WO2023035688A1 - 显示设备及控制显示设备的方法 - Google Patents

显示设备及控制显示设备的方法 Download PDF

Info

Publication number
WO2023035688A1
WO2023035688A1 PCT/CN2022/095742 CN2022095742W WO2023035688A1 WO 2023035688 A1 WO2023035688 A1 WO 2023035688A1 CN 2022095742 W CN2022095742 W CN 2022095742W WO 2023035688 A1 WO2023035688 A1 WO 2023035688A1
Authority
WO
WIPO (PCT)
Prior art keywords
bluetooth
display device
display
control device
antenna
Prior art date
Application number
PCT/CN2022/095742
Other languages
English (en)
French (fr)
Inventor
杨坤
邓子敬
孙开鸿
郑鹏
顾微微
姜晓胜
程志
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111047340.6A external-priority patent/CN115776596A/zh
Priority claimed from CN202111104455.4A external-priority patent/CN114286153B/zh
Priority claimed from CN202111137956.2A external-priority patent/CN115883894A/zh
Priority claimed from CN202111261141.5A external-priority patent/CN116055774A/zh
Priority claimed from CN202111533745.0A external-priority patent/CN114339341B/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Priority to CN202280058389.8A priority Critical patent/CN117917083A/zh
Publication of WO2023035688A1 publication Critical patent/WO2023035688A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/422Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home

Definitions

  • the present application relates to the technical field of display devices, in particular to a display device and a method for controlling the display device.
  • Bluetooth connection is a common connection method between a remote control device (such as a remote control) and a display device, where the remote control device can be positioned using the Bluetooth Angle of Arrival (AOA) positioning technology.
  • AOA Angle of Arrival
  • the Bluetooth AOA positioning technology is: equipped with at least two antennas, each antenna group includes at least two antennas, first receives the Bluetooth signal through the first antenna in any antenna group, and switches to the antenna group after setting the time length
  • the second antenna of the antenna receives the Bluetooth signal, and so on, by switching different antennas to receive the Bluetooth signal, and detecting the phase values of the Bluetooth signals received by different antennas to calculate the phase difference of the Bluetooth signal corresponding to the antenna group, and Calculate the AOA according to the phase difference, and finally determine the position of the transmitter that sends the Bluetooth signal according to the AOA.
  • a display device includes a processor and a Bluetooth component.
  • the Bluetooth component is configured to receive a broadcast signal sent by a Bluetooth control device; the processor is configured to: respectively determine the angles of arrival of the at least two antenna groups according to the broadcast signal, and according to the at least two The respective angles of arrival of the antenna groups and the respective positions of the at least two antenna groups determine the position of the Bluetooth control device.
  • the position of the bluetooth control device is within the preset range of the display direction of the display device, send a connection request to the bluetooth control device through the bluetooth component, so that the display device and the bluetooth control The device establishes a Bluetooth connection.
  • a display device includes a display screen, a bluetooth component, and a processor.
  • the bluetooth component receives the broadcast signal sent by the bluetooth control device.
  • the display screen is configured to display a user interface, wherein the user interface includes a first view display area and a second view display area, the first view display area is displayed on the first layer, and the second view display area Displayed on the second layer, and above the first view display area.
  • the Bluetooth component includes at least two antenna groups and a Bluetooth controller, and the Bluetooth controller is configured to receive broadcast signals sent by the Bluetooth control device from the at least two antenna groups.
  • the bluetooth control device may be a control device, such as a remote controller, and the display device is wirelessly connected to the remote controller.
  • the Bluetooth control device may be a smart device, and the smart device may include any one of a mobile terminal, a tablet computer, a computer, a notebook computer, an augmented reality (Augmented Reality, AR) or a virtual reality (Virtual Reality, VR) device, and the like.
  • the processor is configured to: after the display device establishes a Bluetooth connection with the Bluetooth control device: in response to the Bluetooth component receiving a first control request input by a user, determine that the Bluetooth control device is in the second The real-time position coordinates of the view display area, and the starting position coordinates, wherein the first control request is a request for adjusting the display size of the second view display area input by the user through the Bluetooth control device, and includes the Bluetooth control The location information of the device; in response to the bluetooth component receiving the movement request input by the user, determine the effective start coordinates and the effective end coordinates, wherein the movement request contains the location information of the bluetooth control device; according to the effective start coordinates and the effective termination coordinates, determine the movement track of the movement request, and present the movement track in the second view display area; adjust the direction of the second view display area according to the direction of the movement track Display size.
  • a display device provided according to some embodiments of the present application includes a display screen, a bluetooth component, and a processor.
  • the bluetooth component is used for receiving the broadcast signal sent by the bluetooth control device.
  • the processor is configured to: after the display device establishes a Bluetooth connection with the Bluetooth control device: determine the first position of the Bluetooth control device in the configured cuboid space according to the continuously received broadcast signal.
  • the movement trajectory wherein the cuboid space is formed by setting rules based on the first surface configured by the user, the first surface is one of the outer surfaces of the cuboid space, and the first surface is in the configured space
  • a display device includes a display screen, a bluetooth component, and a processor.
  • the bluetooth component is configured to receive a broadcast signal sent by a bluetooth control device;
  • the processor is configured to: after the display device establishes a bluetooth connection with the bluetooth control device: displaying at least one control for implementing control commands in the display device, and determining a mapping area in the space where the display device is located, wherein a point in the mapping area has a mapping relationship with the at least one control; after detecting the When the Bluetooth control device is located in the mapping area, determine the target control according to the mapping relationship, wherein the target control corresponds to a target point in the mapping area, and the target point corresponds to the location of the Bluetooth control device , the target control is one of the at least one control; and when it is determined that the distance between the Bluetooth control device and the display device is shortened, execute a control command corresponding to the target control.
  • FIG. 1 is a usage scenario of a display device according to some embodiments of the present application.
  • Fig. 2 is a hardware configuration block diagram of a control device according to some embodiments of the present application.
  • FIG. 3 is a block diagram of a hardware configuration of a display device according to some embodiments of the present application.
  • Fig. 4 is a software structural block diagram of a display device according to some embodiments of the present application.
  • Fig. 5 is a graph composed of multiple phase values of a first antenna group according to some embodiments of the present application.
  • FIG. 6 is a schematic diagram of a specific scenario of some embodiments of the present application.
  • FIG. 7 is a schematic diagram of a Bluetooth data packet in some embodiments of the present application.
  • FIG. 8 is a schematic diagram of a specific positioning process in some embodiments of the present application.
  • FIG. 9 is a schematic flowchart of a Bluetooth connection method in some embodiments of the present application.
  • FIG. 10 is a schematic diagram of a display interface for displaying prompt information in some embodiments of the present application.
  • FIG. 11 is a flowchart of a method for establishing a Bluetooth connection in some embodiments of the present application.
  • FIG. 12 is a schematic flowchart of another Bluetooth connection method in some embodiments of the present application.
  • FIG. 13 is a schematic diagram of a scene where a display device includes a set area according to some embodiments of the present application.
  • Fig. 14 is a schematic diagram of another display interface for displaying prompt information according to some embodiments of the present application.
  • FIG. 15 is a schematic diagram of a picture-in-picture display on a display screen in some embodiments of the present application.
  • Fig. 16 is a schematic diagram of determining the effective end point position in some embodiments of the present application.
  • Fig. 17 shows a schematic diagram of effective end position determination in other embodiments
  • FIG. 18A is a schematic diagram of adjusting the size of the picture-in-picture display to the upper right in some embodiments of the present application.
  • FIG. 18B is a schematic diagram of adjusting the size of the picture-in-picture display to the upper left in some embodiments of the present application.
  • FIG. 18C is a schematic diagram of adjusting the size of the picture-in-picture display to the upper side in some embodiments of the present application.
  • FIG. 18D is a schematic diagram of adjusting the size of the picture-in-picture display to the right in some embodiments of the present application.
  • FIG. 18E is a schematic diagram of adjusting the size of the picture-in-picture display to the left in some embodiments of the present application.
  • FIG. 18F is a schematic diagram of adjusting the size of the picture-in-picture display to the bottom right in some embodiments of the present application.
  • FIG. 18G is a schematic diagram of adjusting the size of the picture-in-picture display to the bottom in some embodiments of the present application.
  • FIG. 18H is a schematic diagram of adjusting the size of the picture-in-picture display to the bottom left in some embodiments of the present application.
  • FIG. 19 is a schematic diagram of the adjustment of the picture-in-picture display position in some embodiments of the present application.
  • Fig. 20A is a diagram of a display interface for displaying a spatial coordinate system according to some embodiments of the present application.
  • Fig. 20B is another display interface diagram for displaying a spatial coordinate system according to some embodiments of the present application.
  • Fig. 20C is a diagram of a display interface for displaying a first reference point according to some embodiments of the present application.
  • Fig. 20D is a diagram of a display interface for determining a second reference point according to some embodiments of the present application.
  • FIG. 20E is a diagram of a display interface for displaying a second reference point in some embodiments of the present application.
  • FIG. 20F is a schematic diagram for indicating the selectable range of the third reference point according to some embodiments of the present application.
  • FIG. 20G is a display interface diagram for displaying a third reference point according to some embodiments of the present application.
  • FIG. 20H is a schematic diagram for indicating the position of the third reference point according to some embodiments of the present application.
  • Fig. 20I is a display interface diagram for displaying the first surface according to some embodiments of the present application.
  • Fig. 20J is a schematic diagram of a cuboid space in some embodiments of the present application.
  • Fig. 21A is a schematic diagram of a recognition space in some embodiments of the present application.
  • Fig. 21B is a schematic diagram of an interface displaying the second point in some embodiments of the present application.
  • Fig. 22 is a schematic diagram of a display interface during video playback according to some embodiments of the present application.
  • Fig. 23 is a schematic diagram of a display interface displaying a moving track in some embodiments of the present application.
  • Fig. 24 is a flowchart of a method for determining a display device control according to some embodiments of the present application.
  • FIG. 25 is a flow chart of a method for setting an effective distance in some embodiments of the present application.
  • FIG. 26A is a schematic diagram of a display interface for displaying the signal strength of a Bluetooth signal according to some embodiments of the present application.
  • Fig. 26B is a schematic diagram of a display interface for displaying prompt information in some embodiments of the present application.
  • Fig. 27A is a schematic diagram of a display interface for prompting the user to perform position calibration according to some embodiments of the present application
  • Fig. 27B is a schematic diagram of a display interface for displaying the current location of a Bluetooth device according to some embodiments of the present application.
  • Fig. 27C is a schematic diagram of a display interface for displaying instruction information in some embodiments of the present application.
  • Fig. 27D is a schematic diagram of a detection area in some embodiments of the present application.
  • FIG. 27E is a schematic diagram of a mapping area in some embodiments of the present application.
  • Fig. 28 is a schematic diagram of a display interface for displaying at least one control in some embodiments of the present application.
  • Fig. 29 is another schematic diagram of a display interface for displaying at least one control according to some embodiments of the present application.
  • FIG. 30 is a schematic diagram of an interface interaction scene in some embodiments of the present application.
  • FIG. 31 is a flowchart of a method for interface interaction in some embodiments of the present application.
  • Fig. 32 is a flow chart of a method for implementing a control command in some embodiments of the present application.
  • Fig. 1 is a schematic diagram of a usage scenario of a display device according to an embodiment.
  • the display device 200 also performs data communication with the server 400, and the user can establish a Bluetooth connection with the display device 200 through the smart device 300 or the control device 100 to operate the display device 200.
  • the control device 100 is collectively referred to as a Bluetooth control device.
  • control device 100 may be a remote controller, and the communication between the remote controller and the display device 200 includes at least one of infrared protocol communication, bluetooth protocol communication, and other short-distance communication methods, and is controlled by a wireless or wired method.
  • the device 200 is displayed. The user can control the display device 200 by inputting user instructions through at least one of buttons on the remote control, voice input, and control panel input.
  • the smart device 300 may include any one of a mobile terminal, a tablet computer, a computer, a notebook computer, an augmented reality (Augmented Reality, AR) or a virtual reality (Virtual Reality, VR) device, and the like.
  • the smart device 300 can also be used to control the display device 200 .
  • the display device 200 is controlled using an application program running on the smart device.
  • the display device 200 can also be controlled in a manner other than the control device 100 and the smart device 300, for example, it can also directly receive the user's voice command through the module for acquiring voice commands configured inside the display device 200
  • the control can also receive the user's voice command control through the voice control device installed outside the display device 200.
  • the display device 200 also performs data communication with the server 400 .
  • the display device 200 may be allowed to communicate via a local area network (LAN), a wireless local area network (WLAN), and other networks.
  • the server 400 may provide various contents and interactions to the display device 200 .
  • the server 400 may be one cluster, or multiple clusters, and may include one or more types of servers.
  • Fig. 2 exemplarily shows a configuration block diagram of the control device 100 according to an exemplary embodiment.
  • the control device 100 includes a processor 110 , a communication interface 130 , a user input/output interface 140 , a memory, and a power supply.
  • the control device 100 can receive the user's input operation instructions, and convert the operation instructions into instructions that the display device 200 can recognize and respond to, and play an intermediary role between the user and the display device 200 .
  • the communication interface 130 is used for communicating with the outside, and includes at least one of a WIFI chip, a Bluetooth component, NFC or an alternative module.
  • the bluetooth component includes an antenna for sending and receiving bluetooth signals, and may also include a bluetooth controller for receiving instructions sent by the processor 110.
  • the bluetooth component can be used to send bluetooth signals or receive external Bluetooth signal.
  • the processor 110 may establish a Bluetooth connection with the display device 200 through a Bluetooth component, so as to control the display device 200 .
  • the user input/output interface 140 includes at least one of a microphone, a touch pad, a sensor, a button or an alternative module.
  • FIG. 3 exemplarily shows a schematic diagram of the hardware structure of the display device 200 .
  • the display device 200 includes: a radio frequency (radio frequency, RF) circuit 210, a memory 220, a display unit 230, a camera 240, a sensor 250, an audio circuit 260, a wireless fidelity (Wireless Fidelity, Wi-Fi) module 270, a processor 280, a bluetooth component 281, and a power supply 290 and other components.
  • RF radio frequency
  • the RF circuit 210 can be used for receiving and sending signals during sending and receiving information or during a call, and can receive downlink data from the base station and hand it over to the processor 280 for processing.
  • the memory 220 can be used to store software programs and data.
  • the processor 280 executes various functions of the display device 200 and data processing by executing software programs or data stored in the memory 220 .
  • the memory 220 stores an operating system that enables the display device 200 to operate.
  • the memory 220 may store an operating system and various application programs, and may also store codes for executing methods in some embodiments of this application.
  • the display unit 230 can be used to receive input digital or character information, and generate signal input related to the user setting and function control of the display device 200.
  • the display unit 230 can include a touch screen 231 arranged on the front of the display device 200, which can collect user information on it. Or nearby touch operations, such as clicking a button, dragging a scroll box, etc.
  • the display unit 230 can also be used to display information input by or provided to the user and a graphical user interface (GUI) displaying various menus of the device 200 .
  • GUI graphical user interface
  • the display unit 230 may include a display screen 232 disposed on the front of the display device 200 . Wherein, the display screen 232 may be configured in the form of a liquid crystal display screen, a light emitting diode, or the like.
  • the display unit 230 can be used to display various graphical user interfaces in this application.
  • Camera 240 may be used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts light signals into electrical signals, and then transmits the electrical signals to the processor 280 for conversion into digital image signals.
  • the display device 200 may further include at least one sensor 250 , such as an acceleration sensor 251 , a distance sensor 252 , a fingerprint sensor 253 , and a temperature sensor 254 .
  • the display device 200 may also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, a light sensor, and a motion sensor.
  • Wi-Fi is a short-distance wireless transmission technology.
  • the display device 200 can help users send and receive emails, browse web pages, and access streaming media through the Wi-Fi module 270, which provides users with wireless broadband Internet access.
  • the processor 280 is the control center of the display device 200. It uses various interfaces and lines to connect various parts of the entire display device. By running or executing the software program stored in the memory 220 and calling the data stored in the memory 220, the display is executed. Various functions and processing data of the device 200.
  • the processor 280 may also integrate an application processor and a baseband processor, wherein the application processor mainly processes operating systems, user interfaces, and application programs, and the baseband processor mainly processes wireless communications. In this application, the processor 280 can run an operating system, application programs, user interface display and touch response, and the processing methods of some embodiments of this application. In addition, the processor 280 is coupled to the display unit 230 .
  • the bluetooth component 281 is configured to exchange information with other bluetooth devices having bluetooth components through the bluetooth protocol.
  • the Bluetooth component 281 may include multiple antennas for receiving and transmitting Bluetooth signals and a Bluetooth controller for receiving instructions from the processor 280 .
  • the display device 200 can establish a Bluetooth connection with a wearable electronic device (such as a smart watch) that also has a Bluetooth component through the Bluetooth component 281, so as to perform data interaction.
  • the display device 200 can establish a Bluetooth connection with the control device through the Bluetooth component to perform Bluetooth communication.
  • the display device 200 may receive broadcast signals from other electronic devices with Bluetooth components through the antenna included in the Bluetooth component 281 .
  • the display device 200 also includes a power source 290 (such as a battery) for powering various components.
  • the power supply can be logically connected to the processor 280 through the power management system, so that functions such as charging, discharging and power consumption can be managed through the power management system.
  • the display device 200 can also be configured with a power button, which is used for turning on and off the display device, and locking the screen and other functions.
  • the present application also provides a software configuration block diagram of the display device 200, as shown in FIG. layer"), application framework (Application Framework) layer (referred to as “framework layer”), Android runtime (Android runtime) and system library layer (referred to as “system runtime layer”), and the kernel layer.
  • application framework Application Framework
  • Android runtime Android runtime
  • system library layer system runtime layer
  • the system runtime layer provides support for the upper layer, that is, the framework layer.
  • the Android operating system will run the C/C++ library contained in the system runtime layer to realize the functions to be realized by the framework layer.
  • the kernel layer is a layer between hardware and software.
  • the kernel layer contains at least one of the following modules: wireless (wireless) module, audio module, display module, bluetooth controller, camera module, WIFI module, USB module, HDMI module, sensor module (such as fingerprint sensor, temperature sensor, Pressure sensors, etc.), and power modules, etc.
  • the Bluetooth AOA positioning technology performs positioning estimation through the angle information of the signal.
  • the control device uses a single antenna to transmit the direction-finding signal, and the display device (receiver) has a built-in antenna array. A phase difference is generated to improve the positioning accuracy.
  • the Bluetooth 5.0 protocol stipulates that the compensation time for Bluetooth antenna switching is fixed at 2 microseconds, and all the phase values of the Bluetooth signals collected within the compensation time will be filtered out, which will lead to inaccurate calculated phase values and lead to accurate positioning reduced sex.
  • Some embodiments of the present application provide a positioning method and device based on Bluetooth, no longer filtering the phase value within a fixed compensation time, but determining the phase value to be filtered according to the change of the phase value, reducing the waste of the phase value, Improve positioning accuracy.
  • the method may be executed by a display device, or may also be executed by a processor in the display device, and the method will be described later by taking execution by the display device as an example.
  • the internal structure of the display device may adopt the hardware configuration of the display device 200 shown in FIG. 3 above.
  • the antennas included in the antenna group may be located outside the display device and connected to the display device.
  • the antenna group may be located at the upper edge of the display device and attached to a non-metallic casing of the display device.
  • Each antenna included in the antenna group may be located inside the display device. Some of the multiple antennas included in the antenna group are located outside the display device, and the other part is located inside the display device.
  • the casing of the display device can be made of non-metallic material; the display device contains two antenna groups, and each antenna group contains two antennas; the two groups of antennas are located at the upper edge of the display device, and the distance between the two groups of antennas is the width of the display device.
  • the casing of the display device may be metal, such as an aluminum alloy casing.
  • Some embodiments of the present application provide a positioning method based on Bluetooth AOA, which specifically includes:
  • Step 1 The display device receives broadcast signals through the first antenna in at least two antenna groups, and detects multiple phase values of the broadcast signals.
  • the first antenna belongs to any antenna in the first antenna group of the at least two antenna groups, and the first antenna group is any antenna group in the at least two antenna groups included in the display device.
  • the broadcast signal comes from a control device, such as a Bluetooth transmitter, and the multiple phase values of the broadcast signal detected by the display device are multiple phase values detected within a first set time period.
  • the display device can scan the broadcast signal in the broadcast channel through at least two antenna groups included in the Bluetooth component, and determine the fixed frequency extension included in the broadcast signal for positioning according to the set identifier included in the broadcast signal Signal (Constant Tone Extension, CTE).
  • the CTE can be included in the broadcast data packet carried by the broadcast signal.
  • the format of the broadcast data packet can be referred to in FIG.
  • Access Address Used to indicate the transmission channel of the broadcast signal
  • Protocol Data Unit Protocol Data Unit, PDU
  • PDU Protocol Data Unit
  • Cyclic Redundancy Check Cyclic Redundancy Check, CRC
  • CRC Cyclic Redundancy Check
  • the display device may determine the phase value of the antenna according to the CTE included in the broadcast signal. Taking the determination process of the phase value of an antenna (such as the first antenna) as an example to introduce: first, the display device can obtain the CTE included in the broadcast signal received by the first antenna; in some embodiments, the display device can obtain the CTE from the CTE In-phase quadrature (In-phase Quadrature, IQ) data is collected in the middle, and the IQ data includes the phase value and amplitude information when the broadcast signal reaches the first antenna. Therefore, the display device can acquire the phase value of the broadcast signal corresponding to the first antenna.
  • the phase value of the broadcast signal when the broadcast signal reaches the corresponding antenna or the phase value of the broadcast signal corresponding to the antenna may be simply referred to as the phase value of the antenna or the phase value corresponding to the antenna.
  • phase values of broadcast signals received by the first antenna are different at different time points within the first set duration.
  • the value range of the multiple phase values of the first antenna detected by the display device may be [- ⁇ , ⁇ ], and the multiple phase values of the first antenna detected by the display device may vary with the detection The phase values of the first antenna are proportional to the detection time.
  • Step 2 the display device receives the broadcast signal through the second antenna, and detects multiple phase values of the received broadcast signal.
  • the second antenna is any antenna in the first antenna group except the first antenna, and the multiple phase values of the broadcast signal received by the second antenna detected by the display device are detected within the second set time period. arrived.
  • the first set duration may be equal to the second set duration.
  • the second set duration may be a period of time after and adjacent to the first set duration.
  • the display device may control the first antenna to stop receiving the broadcast signal and control the second antenna to start receiving the broadcast signal after the first set time period is reached. In some other embodiments, the display device may also start to detect the broadcast signal received through the second antenna within the second set time period before the first set time period is reached. In some embodiments, the display device can switch antennas by setting a timer. For example, the display device can start a timer when it starts to receive broadcast signals through the first antenna, and set the timing duration of the timer to the first setting. time, and then switch to receive broadcast signals through the second antenna when the timer expires. In some embodiments, the display device may also save the switching time point. In some embodiments, when the first antenna group includes multiple antennas, the display device can preset a switching order, for example, the switching order can be from the first antenna to the second antenna and then to the third antenna, etc. .
  • Step 3 the display device filters the multiple phase values corresponding to the second antenna to obtain the multiple phase values of the filtered second antenna.
  • the display device may filter out at least two phase values satisfying a set condition among the multiple phase values of the second antenna to obtain the multiple phase values of the filtered second antenna.
  • the at least two phase values satisfying the set condition are inversely proportional to the detection time of the phase values. That is to say, the at least two phase values filtered out by the display device are continuously detected, and are inversely proportional to the detection time, that is, the at least two phase values filtered out sequentially decrease as the detection time increases.
  • the difference between any two consecutively detected two phase values among the at least two filtered out phase values is smaller than a set threshold.
  • the Bluetooth signal when switching to a new antenna to receive the Bluetooth signal, the Bluetooth signal needs a period of time to stabilize. That is to say, when the display device switches to the second antenna to receive the broadcast signal, the broadcast signal received during the initial period of time is unstable, which also causes the broadcast signal received by the display device to be unstable during the detection period.
  • the phase value is unavailable, and for the convenience of description, this period of time is referred to as compensation time. It is known that under normal circumstances, the continuously detected phase value of the display device increases with the detection time, but due to the instability of the Bluetooth signal received during the compensation time, the continuously detected phase value during the compensation time is the same as the detection time Inversely proportional. Therefore, after the display device detects multiple phase values of the second antenna, it can filter out the continuously detected phase values that are inversely proportional to the detection time, that is, at least two phase values corresponding to the broadcast signals received within the compensation time Filtered.
  • Step 4 the display device determines the phase difference of the first antenna group according to the multiple phase values of the first antenna and the multiple phase values of the filtered second antenna.
  • the first antenna group includes two antennas, namely a first antenna and a second antenna.
  • the display device may use an average value of differences between multiple phase values of the first antenna and multiple phase values of the second antenna as the phase difference of the first antenna group. For example, refer to FIG. 5 , which shows multiple phase values of the first antenna within the first set time period and multiple phase values of the second antenna within the second set time length, and each point represents a phase value.
  • the phase value and detection time of the first antenna detected by the display device are: (time t 1 : 1/4 ⁇ , time t 2 : 1/3 ⁇ , t 3 moment: 1/2 ⁇ ), the phase value and detection time of the second antenna detected by the display device are: (t 4 moment: 1/2 ⁇ , t 5 moment: 7/12 ⁇ , t 6 moment: 3/4 ⁇ ).
  • the display device can calculate the difference between the phase values at time t4 and time t1 , the difference between the phase values at time t5 and time t2 , and the difference between the phase values at time t6 and time t3 , according to the above three differences
  • the average value determines the phase difference of the first antenna group.
  • T is a preset detection period
  • T may be equal to the first set time length or the second set time length.
  • the number of phase values of the first antenna and the number of phase values of the second antenna are the same, of course, there may be a case where the number of phase values of the two antennas is different.
  • the display device may calculate the phase difference based on the antenna with the smaller number of phase values.
  • the number of antennas included in the first antenna group is greater than 2, and the display device can use the method in the previous embodiment to calculate the difference between the phase values of any two antennas in the first antenna group, and combine the The average of the differences is used as the phase difference of the first antenna group
  • the display device may further use the above method to determine the phase difference of each antenna group in at least two antenna groups included in the display device.
  • Step 5 the display device determines the position of the Bluetooth transmitter that transmits the broadcast signal according to the respective phase differences of the at least two antenna groups.
  • the phase value is filtered out based on changes in the detected phase value. In this way, the waste of data can be reduced, and the phase difference calculated by obtaining more phase values will be more accurate, thereby improving the accuracy of positioning.
