测施工过程中障碍物的位置及尺寸信息,确定所述障碍物的类型;
若所述障碍物为第一障碍物,检测所述施工模块到所述第一障碍物的竖直距离;
根据所述竖直距离,确定所述施工模块的终止位置;
其中,所述第一障碍物为天花板或顶部障碍物。
结合本发明第二种可能的实施方式,第四种可能的实施方式中,所述步骤:根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置,还包括子步骤:
若所述障碍物为第二障碍物,计算所述第二障碍物的第一位置及尺寸信息;
根据所述第一位置及尺寸信息,确定本次施工的终点位置、躲避所述第二障碍物需要后退的距离及再次施工的起始位置;
其中,所述第二障碍物为位于所述竖直墙面上的障碍物。
结合本发明第四种可能的实施方式,第五种可能的实施方式中,所述步骤:若所述障碍物为第二障碍物,计算所述第二障碍物的第一位置及尺寸信息,包括子步骤:
返回所述第二障碍物相对所述施工模块坐标系的水平坐标X、竖直坐标Y;
计算所述第二障碍物的尺寸信息,其中,所述尺寸信息包括水平长度Wb、竖直高度H以及距离竖直墙面的凸出高度T。
结合本发明第二种可能的实施方式,第六种可能的实施方式中,所述步骤:根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置,还包括子步骤:
若所述障碍物为第三障碍物,则检测当前位置到与所述第三障碍物的相接竖直墙面的距离;
根据路径规划,确定所述相接竖直墙面是否为施工墙面并计算需要水平移动的路线及距离W3;
其中,所述第三障碍物为墙面阴角/阳角。
结合本发明所述的竖直墙面施工方法,第七种可能的实施方式中,所述步骤:施工模块对室内竖直墙面施工,使所述施工模块施工方向与所述竖直墙面平行,之前包括步骤:
设定所述施工模块施工一次的覆盖宽度W1;
设定所述施工模块水平施工速度V。
一种竖直墙面施工机器人,包括:
感知模块;
控制模块;
施工模块;
所述感知模块与所述控制模块通讯连接,用于检测施工过程中障碍物的位置及尺寸信息,确定所述障碍物的类型;
控制模块用于根据所述障碍物类型、位置及尺寸信息,规划施工路径,以避开所述障碍物进行施工。
所述施工模块用于根据控制模块规划的施工路径对预定的天花板墙面进行施工,施工模块包括:
AGV导航单元;
竖直升降单元;
水平移动单元;
所述竖直升降单元用于将所述施工模块竖直移动到接近天花板墙面的施工高度H位置进行施工;
所述水平移动单元用于根据规划路径或控制指令带动所述施工模块水平移动,以对相应的天花板墙面进行施工;AGV导航单元用于将机器人整机或施工模块的水平移动及竖直移动进行导航。
结合本发明所述的竖直墙面施工机器人,第一种可能的实施方式中,所述感知模块检测的障碍物包括第一障碍物、第二障碍物及第三障碍物,所述第一障碍物为天花板或顶部障碍物,所述第二障碍物为位于所述竖直墙面上的障碍物,所述第三障碍物为墙面阴角/阳角障碍物。
实施本发明所述的一种竖直墙面施工方法及施工机器人,通过对竖直墙面施工过程中的障碍物进行检测,获知障碍物的位置及尺寸信息,对障碍物的类型进行确定,从而引导施工机器人的施工模块避开障碍物继续施工,提高了施工机器人的施工效率,解决了现有施工机器人在竖直墙面施工无法避障的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种竖直墙面施工方法第一实施例示意图;
图2是本发明一种竖直墙面施工方法第二实施例示意图;
图3是本发明一种竖直墙面施工方法第三实施例示意图;
图4是本发明一种竖直墙面施工方法第四实施例示意图;
图5是本发明一种竖直墙面施工方法第五实施例示意图;
图6是本发明一种竖直墙面施工方法第六实施例示意图;
图7是本发明一种竖直墙面施工方法第七实施例示意图;
图8是本发明一种竖直墙面施工方法第八实施例示意图;
图9是本发明一种竖直墙面施工机器人实施例组成示意图
图10是本发明一种竖直墙面施工机器人的施工模块实施例组成示意图
附图中各数字所指代的部位名称为:100——竖直墙面施工机器人、110——感知模块、120——控制模块、130——施工模块、131——AGV导航单元、132——竖直升降单元、133——水平移动单元。
本发明的实施方式
下面将结合发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
障碍物将竖直墙面划分为不同部分,约有50%的部分包含门、窗、开关等障碍物,如果不能智能识别,即使设备可以自动化施工,也需要大量人工参与,施工效率低下。
针对上述问题,提出一种竖直墙面施工方法及施工机器人100。
一种竖直墙面施工方法,如图1,图1是本发明一种竖直墙面施工方法第一实施例示意图,包括步骤:
优选地,如图8,图8是本发明一种竖直墙面施工方法第八实施例示意图,步骤S1之前包括步骤:
S61、设定施工模块130施工一次的覆盖宽度W1;
S62、设定施工模块130水平施工速度V。
一般包括打磨墙面、抹腻子及喷漆等施工类型,竖直墙面,是指室内的隔墙,施工方向上的竖直移动速度V决定了打磨的厚度、抹腻子的厚度及喷漆的厚度,速度越快,厚度越薄。施工覆盖宽度W1,就是一次施工的宽度,为了保证两次施工没有明显接缝,一般要求相邻两次有10%的区域重合。
S1、施工模块130对室内竖直墙面施工,使施工模块130施工方向与竖直墙面平行。
施工模块130的施工方向与竖直墙面平行,竖直升降单元132带动施工模块130沿竖直方向做升降运动进行施工。
S2、检测施工过程中遇到的障碍物,获取障碍物的位置及尺寸信息;