  • the display device when the display device determines the position of the Bluetooth transmitter according to the phase difference of each antenna group, it may first determine the angle of arrival of each antenna group according to the phase difference of each antenna group. Then confirm the position of the Bluetooth transmitter according to the angle of arrival of each antenna group.
  • the display device may further determine the wavelength of the received broadcast signal. Since the wavelength of the broadcast signal is fixed in 2.4G wireless technology, the wavelength of the broadcast signal received by each antenna from the same Bluetooth transmitter is the same. In some embodiments, when the display device obtains the angle of arrival corresponding to each antenna group, it may also jointly determine the angle of arrival according to the wavelength of the broadcast signal and the phase difference of each antenna group. In some embodiments, taking the first antenna group as an example, the first antenna group includes two antennas, and the angle of arrival corresponding to the first antenna group can be determined by the following formula (1):
  • is the angle of arrival corresponding to the first antenna group
  • is the phase difference corresponding to the first antenna group
  • is the wavelength of the broadcast signal
  • d is the distance between the two antennas included in the first antenna group.
  • the display device may further determine the position of the Bluetooth transmitter.
  • the position of the Bluetooth transmitter can be determined by the following formula (2) - formula (3) :
  • ⁇ 1 is the angle of arrival corresponding to the first antenna group
  • ⁇ 2 is the angle of arrival corresponding to the second antenna group
  • (x, y) is the position of the Bluetooth transmitter
  • (x 1 , y 1 ) is the first antenna group
  • the position of , (x 2 , y 2 ) is the position of the second antenna group.
  • the display device when the display device includes two antenna groups and are located on both sides of the display device, the display device can first obtain the width of the display device before calculating the position of the Bluetooth transmitter, so as to determine an antenna In the case of the position of one antenna group, the position of another antenna group can be calculated. Moreover, since the distance between the antenna groups is fixed in the related art, the related algorithms are all calculated based on the fixed distance. However, in this application, the antenna groups are located on both sides of the display device, so different display devices may have different antenna group distances, so the related algorithm is not applicable to the application scenario of this application. Therefore, this application first obtains the distance between the antenna groups before calculating the position of the Bluetooth transmitter, which solves the problem that the existing algorithm is not applicable.
  • the Bluetooth transmitter when the Bluetooth transmitter transmits broadcast signals, it transmits in the form of electromagnetic beams. Part of the electromagnetic beams may It will directly reach the antenna, and another part of the electromagnetic beam may reach the antenna after being reflected by the wall. This will cause the display device to appear two times when calculating the arrival angle of the broadcast signal received by the same Bluetooth transmitter received by an antenna group. Two or more angles of arrival may be used to locate two or more positions for the same Bluetooth transmitter, and it is necessary to determine the true position of the Bluetooth transmitter from these two or more positions.
  • the following takes the display device receiving broadcast signals including two Bluetooth signals from the same Bluetooth transmitter as an example to introduce the process of determining the real location of the Bluetooth transmitter.
  • these two Bluetooth signals will be referred to as the first Bluetooth signal and Second Bluetooth signal.
  • FIG. 6 shows that the Bluetooth signal transmitted by the Bluetooth transmitter either directly reaches the display device, or reaches the display device after being reflected by a wall. This will cause the display device to receive two Bluetooth signals from the Bluetooth transmitter: the first Bluetooth signal and the second Bluetooth signal.
  • the display device performs positioning according to the two Bluetooth signals, it will also determine two positions, that is, the position P_A and the position P_B shown in Figure 6. It can be seen that the position P_A is the real position of the Bluetooth transmitter, and then It is necessary for the display device to filter out the position P_B to determine the true position of the Bluetooth transmitter.
  • the filtering method is expanded as follows:
  • the display device when the display device receives the first Bluetooth signal and the second Bluetooth signal, it can determine the first Bluetooth signal and the second Bluetooth signal according to the identification of the Bluetooth transmitter carried in the first Bluetooth signal and the second Bluetooth signal.
  • the signal comes from the same bluetooth transmitter.
  • the identifier of the Bluetooth transmitter may be the MAC address of the Bluetooth transmitter or the name of the Bluetooth transmitter.
  • the display device may detect the signal strength (Received Signal Strength Indication, RSSI) of the first Bluetooth signal and the second Bluetooth signal, and may determine that the signal strength of the second Bluetooth signal is smaller than that of the first Bluetooth signal.
  • RSSI Receiveived Signal Strength Indication
  • the display device can also calculate the difference between the signal strength of the Bluetooth data packet carried by the first Bluetooth signal and the measured signal strength of the first Bluetooth signal, and calculate the Bluetooth data packet carried by the second Bluetooth signal The difference between the signal strength in the signal strength and the measured signal strength of the second bluetooth signal, and compare the size of the two differences, wherein, since the first bluetooth signal and the second bluetooth signal are substantially from the same bluetooth signal, the difference between the two The signal strength is the same as recorded in the bluetooth packet.
  • the second Bluetooth signal is filtered out, and the Bluetooth transmitter is positioned according to the first Bluetooth signal.
  • the display device first determines that the first Bluetooth signal and the second Bluetooth signal come from the same Bluetooth transmitter. For details, refer to the description in Case 1, which will not be repeated here.
  • the display device can respectively Calculate the first phase difference corresponding to the first bluetooth signal and the second phase difference corresponding to the second bluetooth signal, calculate the first angle of arrival according to the first phase difference, and calculate the second angle of arrival according to the second phase difference.
  • the display device After the display device determines the first angle of arrival and the second angle of arrival, it may determine whether the two angles of arrival are in the filtering range, that is, the angle range that cannot be used for positioning.
  • the filtering range is the range of angles behind the display device.
  • the filtering range can be preset, for example, 0°-180° can be preset as the angle range in front of the display device, and 180°-360° can be set as the angle range behind the display device, that is, the filtering except range.
  • the display device determines that the second angle of arrival is within the filtering range, the second Bluetooth signal is filtered out, and the position of the Bluetooth transmitter is determined according to the first angle of arrival.
  • the display device before performing positioning, the display device first filters signals that cannot be used for positioning according to signal strength or signal arrival angle, so as to perform positioning more accurately and prevent positioning errors from occurring.
  • the above two cases are introduced by taking the display device receiving two Bluetooth signals from the same Bluetooth transmitter as an example. If the number of Bluetooth signals received by the display device from the same Bluetooth transmitter exceeds 2, you can also use The method described above determines the true location of the Bluetooth transmitter.
  • FIG. 8 it is a specific positioning method flow of some embodiments of the present application, including:
  • the display device receives a first Bluetooth signal and a second Bluetooth signal from a Bluetooth transmitter through the first antenna and the second antenna of the first antenna group and the third antenna and the fourth antenna of the second antenna group.
  • the display device may determine that the first Bluetooth signal and the second Bluetooth signal are from the same Bluetooth transmitter through the identifiers of the Bluetooth transmitters carried in the first Bluetooth signal and the second Bluetooth signal.
  • the display device judges whether the signal strengths of the first Bluetooth signal and the second Bluetooth signal are equal.
  • the first process includes steps S703, S704, S705, and S707.
  • the display device respectively detects multiple phase values of the first Bluetooth signal corresponding to the first antenna, the second antenna, the third antenna, and the fourth antenna.
  • the second antenna is the antenna switched later in the first antenna group (that is, the display device first receives the first Bluetooth signal through the first antenna within the first set time period, and the first bluetooth signal is received by the first antenna after the first set time period). Switch to receiving Bluetooth signals through the second antenna within a set period of time), after the display device detects multiple phase values of the second antenna, it can filter out the phase values that meet the set conditions.
  • the specific filtering process can be found in Introduction to step 3 in the above-mentioned positioning method based on Bluetooth AOA.
  • the display device may filter out the phase values satisfying the set condition after detecting multiple phase values of the fourth antenna.
  • the display device respectively calculates angles of arrival of the first antenna group and the second antenna group for the first Bluetooth signal.
  • the display device calculates the angle of arrival of the first bluetooth signal and the angle of arrival of the second bluetooth signal respectively, and filters out the second bluetooth signal when it is determined that the angle of arrival of the second bluetooth signal belongs to the filtering range.
  • the display device may separately calculate the arrival angles of the first Bluetooth signal and the second Bluetooth signal for the first antenna group, and separately calculate the arrival angles of the first Bluetooth signal and the second Bluetooth signal for the second antenna group.
  • the display device may filter out the second Bluetooth signal when it is determined that the angles of arrival of the second Bluetooth signal corresponding to the first antenna group and the second antenna group belong to filtering.
  • the display device determines the position of the Bluetooth transmitter according to the angles of arrival respectively determined by the first antenna group and the second antenna group.
  • the Bluetooth AOA positioning technology may be applied to the control of a display device, including but not limited to the following implementation manners.
  • the display device can receive the broadcast signal sent by the Bluetooth control device through the antenna included in the Bluetooth component, and then send request connection information on the broadcast channel, and determine the data channel for carrying data according to the indication of the broadcast signal.
  • the key is established with the Bluetooth control device on the data channel of the Bluetooth control device, and the Bluetooth connection is carried out with the Bluetooth control device through the key.
  • the multiple display devices will all send request connection information to the Bluetooth control device.
  • the Bluetooth control device needs to connect to the second display device, but the request connection message of the first display device among multiple display devices reaches the Bluetooth control device first, then the Bluetooth control device will establish a connection with the first display device, because the Bluetooth control device actually wants to connect to the second Display device, so connection error. And the user cannot know which display device the Bluetooth control device is specifically connected to, but only knows that the Bluetooth control device is in a connected state (taking the remote control as an example, the remote control can light up the indicator light after it is connected to the display device).
  • Some embodiments of the present application provide a Bluetooth connection method and a display device.
  • the display device When there are multiple display devices corresponding to a Bluetooth control device, or there are multiple Bluetooth control devices corresponding to a display device, the display device will Position the Bluetooth control device before establishing a Bluetooth connection, and establish a Bluetooth connection according to the positioning result to avoid connection errors or connection failures.
  • the solution provided by the present application will be described later by taking the Bluetooth control device as the control apparatus 100 as an example.
  • the Bluetooth connection method proposed by some embodiments of the present application is introduced. This method can be applied to a display device or a processor included in the display device. The following will be introduced by taking the application to the display device as an example. Referring to FIG. 9, it is a flow of a Bluetooth connection in some embodiments of the present application, which specifically includes:
  • the display device receives a broadcast signal from the control device through the Bluetooth component.
  • the bluetooth component may include at least two antenna groups for receiving and sending bluetooth signals.
  • the display device can scan the broadcast signal in the broadcast channel through at least two antenna groups included in the Bluetooth component, and determine that the broadcast signal includes a CTE for positioning according to a set identifier included in the broadcast signal.
  • the CTE may be included in the broadcast data packet carried by the broadcast signal, and the format of the broadcast data packet may refer to FIG. 7 and its description.
  • the display device separately determines the angle of arrival of the broadcast signal corresponding to each antenna group according to the CTE included in the received broadcast signal.
  • the display device may determine the phase value of each antenna according to the CTE included in the broadcast signal, determine the phase difference of each antenna group according to the phase value of each antenna, and further determine the phase value of each antenna group according to the phase difference The angle of arrival of the group.
  • the Bluetooth AOA-based positioning method described above according to the present application.
  • the display device determines the position of the control device according to the angle of arrival of each antenna group and the position of each antenna group.
  • the display device includes two antenna groups respectively located on both sides of the display device, and the position of each antenna group can be determined according to the position of the display device and the position of each antenna group relative to a reference point of the display device. For example, taking the center of the display device as a reference point, its position in space is (a, b, c), and the width of the display device is d, then the positions of the two antenna groups are (a-d/2, b , c) and (a+d/2, b, c). In some embodiments, the display device can determine the position of the control device according to the angle of arrival and the position of each antenna group.
  • the preset range is located in the display direction of the display device, that is, directly in front of the display screen.
  • the Bluetooth connection between the display device and the control device Before the Bluetooth connection between the display device and the control device, firstly determine whether the position of the control device is within a preset position range, and if so, establish a Bluetooth connection with the control device. If not, no Bluetooth connection is established. This can solve the problem that the Bluetooth connection cannot be accurately established when multiple control devices or multiple display devices are included in the space.
  • the display device before the display device locates the control device according to the broadcast signal received by the Bluetooth component, it may first detect the signal strength of the received broadcast signal. Since the signal strength of the broadcast signal detected by the display device is greater, the distance between the control device and the display device is shorter. In some embodiments, the display device can be configured with a corresponding relationship between distance and signal strength. If the signal strength of the detected broadcast signal is greater than a set threshold, it can be determined that the distance between the control device that transmits the broadcast signal and the display device is less than preset distance. The distance between the display device indicated by the preset range and the control device is less than or equal to the preset distance.
  • the preset range may be a range of 6 meters in the display direction of the display device. Based on this, the display device can judge the distance between itself and itself before calculating the position of the control device, and if the distance does not meet the requirements, it does not need to calculate the position, saving computing resources.
  • the display device receives the broadcast signal, it is determined according to the signal strength of the broadcast signal that the distance between the control device sending the broadcast signal and the display device is less than the preset distance, but after calculating the position of the control device, it is determined
  • the position does not belong to the preset range (for example, on the side of the display device), and the display device can also display prompt information on the display interface, which is used to instruct the control device to move to the preset range.
  • the display interface shown in FIG. 10 .
  • the display device may stop calculating the position of the control device after detecting that the position of the control device falls within a preset range. It is known that when the display device calculates the position of the control device, it receives the Bluetooth signal from the control device through the antenna group, determines the phase value of each antenna according to the Bluetooth signal received by different antennas, and further calculates the phase difference of each antenna group , determine the angle of arrival of each antenna group according to the phase difference, and then determine the position of the control device according to the angle of arrival and the position of the antenna group. It can be seen that in the process of calculating the position of the control device, the display device needs to switch different antennas to receive the Bluetooth signal from the control device, so as to obtain the phase value corresponding to each antenna.
  • the display device when the display device has determined that the control device is within the preset range, it may stop the operation of switching antennas, and select an antenna in the antenna group to establish a Bluetooth connection with the control device.
  • the selected antenna may be pre-configured, for example, it may be the antenna closest to the housing of the display device or the antenna with the best performance in the antenna group, which is subsequently referred to as the first antenna. After the display device determines that the control device is within the preset range, it will only receive Bluetooth signals through the first antenna, and establish a Bluetooth connection with the control device.
  • the process of Bluetooth connection between the display device and the control device can refer to the flowchart shown in FIG. 11 , which specifically includes:
  • the display device sends a connection request to the control device through the first antenna.
  • the control device receives the connection request, and confirms that the display device is a device to be connected.
  • the connection request sent by the display device may include the identifier of the display device.
  • the display device sends authentication information to the control device through the first antenna.
  • the authentication information may be Authentication.
  • the broadcast signal sent by the control device includes information indicating a data channel carrying data, and the display device can determine the data channel for data interaction with the control device when receiving the broadcast signal from the control device.
  • the display device may send authentication information on the data channel through the first antenna.
  • the authentication information may include information inquiring about the Bluetooth version supported by the control device, information inquiring about functions supported by the control device, or a request for establishing a key, and the like.
  • the display device may send the above authentication information sequentially. For example, the display device first sends information to inquire about the Bluetooth version supported by the control device, and then continues to send the query after receiving the supported version information returned by the control device. Information about the functions supported by the control device, and so on. In some embodiments, the display device may also send all authentication information at one time.
  • the display device determines that the control device supports key connection.
  • the join key may be randomly generated by the display device.
  • the control device receives the connection key, and returns connection key confirmation information to the display device.
  • the display device When the display device receives the connection key confirmation information, it can establish a Bluetooth connection with the control device through the key.
  • the display device and the control device perform a handshake communication every set period of time to ensure that both parties are in a connected state.
  • the display device will disconnect the bluetooth connection and scan on the broadcast channel through the bluetooth component, wherein the scan on the broadcast channel is a scan for connection back.
  • the broadcast signal sent by the control device is scanned, a connection back request carrying the key can be sent on the corresponding data channel according to the instruction of the broadcast signal.
  • connection back request is used to re-establish a connection when the display device is disconnected from the paired control device, and is sent to the control device for connection request, which carries the device identification of the display device and verification for verification key.
  • the control device receives the connection back request, it can re-establish a connection with the display device according to the key.
  • the Bluetooth connection method proposed in the present application can be applied in various scenarios, for example, a scenario where a display device is paired with a control device or a scenario where a disassembly is performed.
  • the solution proposed in this application will be introduced in combination with specific scenarios.
  • Scenario 1 Pairing scenario.
  • the pairing scene includes two display devices (hereinafter referred to as the first display device and the second display device for short) and one control device as an example for introduction.
  • the control device may be located right in front of the left display device (taking the left display device as the first display device as an example).
  • the first display device may scan for Bluetooth signals on a broadcast channel through at least two antenna groups included in the first display device.
  • the second display device may also scan for Bluetooth signals on the broadcast channel through at least two antenna groups included in the second display device. If both the first display device and the second display device scan the broadcast signal from the control device, both the first display device and the second display device can calculate the position of the control device according to the broadcast signal.
  • the broadcast signal includes a CTE for detecting the phase value of the broadcast signal.
  • the first display device may first determine the phase value corresponding to each antenna according to the CTE in the broadcast signal, and then calculate the phase difference of each antenna group according to the phase value of each antenna, and then calculate the phase difference of each antenna group according to the phase difference of each antenna group. The angle of arrival of the antenna group.
  • the detailed process of determining the position of the control device by the display device refer to the detailed description of the positioning method based on Bluetooth AOA in conjunction with formulas (1)-(3) above, and will not be repeated here.
  • the first display device and the second display device may be respectively configured with a connectable position range, and the connectable position range may be the position in the display direction of the first (or second) display device scope. For ease of description, it is referred to as a preset range hereinafter.
  • the first display device may further determine whether the position is within a preset range of the first display device.
  • the second display device may also determine whether the position of the control device is within a preset range of the second display device.
  • the first display device starts the process of Bluetooth connection with the control device, and the second display device does not start The process of establishing a Bluetooth connection.
  • the first display device starts the process of Bluetooth connection with the control device, and the second display device does not start The process of establishing a Bluetooth connection.
  • FIG. 11 For a specific process of establishing a Bluetooth connection, reference may be made to FIG. 11 above, which will not be described in detail here.
  • the display device After the display device detects the Bluetooth signal from the control device, it will send a connection request to the control device on a broadcast channel.
  • a connection request For example, in Scenario 1, both the first display device and the second display device send connection requests on the broadcast channel, which may cause the connection requests of the two device methods to interfere with each other, resulting in failure to send both connection requests.
  • both the first display device and the second display device detect the Bluetooth signal sent by the control device, the two devices will not directly send a connection request, but first calculate the position of the control device and determine the control Whether the location of the device is within its own preset range, if not, it will not send a connection request to the control device, so as to avoid affecting other display devices to establish Bluetooth connections with the control device.
  • the Bluetooth controller in the Bluetooth components included in the display device will be called the first Bluetooth controller CTR_A later.
  • the processor included in the display device is called the first processor PROC_A
  • the Bluetooth controller and the processor included in the control device are called the second Bluetooth controller CTR_B and the second processor PROC_B, respectively.
  • the first Bluetooth controller CTR_A scans a broadcast channel through an antenna, and receives a broadcast signal from a control device.
  • the first Bluetooth controller CTR_A sends the received broadcast signal to the first processor PROC_A.
  • the first processor PROC_A determines the location of the control device according to the broadcast signal, and determines that the location of the control device belongs to a preset range.
  • the first processor PROC_A sends a connection instruction to the first Bluetooth controller CTR_A.
  • connection instruction is used to instruct the control device to meet the requirements for establishing a Bluetooth connection, and to establish a Bluetooth connection with it.
  • the first Bluetooth controller CTR_A receives the connection instruction, and sends a connection request to the second Bluetooth controller CTR_B.
  • the first Bluetooth controller CTR_A may send a connection request in a broadcast channel.
  • An identification of the display device may be included in the connection request.
  • the second Bluetooth controller CTR_B receives the connection request, and forwards the connection request to the second processor PROC_B.
  • the second processor PROC_B may store the identifier of the display device in the connection request.
  • the first Bluetooth controller CTR_A sends connection instruction confirmation information to the first processor PROC_A.
  • connection instruction confirmation information is used to indicate that the connection request has been sent.
  • the first processor PROC_A may display information indicating that the Bluetooth connection is being established on the display screen of the display device.
  • step S1406 and step S1407 may be in no particular order.
  • the first Bluetooth controller CTR_A sends the authentication information and the connection key to the second Bluetooth controller CTR_B.
  • the second Bluetooth controller CTR_B sends authentication information reply information and connection key confirmation information to the first Bluetooth controller CTR_A.
  • the display device and the control device can establish a Bluetooth connection through the connection key. Both the display device and the control device can save the identification and connection key of the other party.
  • the above examples are all introduced by taking the scene including multiple display devices and one control device as an example.
  • the method proposed in this application can also be used in the scenario of one real device and multiple control devices.
  • the display device can also calculate the position of each control device, and judge whether the position of each control device is within its own preset range, and then establish a relationship with the control device within its own preset range. connect.
  • the display device can establish a connection with the centrally located control device.
  • Scenario 2 Disassembly scenario.
  • the control device may determine the need to Disconnect from the display device and delete the stored display device ID and connection key. At this time, when the display device restarts the connection process, it will send a connection back request with the connection key to the control device. Since the connection key has been deleted in the control device Therefore, after the control device receives the connection back request, it cannot re-establish a connection with the display device according to the connection key. If the connection back fails, the display device will delete the stored identification of the control device and the connection key, and unpair it.
  • the first display device is a display device paired with the control device.
  • the control device is disconnected from the first display device, deletes the identification and connection key of the first display device, and sends a broadcast signal to the outside.
  • the second display device first receives the broadcast signal, the second display device will establish a connection with the control device, causing the first display device to fail to verify the connection key with the control device, which also causes the first display device to fail to unlock the key.
  • the matching is successful.
  • the second display device After the second display device receives the broadcast signal, it will first determine whether the position of the control device is within the preset range of the second display device, and if not, it will prohibit the start-up and The control device and the process of establishing a connection will not affect the disassembly process of the first display device.
  • Scene 3 One-touch and connect scene.
  • the method used to realize the one-touch connection between the display device and the control device is to add a near field communication (Near Field Communication, NFC) module on the display device, and the control device is close to the position of the NFC module in the display device, and the display device The device is connected.
  • NFC Near Field Communication
  • Some embodiments of the present application provide a one-touch-to-connect method.
  • the location of the control device is determined through Bluetooth positioning technology, and a connection between the control device and the display device is established when it is determined that the set area of the control device overlaps with the display device.
  • the display device may calculate the position of the control device upon detection of a Bluetooth signal from the control device. After the display device determines the position of the control device, it may further determine whether the control device overlaps with the set area of the display device. For example, referring to the scene graph shown in FIG. 13 , the setting area of the display device is area A in the upper left corner of the display device, and the length of area A is a and the width is b.
  • the position of the reference point of the display device is (0, 0, 0)
  • the length of the display device is 2c
  • the width is 2d
  • the connection with the display device can be established.
  • the display device may also display the display interface as shown in Figure 14 The displayed display interface is displayed to prompt the user to move the control device to the setting area of the display device.
  • Picture-in-Picture is a way of presentation. By superimposing two pictures, one large and one small, it presents two windows for display, mainly video display, and the video source can be different. TV channels, video sources, webcams, gaming devices, etc. However, with the application of display devices, it is not limited to video display, and may also be web page display. Related technologies The control or adjustment of the picture-in-picture view display area is mainly that the user controls the operation menu through a control device (such as a remote controller) to realize the display control of the picture-in-picture display area.
  • a control device such as a remote controller
  • the user selects in the first-level menu through the remote controller
  • For window settings select the window size or window position in the second-level menu (submenu of the first-level menu), and select the specific window size or specific window position listed in the third-level menu (submenu of the second-level menu).
  • the above-mentioned operation process of controlling or adjusting the picture-in-picture view display area is cumbersome, and the picture-in-picture view display area can only be set according to the listed options, which leads to poor user experience.
  • Some embodiments of the present application provide a display device, the display device includes a display screen, a Bluetooth controller, and a processor; the processor is connected to the display screen and the Bluetooth controller; the Bluetooth controller is It is configured to communicate with the control device via Bluetooth through multiple Bluetooth antennas.
  • the Bluetooth controller is based on Bluetooth 5.1 and supports Bluetooth AOA positioning technology.
  • the AOA method uses the angle information of the signal to perform positioning estimation.
  • Direction signal the display device (receiving end) has a built-in antenna array. When the signal passes through, the phase difference will be generated due to the different receiving distance in the array, so as to improve the positioning accuracy.
  • a plurality of bluetooth antennas form an antenna array to receive control instructions or requests transmitted by the control device, and a switch is set between the bluetooth controller and the plurality of bluetooth antennas, and the switch is used to control the selection or switching of the bluetooth antennas.
  • the Bluetooth antenna is generally a patch antenna, which ensures the normal function without affecting the appearance of the display device; it can also be other hidden antennas.
  • the processor starts the Bluetooth AOA positioning interaction function, and interacts with the control device that also has the Bluetooth AOA positioning technology.
  • the processor turns off the Bluetooth AOA-based positioning interaction function.
  • the display screen displays a user interface
  • the user interface includes a first view display area 2601 and a second view display area 2602
  • the first view display area is a full-screen display
  • the second view display area is displayed in full screen.
  • a picture-in-picture is displayed on the first view display area.
  • the control device may be a remote controller, and the display device and the remote controller are wirelessly connected through respective bluetooth controllers. In some embodiments, it may be wireless communication based on Bluetooth protocol, and supports Bluetooth AOA positioning technology.
  • the processor detects that the position of the control device is in the second view display area, and the user can select the menu of the second view display area through the control device to control the selection window size request, that is, the first control request received by the processor through the Bluetooth controller,
  • the menu 2603 in FIG. 15 is used to select the setting of the window size of the display area of the second view through the menu.
  • the menu 2603 is displayed on the OSD (On Screen Display) layer, and the menu can be displayed in a transparent OSD, a transparent color OSD, or a color OSD.
  • OSD On Screen Display
  • the processor receives the first control request input by the user through the Bluetooth controller, and determines the real-time position coordinates of the control device in the display area of the second view, and the starting position coordinates.
  • the first control request is a request for adjusting the display size of the display area of the second view input by the user through the control device.
  • the display device receives the radio wave data packet through the Bluetooth antenna and the Bluetooth controller, requests data from the radio wave data packet and parses it into the first control request, and obtains corresponding position information from the radio wave data packet to establish the position of the control device in the display device Correspondence between coordinates and control devices.