感知模块110检测施工方向上的障碍物的位置及尺寸信息,感知模块110可以包括两个感知单元,感知单元可以由一个RGB摄像头组成由激光雷达、毫米波雷达、超声波雷达、深度摄像头、RGB摄像头及红外摄像头中的一个或者多个组成。感知单元将数据传输给控制模块120,控制模块120对数据进行计算,从而规划施工路径,控制模块120包括CPU或GPU,控制模块120规划施工路径,通过通讯单元传输指令到施工模块130,进行移动施工。
S3、根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置。
优选地,如图2,图2是本发明一种竖直墙面施工方法第二实施例示意图,施工方法还包括步骤:
S4、感知模块110对施工覆盖墙面进行检测,获取施工效果。
S5、根据施工效果,确定相邻两次施工的重合面积比例。
施工方向上的竖直移动速度V决定了打磨的厚度、抹腻子的厚度及喷漆的厚度,速度越快,厚度越薄。施工覆盖宽度为W1,为了保证两次施工没有明显接缝,相邻两个施工区域需要重合部分区域,重合范围可以为10%-30%。
优选地,如图3,图3是本发明一种竖直墙面施工方法第三实施例示意图,步骤S1包括子步骤:
S11、施工机器人100根据路径规划,移动到要施工的竖直墙面前;
S12、升降单元带动施工模块130沿与竖直墙面平行方向进行施工。
优选地,如图4,图4是本发明一种竖直墙面施工方法第四实施例示意图,步骤S3包括子步骤s:
S31a、感知模块110检测施工过程中障碍物的位置及尺寸信息,确定障碍物的类型;
S32a、若障碍物为第一障碍物,检测施工模块130到第一障碍物的竖直距离;
S33a、根据竖直距离,确定施工模块130的终止位置;
其中,第一障碍物为天花板或顶部障碍物。
如果感知模块110检测到前方有天花板,控制模块120对施工路径进行规划,具体的,计算当前施工模块130与天花板的距离Dceiling,进一步地确定本次施工的终止位置Dceiling--end。
优选地,如图5,图5是本发明一种竖直墙面施工方法第五实施例示意图,步骤S3还包括子步骤:
S31b、若障碍物为第二障碍物,计算第二障碍物的第一位置及尺寸信息;
S32b、根据第一位置及尺寸信息,确定本次施工的终点位置、躲避第二障碍物需要后退的距离及再次施工的起始位置;
其中,第二障碍物为位于竖直墙面上的障碍物。
优选地,如图6,图6是本发明一种竖直墙面施工方法第六实施例示意图,步骤S31b、包括子步骤:
S31b1、返回第二障碍物相对施工模块130坐标系的水平坐标X、竖直坐标Y;
S31b2、计算第二障碍物的尺寸信息,其中,尺寸信息包括水平长度Wb、竖直高度H以及距离竖直墙面的凸出高度T。
室内侧墙上凸出于墙面的障碍物,约占整体面积的50%,通过对竖直墙面施工过程中的障碍物进行检测,获知障碍物的位置及尺寸信息,对障碍物的类型进行确定,从而引导施工机器人100的施工模块130避开障碍物继续施工,提高了施工机器人100的施工效率,解决了现有施工机器人100在竖直墙面施工无法避障的问题。
优选地,如图7,图7是本发明一种竖直墙面施工方法第七实施例示意图,步骤S3还包括子步骤:
S31c、若障碍物为第三障碍物,则检测当前位置到与第三障碍物的相接竖直墙面的距离;S32c、根据路径规划,确定相接竖直墙面是否为施工墙面并计算需要水平移动的路线及距离W3;
其中,第三障碍物为墙面阴角/阳角。
如果在一个施工完成后,检测到水平移动WMOVE-setting范围内当前墙面结束,即墙面开始有转角,如果是阴角,检测出距离下一个面的距离,计算是否施工及水平移动的距离实际值 WMOVE-1。
如果在一个施工完成后,检测到水平移动WMOVE-setting范围内当前墙面结束,即墙面开始有转角,如果是阳角,检测出距离下一个面的距离,计算是否施工及水平移动的距离实际值 WMOVE-1。
一种竖直墙面施工机器人100,如图9,图9是本发明一种竖直墙面施工机器人100实施例组成示意图,包括感知模块110、控制模块120及施工模块130;感知模块110与控制模块120通讯连接,用于检测施工过程中障碍物的位置及尺寸信息,确定障碍物的类型;控制模块120用于根据障碍物类型、位置及尺寸信息,规划施工路径,以避开障碍物进行施工。施工模块130用于根据控制模块规划的施工路径对预定的天花板墙面进行施工,如图10,图10是本发明一种竖直墙面施工机器人100的施工模块130实施例组成示意图,施工模块130包括AGV导航单元131、竖直升降单元132及水平移动单元133;竖直升降单元132用于将施工模块130竖直移动到接近天花板墙面的施工高度H位置进行施工;水平移动单元133用于根据规划路径或控制指令带动施工模块130水平移动,以对相应的天花板墙面进行施工;AGV导航单元131用于对机器人100整机或施工模块130的水平移动及竖直移动进行导航。
感知模块110检测的障碍物包括第一障碍物、第二障碍物及第三障碍物,第一障碍物为天花板或顶部障碍物,第二障碍物为位于竖直墙面上的障碍物,第三障碍物为墙面阴角/阳角障碍物。
实施本发明的一种竖直墙面施工方法及施工机器人100,通过对竖直墙面施工过程中的障碍物进行检测,获知障碍物的位置及尺寸信息,对障碍物的类型进行确定,从而引导施工机器人100的施工模块130避开障碍物继续施工,提高了施工机器人100的施工效率,解决了现有施工机器人100在竖直墙面施工无法避障的问题。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种竖直墙面施工方法,其特征在于,包括步骤:
    施工模块对室内竖直墙面施工,使所述施工模块施工方向与所述竖直墙面平行;
    检测施工过程中遇到的障碍物,获取所述障碍物的位置及尺寸信息;
    根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置。
  2. 根据权利要求1所述的竖直墙面施工方法,其特征在于,所述施工方法还包括步骤:
    感知模块对施工覆盖墙面进行检测,获取施工效果;
    根据所述施工效果,确定相邻两次施工的重合面积比例。
  3. 根据权利要求2所述的竖直墙面施工方法,其特征在于,所述步骤:施工模块对室内竖直墙面施工,使所述施工模块施工方向与所述竖直墙面平行,包括子步骤:
    施工机器人根据路径规划,移动到要施工的竖直墙面前;
    升降单元带动施工模块沿与竖直墙面平行方向进行施工。
  4. 根据权利要求3所述的竖直墙面施工方法,其特征在于,所述步骤:根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置,包括子步骤:
    感知模块检测施工过程中障碍物的位置及尺寸信息,确定所述障碍物的类型;
    若所述障碍物为第一障碍物,检测所述施工模块到所述第一障碍物的竖直距离;
    根据所述竖直距离,确定所述施工模块的终止位置;
    其中,所述第一障碍物为天花板或顶部障碍物。
  5. 根据权利要求3所述的竖直墙面施工方法,其特征在于,所述步骤:根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置,还包括子步骤:
    若所述障碍物为第二障碍物,计算所述第二障碍物的第一位置及尺寸信息;
    根据所述第一位置及尺寸信息,确定本次施工的终点位置、躲避所述第二障碍物需要后退的距离及再次施工的起始位置;
    其中,所述第二障碍物为位于所述竖直墙面上的障碍物。
  6. 根据权利要求5所述的竖直墙面施工方法,其特征在于,所述步骤:若所述障碍物为第二障碍物,计算所述第二障碍物的第一位置及尺寸信息,包括子步骤:
    返回所述第二障碍物相对所述施工模块坐标系的水平坐标X、竖直坐标Y;
    计算所述第二障碍物的尺寸信息,其中,所述尺寸信息包括水平长度Wb、竖直高度H以及距离竖直墙面的凸出高度T。
  7. 根据权利要求3所述的竖直墙面施工方法,其特征在于,所述步骤:根根据障碍物位置及尺寸信息确定障碍物类型,规划施工路径,对障碍物进行躲避并确定再次施工的位置,还包括子步骤:
    若所述障碍物为第三障碍物,则检测当前位置到与所述第三障碍物的相接竖直墙面的距离;
    根据路径规划,确定所述相接竖直墙面是否为施工墙面并计算需要水平移动的路线及距离W3;
    其中,所述第三障碍物为墙面阴角/阳角。
  8. 根据权利要求1所述的竖直墙面施工方法,其特征在于,所述步骤:施工模块对室内竖直墙面施工,使所述施工模块施工方向与所述竖直墙面平行,之前包括步骤:
    设定所述施工模块施工一次的覆盖宽度W1;
    设定所述施工模块水平施工速度V。
  9. 一种竖直墙面施工机器人,其特征在于,包括:
    感知模块;
    控制模块;
    施工模块;
    所述感知模块与所述控制模块通讯连接,用于检测施工过程中障碍物的位置及尺寸信息,确定所述障碍物的类型;
    控制模块用于根据所述障碍物类型、位置及尺寸信息,规划施工路径,以避开所述障碍物进行施工。
    所述施工模块用于根据控制模块规划的施工路径对预定的天花板墙面进行施工,施工模块包括:
    AGV导航单元;
    竖直升降单元;
    水平移动单元;
    所述竖直升降单元用于将所述施工模块竖直移动到接近天花板墙面的施工高度H位置进行施工;
    所述水平移动单元用于根据规划路径或控制指令带动所述施工模块水平移动,以对相应的天花板墙面进行施工;AGV导航单元用于将机器人整机或施工模块的水平移动及竖直移动进行导航。
  10. 根据权利要求9所述的竖直墙面施工机器人,其特征在于,所述感知模块检测的障碍物包括第一障碍物、第二障碍物及第三障碍物,所述第一障碍物为天花板或顶部障碍物,所述第二障碍物为位于所述竖直墙面上的障碍物,所述第三障碍物为墙面阴角/阳角障碍物。
PCT/CN2022/109638 2021-09-07 2022-08-02 一种竖直墙面施工方法及施工机器人 WO2023035810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/597,915 US20240208061A1 (en) 2021-09-07 2024-03-07 Vertical wall construction method and construction robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111045993.0A CN113741467B (zh) 2021-09-07 2021-09-07 一种竖直墙面施工方法及施工机器人
CN202111045993.0 2021-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/597,915 Continuation US20240208061A1 (en) 2021-09-07 2024-03-07 Vertical wall construction method and construction robot