  • the antenna array at the display device end and the position of the corresponding Bluetooth antenna are obtained, and the received radio wave data packets are analyzed to determine the angle and position between the Bluetooth antenna of the display device and the Bluetooth antenna of the control device.
  • the selected bluetooth antenna based on the bluetooth AOA positioning technology, the corresponding relationship between the central coordinate information of the display device and the position of the control device is established.
  • the processor receives the movement request input by the user through the bluetooth controller, determines the effective starting coordinate by judging the movement trend direction of the movement request, and determines the effective termination coordinate by judging the change of the movement request, and the movement request includes location information of the control device.
  • the processor obtains the movement request within the first preset time to determine the first movement trend direction of the control device; obtains the movement request within the second preset time to determine the first movement trend direction of the control device Two moving trend directions, the second preset time is after the first preset time; when the first moving trend direction and the second moving trend direction are the same, the corresponding starting position coordinates are effective start coordinates.
  • the second moving trend direction is N2. Comparing the directions of N1 and N2, if they are the same, the corresponding starting position coordinates are valid starting coordinates; otherwise, the confirmation of valid starting coordinates is invalid. It is necessary to repeat the above-mentioned process to determine the valid initial coordinates again.
  • the first moving trend direction and the second moving trend direction may be a range of directions, for example, 360° may be divided into 8 directions, and the range of each direction is 45°. For example, take the right horizontal as 0°, the upper right as 22.5° to 67.5°, and the upper as 67.5° to 112.5°.
  • the direction of the movement trend can be determined by determining the slope of the start and end positions within a period of time according to the coordinate information of the movement request, thereby determining the direction of the movement trend.
  • the coordinate information may be the coordinate system of the display area of the first view, or the coordinate system of the display area of the second view.
  • the determination of the effective end coordinates is to determine the coordinates corresponding to the boundary as the effective end coordinates when the movement request exceeds the boundary of the display area of the second view. And the track beyond the boundary of the display area of the second view will not be displayed.
  • the determination of coordinates is effectively terminated, and the first moving direction J of the moving track is obtained; when the moving track presents a second moving direction K opposite to the first moving direction J, the moving The end point coordinates corresponding to the first moving direction J of the trajectory are effective end point coordinates.
  • the effective start coordinates and the effective end coordinates determine the movement track of the movement request, for example, use the effective start coordinates and effective end coordinates determined by the coordinate system of the second view display area; use the effective start coordinates
  • the relative coordinate system redefined for the origin coordinates determines the movement trajectory by calculating the slope of the relative effective end coordinates relative to the origin coordinates and the relative ordinate Y.
  • FIGS. 18A-18H the movement track is presented in the display area of the second view, and the display size of the display area of the second view is adjusted according to the direction of the movement track.
  • FIG. 18A shows that when the moving track is determined to be the upper right indicated by the arrow, the second view display area 2602 will be stretched to the right and upward respectively, and the window size of the second view display area 2602 will be changed to 2602a.
  • FIG. 18B-FIG. 18H respectively show that when the moving trajectory is determined to be the corresponding direction indicated by the arrow, the second view display area 2602 will be stretched in the corresponding direction, wherein the window size of the second view display area 2602 becomes 2602b respectively -2602h.
  • the change of the window size of the display area of the second view may depend on the length of the movement track; in some embodiments, the change of the window size may be determined by the speed of the movement request, or may be jointly determined by the length of the movement track and the speed of the movement request.
  • the movement request is not an absolute straight line as shown in Figure 18A- Figure 18H
  • the movement request may have radians
  • the movement trajectory is determined according to the effective start coordinates and effective end coordinates
  • the movement trajectory can be as shown in Figure 18A- Figure 18H It can be a line with an arrow, or a line without an arrow, or a line of different thickness or other ways of presenting the track; the moving track can also be hidden.
  • the movement track can also be determined according to the effective start coordinates, the effective end coordinates and the movement request, and the possible track is curved, simulating the user's actual operation gesture on the control device.
  • the present application provides a display device, including a display screen, a bluetooth component, and a processor; the processor is connected to the display screen and the bluetooth component, and the bluetooth component is wirelessly connected to a control device (such as a remote controller).
  • the display screen is configured to display a first view display area and a second view display area, the first view display area is a full screen display, and the second view display area is displayed in a picture-in-picture display on the first view display area district.
  • the processor is configured to: in response to the Bluetooth component receiving a first control request input by a user, determine the real-time position coordinates of the control device in the display area of the second view, and the starting position coordinates, wherein,
  • the first control request is a request input by the user through the control device to adjust the display size of the display area of the second view; in response to the Bluetooth component receiving the movement request input by the user, determine the effective start coordinates and the effective end coordinates ; According to the effective start coordinates and the effective end coordinates, determine the movement trajectory of the movement request, and present the movement trajectory in the second view display area; adjust the movement trajectory according to the direction of the movement trajectory
  • the display size of the second view display area Realize interactive control of the display size of the display area of the second view, which is easy to operate and enhances the user experience.
  • Some embodiments of the present application provide a display device.
  • the processor detects that the position of the control device is in the display area of the second view, and the user can select the menu in the display area of the second view through the control device to control the selection window position request, that is, process
  • the processor receives a second control request input by the user through the Bluetooth component, and determines that the display area of the second view is selected.
  • the second control request is a request for adjusting the display position of the display area of the second view input by the user through the control device.
  • the display device receives the radio wave data packet through the bluetooth antenna and the bluetooth component, requests data from the radio wave data packet and parses it into a second control request, and at the same time obtains the corresponding position information from the radio wave data packet, and establishes the position coordinates of the control device in the display device Correspondence with the control device.
  • Responsive to the bluetooth component receiving a movement request input by the user determine the movement track of the display area of the second view according to the movement request, the movement request includes the position information of the control device; the arrow shown in Figure 19, according to The movement request input by the user displays the movement track of the display area of the second view.
  • the bluetooth component receives a cancel request input by the user, and determines the display position after the movement of the second view display area.
  • the moved second view display area may be at 2602m, 2602n, 2602o, or 2602p.
  • the actual operation is not limited to For the above four positions, the moving display position is determined according to the signal input by the user.
  • the movement trajectory of the displayed position can be a line with an arrow, a line without an arrow, or a line of different thickness or other ways of presenting the trajectory; the movement trajectory can also be hidden.
  • the present application also provides a display device, including a display screen, a bluetooth component, and a processor; the processor is connected to the display screen and the bluetooth component, and the bluetooth component is wirelessly connected to a control device.
  • the display screen is configured to display a first view display area and a second view display area, the first view display area is a full screen display, and the second view display area is displayed in a picture-in-picture display on the first view display area district.
  • the processor is configured to determine that the display area of the second view is selected in response to the bluetooth component receiving a second control request input by the user, wherein the second control request is a user input through the control device about the
  • the second view display area adjusts the display position request; in response to the bluetooth component receiving the movement request input by the user, determine the movement track of the second view display area according to the movement request; in response to the bluetooth component receiving the user input
  • the input cancel request is used to determine the display position after the movement of the second view display area. Realize interactive control of the display position of the display area of the second view, the operation is simple, and the user experience is improved.
  • Some embodiments of the present application provide a Bluetooth AOA-based window adjustment method.
  • the user starts the picture-in-picture function, and the processor displays the second view display area, and starts the Bluetooth AOA-based positioning interaction function and a control device that also has the Bluetooth AOA positioning technology. to interact.
  • the processor detects that the position of the control device is within the display area of the second view, and the user can select the menu of the display area of the second view through the control device, and when the window size in the menu is selected , the control method includes the steps of:
  • the processor receives the first control request input by the user through the bluetooth component, determines the real-time position coordinates of the control device in the display area of the second view, and determines the starting position coordinates.
  • the first control request is a request for adjusting the display size of the display area of the second view input by the user through the control device
  • the first control request includes the position information of the control device, and according to the first control request
  • the request information and the location information of the control device are included, and the real-time location coordinates corresponding to the display area of the second view are determined.
  • the processor receives the movement request input by the user through the bluetooth component, and determines valid starting coordinates and valid ending coordinates.
  • the movement request includes the position information of the control device, combined with Bluetooth AOA positioning, the position information of the control device is converted into the coordinate information displayed on the display screen, and the effective start coordinates and effective end coordinates are determined by the following method.
  • the determination of the effective starting coordinates may be that the processor obtains the movement request within the first preset time, determines the first movement trend direction of the control device; obtains the movement request within the second preset time, and determines the control
  • the second moving trend direction of the device, the second preset time is after the first preset time; when the first moving trend direction and the second moving trend direction are the same, the corresponding starting position coordinates is a valid starting coordinate.
  • the determination of the effective end coordinates may be that when the movement request exceeds the boundary of the display area of the second view, determining the coordinates corresponding to the boundary as the effective end coordinates. And the track beyond the boundary of the display area of the second view will not be displayed.
  • a movement track of the movement request is determined according to the effective start coordinates and the effective end coordinates, and the movement track is presented in the display area of the second view.
  • This application provides a Bluetooth AOA-based window adjustment method, which responds to the Bluetooth component receiving user requests or signals; the first control request input by the user determines the real-time position coordinates and initial position coordinates of the control device in the second view display area; the user input Determine the effective start coordinates and effective end coordinates of the movement request; determine the movement track of the movement request according to the effective start coordinates and effective end coordinates, and present the movement track in the display area of the second view; adjust the second view according to the direction of the movement track
  • the display size of the view display area controls the display of the display area of the second view in an interactive manner, which is easy to operate and improves user experience.
  • Some embodiments of the present application provide a Bluetooth AOA-based window adjustment method, and the control method includes the following steps:
  • the processor receives a second control request input by the user through the bluetooth component, and determines that the display area of the second view is selected, and the second control request is used to adjust the position of the window of the display area of the second view.
  • the second control request is a request for adjusting the display position of the display area of the second view input by the user through the control device, and the second control request includes position information of the control device. According to the request information contained in the second control request and the position information of the control device, the real-time position coordinates corresponding to the display area of the second view are determined.
  • a movement request input by a user is received through the bluetooth component, and a movement track of the display area of the second view is determined according to the movement request, where the movement request includes position information of the control device.
  • the bluetooth component receives a cancel request input by the user, and determines the display position after the movement of the display area of the second view, and the cancel request includes position information of the control device.
  • This application provides a Bluetooth AOA-based window adjustment method, which responds to the Bluetooth component receiving user requests or signals; the second control request input by the user determines that the display area of the second view is selected; the second view is determined according to the movement request input by the user The movement track of the display area; the cancel request input by the user determines the display position after the movement of the second view display area.
  • the present application controls the display of the display area of the second view in an interactive manner, which is easy to operate and improves user experience.
  • the remote control method for the display device is to realize the remote control of the display device by the user pressing the buttons on the remote controller and the instruction commands of each button defined in advance.
  • This remote control method can realize relatively few control commands and can only Perform simple channel tuning or volume adjustment. If it is desired to implement a touch operation on a display device, it is necessary to configure a touch screen and a touch system for the display device, which makes the cost of the display device relatively high.
  • Some embodiments of the present application provide a display device and a method for controlling the display device.
  • the display device determines the instruction to be executed by detecting the position change trajectory of the control device in the cuboid space included in the space where the display device is located.
  • a method similar to a touch operation is proposed, and more control instructions are realized through a control device.
  • the method for controlling a display device proposed according to some embodiments of the present application may be executed by the display device.
  • a method for controlling a display device specifically comprising the following steps:
  • the display device receives the Bluetooth signal from the control device.
  • the display device includes an antenna group for receiving Bluetooth signals, and the display device can continuously receive Bluetooth signals from the control device through the antenna group.
  • the number of antenna groups that may be included in the display device may be greater than or equal to two.
  • the display device locates the control device according to the bluetooth signal, and obtains the movement track of the control device in the configured cuboid space.
  • the cuboid space is a cuboid-shaped space in the space where the display device is located.
  • the cuboid space is formed in advance by setting rules based on a plane configured by the user, and the plane is called the first surface later, and the first surface is one of the outer surfaces of the cuboid space.
  • the first surface when establishing the corresponding relationship between the first surface and the display screen, can be divided into M small squares, and the side length of each small square in the M small squares can be Bluetooth Positioning accuracy, each small square corresponds to the corresponding area on the display.
  • the spatial coordinate system is pre-configured in the display device to indicate the space where the display device is located.
  • the origin of the spatial coordinate system is the reference point of the display device.
  • the reference point of the display device may be The center point of the display or the position of the antenna group in the device.
  • the bluetooth signal received by the display device from the control device may include a fixed frequency extension signal CTE for positioning, and the display device may locate the control device by detecting the CTE included in the bluetooth signal, and obtain the control device
  • CTE fixed frequency extension signal
  • the display device After the display device determines the position of the control device, it may further determine whether the position of the control device is located in the cuboid space.
  • the display device can be configured with a coordinate range of a cuboid space, such as: a ⁇ x ⁇ b, c ⁇ y ⁇ d, e ⁇ z ⁇ f, after the display device determines the position of the control device, Determine whether its position satisfies the above range. If satisfied, it can be determined that the control device is located in the cuboid space.
  • the display device After the display device determines that the control device is located in the cuboid space, it can record the movement track of the control device in the cuboid space, that is, record the change of the position of the control device over time to form the movement track of the control device.
  • the movement trajectory of the control device in the cuboid space may be referred to as the first movement trajectory.
  • the display device determines the control instruction to be executed according to the first movement track and the current display interface of the display screen.
  • the display device may determine, according to the mapping relationship between the position of the first surface in the spatial coordinate system and the position of each pixel included in the display screen in the spatial coordinate system, the Second movement track.
  • the Second movement track may be determined, according to the mapping relationship between the position of the first surface in the spatial coordinate system and the position of each pixel included in the display screen in the spatial coordinate system.
  • the display device may map the first movement track to the display screen to obtain the second movement track according to the above mapping method.
  • the display device may also be configured with a corresponding relationship between the movement track on the display screen and the control instruction. For example, when a video is playing on the display screen, the movement track is to swipe 1 centimeter to the right, and the corresponding control instruction is to fast-forward the playing video by 10 seconds. After the display device determines the second movement trajectory, it may determine the control instruction corresponding to the second movement trajectory according to the pre-configured correspondence between the movement trajectory and the control instruction, and then execute the control instruction.
  • this application proposes a control method similar to touch control, which acquires the movement trajectory of the control device in a cuboid space included in the space where the display device is located, and maps the movement trajectory to the display screen of the display device according to a pre-configured mapping relationship. , and determine the control instruction to be executed according to the mapping relationship between the mapped trajectory and the control instruction, so as to realize the control of the display device.
  • the display device may first determine the position and the included range of the cuboid space.
  • the cuboid space may be pre-configured in the display device by the user through the control device.
  • the user may configure different cuboid spaces for different applications, and the display device may also Store applications in association with the corresponding cuboid space.
  • the cuboid space can also be configured by the user before each use. In the following, a specific introduction will be given to the above two implementation manners.
  • the cuboid space is configured before each use by the user, and the specific configuration process will be introduced below.
  • the display device may provide a display interface as shown in FIG. 20A.
  • the display interface shown in FIG. 20A includes a space coordinate system established with the reference point of the display device as the origin in the space where the display device is located, For example, the reference point of the display device is the center point of the display device, such as point A in FIG. 20A .
  • the display device can also perform three-dimensional modeling of the space where the display device is located according to the plan view of the space where the display device is located (or directly input a 3D stereogram of the space) that is input by the user in advance, and then build A spatial coordinate system with the reference point of the display device as the origin is constructed in the model of the model, for example, refer to the display interface shown in FIG. 20B .
  • the display device may receive the Bluetooth signal from the control device through the antenna group, and calculate the position of the control device according to the Bluetooth signal.
  • the position of the control device is the coordinates of the control device in the space coordinate system.
  • the display device determines the position of the control device, it can determine the first plane of the cuboid space according to the selection command received from the control device, and then form the cuboid space based on the first plane by a preset rule.
  • the selection command uses Indicates at least three points selected by the user in the spatial coordinate system. Next, the determination of the first surface of the cuboid space and the further determination of the cuboid space according to the first surface will be specifically introduced.
  • the control device may respond to a user operation, such as the user pressing a certain button, and send the selection command in the Bluetooth signal to the display device.
  • the display device can receive at least three selection commands from the control device, each selection command corresponds to confirming a reference point for constructing a cuboid space, after confirming at least three reference points, according to at least three A reference point determines the first face.
  • the connecting line between the two reference points confirmed first may be used as an edge of the first surface.
  • There is a proportional relationship between the size of the first surface and the size of the display screen for example, the ratio of the length of the first surface to the length of the display screen and the ratio of the width of the first surface to the width of the display screen may be the same.
  • the first reference point is determined according to a first selection command among at least three selection commands.
  • the display device receives the first selection command from the control device, the position of the control device acquired at this time is displayed as the first reference point in the spatial coordinate system displayed on the display screen.
  • the first reference point can be A black dot, you can refer to the schematic diagram shown in Figure 20C, where point B is the first reference point, and the coordinates of the first reference point in the space coordinate system displayed on the display screen are the control device in the actual space Coordinates in the coordinate system.
  • the display device may determine the second reference point, the third reference point, the fourth reference point, etc. by using the above method.
  • Three reference points can determine a plane (namely the first plane), and of course more reference points can be used to determine the first plane.
  • the present application does not specifically limit the number of reference points used to determine the first plane.
  • the selection commands of are respectively called the first selection command, the second selection command and the third selection command.
  • the display device determines the first reference point (that is, point B)
  • it can display the position change trajectory of the control device on the display interface according to the user's operation of moving the control device. For example, refer to the schematic diagram shown in FIG. That is, the movement trajectory of the control device after point B is confirmed.
  • the length of the movement track of the control device after point B can also be displayed and confirmed.
  • the display device may not display the movement track of the control device after point B is confirmed.
  • the display device can determine the second reference point according to the received second selection command and display it on the display screen, for example, it can display a schematic diagram as shown in FIG. 20E, FIG. 20E Point C in the schematic diagram shown is the second reference point.
  • the display device may determine the third reference point according to the received third selection command after determining the second reference point.
  • the third reference point may be any point inside or on the side of the cylinder whose axis is the connecting line BC.
  • the third reference point may be any point on the side of the cylinder shown in FIG.
  • the third reference point is not located on the connecting line BC, the ratio of the radius of the bottom circle of the cylinder shown in Figure 20F to the connecting line BC is equal to the aspect ratio of the display device, or the ratio of the radius of the bottom circle to the connecting line BC is equal to that of the display device equal in width to length ratio.
  • the display device determines the third reference point according to the third selection command, it can display it in the spatial coordinate system displayed on the display screen, for example, it can display a schematic diagram as shown in FIG. 20G, and point D shown in FIG. 20G is the first Three reference points.
  • the determined position of the third reference point (that is, point D) in the cylinder shown in FIG. 20F can refer to the schematic diagram shown in FIG.
  • the display device may also display the determined first surface on the display screen, for example, may display a schematic diagram as shown in FIG. 20I .
  • the display device may generate a cuboid space based on the first plane according to a preset rule.
  • the pre-set rule may be to select any one of the two directions perpendicular to the first surface, create a second surface in this direction that is the same size as the first surface and parallel to the first surface, and the second surface
  • the distance from the first surface may be preset, for example, the distance between the first surface and the second surface may be N times the positioning accuracy of Bluetooth, where N may be greater than or equal to 2.
  • the schematic diagram of the cuboid space can be referred to Fig. 20J. In Fig.
  • the rectangle D 1 D 2 BC is the first plane, and the direction perpendicular to the first plane is the R direction.
  • the rectangle D 1 created based on the R direction 'D 2 'B'C' is the second side.
  • the connecting line BB' is perpendicular to the first surface and the second surface.
  • the display device After the display device finishes configuring the cuboid space, it can store the range of the cuboid space, and then judge whether the control device is located in the cuboid space according to whether the detected position of the control device is within the range of the cuboid space. After the display device determines that the control device is located in the cuboid space, it can acquire the movement trajectory of the control device, and determine the control instruction to be executed according to the movement trajectory.
  • the cuboid space may be pre-configured in the display device.
  • a cuboid space can be configured per application.
  • the position of the cuboid space can be established where the user can easily operate while sitting on the sofa.
  • the process of configuring the cuboid space may refer to the introduction in the foregoing embodiments.
  • the display device may associate and store the cuboid space and the corresponding application program after determining that the user configures the cuboid space through the control device. In order to ensure that the user can go to the corresponding location to perform corresponding operations through the control device to control the display device when using the application program next time, there is no need to configure the cuboid space before each use, which saves the user's time.
  • the display device determines the position of the cuboid space corresponding to the application and the range included, and then can detect whether the position of the control device is within the range, and if so, continue to obtain the control device According to the change of the position of the control device over time (that is, the movement trajectory of the control device in the cuboid space) to execute the corresponding control command.
  • the display device after the display device calculates the position of the control device, it can also delete some position points with large errors by calculating the coordinates of the center of mass, and then compose the movement of the control device by deleting the remaining position points after the position points with large errors track.
  • the display device can obtain multiple location points of the control device within a preset period of time, can calculate the centroid coordinates of the multiple location points, and then delete the distance from the centroid coordinates of the multiple location points remote location.
  • the display device can calculate the position of the control device at intervals of the first set time length, for example, at intervals of 1 second, the display device can obtain the second set time length (greater than the first set time length, which can be multiple first set time lengths) total time), such as 10 seconds, the calculated 10 position points of the control device are: (x 3 , y 3 ), (x 4 , y 4 ), (x 5 , y 5 )...(x 13 ,y 13 ).
  • the display device can calculate the centroid coordinates of these 10 position points, for example, the following formula (4)-formula (5) can be used to calculate the centroid coordinates of the above 10 position points:
  • (x c , y c ) is the centroid coordinates of the above 10 position points
  • m is the mass sum of the above 10 position points
  • M y is the sum of the static moments of the above 10 position points relative to the y-axis
  • M x is the sum of the static moments of the above 10 positions relative to the x-axis.
  • the sum of the static moments of the above-mentioned 10 position points relative to the y-axis can be calculated using the following formula (6):
  • M y is the sum of the static moments of the above-mentioned 10 positions relative to the y-axis
  • m i is the mass of any one of the above-mentioned 10 positions
  • x i is the mass of any one of the above-mentioned 10 positions Abscissa.
  • the sum of the static moments of the above-mentioned 10 position points relative to the x-axis can be calculated using the following formula (7):
  • M x is the sum of the static moments of the above-mentioned 10 position points relative to the x-axis
  • m i is the mass of any one of the above-mentioned 10 position points
  • y i is the mass of any one of the above-mentioned 10 position points.
  • the display device After the display device calculates the centroid coordinates of the above-mentioned 10 position points, it can calculate the distances between the 10 position points and the centroid coordinates, and delete the few position points farthest from the centroid coordinates.
  • the number of deleted position points in this application Not specifically limited.
  • the movement track of the control device can be acquired according to the remaining position points.
  • the display device may also average the remaining position points, and then use the averaged result as the position of the control device within the 10 seconds.
  • the display device when it determines the motion trajectory of the control device according to the multiple position points of the control device, it may also use the least square method to perform smoothing processing on the motion trajectory of the control device. That is, the display device can determine a curve with the best fitting degree according to the calculated position points of multiple control devices (fitness refers to the degree of coincidence between the curve and the actually calculated position points), and can use This curve serves as the motion trajectory of the control device. For example, the display device may use a manually preconfigured curve (or a straight line) to approximate the calculated multiple position points, so that the weighted square sum of the points on the preconfigured curve and the residuals of each position point is minimized, thereby This makes the curve best fit relative to multiple position points. Use this curve as the motion trajectory of the control device. The trajectory obtained by this method is smoother and closer to the actual trajectory of the control device in space.
  • the Bluetooth signal may have problems such as signal noise, clock jitter, and signal propagation delay during transmission, especially in an indoor environment, problems such as signal occlusion and signal reflection may also occur. All these problems will lead to errors in the position of the control device calculated by the display device, and at the same time will lead to deviations in the movement trajectory of the control device obtained by the display device.
  • the accuracy of the trajectory of the control device acquired by the display device can be improved.
  • the display device determines the motion trajectory, it can also use the least square method to smooth the motion trajectory, and determine a curve with the highest degree of fitting with the actual calculated position point as the motion trajectory of the control device.
  • the display device can further configure a recognition space, which can share a surface with the cuboid space, and the size and shape of the recognition space can be the same as or different from the cuboid space,
  • the application does not specifically limit the size and shape of the recognition space.
  • the surface shared by the cuboid space and the recognition space may be the first surface that has a mapping relationship with the display screen, or the surface parallel to the first surface in the cuboid space.
  • the surface shared by the cuboid space and the recognition space is simply referred to as the second surface, and the distance from the center point of the second surface to the plane where the display screen is located is smaller than the distance from other surfaces of the recognition space to the plane where the display screen is located. That is to say, compared with the cuboid space, the recognition space can be farther away from the display device and closer to the user, so as to facilitate user operations.
  • FIG. 21A for a schematic diagram of the recognition space.
  • the cuboid L 1 is the schematic diagram of the cuboid space
  • the cuboid L 2 is the schematic diagram of the recognition space.
  • the common face of cuboids L 1 and L 2 is rectangle D 1 D 2 BC.
  • cuboids L 1 and L 2 can also share a plane parallel to rectangle D 1 D 2 BC, that is, rectangle D 1 'D 2 'B'C'.
  • cuboids L 1 and L 2 share rectangle D 1 D 2 BC is shown as an example.
  • the display device may first determine that the position of the control device is located in the recognition space. It can also be understood that the display device determines whether the control device reaches the cuboid space through the recognition space. In some embodiments, if the display device determines that the control device does not reach the cuboid space through the recognition space, but arrives at the cuboid space through other paths, the display device will not execute the corresponding control command according to the movement track of the control device. This avoids the problem of user misoperation.
  • the display device may also determine the coordinates of a point formed by projecting the position of the control device in the recognition space onto the first surface.
  • the point on the first face is called the first point.
  • the display device can determine the projection position of the first point projected on the display screen according to the mapping relationship between the first surface and the display screen.
  • the projection position will be referred to as the second point for short.
  • the second point is displayed on the display screen, for example, the second point may be displayed in the form of a black dot or an arrow.
  • FIG. 21B shows that when the display device determines that the position of the control device is located in the recognition space during video playback, the second point is displayed in the form of an arrow in the current display interface.
  • the display device may determine whether the control device has reached the cuboid space after determining that the control device is located in the recognition space, and if so, execute corresponding control instructions according to the movement track of the control device in the cuboid space.
  • the method for controlling a display device proposed in this application can be applied to multiple scenarios such as video playback, audio playback, or drawing.
  • scenarios such as video playback, audio playback, or drawing.
  • scenario of video playback is taken as an example to specifically introduce the solution proposed in this application.
  • the display device when the display device is playing the video, it may obtain information such as the position and included range of the cuboid space and the recognition space corresponding to the stored video playback scene.
  • the stored cuboid space information may be configured before playing the video, or may be pre-configured and stored in the display device.
  • the display device can continuously obtain Bluetooth signals from the control device during video playback, and determine the position of the control device according to the continuously received Bluetooth signals, that is, the coordinates of the control device in the space coordinate system. Furthermore, the display device may determine whether the determined position of the control device is within the range included in the recognition space, and if not, continue to play the video.
  • the display device may obtain the first point projected from the position of the control device onto the first surface that has a mapping relationship with the display screen, determine the second point projected on the display screen from the first point according to the mapping relationship, and The second point can be shown on the display with a preset symbol.
  • the display device may provide a display interface as shown in FIG. 22 when playing a video, and refer to the display interface as shown in FIG. 21B when displaying the second point.
  • the second point is exemplarily displayed in the form of an arrow, of course, other forms may also be used, for example, the second point is displayed in the form of a black dot, which is not made in this application. Specific limits.
  • the display device may continue to determine whether the position of the control device is located in the cuboid space, that is, determine whether the control device reaches the cuboid space from the recognition space. If the display device determines that the control device reaches the cuboid space from the recognition space, the movement track of the control device in the cuboid space can be obtained, and the first movement track projected on the first surface from the movement track of the control device in the cuboid space can also be obtained. Then, according to the mapping relationship between the first surface and the display screen, the second moving track projected on the display screen by the first moving track is determined. Furthermore, the display device may determine the control instruction to be executed according to the pre-configured correspondence between the movement track and the control instruction.
  • the pre-configured correspondence between the movement trajectory and the control instruction includes: when the movement trajectory is a straight line that slides to the right, the corresponding control instruction is to fast forward the video for T seconds, where T and the straight line There is a corresponding relationship between the lengths of T, for example, T can be a multiple of the length of the straight line.
  • the display device may also be configured to use a movement track as an activation instruction. For example, it may be set that the movement trajectory corresponding to the activation instruction for adjusting the volume of the speaker may be set as a clockwise circle. For example, after the display device determines that the movement track of the control device in the cuboid space is mapped to the display screen as a clockwise circle, it can determine that the control device will adjust the volume of the speaker.
  • the display interface shown in Figure 23 is displayed on the display interface, and then the movement trajectory of the control device in the cuboid space can be further obtained and mapped to the movement trajectory in the display screen. If it is determined that the subsequent movement trajectory is an upward straight line, it can be determined Speaker volume needs to be turned up. Conversely, if the display device further acquires a downward straight line after it is determined that the startup instruction to adjust the volume is received, it may be determined that the volume of the speaker needs to be turned down.
  • the display device may also combine the pre-configured correspondence between the movement trajectory and the specific operation and various control instructions included in the specific application program to determine the control instructions that need to be executed. For example, when a display device plays a video through some current video application programs, it can play the video at a double speed in response to the user's operation of long pressing the display screen. Combined with the solution proposed in this application, when the display device detects that the control device is in a certain position in the cuboid space for more than the set time, it can determine that the corresponding specific operation is an operation of long pressing the display screen, and then the display device can combine the video application program Its own function determines the control command that needs to be executed to play the video in the form of double speed. In some embodiments, when the display device determines the set duration, the following methods may be used:
  • the solution proposed in this application can also be applied to audio playback or drawing scenarios.
  • the corresponding relationship between control instructions such as adjusting the volume and switching songs in the audio playback scenario and the movement trajectory of the control device can be established in advance.
  • the first moving track of the display control device in the cuboid space may be projected onto the second moving track on the display screen as the image to be drawn.
  • a control device specially configured for the display device is generally used to control the display device.
  • a display device and the like are controlled by a remote controller.
  • the control device if the control device is lost or damaged, the user cannot control the display device, or the user can only control the display device through a few buttons on the display device, making the user experience poor.
  • Some embodiments of the present application provide a display device and a method for controlling the display device, and propose that even without a dedicated control device, a Bluetooth device (such as a mobile phone) capable of sending and receiving Bluetooth signals can be used to control the display device. Fixed an issue where the user could not display the device due to the loss of dedicated controls.
  • Some embodiments of the present application provide a method for controlling a display device.
  • the control method proposed in this application may be executed by a display device, for example, refer to the display device shown in FIG. 3 .
  • the control method may also be executed by a bluetooth component and a processor included in the display device.
  • the control method in combination with the method for controlling the display device, firstly, the control method is performed by the display device as an example for introduction.
  • the flow of the method for controlling the display device specifically includes the following steps:
  • the display device receives a Bluetooth signal from a Bluetooth device.
  • multiple antennas may be configured in the display device, and the display device may receive Bluetooth signals through the multiple antennas.
  • the display device determines the mapping area in space according to the bluetooth signal, and displays at least one control for realizing the control command on the display screen.
  • each position point in the mapping area has a mapping relationship with at least one control displayed on the display screen.
  • the point (1, 2, 3) in the mapping area may correspond to control A in at least one control.
  • multiple points in the mapping area may correspond to one control in the at least one control.
  • the two points (1, 2, 4) and (1, 5, 3) in the mapping area may also correspond to control A.
  • the display device When the display device detects that the Bluetooth device is located in the mapping area, it determines the target control according to the mapping relationship.
  • the target control may be any one of at least one control displayed on the display screen, the target control corresponds to the target point in the mapping area, and the target point refers to the point corresponding to the position of the Bluetooth device.
  • the display device can determine the location of the Bluetooth device according to the received Bluetooth signal from the Bluetooth device. If it is detected that the location of the Bluetooth device is within the mapping area, it can be determined according to the mapping relationship that the control corresponding to the location point of the Bluetooth device is the target control.
  • the display device determines that the distance with the Bluetooth device is shortened, it executes the control command corresponding to the target control.
  • the display device may determine the location of the Bluetooth device according to the Bluetooth signal from the Bluetooth device, and determine whether the distance between the Bluetooth device and the display device is shortened according to changes in the location of the Bluetooth device.
  • the display device may also determine whether the distance between the Bluetooth device and the display device is shortened according to the signal strength of the received Bluetooth signal. For example, it may be determined that the distance between the Bluetooth device and the display device is shortened when the signal strength of the Bluetooth signal increases.
  • the specially configured control device is lost or damaged, as long as there is a Bluetooth device capable of sending Bluetooth signals, the user can still use the Bluetooth device to control the display device. Fixed an issue where display devices could not be controlled due to unavailable controls.
  • the display device may first determine that no control command from the control device has been received. For example, after the display device is turned on, it can first detect whether a control command from the control device is received, and if no control command is received from the control device within a set period of time, it can receive a Bluetooth signal through the Bluetooth component. Or, in another possible situation, after the display device is powered on, it can directly receive the Bluetooth signal through the Bluetooth component, and determine the location of the Bluetooth device sending the Bluetooth signal according to the received Bluetooth signal. In some embodiments, the display device further judges whether a control command from the control device is received within a set period of time.
  • the bluetooth device can be used to realize the control of the display device, for example, refer to the process described in the method for controlling the display device.
  • FIG. 24 is a flow chart of a method for determining and controlling a display device in some embodiments of the present application, specifically including:
  • the display device may execute a power-on action in response to a user's operation on a physical key on the display device.
  • the display device receives the Bluetooth signal through the Bluetooth component, and determines the location of the Bluetooth device that sends the Bluetooth signal according to the Bluetooth signal.
  • the display device judges whether a control command from the control device is received within a set time period.
  • step S2805 that is, perform corresponding operations according to the control command.
  • the display device implements the control command by using the bluetooth device.
  • the display device After the display device determines that no control command from the control device is received within a period of time, it starts to use the Bluetooth device to implement the control command. It avoids the problem that when the control device is available, the realization of the control command through the Bluetooth device leads to the confusion of the received command, and the problem that the command to be executed cannot be determined.
  • the display device when the display device starts to use the Bluetooth device to implement the control command, it may first determine the mapping area according to the Bluetooth signal from the Bluetooth device. Since the closer the Bluetooth device is to the display device, the quality of the Bluetooth signal detected by the display device is higher, but if the Bluetooth device is too close to the display device, user experience will be reduced. Therefore, before determining the mapping area, the display device may first determine the effective distance, and construct the mapping area within the range of the effective distance.
  • the range of the effective distance can be understood as a sphere with the display device as the center and the effective distance as the radius.
  • a preferred distance can be pre-configured, that is, in order to ensure the quality of the Bluetooth signal, the preferred distance between the display device and the Bluetooth device (beyond the preferred distance, the quality of the received Bluetooth signal will be reduced, and the Bluetooth signal cannot be used) determine the location of the Bluetooth device). And when it is detected that the distance between the Bluetooth device and the display device is less than or equal to the preferred distance, the distance between the Bluetooth device and the display device at this time is taken as the effective distance.
  • the display device can determine the distance between the Bluetooth device and the display device by calculating the signal strength (Received Signal Strength Indication, RSSI) of the received Bluetooth signal, and determine that the distance is less than or equal to a preset preferred When the distance is specified, the distance is taken as the effective distance.
  • RSSI Received Signal Strength Indication
  • FIG. 25 is a flow of a method for setting an effective distance in some embodiments of the present application, which specifically includes:
  • the display device calculates the signal strength of the currently received Bluetooth signal.
  • the display device may display on the display interface the preferred signal strength corresponding to the preset preferred distance (that is, when the Bluetooth signal reaches the preferred strength, it means that the distance between the Bluetooth device and the display device has reached the preferred distance).
  • the display device can also display the signal strength of the currently detected Bluetooth signal on the display screen. For example, refer to the display interface shown in FIG. 26A.
  • the display device can also obtain the signal strength of the Bluetooth signal received within a period of time, calculate the average value of the signal strength of the Bluetooth signal within this period of time, and use the signal strength The average value is used as the signal strength of the currently received Bluetooth signal.
  • the display device determines whether the currently received signal strength is greater than the preferred signal strength.
  • the display device takes the current distance from the Bluetooth device as an effective distance.
  • the display device may determine the distance between the Bluetooth device and the display device according to the signal strength of the Bluetooth signal. For example, a corresponding relationship between signal strength and distance may be pre-configured in the display device, and the calculated distance corresponding to the intensity may be determined according to the corresponding relationship.
  • the display device may determine the location of the Bluetooth device according to the Bluetooth signal, and then determine the distance between the Bluetooth device and the display device through calculation. For example, the display device can receive the Bluetooth signal from the Bluetooth device through its included Bluetooth component, detect the constant tone extension signal (Constant Tone Extension, CTE) included in the Bluetooth signal, and obtain the In-phase Quadrature (In-phase Quadrature) signal used for positioning. , IQ) data. Then the display device can determine the phase difference of each antenna group included in the Bluetooth component according to the IQ data, and then determine the angle of arrival of each antenna group according to the phase difference of each antenna group.
  • CTE Constant Tone Extension
  • IQ In-phase Quadrature
  • the display device can determine the position of the Bluetooth device according to the position of each antenna group and the angle of arrival of each antenna group. Finally, the difference between the position of the Bluetooth device and the position of the display device is calculated to be the distance between the Bluetooth device and the display device.
  • the display device displays prompt information on the display screen.
  • the prompt information is used to prompt the user of the Bluetooth device to bring the Bluetooth device closer to the display device.
  • the display device may display a display interface as shown in FIG. 26B to prompt the user to bring the Bluetooth device closer to the display device.
  • the display device may return to step S2901 and continue to calculate the signal strength of the Bluetooth signal until the calculated signal strength of the Bluetooth signal is greater than the preset preferred signal strength.
  • the display device may further determine the mapping area within the range of the effective distance through interface interaction.
  • the detection area may first be determined through interface interaction, the detection area is larger than the mapping area, and the mapping area is located within the detection area.
  • the display device may use a set rule to use a part of the detection area as a mapping area. For example, a method flow for determining a detection area provided by some embodiments of the present application specifically includes the following steps:
  • the display device displays a display interface on the display screen for guiding the user to perform position calibration.
  • the display device may display the display interface shown in FIG. 27A on the display screen.
  • the display interface shown in FIG. 27A includes four calibration positions.
  • the display device displays on the display the location where the current Bluetooth device is mapped to the display.
  • the display device may obtain the position where the Bluetooth device is vertically mapped into the display screen. For example, a vertical line can be drawn from the position of the Bluetooth device to the plane where the display screen is located, and the point where the vertical line intersects with the display screen can be used as the current position where the Bluetooth device is mapped to the display screen.
  • the display device may display dots, arrows, or triangles on the display interface to indicate the location of the Bluetooth device. For example, refer to the display interface shown in FIG. 27B .
  • the display device displays instruction information for instructing calibration on the display screen.
  • the calibration for the calibration position A is used as an example for introduction, and reference may be made to the display interface shown in FIG. 27C .
  • the display interface shown in FIG. 27C a display interface for instructing calibration at the calibration position A is displayed.
  • the display device When the display device detects that the Bluetooth device is at the calibration position, it saves the location of the Bluetooth device and the signal strength of the Bluetooth signal.
  • the display device can calculate the position W1 of the Bluetooth device at this time.
  • the position of the Bluetooth device may be calculated in the manner described in step S2903 in FIG. 25 above.
  • the display device may acquire the signal strength R1 of the Bluetooth signal sent by the Bluetooth device at this time.
  • the Bluetooth device is located at the calibration positions B, C and D, the location of the Bluetooth device and the signal strength of the Bluetooth signal can be obtained and stored in the same manner.
  • the display device determines the detection area in combination with the location of the Bluetooth device and the signal strength of the Bluetooth signal.
  • the display device can obtain the positions of four sets of Bluetooth devices and the signal strength of the Bluetooth signal, for example:
  • Calibration position A (W1, R1)
  • Calibration position B (W2, R2)
  • Calibration position C (W3, R3)
  • Calibration position D (W4, R4).
  • the display device can combine the two factors of location and signal strength to determine the detection area.
  • FIG. 27D is a schematic diagram of a detection area in some embodiments of the present application.
  • the cuboid ABCDEFGH shown in FIG. 27D is the detection area.
  • FIG. 27D is only an example, and some embodiments of the present application do not specifically limit the position and shape of the detection area.
  • the display device may further determine a mapping area according to a pre-configured rule, and the mapping area may be a part of the detection area.
  • FIG. 27E is a schematic diagram of a mapping area in some embodiments of the present application.
  • the cuboid ABCDEFGH shown in FIG. 27E is the detection area, and the cuboid B'BD'DF'FH'H shown is map area.
  • FIG. 27E is only an example, and the present application does not specifically limit the position of the mapping area in the detection area and the shape of the mapping area.
  • the display device may display on the display screen at least one control for implementing the control command.
  • the method for displaying at least one control is introduced in combination with some specific scenarios.
  • the number and content of the controls included in the display interface can be preset, for example, refer to the display interface shown in FIG. Controls for back home, swipe left, swipe right, swipe up, and swipe down.
  • the mapping relationship between each control and each point in the mapping area can be as follows: when the display device detects that the Bluetooth device is located at a certain point in the mapping area, it can be considered that the Bluetooth device has selected the point corresponding to the point. controls.
  • adjacent controls may be separated by a certain distance.
  • the length of the distance between adjacent controls can be set according to the positioning accuracy of the Bluetooth signal, and the distance between any two adjacent controls can be equal or unequal.
  • At least one control may block other content displayed on the display interface. For example, when a user is watching a video, if at least one control is always displayed on the display interface, the content of the video watched by the user may be blocked, making the user's viewing experience poor. Based on this, some embodiments of the present application propose that when the display device determines that the location of the Bluetooth device is within the mapping area, it may continuously display at least one control. If the display device determines that the Bluetooth device is located outside the mapping area, it may stop displaying at least one control after displaying at least one control for a set duration, so as to avoid blocking other content of the display interface from affecting the user's viewing.
  • the display position of each control displayed on the display screen may no longer be directly in front of the user of the Bluetooth device, so that the user uses the The experience is poor.
  • the display device detects that the position of the Bluetooth device is no longer directly in front of at least one control displayed on the display screen, it can display at least one control on the display screen. The display position in the screen is moved to the front of the position of the bluetooth device so that the user can watch.
  • the scene after the display device moves the display position of at least one control on the display screen may refer to the schematic diagram of the scene shown in (b) in FIG. 30 .
  • the display device may use the effective distance introduced in FIG. 25 to determine whether the location of the Bluetooth device is directly in front of at least one control displayed on the display screen.
  • the display device may determine whether the distance between the Bluetooth device and at least one control is less than or equal to the effective distance, and if so, may determine that the Bluetooth device is located directly in front of the at least one control displayed on the display screen.
  • FIG. 31 is a process flow of an interface interaction method in some embodiments of the present application, which specifically includes:
  • the display device determines the location of the Bluetooth device according to the Bluetooth signal from the Bluetooth device.
  • the process for the display device to determine the location of the Bluetooth device according to the Bluetooth signal may refer to the relevant introduction in step S2903 of FIG. 25 above.
  • the display device in order to avoid the inaccuracy of the calculated position of the Bluetooth device due to factors such as object occlusion or wall reflection, can also calculate the signal strength of the Bluetooth signal, and set the signal strength if it does not meet the set requirements.
  • the bluetooth signal can be eliminated (for example, the bluetooth signal with too low signal strength can be set to be eliminated), and the bluetooth signal whose signal strength meets the set requirements is used to calculate the position of the bluetooth device.
  • the display device calculates the distance between the Bluetooth device and at least one control displayed on the display screen.
  • the display device can calculate the distance between these two points, which is the Bluetooth The distance between the device and at least one control. For the convenience of description, this distance will be referred to as distance A for short.
  • the display device judges whether the distance A is greater than the effective distance.
  • step S3501 After the display device moves the display position of at least one control, it may return to step S3501 until the display device determines that the calculated distance A is less than or equal to the effective distance.
  • the display device can move the display position of at least one control displayed on the display screen according to the position of the user of the Bluetooth device, so that the display position of at least one control on the display screen can be kept directly in front of the user, which improves the user's viewing experience.
  • the display device after the display device determines the detection area and the mapping area according to the Bluetooth signal, and displays at least one control for implementing control commands on the display interface, it can continuously detect the location of the Bluetooth device.
  • the display device when the display device detects the location of the Bluetooth device, it may also perform detection periodically (for example, the location of the Bluetooth device may be calculated every set period).
  • the display device may also set different detection periods for different areas where the Bluetooth device is located. For example, when the display device determines that the Bluetooth device is outside the detection area, it may be set to calculate the position of the Bluetooth device every interval T1.
  • the display device determines that the Bluetooth device is located within the detection area and outside the mapping area, it may be set to calculate the position of the Bluetooth device every interval T2.
  • the display device is located in the mapping area, it can be set to calculate the position of the Bluetooth device every interval T3.
  • the display device if it detects that the position of the Bluetooth device is within the mapping area, it can determine the target control corresponding to the point of the current position of the Bluetooth device (it can be understood that the target control is the control to be selected by the Bluetooth device). In some embodiments, the display device may also perform a special display on the target control to indicate that the target control is selected. For example, when the target control is "Volume +", the target control may be displayed with a darkened background color or the like.
  • the display device may execute the control command corresponding to the target control when it is determined that the distance between the Bluetooth device and the display device is shortened, and stop executing the control command when it is determined that the distance between the Bluetooth device and the display device is increased.
  • the control command corresponding to the target control The following will be introduced in conjunction with specific embodiments. Referring to FIG. 32 , it is a flow chart of a method for implementing control commands in some embodiments of the present application, specifically including:
  • the display device determines that the Bluetooth device is located in the mapping area according to the Bluetooth signal.
  • the display device calculates the location of the Bluetooth device and the signal strength of the Bluetooth signal, and determines a target control corresponding to the location of the Bluetooth device.
  • the display device judges whether the distance to the Bluetooth device is shortened.
  • the display device may determine whether the distance is shortened according to the signal strength of the Bluetooth signal. For example, the display device may determine that the distance to the Bluetooth device is shortened when the signal strength becomes larger. In another possible manner, the display device may determine whether the distance to the Bluetooth device is shortened according to the location of the Bluetooth device.
  • the display device may also determine that the distance between the Bluetooth device and the display device is shortened when it is determined that the signal strength of the Bluetooth signal increases and it is determined that the calculated position of the Bluetooth device is close to the display device.
  • the display device executes the control command corresponding to the target control, and continues to calculate the position of the Bluetooth device and the signal strength of the Bluetooth signal.
  • the display device can determine the distance to the Bluetooth device according to the calculated position of the Bluetooth device and the signal strength of the Bluetooth signal.
  • the display device judges whether the distance to the Bluetooth device increases.
  • the display device stops executing the control command corresponding to the target control.
  • Some embodiments of the present application also provide a computer-readable non-volatile storage medium, on which a computer program is stored, and when the program is executed by a processor or the processor, any method implementation manner described above is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种显示设备和控制显示设备的方法。所述显示设备,包括处理器和蓝牙组件,所述蓝牙组件包括至少两个天线组;所述蓝牙组件,被配置为接收蓝牙控制设备发送的广播信号;所述处理器,被配置为:根据所述广播信号分别确定所述至少两个天线组各自的到达角;根据所述至少两个天线组各自的到达角和所述至少两个天线组各自的位置确定所述蓝牙控制设备的位置;当所述蓝牙控制设备的位置位于所述显示设备的显示方向上的预设范围内时,通过所述蓝牙组件向所述蓝牙控制设备发送连接请求,以使得所述显示设备与所述蓝牙控制设备建立蓝牙连接。

Description

显示设备及控制显示设备的方法
本申请要求2021年9月7日提交的申请号为202111047340.6、2021年9月27日提交的申请号为202111137956.2、2021年9月18日提交的申请号为202111104455.4、2021年10月28日提交的申请号为202111261141.5、以及2021年12月15日提交的申请号为202111533745.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示设备技术领域,尤其涉及显示设备及控制显示设备的方法。
背景技术
目前对显示设备的控制方法包括遥控和触控。蓝牙连接是遥控装置(如遥控器)与显示设备之间常见的连接方式,其中可以使用蓝牙到达角度(Angle of Arrival,AOA)定位技术对遥控装置进行定位。
蓝牙AOA定位技术是:搭载至少两组天线,每个天线组中包括至少两根天线,首先通过任一天线组中的第一根天线接收蓝牙信号,设定时长后,切换到该天线组中的第二根天线接收蓝牙信号,以此类推,通过切换不同的天线接收蓝牙信号,并分别检测不同天线接收的蓝牙信号的相位值,用以计算该天线组对应的蓝牙信号的相位差,以及根据相位差计算AOA,最后根据AOA确定发送蓝牙信号的发送端的位置。
发明内容
根据本申请一些实施方式提供的显示设备,包括处理器和蓝牙组件。所述蓝牙组件,用于接收蓝牙控制设备发送的广播信号;所述处理器,被配置为:根据所述广播信号分别确定所述至少两个天线组各自的到达角,根据所述至少两个天线组各自的到达角和所述至少两个天线组各自的位置确定所述蓝牙控制设备的位置。当所述蓝牙控制设备的位置位于所述显示设备的显示方向上的预设范围内时,通过所述蓝牙组件向所述蓝牙控制设备发送连接请求,以使得所述显示设备与所述蓝牙控制设备建立蓝牙连接。
根据本申请一些实施方式提供的显示设备,包括显示屏、蓝牙组件和处理器。所述蓝牙组件接收蓝牙控制设备发送的广播信号。所述显示屏被配置为显示用户界面,其中,所述用户界面包括第一视图显示区和第二视图显示区,所述第一视图显示区在第一层显示,所述第二视图显示区在第二层显示,且在所述第一视图显示区上。所述蓝牙组件包括至少两个天线组和蓝牙控制器,蓝牙控制器被配置为从所述至少两个天线组接收蓝牙控制设备发送的广播信号。蓝牙控制设备可以是控制装置,例如遥控器,显示设备与遥控器之间无线连接。在一些实施方式中,可以是基于蓝牙协议的无线通信,且支持蓝牙AOA定位技术。蓝牙控制设备可以是智能设备,智能设备可以包括移动终端、平板电脑、计算机、笔记本电脑,增强现实(Augmented Reality,AR)或者虚拟现实(Virtual Reality,VR)设备等中的任意一种。所述处理器被配置为:在所述显示设备与所述蓝牙控制设备建立蓝牙连接之后:响应于所述蓝牙组件接收用户输入的第一控制请求,确定所述蓝牙控制设备在所述第二视图显示区的实时位置坐标,以及起始位置坐标,其中,所述第一控制请求是用户通过蓝牙控制设备输入的关于所述第二视图显示区调整显示大小的请求,且包含所述蓝牙控制设备的位置信息;响应于所述蓝牙组件接收用户输入的移动请求,确定有效起始坐标以及有效终止坐标,其中,所述移动请求包含所述蓝牙控制设备的位置信息;根据所述有效起始坐标和所述有效终止坐标,确定所述移动请求的移动轨迹,以及,在所述第二视图显示区中呈现所述移动轨迹;根据所述移动轨迹的方向调整所述第二视图显示区的显示大小。
根据本申请一些实施方式提供的显示设备,包括显示屏、蓝牙组件和处理器。所述蓝牙组件用于接收蓝牙控制设备发送的广播信号。所述处理器被配置成:在所述显示设备与所述蓝牙控制设备建立蓝牙连接之后:用于根据持续接收到的所述广播信号确定所述蓝牙控制设备在配置的长方体空间内的第一移动轨迹,其中,所述长方体空间是基于用户配置的第一面通过设定规则形成的,所述第一面为所述长方体空间的外表面中的一面,所述第一面在配置的空间坐标系中的位置与所述显示屏包括的各个像素在所述空间坐标系中的位置存在映射关系;根据所述映射关系将所述第一移动轨迹投影到所述显示屏在所述空间坐标系中的区域获得第二移动轨迹;以及针对所述显示屏的显示界面执行所述第二移动轨迹对应的控制指令。
根据本申请一些实施方式提供的显示设备,包括显示屏、蓝牙组件和处理器。所述蓝牙组件,用于接收蓝牙控制设备发送的广播信号;所述处理器被配置为在所述显示设备与所述蓝牙控制设备建立蓝牙连接之后:根据所述广播信号,在所述显示屏中显示用于实现控制命令的至少一个控件,并在所述显示设备所处的空间中确定映射区域,其中所述映射区域中的点与所述至少一个控件存在映射关系;在检测到所述蓝牙控制设备位于所述映射区域内时,根据所述映射关系确定目标控件,其中,所述目标控件与所述映射区域中的目标点对应,所述目标点是所述蓝牙控制设备的位置对应 的点,所述目标控件为所述至少一个控件中的一个控件;以及在确定所述蓝牙控制设备与所述显示设备的距离缩短时,执行所述目标控件对应的控制命令。
附图说明
图1为本申请一些实施例的一种显示设备的使用场景;
图2为本申请一些实施例的一种控制装置的硬件配置框图;
图3为本申请一些实施例的一种显示设备的硬件配置框图;
图4为本申请一些实施例的一种显示设备的软件结构框图;
图5为本申请一些实施例的一种第一天线组的多个相位值组成的曲线图;
图6为本申请一些实施例的一种具体场景示意图;
图7为本申请一些实施例的一种蓝牙数据包的示意图;
图8为本申请一些实施例的一种具体的定位流程示意图;
图9为本申请一些实施例的一种蓝牙连接的方法流程示意图;
图10为本申请一些实施例的一种用于显示提示信息的显示界面示意图;
图11为本申请一些实施例的一种建立蓝牙连接的方法流程图;
图12为本申请一些实施例的另一种蓝牙连接的方法流程示意图;
图13为本申请一些实施例的一种显示设备包含设定区域的场景示意图;
图14为本申请一些实施例的另一种用于显示提示信息的显示界面示意图;
图15为本申请一些实施例的显示屏画中画显示示意图;
图16为本申请一些实施例的有效终点位置确定的示意图;
图17示出了另一些实施例的有效终点位置确定的示意图;
图18A为本申请一些实施例的画中画显示大小向右上方调整的示意图;
图18B为本申请一些实施例的画中画显示大小向左上方调整的示意图;
图18C为本申请一些实施例的画中画显示大小向正上方调整的示意图;
图18D为本申请一些实施例的画中画显示大小向右方调整的示意图;
图18E为本申请一些实施例的画中画显示大小向左方调整的示意图;
图18F为本申请一些实施例的画中画显示大小向右下方调整的示意图;
图18G为本申请一些实施例的画中画显示大小向正下方调整的示意图;
图18H为本申请一些实施例的画中画显示大小向左下方调整的示意图;
图19为本申请一些实施例的画中画显示位置调整的示意图;
图20A为本申请一些实施例的一种用于显示空间坐标系的显示界面图;
图20B为本申请一些实施例的另一种用于显示空间坐标系的显示界面图;
图20C为本申请一些实施例的一种用于显示第一参考点的显示界面图;
图20D为本申请一些实施例的一种用于确定第二参考点的显示界面图;
图20E为本申请一些实施例的一种用于显示第二参考点的显示界面图;
图20F为本申请一些实施例的一种用于指示第三参考点可选取的范围的示意图;
图20G为本申请一些实施例的一种用于显示第三参考点的显示界面图;
图20H为本申请一些实施例的一种用于指示第三参考点的位置的示意图;
图20I为本申请一些实施例的一种用于显示第一面的显示界面图;
图20J为本申请一些实施例的一种长方体空间的示意图;
图21A为本申请一些实施例的一种识别空间的示意图;
图21B为本申请一些实施例的一种显示第二点的界面示意图;
图22为本申请一些实施例的一种在视频播放过程中的显示界面示意图;
图23为本申请一些实施例的一种显示移动轨迹的显示界面示意图;
图24为本申请一些实施例的一种用于确定显示设备控制方法的流程图;
图25为本申请一些实施例的一种设置有效距离的方法流程图;
图26A为本申请一些实施例的一种用于显示蓝牙信号的信号强度的显示界面示意图;
图26B为本申请一些实施例的一种用于显示提示信息的显示界面示意图;
图27A为本申请一些实施例的一种用于提示用户进行位置校准的显示界面示意图;
图27B为本申请一些实施例的一种用于显示蓝牙设备当前位置的显示界面示意图;
图27C为本申请一些实施例的一种用于显示指示信息的显示界面示意图;
图27D为本申请一些实施例的一种检测区域的示意图;
图27E为本申请一些实施例的一种映射区域的示意图;
图28为本申请一些实施例的一种用于显示至少一个控件的显示界面示意图;
图29为本申请一些实施例的另一种用于显示至少一个控件的显示界面示意图;
图30为本申请一些实施例的一种界面交互的场景示意图;
图31为本申请一些实施例的一种界面交互的方法流程图;
图32为本申请一些实施例的一种实现控制命令的方法流程图。
具体实施方式
下面将结合本申请一些实施例中的附图,对本申请一些实施例进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
图1为根据实施例中显示设备的使用场景的示意图。如图1所示,显示设备200还与服务器400进行数据通信,用户可通过智能设备300或控制装置100通过与显示设备200建立蓝牙连接以操作显示设备200,后续为了便于描述,将智能设备300或控制装置100统称为蓝牙控制设备。
在一些实施例中,控制装置100可以是遥控器,遥控器和显示设备200的通信包括红外协议通信或蓝牙协议通信,及其他短距离通信方式中的至少一种,通过无线或有线方式来控制显示设备200。用户可以通过遥控器上按键、语音输入、控制面板输入等至少一种输入用户指令,来控制显示设备200。
在一些实施例中,智能设备300可以包括移动终端、平板电脑、计算机、笔记本电脑,增强现实(Augmented Reality,AR)或者虚拟现实(Virtual Reality,VR)设备等中的任意一种。在一些实施例中,也可以使用智能设备300以控制显示设备200。例如,使用在智能设备上运行的应用程序控制显示设备200。
在一些实施例中,显示设备200还可以采用除了控制装置100和智能设备300之外的方式进行控制,例如,还可以通过显示设备200设备内部配置的获取语音指令的模块直接接收用户的语音指令控制,也可以通过显示设备200设备外部设置的语音控制装置来接收用户的语音指令控制。
在一些实施例中,显示设备200还与服务器400进行数据通信。可允许显示设备200通过局域网(LAN)、无线局域网(WLAN)和其他网络进行通信连接。服务器400可以向显示设备200提供各种内容和互动。服务器400可以是一个集群,也可以是多个集群,可以包括一类或多类服务器。
图2示例性示出了根据示例性实施例中控制装置100的配置框图。如图2所示,控制装置100包括处理器110、通信接口130、用户输入/输出接口140、存储器、供电电源。控制装置100可接收用户的输入操作指令,且将操作指令转换为显示设备200可识别和响应的指令,起到用户与显示设备200之间交互中介作用。
在一些实施例中,通信接口130用于和外部通信,包含WIFI芯片,蓝牙组件,NFC或可替代模块中的至少一种。蓝牙组件包括用于发送及接收蓝牙信号的天线,还可以包括用于接收处理器110发送的指令的蓝牙控制器,蓝牙组件可以用于在处理器110的控制下向外发送蓝牙信号或者接收外来的蓝牙信号。例如,处理器110可以通过蓝牙组件与显示设备200建立蓝牙连接,从而实现控制显示设备200。
在一些实施例中,用户输入/输出接口140包含麦克风,触摸板,传感器,按键或可替代模块中的至少一种。
图3示例性的展示了显示设备200的硬件结构示意图。在一些实施例中,显示设备200包括:射频(radio frequency,RF)电路210、存储器220、显示单元230、摄像头240、传感器250、音频电路260、无线保真(Wireless Fidelity,Wi-Fi)模块270、处理器280、蓝牙组件281、以及电源290等部件。
RF电路210可用于在收发信息或通话过程中信号的接收和发送,可以接收基站的下行数据后交给处理器280处理。
存储器220可用于存储软件程序及数据。处理器280通过运行存储在存储器220的软件程序或数据,从而执行显示设备200的各种功能以及数据处理。存储器220存储有使得显示设备200能运行的操作系统。本申请中存储器220可以存储操作系统及各种应用程序,还可以存储执行本申请一些实施例方法的代码。
显示单元230可用于接收输入的数字或字符信息,产生与显示设备200的用户设置以及功能控制有关的信号输入,显示单元230可以包括设置在显示设备200正面的触摸屏231,可收集用户在其上或附近的触摸操作,例如点击按钮,拖动滚动框等。显示单元230还可用于显示由用户输入的信息或提供给用户的信息以及显示设备200的各种菜单的图形用户界面(graphical user interface,GUI)。显示单元230可以包括设置在显示设备200正面的显示屏232。其中,显示屏232可以采用液晶显示屏、发光二极管等形式来配置。显示单元230可以用于显示本申请中的各种图形用户界面。
摄像头240可用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给处理器280转换成数字图像信号。
显示设备200还可以包括至少一种传感器250,比如加速度传感器251、距离传感器252、指纹传感器253、温度传感器254。显示设备200还可配置有陀螺仪、气压计、湿度计、温度计、红外线传感器、光传感器、运动传感器等其他传感器。
Wi-Fi属于短距离无线传输技术,显示设备200可以通过Wi-Fi模块270帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。
处理器280是显示设备200的控制中心,利用各种接口和线路连接整个显示设备的各个部分,通过运行或执行存储在存储器220内的软件程序,以及调用存储在存储器220内的数据,执行显示设备200的各种功能和处理数据。处理器280还可以集成应用处理器和基带处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,基带处理器主要处理无线通信。本申请中处理器280可以运行操作系统、应用程序、用户界面显示及触控响应,以及本申请一些实施例的处理方法。另外,处理器280与显示单元230耦接。
蓝牙组件281,用于通过蓝牙协议来与其他具有蓝牙组件的蓝牙设备进行信息交互。蓝牙组件281可以包括用于接收以及发送蓝牙信号的多根天线以及用于接收来自处理器280的指令的蓝牙控制器。例如,显示设备200可以通过蓝牙组件281与同样具备蓝牙组件的可穿戴电子设备(例如智能手表)建立蓝牙连接,从而进行数据交互。在一些实施例中,显示设备200可以通过蓝牙组件与控制装置建立蓝牙连接,进行蓝牙通信。或者,显示设备200可以通过蓝牙组件281所包含的天线接收来自其他具有蓝牙组件的电子设备的广播信号。
显示设备200还包括给各个部件供电的电源290(比如电池)。电源可以通过电源管理系统与处理器280逻辑相连,从而通过电源管理系统实现管理充电、放电以及功耗等功能。显示设备200还可配置有电源按钮,用于显示设备的开机和关机,以及锁屏等功能。
此外,本申请还提供了显示设备200的软件配置框图,具体如图4所示,在一些实施例中,将系统分为四层,从上至下分别为应用(Applications)层(简称“应用层”),应用框架(Application Framework)层(简称“框架层”),安卓运行时(Android runtime)和系统库层(简称“系统运行库层”),以及内核层。
在一些实施例中,系统运行库层为上层即框架层提供支撑,当框架层被使用时,安卓操作系统会运行系统运行库层中包含的C/C++库以实现框架层要实现的功能。
在一些实施例中,如图4所示,内核层是硬件和软件之间的层。内核层至少包含以下模块中的至少一种:wireless(无线)模块、音频模块、显示模块、蓝牙控制器、摄像头模块、WIFI模块、USB模块、HDMI模块、传感器模块(如指纹传感器,温度传感器,压力传感器等)、以及电源模块等。
不同显示的硬件配置和软件结构会有所不同,因此上述图3和图4均是示例性说明。
蓝牙AOA定位技术
蓝牙AOA定位技术通过信号的角度信息进行定位估算,控制装置(发射端)利用单一天线发射寻向讯号,显示设备(接收端)内置天线阵列,当信号通过时,因阵列中接收到距离不同而产生相位差异,提高定位的精确度。
蓝牙5.0协议中规定了蓝牙天线切换的补偿时间为固定的2微秒,在补偿时间内采集的蓝牙信号的相位值全部会被过滤掉,这样会导致计算的相位值不准从而导致定位的准确性降低。
本申请一些实施例提供了一种基于蓝牙的定位方法及装置,不再过滤固定的补偿时间内的相位值,而是根据相位值的变化情况确定需要过滤的相位值,减少相位值的浪费,提升定位的准确性。
下面,对于本申请一些实施例提供的基于蓝牙的定位方法进行介绍。该方法可以由显示设备来执行,或者也可以由显示设备中的处理器来执行,后续以由显示设备执行为例进行介绍。显示设备的内部结构可以采用上述图3示出的显示设备200的硬件配置。天线组包括的各个天线可以位于显示设备的外部,且与显示设备相连接,例如天线组可以位于显示设备上方边缘,贴附于显示设备的非金属材质的外壳上。天线组包括的各个天线可以位于显示设备内部。天线组包括的多个天线中一部分位于显示设备外部,另一部分位于显示设备内部。不同的天线组之间可以保持一定的距离,以保证定位的准确性。天线组中包含的天线之间的距离不能大于蓝牙信号的波长,比如,蓝牙信号的波长为0.125m,任意两根天线之间的距离不能超过0.125米(m)。作为一种示例,显示设备的外壳可以为非金属材质;显示设备包含两个天线组、每个天线组中包含两根天线;两组天线位于显示设备上方边缘位置,两组天线之间的距离为显示设备的宽。在一些实施例中,显示设备的外壳可以为金属,比如铝合金外壳。可以在设计显示设备时,将主板放置在显示设备后面,再加一个塑料(或者其他的非金属材料)后壳罩住该主板,那么也可以将天线贴附于该塑料后壳上。
本申请一些实施例提供了一种基于蓝牙AOA的定位方法,具体包括:
步骤1,显示设备通过至少两个天线组中的第一天线接收广播信号,检测广播信号的多个相位值。
其中,第一天线属于至少两个天线组中的第一天线组中的任一根天线,第一天线组为显示设备包括的至少两个天线组中的任一个天线组。广播信号来自于控制装置,例如蓝牙发射器,显示设备检测到的广播信号的多个相位值为在第一设定时长内检测到的多个相位值。
在一些实施例中,显示设备可以通过蓝牙组件包括的至少两个天线组在广播信道中扫描广播信号,根据广播信号中包括的设定标识确定该广播信号中包括的用于定位的固定频率扩展信号(Constant Tone Extension,CTE)。在一些实施例中,CTE可以包含在广播信号携带的广播数据包中,广播数据包的格式可以参见图7,其中包含的各项分别为:前导(Preamble),广播数据包的包头;接入地址(Access Address),用于指示广播信号的传输信道;协议数据单元(Protocol Data Unit,PDU),包括广播信号的信号强度以及蓝牙发射器的标识等;循环冗余校验(Cyclic Redundancy Check,CRC),用于校验PDU的数据的准确性;CTE,用于检测广播信号的相位值。
在一些实施例中,显示设备可以根据广播信号中包括的CTE确定天线的相位值。以一根天线(例如第一天线)的相位值的确定过程为例进行介绍:首先,显示设备可以获取第一天线接收的广播信号中包含的CTE;在一些实施例中,显示设备可以从CTE中采集同相正交(In-phase Quadrature,IQ) 数据,IQ数据中包括广播信号到达第一天线时的相位值和振幅信息。从而,显示设备可以获取第一天线对应的广播信号的相位值。后续为了便于描述,广播信号到达相应天线时的相位值或天线对应的广播信号的相位值可以简称为天线的相位值或天线对应的相位值。
由于广播信号是以波束的形式发射的,所以在第一设定时长内的不同时间点,第一天线接收到的广播信号的相位值是不相同的。
在一些实施例中,显示设备检测到的第一天线的多个相位值的取值范围可以为[-π,π],并且显示设备检测到的第一天线的多个相位值可以随着检测时间的推移而顺序增大,即第一天线的多个相位值与检测时间成正比。
步骤2,显示设备通过第二天线接收广播信号,检测接收到的广播信号的多个相位值。
其中,第二天线为第一天线组中除第一天线之外的任一根天线,显示设备检测到的第二天线接收到的广播信号的多个相位值为在第二设定时长内检测到的。在一些实施例中,第一设定时长可以与第二设定时长相等。第二设定时长可以为第一设定时长之后且与第一设定时长相邻的一个时间段。
在一些实施例中,显示设备可以在达到第一设定时长之后,控制第一天线停止接收广播信号,并控制第二天线开始接收广播信号。在另一些实施例中,显示设备还可以在未达到第一设定时长时开始在第二设定时长内检测通过第二天线接收到的广播信号。在一些实施例中,显示设备可以通过设置定时器的方式来进行天线的切换,例如显示设备可以在开始通过第一天线接收广播信号时启动定时器,并设置定时器的定时时长为第一设定时长,然后在定时器超时时,切换为通过第二天线接收广播信号。在一些实施例中,显示设备还可以保存切换的时间点。在一些实施例中,当第一天线组中包括多根天线时,显示设备可以预先设定一个切换顺序,例如,切换顺序可以为从第一天线切换到第二天线再切换到第三天线等。
步骤3,显示设备对第二天线对应的多个相位值进行过滤得到经滤除第二天线的多个相位值。
在一些实施例中,显示设备可以滤除第二天线的多个相位值中满足设定条件的至少两个相位值得到经滤除第二天线的多个相位值。其中,满足设定条件的至少两个相位值与相位值的检测时间成反比。也就是说,显示设备滤除的至少两个相位值是连续检测到的,并且与检测时间成反比,即滤除的至少两个相位值是随着检测时间的增加依次减小的。在一些实施例中,滤除的至少两个相位值中任意两个连续检测到的两个相位值的差小于设定的阈值。
在一些实施例中,由于切换为新的天线接收蓝牙信号时,蓝牙信号需要一段稳定时间。也就是说,显示设备在切换到第二天线接收广播信号时,初始一段时间内接收到的广播信号是不稳定的,那么也就导致了显示设备在检测这段时间内接收到的广播信号的相位值是不可用的,后续为了便于描述,将该段时间称为补偿时间。已知正常情况下显示设备连续检测到的相位值是随着检测时间递增的,但是由于在补偿时间内接收到的蓝牙信号不稳定,导致在补偿时间内连续检测到的相位值是与检测时间成反比的。所以显示设备在检测第二天线的多个相位值之后,可以将连续检测到的与检测时间成反比的相位值过滤掉,也就是将补偿时间内接收到的广播信号对应的至少两个相位值过滤掉。
步骤4,显示设备根据第一天线的多个相位值与经滤除第二天线的多个相位值确定第一天线组的相位差。
在一些实施例中,第一天线组包括两根天线,分别为第一天线和第二天线。显示设备可以根据第一天线的多个相位值与第二天线的多个相位值的差值的平均值作为第一天线组的相位差。例如,可以参见图5,示出了第一天线在第一设定时长内的多个相位值以及第二天线在第二设定时长内的多个相位值,每一个点代表一个相位值。以其中的几个相位值为例介绍计算相位差的过程:显示设备检测出的第一天线的相位值与检测时间分别为:(t 1时刻:1/4π,t 2时刻:1/3π,t 3时刻:1/2π),显示设备检测出的第二天线的相位值与检测时间分别为:(t 4时刻:1/2π,t 5时刻:7/12π,t 6时刻:3/4π)。显示设备可以计算t 4时刻与t 1时刻相位值的差值、t 5时刻与t 2时刻相位值的差值以及t 6时刻与t 3时刻相位值的差值,根据上述三个差值的平均值确定第一天线组的相位差。其中,t 4-t 1=t 5-t 2=t 6-t 3=T,T为预设的检测周期,T可以与第一设定时长或者第二设定时长相等。上述举例中的第一天线的相位值的数量和第二天线的相位值的数量是相同的,当然,也可以有两根天线的相位值的数量不同的情况。当两根天线的相位值的数量不相同时,显示设备可以以相位值数量少的那根天线为准计算相位差。
在另一些实施例中,第一天线组包括的天线的数量大于2,显示设备可以采用上一实施例中的方法计算第一天线组中任意两根天线的相位值的差值,并将多个差值的平均值作为第一天线组的相位差
同理,显示设备可以进一步采用上述方法确定显示设备中包括的至少两个天线组中每个天线组的相位差。
步骤5,显示设备根据至少两个天线组各自的相位差确定发射广播信号的蓝牙发射器的位置。
本申请不再采用固定的补偿时间将检测补偿时间内接收到的蓝牙信号的相位值滤除,而是通过检测到的相位值的变化情况进行相位值的滤除。由此可以减少数据的浪费,获取更多的相位值计算出的相位差也会更加准确,从而提升定位的准确性。
在一些实施例中,显示设备在根据每个天线组的相位差确定蓝牙发射器的位置时,可以首先根据每个天线组的相位差确定每个天线组的到达角。再根据每个天线组的到达角确认蓝牙发射器的位 置。
在一些实施例中,显示设备在通过至少两组天线接收到广播信号之后,还可以进一步确定接收到的广播信号的波长。由于在2.4G无线技术中广播信号的波长是固定的,所以每一根天线接收到的来自同一个蓝牙发射器的广播信号的波长相同。在一些实施例中,显示设备在获取每一个天线组对应的到达角时,还可以根据广播信号的波长和每一个天线组的相位差共同确定到达角。在一些实施例中,以第一天线组为例,第一天线组包含两根天线,第一天线组对应的到达角可以通过如下公式(1)确定:
Figure PCTCN2022095742-appb-000001
其中,θ为第一天线组对应的到达角,
Figure PCTCN2022095742-appb-000002
为第一天线组对应的相位差,λ为广播信号的波长,d为所述第一天线组包括的两根天线之间的距离。
在一些实施例中,显示设备在确定各组天线的到达角之后,可以进一步确定蓝牙发射器的位置。在一些实施例中,以显示设备包含两个天线组(后续分别简称为第一天线组和第二天线组)为例,蓝牙发射器的位置可以通过如下公式(2)-公式(3)确定:
Figure PCTCN2022095742-appb-000003
Figure PCTCN2022095742-appb-000004
其中,θ 1为第一天线组对应的到达角,θ 2为第二天线组对应的到达角,(x,y)为蓝牙发射器的位置,(x 1,y 1)为第一天线组的位置,(x 2,y 2)为第二天线组的位置。
在一些实施例中,当显示设备包含两个天线组,且分别位于显示设备的两侧时,显示设备在进行计算蓝牙发射器的位置之前,可以首先获取显示设备的宽度,从而在确定一个天线组的位置的情况下,就可以计算出另外一个天线组的位置。并且,由于相关技术中,天线组之间的距离都是固定的,所以相关的算法都是基于固定的距离进行计算的。而本申请中天线组是位于显示设备的两侧的,所以不同的显示设备可能会存在不同的天线组的距离,所以相关的算法并不适用于本申请的应用场景。因此本申请会在计算蓝牙发射器的位置之前首先获取天线组之间的距离,解决了现有算法不适用的问题。
以上介绍了显示设备根据每根天线的相位值确定蓝牙发射器的位置的过程,在另外一些实施方式中,蓝牙发射器在发射广播信号时,是以电磁波束的形式发射的,一部分电磁波束可能会直接到达天线,也可能会存在另一部分电磁波束经过墙壁反射后到达天线,这样就会导致显示设备在计算一个天线组接收的同一个蓝牙发射器发射出的广播信号的到达角时,出现两个或者多个到达角,可能会针对同一个蓝牙发射器定位出两个或者多个位置,需要从这两个或多个位置中确定蓝牙发射器的真实位置。下面以显示设备接收到广播信号包括两个来自同一蓝牙发射器的蓝牙信号为例介绍确定蓝牙发射器真实位置的过程,为了便于描述,后续分别将这两个蓝牙信号称为第一蓝牙信号和第二蓝牙信号。作为一种示例,可以参见图6,其中示出了蓝牙发射器发射的蓝牙信号有直接到达显示设备的,也有经过墙壁反射后到达显示设备的。这就会导致显示设备会接收到来自蓝牙发射器的两个蓝牙信号:第一蓝牙信号和第二蓝牙信号。显示设备在根据这两个蓝牙信号进行定位时也同样会确定两个位置,也就是图6中示出的位置P_A和位置P_B,可以看出位置P_A才是蓝牙发射器的真正位置,那么也就需要显示设备将位置P_B过滤掉,确定蓝牙发射器的真正位置。如下展开介绍过滤方法:
在一些实施例中,显示设备在接收到第一蓝牙信号和第二蓝牙信号时,可以根据第一蓝牙信号和第二蓝牙信号中携带的蓝牙发射器的标识确定第一蓝牙信号和第二蓝牙信号来自于同一个蓝牙发射器。其中,蓝牙发射器的标识可以是蓝牙发射器的MAC地址或者蓝牙发射器的名称等。在一些实施例中,显示设备可以进行检测第一蓝牙信号和第二蓝牙信号的信号强度(Received Signal Strength Indication,RSSI),并可以在确定第二蓝牙信号的信号强度小于第一蓝牙信号的信号强度时滤除第二蓝牙信号,根据第一蓝牙信号确定蓝牙发射器的位置即为蓝牙发射器的真正位置。在一些实施例中,显示设备还可以计算第一蓝牙信号携带的蓝牙数据包中的信号强度与测量到的第一蓝牙信号的信号强度的差值,以及计算第二蓝牙信号携带的蓝牙数据包中的信号强度与测量到的第二蓝牙信号的信号强度的差值,并对比两个差值的大小,其中,由于第一蓝牙信号和第二蓝牙信号实质来自于同一蓝牙信号所以两者的蓝牙数据包中记录的信号强度相同。当确定第二蓝牙信号对应的差值大于第一蓝牙信号对应的差值时,将第二蓝牙信号滤除,根据第一蓝牙信号对蓝牙发射器进行定位。
在另一些实施例中,显示设备首先确定第一蓝牙信号和第二蓝牙信号来自于同一个蓝牙发射器,具体参见情况一中的描述,在此不再赘述。当第一蓝牙信号和第二蓝牙信号的信号强度相等(例如,因蓝牙发射器距离墙体较近等因素以致第一蓝牙信号和第二蓝牙信号的强度无实质区别)时,显示设备可以分别计算第一蓝牙信号对应的第一相位差以及第二蓝牙信号对应的第二相位差,并根据第一相位差计算第一到达角以及根据第二相位差计算第二到达角。显示设备确定第一到达角和第二到达角之后,可以进行判断两个到达角是否处于滤除范围,即不能用于定位的角度范围。在图6所示的场景中,滤除范围即为位于显示设备后方的角度的范围。在一些实施例中,滤除范围可以是预先设定的,例如可以预先设定0°-180°作为显示设备前方的角度范围,将180°-360°作为显示设备后方的角度范围,即滤除范围。当显示设备确定第二到达角位于滤除范围时,将第二蓝牙信号滤除,根据第一到达角确定蓝牙发射器的位置。
基于上述多个实施例,显示设备在进行定位之前,先根据信号强度或者根据信号到达角将不能用于定位的信号滤除,从而能够更加准确地进行定位,防止定位错误的情况发生。
上述两种情况均是以显示设备接收来自同一个蓝牙发射器的两个蓝牙信号为例进行介绍的,如果显示设备接收到来自同一个蓝牙发射器的蓝牙信号的数量超过2时,也可以采用上述的方法确定蓝牙发射器的真正位置。
下面,参见图8,为本申请一些实施例的一个具体的定位方法流程,包括:
S701,显示设备通过第一天线组的第一天线和第二天线以及第二天线组的第三天线和第四天线接收来自蓝牙发射器的第一蓝牙信号和第二蓝牙信号。
在一些实施例中,显示设备可以通过第一蓝牙信号和第二蓝牙信号中携带的蓝牙发射器的标识确定第一蓝牙信号和第二蓝牙信号来自同一蓝牙发射器。
S702,显示设备判断第一蓝牙信号和第二蓝牙信号的信号强度是否相等。
若不相等,则进入第一过程,第一过程包括步骤S703、S704、S705、以及S707。
若相等,则进入第二过程,第二过程包括步骤S706以及S707。
S703,显示设备在确定第二蓝牙信号的信号强度小于第一蓝牙信号的信号强度时,将第二蓝牙信号过滤掉。
S704,显示设备分别检测第一天线、第二天线、第三天线和第四天线对应的第一蓝牙信号的多个相位值。
在一些实施例中,第二天线为第一天线组中后切换的天线(即在第一设定时长内显示设备先通过第一天线接收第一蓝牙信号,在第一设定时长后的第二设定时长内切换为通过第二天线接收蓝牙信号),显示设备在检测第二天线的多个相位值之后,可以将其中满足设定条件的相位值滤除,具体地滤出过程可以参见上述基于蓝牙AOA的定位方法中的步骤3的介绍。
同理,若第四天线为第二天线组中后切换的天线,显示设备可以在检测第四天线的多个相位值后,将其中满足设定条件的相位值滤除。
S705,显示设备分别计算第一天线组和第二天线组针对第一蓝牙信号的到达角。
S706,显示设备分别计算第一蓝牙信号的到达角和第二蓝牙信号的到达角,在确定第二蓝牙信号的到达角属于过滤范围时,将第二蓝牙信号过滤掉。
在一些实施例中,显示设备可以针对第一天线组分别计算第一蓝牙信号和第二蓝牙信号的到达角,以及针对第二天线组分别计算第一蓝牙信号和第二蓝牙信号的到达角。显示设备可以在确定第一天线组和第二天线组对应的第二蓝牙信号的到达角都属于过滤时,将第二蓝牙信号过滤掉。
S707,显示设备根据第一天线组和第二天线组分别确定的到达角来确定蓝牙发射器的位置。
根据本申请一些实施例的蓝牙AOA定位技术可以应用于对显示设备的控制,包括但不限于下述的实施方式。
(1)与显示设备和控制装置的蓝牙配对关联的实施方式
相关技术中,显示设备可以通过蓝牙组件中包括的天线接收蓝牙控制设备发送的广播信号,然后在广播信道上发送请求连接信息,并根据广播信号的指示确定用于承载数据的数据信道,在确定的数据信道上与蓝牙控制设备建立密钥,与蓝牙控制设备通过密钥进行蓝牙连接。但是如果空间中存在多个显示设备都接收到了来自蓝牙控制设备的广播信号,多个显示设备就都会向该蓝牙控制设备发送请求连接信息,如果蓝牙控制设备需要连接多个显示设备中的第二显示设备,但是多个显示设备中的第一显示设备的请求连接消息先到达了蓝牙控制设备,则蓝牙控制设备就会与第一显示设备建立连接,由于蓝牙控制设备实际要连接的是第二显示设备,所以连接错误。并且用户无法得知蓝牙控制设备具体连接的是哪一个显示设备,只知道蓝牙控制设备处于连接状态(以遥控器为例,遥控器连接到显示设备之后可以亮起指示灯)。
本申请一些实施例提供了一种蓝牙连接的方法及显示设备,当存在多个显示设备对应一个蓝牙控制设备的场景,或者存在多个蓝牙控制设备对应一个显示设备的场景,显示设备会在进行建立蓝牙连接之前对蓝牙控制设备进行定位,根据定位的结果建立蓝牙连接,避免连接错误或者连接失败的问题。为了便于描述,后续以蓝牙控制设备为控制装置100为例描述本申请提供的方案。
对本申请一些实施例提出的蓝牙连接的方法进行介绍,该方法可以应用于显示设备,也可以应用于显示设备包括的处理器,后续均以应用于显示设备为例进行介绍。参见图9,为本申请一些实施例的一种蓝牙连接的流程,具体包括:
S1101,显示设备通过蓝牙组件接收来自控制装置的广播信号。
其中,蓝牙组件可以包括用于接收和发送蓝牙信号的至少两个天线组。
在一些实施例中,显示设备可以通过蓝牙组件包括的至少两个天线组在广播信道中扫描广播信号,根据广播信号中包括的设定标识确定该广播信号中包括用于定位的CTE。在一些实施例中,CTE可以包含在广播信号携带的广播数据包中,广播数据包的格式可以参见图7及其说明。
S1102,显示设备根据接收到的广播信号中包括的CTE,分别确定每个天线组对应的广播信号的到达角。
在一些实施例中,显示设备可以根据广播信号中包括的CTE确定每根天线的相位值,在根据每根天线的相位值确定每个天线组的相位差,再进一步根据相位差确定每个天线组的到达角。具体可 以参见如上介绍的根据本申请的基于蓝牙AOA的定位方法。
S1103,显示设备根据每个天线组的到达角和每个天线组的位置确定控制装置的位置。
在一些实施例中,显示设备包括分别位于显示设备两侧的两个天线组,每个天线组的位置可以根据显示设备的位置和每个天线组相对于显示设备的参考点的位置确定。例如,以显示设备的中心为参考点,其在空间中所处的位置为(a,b,c),显示设备的宽为d,则两个天线组的位置分别为(a-d/2,b,c)和(a+d/2,b,c)。在一些实施例中,显示设备可以根据到达角和各个天线组的位置确定控制装置的位置。
S1104,显示设备在确定控制装置的位置属于预设范围内时,启动与控制装置建立蓝牙连接的流程。
其中,预设范围位于显示设备的显示方向上,即显示屏的正前方。
显示设备可以与控制装置在进行蓝牙连接之前首先确定控制装置的位置是否在预设的位置范围内,若在,则与控制装置建立蓝牙连接。若不在,则不建立蓝牙连接。由此可以解决空间中包括多个控制装置或者包括多个显示设备时,无法准确建立蓝牙连接的问题。
在一些实施例中,显示设备在根据蓝牙组件接收到的广播信号进行定位控制装置之前,还可以首先检测接收到的广播信号的信号强度。由于显示设备检测到的广播信号的信号强度越大,控制装置与显示设备的距离越短。在一些实施例中,显示设备中可以配置有距离与信号强度的对应关系,若检测到的广播信号的信号强度大于设定阈值,则可以确定发射该广播信号的控制装置与显示设备的距离小于预设距离。预设范围指示的显示设备与控制装置的距离小于或者等于预设距离。例如,预设距离为6米,那么预设范围可以为显示设备的显示方向上的6米范围。基于此,显示设备可以在计算控制装置的位置之前,先判断其与自身的距离,若距离不符合要求就不需要进行计算位置,节约计算资源。
在另外一些情况下,若显示设备接收到广播信号之后,根据广播信号的信号强度确定发送该广播信号的控制装置与显示设备的距离小于预设距离,但是在计算出控制装置的位置之后,确定该位置不属于预设范围(例如在显示设备侧面),显示设备还可以在显示界面中显示提示信息,用于指示将控制装置移动至预设范围,例如,可以参见图10所示的显示界面。
在一些实施例中,显示设备可以在检测到控制装置的位置属于预设范围之后,停止计算控制装置的位置。已知显示设备在计算控制装置的位置时,是通过天线组接收来自控制装置的蓝牙信号,根据不同的天线接收到的蓝牙信号确定每根天线的相位值,进一步计算每个天线组的相位差,根据相位差确定每个天线组的到达角,然后根据到达角和天线组的位置确定控制装置的位置。可以看出,在计算控制装置的位置的过程中,显示设备需要切换不同的天线进行接收来自控制装置的蓝牙信号,以获取每根天线对应的相位值。所以,在一些情况下,显示设备可以在已经确定控制装置位于预设范围时,停止切换天线的操作,选取天线组中的一根天线进行与控制装置建立蓝牙连接的过程。在一些实施例中,选取的天线可以是预先配置好的,例如可以是天线组中最靠近显示设备外壳的一根天线或者性能最好的一根天线,后续将该天线称为第一天线。显示设备在确定控制装置位于预设范围之后,将只通过第一天线接收蓝牙信号,与控制装置建立蓝牙连接。
在一些实施例中,显示设备与控制装置蓝牙连接的过程可以参见图11所示的流程图,具体包括:
S1301,显示设备通过第一天线向控制装置发送连接请求。
S1302,控制装置接收连接请求,确认显示设备为待连接的设备。
在一些实施例中,显示设备发送的连接请求中可以包括显示设备的标识。
S1303,显示设备通过第一天线向控制装置发送鉴权信息。
例如,鉴权信息可以为Authentication。在一些实施例中,控制装置发送的广播信号中包括用于指示承载数据的数据信道的信息,显示设备在接收到来自控制装置的广播信号时就可以确定与控制装置进行数据交互的数据信道。显示设备可以通过第一天线在数据信道上发送鉴权信息。其中,鉴权信息可以包括询问控制装置支持的蓝牙版本的信息、询问控制装置支持功能的信息或者建立密钥的请求等。在一些实施例中,显示设备可以依次发送上述鉴权信息,例如,显示设备先发送询问控制装置支持的蓝牙版本的信息,然后在接收到控制装置回复的可支持的版本信息之后再继续发送询问控制装置支持功能的信息,依次类推。在一些实施例中,显示设备也可以一次性发送所有的鉴权信息。
S1304,显示设备确定控制装置支持密钥连接。
S1305,向控制装置发送连接密钥。
在一些实施例中,连接密钥可以由显示设备随机生成。
S1306,控制装置接收连接密钥,向显示设备返回连接密钥确认信息。
显示设备在接收到连接密钥确认信息时,就可以通过密钥与控制装置建立蓝牙连接了。在一些实施例中,在建立蓝牙连接之后,显示设备与控制装置每个设定时长后进行一次握手通信,确保双方都处于连接状态。当握手通信失败时,显示设备会断开蓝牙连接并通过蓝牙组件在广播信道上进行扫描,其中,所述在广播信道上进行扫描是用于回连的扫描。当扫描到控制装置发送的广播信号时,可以根据广播信号的指示去对应的数据信道上发送携带密钥的回连请求。其中,回连请求用于当显示设备与已配对的控制装置断开连接时,用于重新建立连接而发送给控制装置的连接请求,其携带有显示设备的设备标识和用于校验的验证密钥。控制装置接收到回连请求时,可以根据密钥重新与显示设备建立连接。
本申请提出的蓝牙连接的方法可以应用于多种场景中,例如显示设备与控制装置进行配对的场景或者解配场景等。下面,结合具体场景对本申请提出的方案进行介绍。
场景一:配对场景。
在一些实施例中,以配对场景中包括两个显示设备(后续分别简称为第一显示设备和第二显示设备)和一个控制装置为例进行介绍。在该场景中,控制装置可以是位于左侧的显示设备(以左侧的显示设备为第一显示设备为例)的正前方的。第一显示设备可以通过第一显示设备包括的至少两个天线组在广播信道上扫描蓝牙信号。第二显示设备也可以通过第二显示设备包括的至少两个天线组在广播信道上扫描蓝牙信号。若第一显示设备和第二显示设备均扫描到来自控制装置的广播信号,则第一显示设备和第二显示设备均可以根据广播信号计算控制装置的位置。其中,广播信号中包括用于检测广播信号的相位值的CTE。下面以第一显示设备为例介绍计算控制装置位置的过程。第一显示设备可以首先根据广播信号中的CTE确定每根天线对应的相位值,然后根据每根天线的相位值计算每个天线组的相位差,进而可以根据每个天线组的相位差计算每个天线组的到达角。显示设备确定控制装置的位置的详细过程可以参见前面结合公式(1)-(3)对基于蓝牙AOA的定位方法的详细说明,在此不再赘述。
在一些实施例中,第一显示设备和第二显示设备中可以分别配置有一个可连接的位置范围,该可连接的位置范围可以为第一(或第二)显示设备的显示方向上的位置范围。为了便于描述,后续称为预设范围。第一显示设备在确定控制装置的位置之后,可以进一步确定该位置是否位于第一显示设备的预设范围内。同理,第二显示设备也可以确定控制装置的位置是否位于第二显示设备的预设范围内。若控制装置的位置属于第一显示设备的预设范围,而不位于第二显示设备的预设范围内,则第一显示设备启动与控制装置进行蓝牙连接的过程,第二显示设备不会启动建立蓝牙连接的流程。具体建立蓝牙连接的过程可以参见上述图11,在此不再详述。
相关技术中,显示设备在检测到来自控制装置的蓝牙信号之后,就会在广播信道上向控制装置发送连接请求。例如,在场景一中,第一显示设备和第二显示设备都会在广播信道上发送连接请求,这样可能会导致两个设备方法的连接请求互相干扰,造成两条连接请求都发送失败的情况。本申请提出的方案中,当第一显示设备和第二显示设备都检测到控制装置发送的蓝牙信号时,两个设备不会直接发送连接请求,而是先计算控制装置的位置,并确定控制装置的位置是否在自身的预设范围内,若不在的话,将不会向控制装置发送连接请求,避免影响其他的显示设备与控制装置建立蓝牙连接。
下面,结合显示设备和控制装置中包括的蓝牙组件对场景一下的具体实现方式进行介绍,为了便于表述,后续将显示设备中包括的蓝牙组件中的蓝牙控制器称为第一蓝牙控制器CTR_A,将显示设备中包括的处理器称为第一处理器PROC_A,将控制装置中包括的蓝牙控制器和处理器分别称为第二蓝牙控制器CTR_B和第二处理器PROC_B。参见图12,为本申请一些实施例的场景一下的一个具体的实现流程,具体包括:
S1401,第一蓝牙控制器CTR_A通过天线扫描广播信道,接收到来自控制装置的广播信号。
S1402,第一蓝牙控制器CTR_A将接收到的广播信号发送到第一处理器PROC_A。
S1403,第一处理器PROC_A根据广播信号确定控制装置的位置,并确定控制装置的位置属于预设范围。
S1404,第一处理器PROC_A向第一蓝牙控制器CTR_A发送连接指令。
其中,连接指令用于指示控制装置满足建立蓝牙连接的要求,可以与其建立蓝牙连接。
S1405,第一蓝牙控制器CTR_A接收连接指令,向第二蓝牙控制器CTR_B发送连接请求。
在一些实施例中,第一蓝牙控制器CTR_A可以在广播信道中发送连接请求。连接请求中可以包括显示设备的标识。
S1406,第二蓝牙控制器CTR_B接收连接请求,向第二处理器PROC_B转发连接请求。
第二处理器PROC_B可以将连接请求中的显示设备的标识进行存储。
S1407,第一蓝牙控制器CTR_A向第一处理器PROC_A发送连接指令确认信息。
其中,连接指令确认信息用于指示已经发送连接请求。在一些实施例中,第一处理器PROC_A在接收到连接指令确认信息之后,可以在显示设备的显示屏中显示用于指示正在建立蓝牙连接的信息。
上述步骤S1406和步骤S1407可以不分先后顺序。
S1408,第一蓝牙控制器CTR_A向第二蓝牙控制器CTR_B发送鉴权信息和连接密钥。
S1409,第二蓝牙控制器CTR_B向第一蓝牙控制器CTR_A发送鉴权信息的回复信息和连接密钥确认信息。
由此,显示设备与控制装置可以通过连接密钥建立蓝牙连接。显示设备和控制装置中都可以保存对方的标识和连接密钥。
上述举例均以场景中包括多个显示设备和一个控制装置为例进行介绍的。本申请提出的方法还可以用于一个现实设备与多个控制装置的场景。当存在多个控制装置和一个显示设备时,显示设备还可以计算各个控制装置的位置,并判断各个控制装置的位置是否位于自身的预设范围,然后与位于自身预设范围内的控制装置建立连接。例如,在该场景中,显示设备可以与位于中间的控制装置建立连接。
场景二:解配场景。
在一些实施例中,当显示设备与控制装置建立蓝牙连接之后,当控制装置与显示设备断开连接时,例如,控制装置可以响应于用户按动某一个按键(比如菜单键)的操作确定需要与显示设备断开连接,删除存储的显示设备的标识和连接密钥,此时显示设备再启动回连流程时,向控制装置发送带有连接密钥的回连请求,由于控制装置中已经删除连接密钥,所以控制装置接收到回连请求后也无法根据连接密钥与显示设备重新建立连接,回连失败,显示设备会将存储的控制装置的标识和连接密钥删除,解除配对。但是,相关技术中,当场景二中存在多个显示设备时,可能会出现解配失败的问题。例如,以场景二中包含第一显示设备和第二显示设备为例,第一显示设备为与控制装置配对的显示设备。控制装置与第一显示设备断开连接,删除第一显示设备的标识和连接密钥,并向外发送广播信号。此时,若第二显示设备先接收到广播信号,第二显示设备就会与控制装置建立连接,导致第一显示设备无法与控制装置进行验证连接密钥,也就导致第一显示设备无法解配成功。本申请提出的建立蓝牙连接的方法中,第二显示设备在接收到广播信号后,会先进行确定控制装置的位置是否在第二显示设备的预设范围内,若不在,则会禁止启动与控制装置及建立连接的流程,那么就不会影响第一显示设备的解配过程。
场景三:一触即连场景。
相关技术中,实现显示设备与控制装置一触即连采用的方法是通过在显示设备上添加近距离无线通信(Near Field Communication,NFC)模块,控制装置靠近显示设备中NFC模块的位置,与显示设备连接。但是这种方法成本较高。
本申请一些实施例提供了一种一触即连的方法,通过蓝牙定位技术,确定控制装置的位置,在确定控制装置与显示设备的设定区域重叠时,建立控制装置与显示设备的连接。
在一些实施例中,显示设备可以在检测到来自控制装置的蓝牙信号时,进行计算控制装置的位置。显示设备在确定控制装置的位置之后,可以进一步确定控制装置与显示设备的设定区域是否重叠。例如,可以参见图13所示的场景图,显示设备的设定区域为显示设备左上角的区域A,区域A的长为a,宽为b。设显示设备的参考点的位置为(0,0,0),显示设备的长为2c,宽为2d,则显示设备设定区域内包括的位置范围为:0>x>a-c,0<y<d-b,z=0。当控制装置的位置满足该范围时,即可以与显示设备建立连接。
在一些实施例中,如果显示设备确定控制装置的位置的z=0,但是控制装置的x坐标和y坐标不满足上述的范围的情况下,显示设备还可以在显示界面中显示如图14所示的显示界面,以提示用户移动控制装置至显示设备的设定区域。
(2)与针对显示设备的画中画窗口调节关联的实施方式
画中画(PiP,Picture-in-Picture)是一种呈现方式,通过一大一小两个画面叠加写的方式,呈现两个窗口显示,主要以视频显示为主,视频来源可以是不同的电视频道、视频播放源、摄像头、游戏设备等。但随着对显示设备的应用,也不局限于视频显示,还可以是网页显示等。相关技术关于画中画视图显示区的控制或调整主要是用户通过控制装置(如遥控器)控制操作菜单实现画中画显示区域的显示控制,例如,用户通过遥控器在第一级菜单中选择窗口设置,在第二级菜单(第一级菜单的子菜单)选择窗口大小或者窗口位置,在第三级菜单(第二级菜单的子菜单)选择列出的具体窗口大小或者具体窗口位置。然而,上述控制或调整画中画视图显示区的操作过程繁琐,只能根据已有列出的选项设置画中画视图显示区,用户体验感差。
本申请一些实施例提供一种显示设备,所述显示设备包括显示屏、蓝牙控制器和处理器;所述处理器与所述显示屏和所述蓝牙控制器连接;所述蓝牙控制器,被配置为通过多个蓝牙天线与控制装置蓝牙通信,所述蓝牙控制器基于蓝牙5.1,支持蓝牙AOA定位技术,AOA法通过信号的角度信息进行定位估算,控制装置(发射端)利用单一天线发射寻向讯号,显示设备(接收端)内置天线阵列,当信号通过时,因阵列中接收到距离不同而产生相位差异,提高定位的精确度。
多个蓝牙天线构成天线阵列,接收控制装置发射的控制指令或请求,蓝牙控制器与多个蓝牙天线之间设置开关,所述开关用于控制蓝牙天线选择或切换。蓝牙天线一般是贴片天线,在不影响显示设备外观的前提下,保证功能的正常;也可以是其他的隐藏式天线。
在显示设备开启画中画功能时,处理器启动基于蓝牙AOA定位交互功能,且与同样具备蓝牙AOA定位技术的控制装置进行交互。在显示设备关闭画中画功能时,处理器将基于蓝牙AOA定位交互功能关闭。
如图15所示,显示屏显示用户界面,所述用户界面包括第一视图显示区2601和第二视图显示区2602,所述第一视图显示区是全屏显示,所述第二视图显示区以画中画显示在所述第一视图显示区上。
控制装置可以是遥控器,显示设备与遥控器之间通过各自的蓝牙控制器实现无线连接。在一些实施例中,可以是基于蓝牙协议的无线通信,且支持蓝牙AOA定位技术。
处理器检测到控制装置的位置在第二视图显示区内,用户可通过控制装置选择第二视图显示区的菜单,控制选择窗口大小请求,即处理器通过蓝牙控制器接收的第一控制请求,例如图15中菜单2603,通过菜单选择对于第二视图显示区的窗口大小的设定。
在一些实施例中,菜单2603是在OSD(On ScreenDisplay)层展示,菜单可以是透明OSD显示,可以是透明颜色OSD显示,也可以是颜色OSD显示。
处理器通过所述蓝牙控制器接收用户输入的第一控制请求,确定所述控制装置在所述第二视图 显示区的实时位置坐标,以及,起始位置坐标。所述第一控制请求是用户通过控制装置输入的关于所述第二视图显示区调整显示大小的请求。显示设备通过蓝牙天线、蓝牙控制器接收无线电波数据包,从无线电波数据包提出请求数据解析为第一控制请求,同时从无线电波数据包获取对应的位置信息,建立显示设备中控制装置的位置坐标与控制装置之间的对应关系。
在一些实施例中,获取显示设备端的天线阵列,以及对应蓝牙天线的位置,对接收的无线电波数据包分析,确定显示设备的蓝牙天线与控制装置的蓝牙天线之间的角度和位置。对于选择的蓝牙天线,基于蓝牙AOA定位技术,建立显示设备的中坐标信息与控制装置的位置之间的对应关系。
处理器通过所述蓝牙控制器接收用户输入的移动请求,通过对移动请求的移动趋势方向的判断确定有效起始坐标,以及,通过对移动请求变化的判断确定有效终止坐标,所述移动请求包含所述控制装置的位置信息。
有效起始坐标的确定,处理器获取第一预设时间内的移动请求,确定所述控制装置的第一移动趋势方向;获取第二预设时间内的移动请求,确定所述控制装置的第二移动趋势方向,所述第二预设时间在所述第一预设时间之后;当所述第一移动趋势方向和所述第二移动趋势方向相同时,对应的起始位置坐标为有效起始坐标。
例如,先获取Nms时间内控制装置的移动请求,通过对其移动请求的计算,确认第一移动趋势方向为N1,再获取Mms时间内控制装置的移动请求,通过对其移动请求的计算,确认第二移动趋势方向为N2。比较N1和N2的方向,若相同,则对应的起始位置坐标为有效起始坐标,否则,有效起始坐标的确认无效。需要重复上述的过程再次确定有效初始坐标。
在一些实施例中,第一移动趋势方向和第二移动趋势方向可以是一个方向的范围,比如可以将360°划分为8个方向,每个方向的区间范围为45°。例如,以向右水平为0°,右上方为22.5°到67.5°,上方为67.5°到112.5°。
在一些实施例中,移动趋势方向,可以根据移动请求的坐标信息,确定一段时间内的起止位置的斜率,从而确定移动趋势方向。坐标信息可以是第一视图显示区的坐标系,也可以是第二视图显示区的坐标系。
如图16所示,有效终止坐标的确定是当所述移动请求超出所述第二视图显示区的边界,确定对应边界的坐标为有效终止坐标。且超出第二视图显示区边界的轨迹将不显示。
如图17所示,有效终止坐标的确定,获取所述移动轨迹的第一移动方向J;当所述移动轨迹呈现出与第一移动方向J相反的第二移动方向K时,确定所述移动轨迹的第一移动方向J对应的终点坐标为有效终止坐标。
根据所述有效起始坐标和所述有效终止坐标,确定所述移动请求的移动轨迹,例如,以第二视图显示区的坐标系确定的有效起始坐标和有效终止坐标;以有效起始坐标为原点坐标重新定义的相对坐标系,通过计算相对于原点坐标的相对有效终点坐标的斜率和相对纵坐标Y,确定移动轨迹。
如图18A-图18H所示,在所述第二视图显示区中呈现所述移动轨迹,以及根据所述移动轨迹的方向调整所述第二视图显示区的显示大小。例如,图18A示出当确定移动轨迹为箭头所指右上方时第二视图显示区2602会向右和向上分别拉伸,且第二视图显示区2602窗口大小变为2602a。类似地,图18B-图18H分别示出了当确定移动轨迹为箭头所指的相应方向时第二视图显示区2602会向相应方向拉伸,其中第二视图显示区2602窗口大小分别变为2602b-2602h。
第二视图显示区窗口大小的变化可以取决于移动轨迹的长短;在一些实施例中窗口大小的变化可以取决由移动请求的速度,也可以是移动轨迹长短和移动请求速度共同决定。
在一些实施例中移动请求并非如图18A-图18H所示的绝对直线,移动请求可能是存在弧度,移动轨迹根据有效起始坐标和有效终止坐标确定的,移动轨迹可以如图18A-图18H所示带箭头的线条,也可以是不带箭头的线条,也可以是粗细不等的线条等其他呈现轨迹的方式;移动轨迹也可以隐藏。
在一些实施例中,移动轨迹也可以根据有效起始坐标、有效终止坐标以及移动请求来确定,可能呈现的轨迹是存在弧度,模拟用户实际对控制装置的操作手势。
本申请提供一种显示设备,包括显示屏、蓝牙组件和处理器;所述处理器与所述显示屏和所述蓝牙组件连接,所述蓝牙组件与控制装置(例如遥控器)进行无线连接。所述显示屏被配置为显示第一视图显示区和第二视图显示区,所述第一视图显示区是全屏显示,所述第二视图显示区以画中画显示在所述第一视图显示区上。所述处理器被配置为:响应于所述蓝牙组件接收用户输入的第一控制请求,确定所述控制装置在所述第二视图显示区的实时位置坐标,以及,起始位置坐标,其中,所述第一控制请求是用户通过控制装置输入的关于所述第二视图显示区调整显示大小的请求;响应于所述蓝牙组件接收用户输入的移动请求,确定有效起始坐标,以及有效终止坐标;根据所述有效起始坐标和所述有效终止坐标,确定所述移动请求的移动轨迹,以及,在所述第二视图显示区中呈现所述移动轨迹;根据所述移动轨迹的方向调整所述第二视图显示区的显示大小。实现交互控制第二视图显示区的显示大小,操作简单,提升用户的体验感。
本申请一些实施例提供还一种显示设备,处理器检测到控制装置的位置在第二视图显示区内,用户可通过控制装置选择第二视图显示区的菜单,控制选择窗口位置请求,即处理器通过蓝牙组件接收的第二控制请求,例如图15中菜单2603,通过菜单选择对于第二视图显示区的窗口位置的设定。
处理器通过所述蓝牙组件接收用户输入的第二控制请求,确定所述第二视图显示区被选中。第二控制请求是用户通过控制装置输入的关于所述第二视图显示区调整显示位置的请求。
显示设备通过蓝牙天线、蓝牙组件接收无线电波数据包,从无线电波数据包提出请求数据解析 为第二控制请求,同时从无线电波数据包获取对应的位置信息,建立显示设备中控制装置的位置坐标与控制装置之间的对应关系。响应于所述蓝牙组件接收用户输入的移动请求,根据所述移动请求确定所述第二视图显示区的移动轨迹,移动请求包含所述控制装置的位置信息;如图19所示的箭头,根据用户输入的移动请求,展示第二视图显示区的移动轨迹。
通过所述蓝牙组件接收用户输入的取消请求,确定所述第二视图显示区移动后的显示位置。如图19所示,移动后的第二视图显示区可能是在2602m的位置,也可能是在2602n的位置,也可能是在2602o的位置,也可能是在2602p的位置,实际操作不局限于上述四种位置,而是根据用户输入的信号来确定移动的显示位置。
如图19中2602n和2602p对应的情况,当所述第二视图显示区的部分区域移出所述第一视图显示区边界时,所述第二视图显示区对应的区域不显示。
显示位置的移动轨迹可以时带箭头的线条,也可以是不带箭头的线条,也可以是粗细不等的线条等其他呈现轨迹的方式;移动轨迹也可以隐藏。
本申请还提供一种显示设备,包括显示屏、蓝牙组件和处理器;所述处理器与所述显示屏和所述蓝牙组件连接,所述蓝牙组件与控制装置进行无线连接。所述显示屏被配置为显示第一视图显示区和第二视图显示区,所述第一视图显示区是全屏显示,所述第二视图显示区以画中画显示在所述第一视图显示区上。所述处理器被配置为响应于所述蓝牙组件接收用户输入的第二控制请求,确定所述第二视图显示区被选中,其中,所述第二控制请求是用户通过控制装置输入的关于所述第二视图显示区调整显示位置的请求;响应于所述蓝牙组件接收用户输入的移动请求,根据所述移动请求确定所述第二视图显示区的移动轨迹;响应于所述蓝牙组件接收用户输入的取消请求,确定所述第二视图显示区移动后的显示位置。实现交互控制第二视图显示区的显示位置,操作简单,提升用户的体验感。
本申请一些实施例提供一种基于蓝牙AOA的窗口调节方法,用户开启画中画功能,处理器显示第二视图显示区,并启动基于蓝牙AOA定位交互功能与同样具备蓝牙AOA定位技术的控制装置进行交互。用户将控制装置移动到第二视图显示区时,处理器检测到控制装置的位置在第二视图显示区内,用户可通过控制装置选择第二视图显示区的菜单,当选择菜单中窗口大小时,所述控制方法包括如下步骤:
处理器通过蓝牙组件接收用户输入的第一控制请求,确定控制装置在第二视图显示区的实时位置坐标,以及,确定起始位置坐标。其中,所述第一控制请求是用户通过控制装置输入的关于所述第二视图显示区调整显示大小的请求,所述第一控制请求包含所述控制装置的位置信息,根据第一控制请求中包含请求信息和控制装置的位置信息,确定对应在第二视图显示区的实时位置坐标。
处理器通过所述蓝牙组件接收用户输入的移动请求,确定有效起始坐标,以及有效终止坐标。移动请求包含所述控制装置的位置信息,结合基于蓝牙AOA定位,将控制装置的位置信息转化为显示屏显示的坐标信息,并通过如下方法确定有效起始坐标和有效终止坐标。
其中,有效起始坐标的确定可以是处理器获取第一预设时间内的移动请求,确定所述控制装置的第一移动趋势方向;获取第二预设时间内的移动请求,确定所述控制装置的第二移动趋势方向,所述第二预设时间在所述第一预设时间之后;当所述第一移动趋势方向和所述第二移动趋势方向相同时,对应的起始位置坐标为有效起始坐标。
有效终止坐标的确定可以是当所述移动请求超出所述第二视图显示区的边界,确定对应边界的坐标为有效终止坐标。且超出第二视图显示区边界的轨迹将不显示。
根据所述有效起始坐标和所述有效终止坐标,确定所述移动请求的移动轨迹,以及,在所述第二视图显示区中呈现所述移动轨迹。
根据所述移动轨迹的方向调整所述第二视图显示区的显示大小。
本申请提供一种基于蓝牙AOA的窗口调节方法,响应蓝牙组件接收用户请求或信号;用户输入的第一控制请求确定控制装置在第二视图显示区的实时位置坐标和起始位置坐标;用户输入的移动请求确定有效起始坐标和有效终止坐标;根据有效起始坐标和有效终止坐标,确定移动请求的移动轨迹,并在第二视图显示区中呈现移动轨迹;根据移动轨迹的方向调整第二视图显示区的显示大小。本申请通过交互方式控制第二视图显示区的显示,操作简单,提升用户的体验感。
本申请一些实施例提供一种基于蓝牙AOA的窗口调节方法,所述控制方法包括如下步骤:
处理器通过蓝牙组件接收用户输入的第二控制请求,确定第二视图显示区被选中,所述第二控制请求用于调节第二视图显示区窗口的位置。所述第二控制请求是用户通过控制装置输入的关于所述第二视图显示区调整显示位置的请求,第二控制请求包含所述控制装置的位置信息。根据第二控制请求中包含请求信息和控制装置的位置信息,确定对应在第二视图显示区的实时位置坐标。
通过所述蓝牙组件接收用户输入的移动请求,根据所述移动请求确定所述第二视图显示区的移动轨迹,所述移动请求包含所述控制装置的位置信息。
通过所述蓝牙组件接收用户输入的取消请求,确定所述第二视图显示区移动后的显示位置,所述取消请求包含所述控制装置的位置信息。
本申请提供一种基于蓝牙AOA的窗口调节方法,响应蓝牙组件接收用户请求或信号;用户输入的第二控制请求确定第二视图显示区被选中;根据用户输入的移动请求确定所述第二视图显示区的移动轨迹;用户输入的取消请求确定所述第二视图显示区移动后的显示位置。本申请通过交互方式控制第二视图显示区的显示,操作简单,提升用户的体验感。
(3)与通过遥控装置的移动来控制显示设备关联的实施方式
相关技术中,对显示设备的遥控方法是通过用户按动遥控器上的按键以及预先定义好的各个按键的指示命令来实现遥控显示设备,这种遥控方法能够实现的控制指令比较少,只能进行简单的调台或者调节音量等。如果想要实现对于显示设备的触控操作,需要给显示设备配置触摸屏和触控系统,使得显示设备的成本较高。
本申请一些实施例提供了一种显示设备及控制显示设备的方法,显示设备通过检测控制装置在显示设备所处的空间包括的长方体空间中的位置变化轨迹确定需要执行的指令,即本申请在不需要配置触控系统和触摸屏的基础上提出了一种类似于触控操作的方法,通过控制装置实现更多的控制指令。
根据本申请一些实施例提出的控制显示设备的方法可以由显示设备来执行。一种控制显示设备的方法,具体包括如下步骤:
显示设备接收来自控制装置的蓝牙信号。
在一些实施例中,显示设备中包括用于接收蓝牙信号的天线组,显示设备可以通过天线组持续接收来自控制装置的蓝牙信号。其中,显示设备可以包括的天线组的数量可以大于或者等于2。
显示设备根据蓝牙信号对控制装置进行定位,并获取控制装置在配置的长方体空间内的移动轨迹。
其中,长方体空间是显示设备所处的空间中的一个长方体形状的空间。长方体空间是预先基于用户配置的一个平面通过设定规则形成的,后续将该平面称为第一面,第一面是长方体空间的外表面中的一个面。第一面在配置的空间坐标系中的位置与显示屏包括的各个像素在空间坐标系中的位置存在映射关系,第一面的尺寸与显示屏的尺寸存在比例关系。在一些实施例中,在建立第一面与显示屏的对应关系时,可以将第一面切分成M个小方格,M个小方格中每个小方格的边长可以为蓝牙的定位精度,每个小方格都对应到显示屏中的对应区域上。在一些实施例中,空间坐标系是在显示设备中预先配置的,用于指示显示设备所处的空间,空间坐标系的原点为显示设备的参考点,例如显示设备的参考点可以是显示设备的中心点或者显示设备中天线组的位置。
在一些实施例中,显示设备接收到的来自控制装置的蓝牙信号中可以包括用于定位的固定频率拓展信号CTE,显示设备可以通过检测蓝牙信号中包括的CTE对控制装置进行定位,获取控制装置在空间坐标系中的位置坐标,后续为了便于描述,将控制装置在空间坐标系中的位置坐标简称为控制装置的位置。
显示设备在确定控制装置的位置之后,可以进一步判定控制装置的位置是否位于长方体空间中。一种可能的实现方式中,显示设备中可以配置有长方体空间的坐标范围,比如:a<x<b,c<y<d,e<z<f,显示设备在确定控制装置的位置之后,判断其位置是否满足上述范围。若满足,则可以确定控制装置位于长方体空间中。显示设备在确定控制装置位于长方体空间中之后,可以记录控制装置在长方体空间中的移动轨迹,即记录控制装置的位置随着时间的变化情况,形成控制装置的移动轨迹。为了便于描述,可以将控制装置在长方体空间中的移动轨迹称为第一移动轨迹。
显示设备根据第一移动轨迹和显示屏当前的显示界面,确定待执行的控制指令。
在一些实施例中,显示设备可以根据第一面在空间坐标系中的位置与显示屏包括的各个像素在空间坐标系中的位置存在的映射关系,确定第一移动轨迹投影到显示屏中的第二移动轨迹。为了能够更清晰的理解根据映射关系从长方体空间中的移动轨迹投影到显示屏的过程,以一个具体的举例进行说明。
例如,控制装置在长方体空间中形成的第一移动轨迹的某一点(例如,称为第一点)的坐标为(10,20,30),第一面的坐标范围为:9<x<15,19<y<23,z=10,则该第一点投影到第一面上得到的点(例如,称为第二点)的坐标为(10,20,10)。第一面与显示屏的映射关系可以为x1=x-9,y1=y-10,z1=z-10,其中,x、y、z表示第一面上的坐标,x1、y1、z1表示显示屏上各个像素的坐标。那么第一面上的第二点(10,20,10)进一步根据映射关系从第一面投影到显示屏上得到的点(例如,称为第三点)的坐标为(1,10,0)。由此,显示设备可以根据上述映射方法,将第一移动轨迹映射到显示屏中获取第二移动轨迹。
在一些实施例中,显示设备中还可以被配置有显示屏上的移动轨迹与控制指令的对应关系。例如,当显示屏中在播放视频时,移动轨迹为向右侧划过1厘米,对应的控制指令为将播放的视频快进10秒。显示设备在确定第二移动轨迹之后,可以根据预先配置的移动轨迹与控制指令的对应关系确定第二移动轨迹对应的控制指令,然后执行该控制指令。
由于在相关技术中,想要实现对于显示设备的触屏操作需要给显示设备配置触控系统和触摸屏,成本较高。而本申请提出了一种类似触控的控制方法,获取控制装置在显示设备所处空间中包括的一个长方体空间中移动轨迹,根据预先配置的映射关系将该移动轨迹映射到显示设备的显示屏上,并根据映射后的轨迹与控制指令的映射关系确定需要执行的控制指令,从而实现对显示设备的控制。
在一些场景下,显示设备在根据控制装置在长方体空间中的移动轨迹确定待执行的控制指令之前,可以首先确定长方体空间的位置以及包括的范围。在一些实施例中,长方体空间可以是用户通过控制装置预先配置在显示设备中的,例如,在一种可选的方法中,用户可以针对不同的应用程序配置不同的长方体空间,显示设备还可以将应用程序与对应的长方体空间关联存储。当用户打开某一个的应用程序时,就可以通过控制装置在该应用程序对应的长方体空间中进行操作,以实现控制 显示设备。在一些实施例中,长方体空间还可以是用户在每一次使用之前进行配置的。下面,针对上面两种实施方式进行具体介绍。
在一些实施例中,长方体空间是在用户每一次使用之前进行配置的,下面对具体的配置过程进行介绍。在一些实施例中,显示设备可以提供如图20A所示的显示界面,图20A所示的显示界面中包括在显示设备所处的空间中以显示设备的参考点为原点建立的空间坐标系,例如,显示设备的参考点即为显示设备的中心点,如图20A中的A点。在一些实施例中,显示设备还可以根据用户预先输入的显示设备所处空间的平面图(或者也可以直接输入空间的三维立体图),对显示设备所处的空间进行三维建模,然后在建好的模型中构建以显示设备的参考点为原点的空间坐标系,例如,可以参见如图20B所示的显示界面。
在一些实施例中,显示设备可以通过天线组接收来自控制装置的蓝牙信号,根据蓝牙信号计算控制装置的位置。控制装置的位置即为控制装置在空间坐标系下的坐标。显示设备在确定控制装置的位置之后,可以根据接收到的来自控制装置的选择命令来确定长方体空间的第一面,然后基于第一面通过预先设定的规则形成长方体空间,所述选择命令用于指示用户在空间坐标系中选择的至少三个点。下面,对确定长方体空间的第一面以及根据第一面进一步确定长方体空间进行具体介绍。
在一些实施例中,控制装置可以响应于用户操作,比如可以是用户按动某一个按键的操作,将选择命令携带在蓝牙信号中发送给显示设备,显示设备可以根据接收到的选择命令在空间坐标系下确定长方体空间的第一面。在一些实施例中,显示设备可以接收来自控制装置的至少三个选择命令,每一个选择命令都对应于确认一个用于构建长方体空间的参考点,在确认至少三个参考点之后,根据至少三个参考点确定第一面。在一些实施例中,在根据至少三个选择命令确定至少三个参考点的过程中,可以将最先确认的两个参考点之间的连接线作为第一面的一条边。第一面的尺寸与显示屏的尺寸存在比例关系,比如,第一面的长与显示屏的长的比值和第一面的宽与显示屏的宽的比值可以是相同的。
下面,以一个具体的举例介绍显示设备根据选择命令确定参考点的过程进行介绍。例如,根据至少三个选择命令中的第一选择命令确定第一参考点。显示设备在接收到来自控制装置的第一选择命令时,根据此时获取到的控制装置的位置在显示屏所显示的空间坐标系中被显示为第一参考点,例如第一参考点可以为一个黑色的圆点,可以参见图20C所示的示意图,其中的B点即为第一参考点,第一参考点在显示屏中显示的空间坐标系下的坐标即为控制装置在实际的空间坐标系中的坐标。在一些实施例中,显示设备可以采用上述方法确定第二参考点、第三参考点和第四参考点等。三个参考点即可以确定一个平面(即第一面),当然也可以采用更多的参考点来确定第一面,本申请对于用于确定第一面的参考点的数量不作具体限定。
如下以显示设备通过三个参考点确定第一面为例进行介绍,将这三个参考点分别称为第一参考点、第二参考点和第三参考点,将对应于这三个参考点的选择命令分别称为第一选择命令、第二选择命令和第三选择命令。显示设备在确定第一参考点(即B点)之后,可以根据用户移动控制装置的操作,将控制装置的位置变化轨迹显示在显示界面中,例如可以参见图20D所示的示意图,其中的虚线即为确认B点之后的控制装置的移动轨迹。在一些实施例中,若显示界面中显示如图20D所示的示意图时,还可以进行显示确认B点之后的控制装置的移动轨迹的长度。当然,显示设备也可以不显示确认B点之后的控制装置的移动轨迹。在一些实施例中,显示设备可以在确认B点之后,根据接收到的第二选择命令来确定第二参考点并在显示屏中进行显示,例如可以显示如图20E所示的示意图,图20E所示的示意图中的C点即为第二参考点。在一些实施例中,显示设备可以在确定第二参考点之后,根据接收到的第三选择命令确定第三参考点。在一些实施例中,第三参考点可以在以BC连接线为轴的圆柱体内部或者侧面上任一点。例如可以参见图20F所示的示意图,第三参考点可以取图20F所示的圆柱体的侧面上或者圆柱体内部的任意一点。第三参考点不位于BC连接线上,图20F示出的圆柱体的底面圆半径与BC连接线的比值与显示设备的长宽比相等,或者底面圆半径与BC连接线的比值与显示设备的宽长比相等。显示设备在根据第三选择命令确定第三参考点之后,可以在显示屏中显示的空间坐标系中进行显示,例如可以显示如图20G所示的示意图,图20G所示的D点即为第三参考点。示例性地,确定的第三参考点(即D点)在图20F所示的圆柱体中的位置可以参见图20H所示的示意图,点D位于圆柱体的侧面的D 1D 2连接线上。由此,即可以确定长方形D 1D 2BC即为第一面。在一些实施例中,显示设备还可以在显示屏中显示确定好的第一面,例如,可以显示如图20I所示的示意图。
在一些实施例中,显示设备在确定第一面之后,可以基于第一面通过预先设定的规则生成长方体空间。例如,预先设定的规则可以是选取与第一面垂直的两个方向中的任意一个方向,在此方向上创建与第一面大小相同且与第一面平行的第二面,第二面与第一面之间的距离可以是预先设定好的,例如第一面和第二面之间可以间隔N倍的蓝牙的定位精度,其中,N可以大于或者等于2。示例性地,长方体空间的示意图可以参见图20J,图20J中长方形D 1D 2BC即为第一面,选取的垂直于第一面的方向即为R方向,基于R方向创建的长方形D 1'D 2'B'C'为第二面。其中,BB'连接线垂直于第一面和第二面。
显示设备在完成配置长方体空间之后,可以将长方体空间的范围进行存储,然后就可以根据检测到的控制装置的位置是否数据长方体空间的范围来判断控制装置是否位于长方体空间了。显示设备在确定控制装置位于长方体空间之后,就可以获取控制装置的移动轨迹,并根据移动轨迹确定需要执行的控制指令。
以上,介绍了显示设备在每一次使用之前配置长方体空间的过程。
在一些实施例中,长方体空间可以是预先配置在显示设备中的。例如,可以针对每个应用程序配置一个长方体空间。比如,在家用场景下,为视频类的应用程序创建长方体空间时,为了便于用户观看视频,可以将长方体空间的位置建立在用户坐在沙发上可以方便操作的位置。在一些实施例中,配置长方体空间的过程可以参见上述实施例中的介绍。在基于不同的应用程序预先配置长方体空间的情况下,显示设备在确定用户通过控制装置配置长方体空间之后,可以将长方体空间与对应的应用程序进行关联存储。以保证用户在下一次使用该应用程序时就可以去对应的位置通过控制装置进行相应操作以控制显示设备,不需要在每一次使用之前配置长方体空间,节约了用户的时间。
显示设备在响应用户打开某一个应用程序的操作,确定该应用程序对应的长方体空间的位置以及包括的范围,然后可以检测控制装置的位置是否位于该范围内,若在,即可以继续获取控制装置的位置随时间的变化情况(即控制装置在长方体空间内的移动轨迹)来执行对应的控制指令。
显示设备获取控制装置的位置的详细过程可以参见前面结合公式(1)-(3)对基于蓝牙的定位方法的详细说明,在此不再赘述。
示例性地,对显示设备如何根据控制装置的位置的变化获取控制装置的移动轨迹的过程进行简单的如下介绍。
在一些场景下,显示设备在计算控制装置的位置之后,还可以采用计算质心坐标的方式删除一些误差较大的位置点,然后通过删除误差大的位置点之后剩余的位置点组成控制装置的移动轨迹。在一些实施例中,显示设备可以获取预先设定的一段时间内的控制装置的多个位置点,可以计算所述多个位置点的质心坐标,然后删除所述多个位置点中距离质心坐标较远的位置点。例如,显示设备可以间隔第一设定时长计算一次控制装置的位置,比如间隔1秒钟,显示设备可以获取第二设定时长(大于第一设定时长,可以是多个第一设定时长的总时长)内,比如10秒,计算的控制装置的10个位置点,分别为:(x 3,y 3)、(x 4,y 4)、(x 5,y 5)……(x 13,y 13)。显示设备可以计算这10个位置点的质心坐标,例如,可以采用如下公式(4)-公式(5)计算上述10个位置点的质心坐标:
Figure PCTCN2022095742-appb-000005
Figure PCTCN2022095742-appb-000006
其中,(x c,y c)为上述10个位置点的质心坐标,m为上述10个位置点的质量和,M y为上述10个位置点分别相对于y轴的静力矩之和,M x为上述10个位置点分别相对于x轴的静力矩之和。
在一些实施例中,上述10个位置点分别相对于y轴的静力矩之和可以采用如下公式(6)计算得出:
Figure PCTCN2022095742-appb-000007
其中,M y为上述10个位置点分别相对于y轴的静力矩之和,m i为上述10个位置点中任一位置点的质量,x i上述10个位置点中任一位置点的横坐标。
在一些实施例中,上述10个位置点分别相对于x轴的静力矩之和可以采用如下公式(7)计算得出:
Figure PCTCN2022095742-appb-000008
其中,M x为上述10个位置点分别相对于x轴的静力矩之和,m i为上述10个位置点中任一位置点的质量,y i上述10个位置点中任一位置点的纵坐标。
显示设备在计算出上述10个位置点的质心坐标之后,可以分别计算该10个位置点与质心坐标的距离,将距离质心坐标最远的几个位置点删除,本申请对于删除位置点的数量不作具体限定。显示设备在删除之后,可以根据剩余的位置点获取控制装置的移动轨迹。或者,显示设备还可以对剩余的位置点取平均值,然后将平均后的结果作为在这10秒内控制装置的位置。
在在一些实施例中,显示设备在根据控制装置的多个位置点确定控制装置的运动轨迹时,还可以采用最小二乘法对控制装置的运动轨迹进行平滑化处理。即,显示设备可以根据计算得到的多个控制装置的位置点确定一条拟合度最好的曲线(拟合度指的是曲线与实际计算得到的多个位置点的吻合程度),并可以以这条曲线作为控制装置的运动轨迹。例如,显示设备可以采用人工预先配置的一条曲线(或者一条直线)去逼近计算得到的多个位置点,使得预先配置的曲线上的点与各个位置点的残差的加权平方和达到最小,从而使得该曲线相对于多个位置点的拟合度最好。将该曲线作为控制装置的运动轨迹。采用这种方法获取的运动轨迹更加平滑且更加贴近控制装置在空间中实际的运动轨迹。
由于蓝牙信号在传输过程中可能会存在信号噪声、时钟抖动和信号传播延迟等问题,尤其是在室内的环境中,还可能会出现信号遮挡以及信号反射等问题。这些问题都会导致显示设备计算得到的控制装置的位置存在误差,那么同时就会导致显示设备获取的控制装置的移动轨迹有偏差。通过计算一定时长内多个位置点的质心坐标,删除距离质心坐标较远的位置点,可以提升显示设备获取的控制装置的轨迹的准确性。并且显示设备在确定运动轨迹时,还可以采用最小二乘法对运动轨迹进行平滑化处理,确定一条与实际计算的位置点拟合度最高的曲线作为控制装置的运动轨迹。
在一些实施例中,显示设备在配置长方体空间之后,还可以进一步配置一个识别空间,该识别空间可以与长方体空间共用一个面,识别空间的大小和形状可以与长方体空间相同,也可以不相同,本申请对于识别空间的大小和形状不作具体限定。在一些实施例中,长方体空间和识别空间所共用 的那个面可以是与显示屏存在映射关系的第一面,也可以是长方体空间中与第一面平行的那个面。为了便于描述,将长方体空间与识别空间共用的面简称为第二面,第二面的中心点到显示屏所在平面的距离小于识别空间其他的面到显示屏所在平面的距离。也就是说,相比与长方体空间,识别空间可以距离显示设备更远,距离用户更近,以方便用户操作。例如,在图20J示出的长方体空间的基础上,识别空间的示意图可以参见图21A。在图21A中长方体L 1即为长方体空间的示意图,长方体L 2即为识别空间的示意图。长方体L 1和L 2共用的面为长方形D 1D 2BC。当然,长方体L 1和L 2也可以共用与长方形D 1D 2BC平行的面,即长方形D 1'D 2'B'C',在图21A中,以长方体L 1和L 2共用长方形D 1D 2BC为例进行展示。
在一些实施例中,显示设备在进行确定控制装置的位置是否位于长方体空间之前,还可以先确定控制装置的位置位于识别空间。也可以理解为,显示设备确定控制装置是否经过识别空间到达长方体空间。在一些实施例中,若显示设备确定控制装置并不是经过识别空间到达长方体空间,而是通过其他的路径到达长方体空间时,显示设备将不会根据控制装置的移动轨迹执行相应的控制指令。由此避免用户误操作的问题。
在一些实施例中,显示设备在检测到控制装置的位置位于识别空间之后,还可以确定控制装置在识别空间的位置投射到第一面上形成的点的坐标,为了便于描述,将该投射到第一面上的点称为第一点。在一些实施例中,显示设备可以根据第一面和显示屏的映射关系确定第一点投影到显示屏上的投影位置,为了便于描述,后续将该投影位置简称为第二点,还可以在显示屏中显示第二点,例如可以通过黑色圆点或者箭头的形式显示第二点。例如,可以参见图21B,图21B展示了在播放视频的过程中,显示设备确定控制装置的位置位于识别空间时,在当前的显示界面中以箭头的形式显示第二点。
显示设备可以在确定控制装置位于识别空间之后,再确定控制装置是否到达长方体空间,若到达,即根据控制装置在长方体空间中的移动轨迹执行相应的控制指令。
本申请提出的控制显示设备的方法可以应用于视频播放、音频播放或者绘图等多个场景中,下面,以视频播放的场景为例对本申请提出的方案进行具体介绍。
在一些实施例中,显示设备在播放视频时,可以获取存储的视频播放场景对应的长方体空间和识别空间的位置和包括的范围等信息。存储的长方体空间的信息可以是在播放视频之前配置的,也可以是用于预先配置好并存储在显示设备中的。显示设备在播放视频的过程中可以持续获取来自控制装置的蓝牙信号,并根据持续接收到的蓝牙信号确定控制装置的位置,即控制装置位于空间坐标系下的坐标。进而显示设备可以判断确定的控制装置的位置是否处于识别空间包括的范围内,若不处于,则继续播放视频。若处于,则显示设备可以获取控制装置的位置投影到与显示屏存在映射关系的第一面上的第一点,根据所述映射关系确定第一点投影到显示屏上的第二点,并可以在显示屏中以预先设定的标识显示第二点。例如,显示设备在播放视频时可以提供如图22所示的显示界面,在进行显示第二点时可以参见如图21B所示的显示界面。在图21B所示的显示界面中,示例性的采用箭头的形式来显示第二点,当然也可以采用其他的形式,例如以黑色的圆点的形式来显示第二点,本申请对此不作具体限定。
在一些实施例中,显示设备在显示第二点之后可以继续判断控制装置的位置是否位于长方体空间,即判断控制装置是否由识别空间到达长方体空间。若显示设备确定控制装置由识别空间到达长方体空间,则可以获取控制装置在长方体空间的移动轨迹,还可以获取控制装置在长方体空间内的移动轨迹投影到第一面上的第一移动轨迹。然后根据第一面和显示屏的映射关系确定第一移动轨迹投影到显示屏上的第二移动轨迹。进而显示设备可以根据预先配置的移动轨迹与控制指令的对应关系确定需要执行的控制指令。
例如,在视频播放场景中,预先配置的移动轨迹与控制指令的对应关系中包括:当移动轨迹为向右滑动的一条直线时,对应的控制指令为视频快进T秒,其中,T与直线的长度存在对应关系,例如,T可以为直线的长度的倍数。
在一些实施例中,显示设备中还可以配置将一种移动轨迹作为一个启动指令。例如,可以设定调节扬声器的音量的启动指令对应的移动轨迹可以设置为一个顺时针的圆环。例如,显示设备可以在确定控制装置在长方体空间中的移动轨迹映射到显示屏之后的移动轨迹为一个顺时针的圆环之后,则可以确定控制装置要进行调节扬声器的音量,显示设备还可以在显示界面中显示如图23所示的显示界面,然后可以进一步获取控制装置在长方体空间的移动轨迹映射到显示屏中的移动轨迹,若确定该后续的移动轨迹为一条向上的直线,则可以确定需要将扬声器的音量调高。反之,若显示设备在确定接收到调节音量的启动指令之后,进一步获取的移动轨迹为一条向下的直线,则可以确定需要将扬声器的音量调低。
在一些实施例中,显示设备还可以结合预先配置的移动轨迹与具体操作的对应关系与具体的应用程序包括的各类控制指令相结合,来确定需要执行的控制指令。例如,显示设备在通过目前一些视频应用程序播放视频时,可以响应于用户长按显示屏的操作,以倍速的形式播放视频。结合本申请提出的方案,显示设备可以在检测到控制装置处于长方体空间中的某一个位置超过设定时长时,确定对应的具体操作为长按显示屏的操作,然后显示设备可以结合视频应用程序自有的功能,确定需要执行的控制指令为以倍速的形式播放视频。在一些实施例中,显示设备在确定设定时长时,可以采用如下方式:
显示设备可以检测使用控制装置的用户的手臂摆动的线速度为f m/s,根据蓝牙的定位精度为D  m,确定设定时长T=D/f*10 3ms。那么显示设备可以在确定控制装置位于长方体空间的某一个位置的时间超过T时,确定对应的操作为长按显示屏。
本申请提出的方案还可以应用于音频播放或者绘图的场景中,例如,可以预先建立在音频播放场景中调节音量的大小、切换歌曲等控制指令与控制装置的移动轨迹之间的对应关系。或者在绘图场景中,可以进行显示控制装置在长方体空间中的第一移动轨迹投影到显示屏上的第二移动轨迹,作为需要绘制的图像。
(4)与遥控功能配置关联的实施方式
在相关技术中,一般采用专门为显示设备配置的控制装置来实现对显示设备的控制。例如,通过遥控器控制显示设备等。在这种情况下,若控制装置丢失或者损坏,就会导致用户无法控制显示设备,或者用户只能通过显示设备上的少量按键来控制显示设备,使得用户的使用体验较差。本申请一些实施例提供了一种显示设备及控制显示设备的方法,提出了即使没有专用的控制装置,也可以采用具有收发蓝牙信号功能的蓝牙设备(比如手机等)来控制显示设备。解决了由于专用的控制装置丢失导致用户无法显示设备的问题。
本申请一些实施例提供了一种控制显示设备的方法。本申请提出的控制方法可以由显示设备来执行,例如可以参见图3示出的显示设备。或者,控制方法也可以由显示设备包括的蓝牙组件和处理器来执行。下面,结合控制显示设备的方法,首先以控制方法是由显示设备来执行的为例进行介绍。控制显示设备的方法流程具体包括如下步骤:
显示设备接收来自蓝牙设备的蓝牙信号。
在一些实施例中,显示设备中可以配置有多根天线,显示设备可以通过多根天线来接收蓝牙信号。
显示设备根据蓝牙信号,在空间中确定映射区域,以及在显示屏中显示用于实现控制命令的至少一个控件。
其中,映射区域中的每一个位置点均与显示屏中所显示的至少一个控件存在映射关系。例如,可以是映射区域中(1,2,3)这个点对应至少一个控件中的控件A。在一些实施例中,可以是映射区域中的多个点对应至少一个控件中的一个控件。继续上述举例,映射区域中(1,2,4)和(1,5,3)这两个点也可以对应控件A。
显示设备在检测到蓝牙设备位于映射区域内时,根据映射关系确定目标控件。
其中,目标控件可以是显示屏中显示的至少一个控件中的任意一个控件,目标控件与映射区域中的目标点对应,目标点指的是蓝牙设备的位置对应的点。
在一些实施例中,显示设备可以根据接收到的来自于蓝牙设备的蓝牙信号来确定蓝牙设备的位置。若检测到蓝牙设备的位置位于映射区域内时,则可以根据映射关系,确定蓝牙设备的位置点所对应的控件即为目标控件。
显示设备在确定与蓝牙设备的距离缩短时,执行目标控件对应的控制命令。
在一些实施例中,显示设备可以根据来自蓝牙设备的蓝牙信号确定蓝牙设备的位置,根据蓝牙设备的位置的变化情况来确定蓝牙设备与显示设备的距离是否缩短。
在另一些实施例中,显示设备还可以根据接收到的蓝牙信号的信号强度来确定蓝牙设备与显示设备的距离是否缩短。例如,可以在蓝牙信号的信号强度增大时,确定蓝牙设备与显示设备的距离缩短。
在专门配置的控制装置丢失或者损坏的情况下,只要有能够发送蓝牙信号的蓝牙设备,用户依然可以采用该蓝牙设备来实现控制显示设备。解决了由于控制装置不可用导致无法控制显示设备的问题。
在一些实施例中,在通过蓝牙设备实现控制显示设备之前,显示设备还可以首先确定没有接收到来自控制装置的控制命令。例如,显示设备可以在开机之后,先检测是否接收到来自控制装置的控制命令,若在设定时长内都没有接收到来自控制装置的控制命令,则可以通过蓝牙组件接收蓝牙信号。或者,另外一种可能的情况下,显示设备在开机之后,可以直接通过蓝牙组件接收蓝牙信号,并根据接收到的蓝牙信号确定发送该蓝牙信号的蓝牙设备的位置。在一些实施例中,显示设备再进行判断设定时长内有没有接收到来自控制装置的控制命令。若没有,则可以采用蓝牙设备来实现控制显示设备,例如可以参见如控制显示设备的方法所述的过程。为了便于理解上述方案,可以参见图24,为本申请一些实施例的一种确定控制显示设备的方法的流程图,具体包括:
S2801,显示设备开启。
在一些实施例中,显示设备可以响应于用户对于显示设备上的实体按键的操作,执行开机动作。
S2802,显示设备通过蓝牙组件接收蓝牙信号,并根据蓝牙信号确定发送该蓝牙信号的蓝牙设备的位置。
S2803,显示设备判断设定时长内是否接收到来自控制装置的控制命令。
若是,则继续步骤S2805,即,根据控制命令执行相应的操作。
若否,则继续步骤S2804。
S2804,显示设备采用蓝牙设备实现控制命令。
显示设备在确定一段时间内没有接收到来自控制装置的控制命令后,才启动采用蓝牙设备实现控制命令。避免了在控制装置可用的情况下通过蓝牙设备实现控制命令导致接收到的命令混乱,无 法确定所要执行的命令的问题。
在一些实施例中,显示设备启动采用蓝牙设备实现控制命令时,可以首先根据来自蓝牙设备的蓝牙信号确定映射区域。由于蓝牙设备距离显示设备越近,显示设备检测到的蓝牙信号的质量越高,但是如果蓝牙设备距离显示设备太近,则会降低用户的使用体验。所以,显示设备在确定映射区域之前,可以首先确定有效距离,并在有效距离的范围内构建映射区域。其中,有效距离的范围可以理解为以显示设备为球心,以有效距离为半径的球体。在一些实施例中,可以预先配置一个优选距离,即为了保证蓝牙信号的质量,显示设备与蓝牙设备的优选距离(超出该优选距离,接收到的蓝牙信号的质量会降低,则无法根据蓝牙信号确定蓝牙设备的位置)。并在检测到蓝牙设备与显示设备的距离小于或者等于该优选距离时,将此时蓝牙设备与显示设备的距离作为有效距离。在一些实施例中,显示设备可以通过计算接收到的蓝牙信号的信号强度(Received Signal Strength Indication,RSSI)来确定蓝牙设备与显示设备的距离,并在确定该距离小于或者等于预先设定的优选距离时,将该距离作为有效距离。示例性地,可以参见图25,为本申请一些实施例的一种设置有效距离的方法流程,具体包括:
S2901,显示设备计算当前接收到的蓝牙信号的信号强度。
在一些实施例中,显示设备可以在显示界面中显示预设的优选距离对应的优选信号强度(即,蓝牙信号在达到优选强度时,代表蓝牙设备与显示设备的距离达到了优选距离)。显示设备还可以在显示屏中显示当前检测到蓝牙信号的信号强度。例如,可以参见图26A所示的显示界面。
在一些实施例中,由于蓝牙信号的不稳定性,显示设备还可以获取一段时间内接收到的蓝牙信号的信号强度,计算该段时间内蓝牙信号的信号强度的平均值,将该信号强度的平均值作为当前接收到的蓝牙信号的信号强度。
S2902,显示设备判断当前接收到的信号强度是否大于优选信号强度。
若是,则继续步骤S2903。
若否,则继续步骤S2904。
S2903,显示设备将当前与蓝牙设备的距离作为有效距离。
在一些实施例中,显示设备可以根据蓝牙信号的信号强度确定蓝牙设备与显示设备的距离。例如,显示设备中可以预先配置有信号强度与距离的对应关系,并根据该对应关系确定计算出的强度所对应的距离。
在另一些实施例中,显示设备可以根据蓝牙信号确定蓝牙设备的位置,然后再通过计算确定蓝牙设备与显示设备的距离。例如,显示设备可以通过其包括的蓝牙组件接收来自蓝牙设备的蓝牙信号,检测蓝牙信号中包括的固定频率扩展信号(Constant Tone Extension,CTE),获取用于定位的同相正交(In-phase Quadrature,IQ)数据。然后显示设备可以根据IQ数据确定蓝牙组件包括的每个天线组的相位差,然后根据每个天线组的相位差确定每个天线组的到达角。在一些实施例中,显示设备可以根据每个天线组的位置和每个天线组的到达角确定蓝牙设备的位置。最后计算蓝牙设备的位置与显示设备的位置的差值即为蓝牙设备与显示设备的距离。
S2904,显示设备在显示屏中显示提示信息。
其中,提示信息用于提示蓝牙设备的用户将蓝牙设备靠近显示设备。作为一种示例,显示设备可以显示如图26B所示的显示界面,以提示用户将蓝牙设备靠近显示设备。
显示设备在显示提示信息之后,可以返回步骤S2901,继续计算蓝牙信号的信号强度,直至计算出的蓝牙信号的信号强度大于预设的优选信号强度。
在一些实施例中,显示设备在确定有效距离之后,可以进一步通过界面交互的方式在有效距离的范围内确定映射区域。在一些实施例中,可以首先通过界面交互的方式确定检测区域,检测区域的范围大于映射区域,映射区域位于检测区域内。显示设备可以在确定检测区域后,采用设定的规则将检测区域的一部分作为映射区域。例如,本申请一些实施例提供的一种确定检测区域的方法流程,具体包括如下步骤:
显示设备在显示屏中显示用于引导用户进行位置校准的显示界面。
例如,显示设备可以在显示屏中显示如图27A所示的显示界面。图27A所示的显示界面中包括四个校准位置。
显示设备在显示屏中显示当前蓝牙设备映射到显示屏中的位置。
在一些实施例中,显示设备可以获取蓝牙设备垂直映射到显示屏中的位置。例如,可以从蓝牙设备所在的位置点向显示屏所在的平面作一条垂线,可以将该垂线与显示屏相交的点作为当前蓝牙设备映射到显示屏中的位置。在一些实施例中,显示设备可以在显示界面中显示圆点、箭头或者三角等来代指蓝牙设备的位置,例如可以参见图27B所示的显示界面。
显示设备在显示屏中显示用于指示进行校准的指示信息。
例如,以针对校准位置A进行校准为例进行介绍,可以参见图27C所示的显示界面。在图27C所示的显示界面中,显示了用于指示针对进行校准位置A进行校准的显示界面。
显示设备在检测到蓝牙设备位于校准位置时,保存蓝牙设备的位置以及蓝牙信号的信号强度。
例如,蓝牙设备位于校准位置A时,显示设备可以计算此时蓝牙设备的位置W1。在一些实施例中,可以采用上述图25中的步骤S2903介绍的方式来计算蓝牙设备的位置。在一些实施例中,显示设备可以获取此时蓝牙设备发出的蓝牙信号的信号强度R1。同理,当蓝牙设备位于校准位置B、C和D时,可采用同样的方式获取并保存蓝牙设备的位置和蓝牙信号的信号强度。
显示设备结合蓝牙设备的位置和蓝牙信号的信号强度确定检测区域。
在一些实施例中,针对四个校准位置,显示设备可以获取四组蓝牙设备的位置和蓝牙信号的信号强度,例如:
校准位置A:(W1,R1),校准位置B:(W2,R2),校准位置C:(W3,R3),校准位置D:(W4,R4)。
显示设备可以结合位置和信号强度这两个因素确定检测区域。为了便于理解,参见图27D,为本申请一些实施例的一种检测区域的示意图,图27D中所示的长方体ABCDEFGH即为检测区域。图27D仅作为一种示例,本申请一些实施例对于检测区域的位置和形状均不作具体限定。
在一些实施例中,显示设备在确定检测区域之后,可以进一步根据预先配置的规则确定映射区域,映射区域可以为检测区域的一部分。为了便于理解,可以参见图27E,为本申请一些实施例的一种映射区域的示意图,图27E示出的长方体ABCDEFGH即为检测区域,示出的长方体B’BD’DF’FH’H即为映射区域。图27E仅作为一种示例,本申请对于映射区域在检测区域中所处的位置,以及映射区域的形状不作具体限定。
在一些实施例中,显示设备可以在确定检测区域和映射区域之后,在显示屏中显示用于实现控制命令的至少一个控件。下面,结合一些具体的场景对至少一个控件的显示方法进行介绍。
在一些实施例中,显示界面中包括的控件的数量和内容可以是预先设定好的,例如可以参见图28所示的显示界面,其中包括用于实现增大音量、减小音量、确认、返回主页、向左滑动、向右滑动、向上滑动以及向下滑动等控制命令的控件。在一些实施例中,显示界面中显示的各个控件与映射区域中的各个点可以存在映射关系。可以是映射区域中的多个点对应显示界面中的一个控件。例如,映射区域中的点A-点D可以对应第一控件、映射区域中的点E-点H可以对应第二控件等。在一些实施例中,各个控件与映射区域中的各个点可以存在的映射关系可以为:当显示设备检测到蓝牙设备位于映射区域的某一个点时,则可以认为蓝牙设备选中了该点对应的控件。
为了保证界面交互的准确性,避免误操作。在一些实施例中,显示设备在显示上述各个控件时,还可以使相邻控件之间间隔一定的距离。例如,可以参见图29所示的显示界面。在一些实施例中,相邻控件之间间隔的距离的长度可以是根据蓝牙信号的定位精度来设置的,任意两个相邻控件之间间隔的距离可以相等也可以不相等。
在一些实施例中,若至少一个控件一直显示在显示界面中,可能会遮挡显示界面所显示的其他内容。例如用户在观看视频时,若至少一个控件一直显示在显示界面中,可能会遮挡用户观看的视频的内容,使用户的观看体验较差。基于此,本申请一些实施例提出了,显示设备在确定蓝牙设备的位置位于映射区域内时,可以持续显示至少一个控件。若显示设备确定蓝牙设备位于映射区域外时,可以在显示至少一个控件达到设定时长后,不再显示至少一个控件,避免遮挡显示界面的其他内容影响用户观看。
在一些实施例中,若蓝牙设备的位置发生变化,而显示屏中显示的各个控件的显示位置可能就不再处于蓝牙设备的用户的正前方,使得用户通过蓝牙设备进行界面交互的过程中使用体验较差。例如,可以参见图30中的(a)所示的场景示意图。基于此,本申请一些实施例提出了一种界面交互的方案,显示设备在检测到蓝牙设备的位置不再处于显示屏中所显示的至少一个控件的正前方时,可以将至少一个控件在显示屏中的显示位置移动至蓝牙设备的位置的正前方以便于用户观看。继续上述举例,显示设备移动至少一个控件在显示屏中的显示位置之后的场景可以参见图30中的(b)所示的场景示意图。在一些实施例中,显示设备可以利用图25中介绍的有效距离来确定蓝牙设备的位置是否位于显示屏中所显示的至少一个控件的正前方。例如,显示设备可以判断蓝牙设备与至少一个控件之间的距离是否小于或者等于有效距离,若是,则可以确定蓝牙设备位于显示屏中所显示的至少一个控件的正前方。为了便于理解,结合具体的实施例对上述方案进行介绍。示例性地,可以参见图31,为本申请一些实施例的一种界面交互方法流程,具体包括:
S3501,显示设备根据来自蓝牙设备的蓝牙信号确定蓝牙设备的位置。
在一些实施例中,显示设备根据蓝牙信号确定蓝牙设备的位置的过程可以参见上述图25的步骤S2903中的相关介绍。
在一些实施例中,为了避免由于物件遮挡或者墙体反射等因素导致的计算得到的蓝牙设备的位置不准确的问题,显示设备还可以计算蓝牙信号的信号强度,将信号强度不满足设定要求的蓝牙信号剔除(例如可以设定将信号强度过小的蓝牙信号剔除),采用信号强度满足设定要求的蓝牙信号来计算蓝牙设备的位置。
S3502,显示设备计算蓝牙设备与显示屏中显示的至少一个控件的距离。
例如,显示设备确定的蓝牙设备的位置为(1,3,6),至少一个控件的位置为(0,0,3),则显示设备可以计算这两个点之间的距离,即为蓝牙设备与至少一个控件之间的距离。后续为了便于描述,将该距离简称为距离A。
S3503,显示设备判断距离A是否大于有效距离。
若是,则继续步骤S3504。
若否,则不进行任何操作。
S3504,显示设备移动显示屏中至少一个控件的显示位置。
显示设备在移动至少一个控件的显示位置之后,可以返回步骤S3501,直至显示设备确定计算出的距离A小于或者等于有效距离。
显示设备可以根据蓝牙设备的用户所处的位置,来移动显示屏中显示的至少一个控件的显示位置,使得至少一个控件在显示屏中的显示位置可以保持在用户的正前方,提升了用户的观看体验。
在一些实施例中,显示设备在根据蓝牙信号确定了检测区域和映射区域,并在显示界面中显示用于实现控制命令的至少一个控件之后,就可以持续检测蓝牙设备的位置了。为了节约显示设备的计算资源,在一些实施例中,显示设备在检测蓝牙设备的位置时,还可以周期性地进行检测(例如,可以每间隔设定周期计算一次蓝牙设备的位置)。在一些实施例中,显示设备还可以针对蓝牙设备所处区域的不同而设置不同的检测周期。例如,当显示设备确定蓝牙设备位于检测区域之外时,可以设置每间隔周期T1进行一次蓝牙设备的位置计算。当显示设备确定蓝牙设备位于检测区域之内且位于映射区域之外时,可以设置每间隔周期T2进行一次蓝牙设备的位置计算。当显示设备位于映射区域内时,可以设置每间隔周期T3进行一次蓝牙设备的位置计算。其中,T1>T2>T3。
在一些实施例中,若显示设备检测到蓝牙设备的位置位于映射区域内,则可以确定当前蓝牙设备的位置的点对应的目标控件(可以理解为目标控件即为蓝牙设备所要选中的控件)。在一些实施例中,显示设备还可以对该目标控件进行特殊显示,以表明该目标控件被选中。例如,当目标控件为“音量+”时,可以将该目标控件显示为背景颜色加深等。在一些实施例中,确定目标控件之后,显示设备可以在确定蓝牙设备与显示设备的距离缩短时,执行目标控件对应的控制命令,并在确定蓝牙设备与显示设备的距离增大时,停止执行目标控件对应的控制命令。下面结合具体的实施例进行介绍,参见图32,为本申请一些实施例的一种实现控制命令的方法流程图,具体包括:
S3701,显示设备根据蓝牙信号确定蓝牙设备位于映射区域内。
S3702,显示设备计算蓝牙设备的位置和蓝牙信号的信号强度,并确定蓝牙设备的位置对应的目标控件。
S3703,显示设备判断与蓝牙设备的距离是否缩短。
在一些实施例中,显示设备可以根据蓝牙信号的信号强度来确定距离是否缩短。例如,显示设备可以在信号强度变大时,确定与蓝牙设备的距离缩短。在另一种可能的方式中,显示设备可以根据蓝牙设备的位置确定与蓝牙设备的距离是否缩短。
在一些实施例中,显示设备还可以在确定蓝牙信号的信号强度增大,且确定计算出的蓝牙设备的位置靠近了显示设备时,确定蓝牙设备与显示设备的距离缩短。
若是,则继续步骤S3704。
若否,则不进行任何操作。
S3704,显示设备执行目标控件对应的控制命令,并继续计算蓝牙设备的位置和蓝牙信号的信号强度。
显示设备可以根据计算的蓝牙设备的位置和蓝牙信号的信号强度确定与蓝牙设备的距离。
S3705,显示设备判断与蓝牙设备的距离是否增大。
若是,则继续步骤S3706。
若否,则返回步骤S3704。
S3706,显示设备停止执行目标控件对应的控制命令。
本申请一些实施例还提供一种计算机可读的非易失性存储介质,其上存储有计算机程序,该程序被处理器或者处理器执行时实现如上述任一方法实施方式。
本领域的技术人员可以对本申请进行各种修改和变型而不脱离本申请的范围。这样,这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些修改和变型。

Claims (16)

  1. 一种显示设备,包括处理器和蓝牙组件,所述蓝牙组件包括至少两个天线组;
    所述蓝牙组件,被配置为接收蓝牙控制设备发送的广播信号;
    所述处理器,被配置为:
    根据所述广播信号分别确定所述至少两个天线组各自的到达角;
    根据所述至少两个天线组各自的到达角和所述至少两个天线组各自的位置确定所述蓝牙控制设备的位置;当所述蓝牙控制设备的位置位于所述显示设备的显示方向上的预设范围内时,通过所述蓝牙组件向所述蓝牙控制设备发送连接请求,以使得所述显示设备与所述蓝牙控制设备建立蓝牙连接。
  2. 如权利要求1所述的显示设备,其中,所述蓝牙组件还包括蓝牙控制器;
    其中,所述处理器被配置为:当所述蓝牙控制设备的位置位于所述显示设备的显示方向上的预设范围内时,向所述蓝牙控制器发送连接指令,所述连接指令指示所述蓝牙控制设备满足建立蓝牙连接的要求;
    其中,所述蓝牙控制器被配置为:接收所述连接指令,以及通过所述至少两个天线组向所述蓝牙控制设备发送所述连接请求。
  3. 如权利要求1所述的显示设备,其中,所述处理器被配置为:
    在根据所述广播信号分别确定所述至少两个天线组各自的到达角之前,检测所述广播信号的信号强度,其中,当所述广播信号的信号强度大于设定阈值时,根据所述广播信号分别确定所述至少两个天线组各自的到达角。
  4. 如权利要求1-3任一项所述的显示设备,其中,所述处理器被配置为:在根据所述广播信号分别确定所述至少两个天线组各自的到达角时,根据所述广播信号确定所述至少两个天线组各自的相位差,以及根据所述至少两个天线组各自的相位差分别确定所述至少两个天线组各自的到达角,
    其中,所述处理器被配置为:
    在根据所述广播信号确定所述至少两个天线组中任一天线组的相位差时:
    在第一设定时长内,检测通过所述任一天线组包括的第一天线接收所述广播信号的多个相位值;
    在第二设定时长内,检测通过所述任一天线组包括的第二天线接收所述广播信号的多个相位值,所述第二设定时长开始于所述第一设定时长之内或之后;
    滤除所述第二天线对应的多个相位值中满足设定条件的至少两个相位值,所述满足设定条件的至少两个相位值的检测时间连续且与检测时间成反比;以及
    根据所述第一天线的多个相位值和滤除相位值之后的所述第二天线的多个相位值确定对应于所述广播信号的所述任一天线组的相位差,
    其中所述第一天线和所述第二天线是所述任一天线组中的任