Publications (1)

Publication Number Publication Date
WO2023035810A1 true WO2023035810A1 (zh) 2023-03-16

Family

ID=78736669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109638 WO2023035810A1 (zh) 2021-09-07 2022-08-02 一种竖直墙面施工方法及施工机器人

Country Status (3)

Country Link
US (1) US20240208061A1 (zh)
CN (1) CN113741467B (zh)
WO (1) WO2023035810A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741467B (zh) * 2021-09-07 2023-10-13 深圳大方智能科技有限公司 一种竖直墙面施工方法及施工机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453687A (ja) * 1990-06-19 1992-02-21 Nippon Bisoo Kk 壁面作業用ロボットによる作業方法
WO2007141320A1 (fr) * 2006-06-07 2007-12-13 Bouygues Construction Dispositif pour le traitement d ' une surface
CN110014437A (zh) * 2019-05-09 2019-07-16 广东博智林机器人有限公司 喷涂机器人及控制方法和控制装置、计算机可读存储介质
CN110179412A (zh) * 2019-07-10 2019-08-30 福州大学 可内外墙面清洁机器人
CN112634362A (zh) * 2020-12-09 2021-04-09 电子科技大学 一种基于线激光辅助的室内墙面抹灰机器人视觉精确定位方法
CN112686836A (zh) * 2020-11-05 2021-04-20 广东博智林机器人有限公司 墙壁施工方法及装置
CN112975974A (zh) * 2021-03-02 2021-06-18 上海雅跃智能科技有限公司 基于bim智能监测机器人系统及控制方法
CN113741467A (zh) * 2021-09-07 2021-12-03 深圳大方智能科技有限公司 一种竖直墙面施工方法及施工机器人

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075051A (ko) * 2007-02-10 2008-08-14 삼성전자주식회사 로봇 청소기 및 그 제어방법
CN105652873B (zh) * 2016-03-04 2018-10-09 中山大学 一种基于Kinect的移动机器人避障方法
CN108803588A (zh) * 2017-04-28 2018-11-13 深圳乐动机器人有限公司 机器人的控制系统
JP6905462B2 (ja) * 2017-06-30 2021-07-21 株式会社フジタ 壁面ボード貼付け方法、壁面ボード貼付け装置、及びコンピュータプログラム
CN110338135B (zh) * 2018-04-02 2021-09-17 青岛森科特智能仪器有限公司 鱼缸清洁机器人的避障行走方法
JP7229076B2 (ja) * 2019-03-29 2023-02-27 株式会社フジタ ボード貼付け方法、ボード貼付け装置、及びコンピュータプログラム
CN111746678A (zh) * 2019-03-29 2020-10-09 杭州萤石软件有限公司 一种壁面清扫机器人及其控制方法
CN111752285A (zh) * 2020-08-18 2020-10-09 广州市优普科技有限公司 四足机器人自主导航方法、装置、计算机设备及存储介质
CN112057004A (zh) * 2020-09-16 2020-12-11 中原动力智能机器人有限公司 一种幕墙清洁机器人障碍物识别方法及控制系统
CN112415998B (zh) * 2020-10-26 2024-06-18 珠海一微半导体股份有限公司 一种基于tof摄像头的障碍物分类避障控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453687A (ja) * 1990-06-19 1992-02-21 Nippon Bisoo Kk 壁面作業用ロボットによる作業方法
WO2007141320A1 (fr) * 2006-06-07 2007-12-13 Bouygues Construction Dispositif pour le traitement d ' une surface
CN110014437A (zh) * 2019-05-09 2019-07-16 广东博智林机器人有限公司 喷涂机器人及控制方法和控制装置、计算机可读存储介质
CN110179412A (zh) * 2019-07-10 2019-08-30 福州大学 可内外墙面清洁机器人
CN112686836A (zh) * 2020-11-05 2021-04-20 广东博智林机器人有限公司 墙壁施工方法及装置
CN112634362A (zh) * 2020-12-09 2021-04-09 电子科技大学 一种基于线激光辅助的室内墙面抹灰机器人视觉精确定位方法
CN112975974A (zh) * 2021-03-02 2021-06-18 上海雅跃智能科技有限公司 基于bim智能监测机器人系统及控制方法
CN113741467A (zh) * 2021-09-07 2021-12-03 深圳大方智能科技有限公司 一种竖直墙面施工方法及施工机器人

Also Published As

Publication number Publication date
CN113741467B (zh) 2023-10-13
CN113741467A (zh) 2021-12-03
US20240208061A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
US11648675B2 (en) Mother-child robot cooperative work system and work method thereof
US20240208061A1 (en) Vertical wall construction method and construction robot
WO2021017468A1 (zh) 喷涂控制方法、装置、喷涂机器人以及存储介质
WO2021008611A1 (zh) 机器人被困检测及脱困方法
US20190118370A1 (en) Method for treating a surface and corresponding automated device
WO2021248846A1 (zh) 一种机器人沿边行走的区域清扫规划方法、芯片及机器人
US11774980B2 (en) Method for controlling cleaning of robot, chip, and robot cleaner
EP3600788A1 (en) Automated drywall planning system and method
CN205942412U (zh) 母子机协同工作系统
CN106805856A (zh) 控制清洁机器人的方法
CN112137529B (zh) 一种基于密集障碍物的清扫控制方法
WO2021047348A1 (zh) 可通行区域图的建立方法、处理方法、装置和可移动设备
CN101716568A (zh) 机器人喷涂系统喷涂室内的方法
KR101403954B1 (ko) 로봇청소기 시스템의 제어방법
DE102005014648A1 (de) Kompensationsverfahren eines Gyro-Sensors für Reinigungsroboter
WO2022041236A1 (zh) 移动机器人的行进控制方法、路径规划方法及移动机器人
Kahane et al. Balancing human‐and‐robot integration in building tasks
CN114224226A (zh) 避障清扫机器人、机器人机械臂避障规划系统及方法
JP2020119561A (ja) 第1の床処理装置及び第2の床処理装置を有するシステム並びにそのシステムの動作方法
CN112137512B (zh) 扫地机器人清扫区域检测方法、装置、设备、系统和介质
US11889971B2 (en) Cleaning robot, bristle control method and device, and computer storage medium
CN115648256A (zh) 一种表面清洗机器人的控制方法和装置
CN113741465B (zh) 一种天花板墙面施工方法、路径规划装置及施工机器人
CN111897336B (zh) 一种机器人沿边行为结束的判断方法、芯片及机器人
CN113995338A (zh) 一种擦窗机器人喷洒水雾控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE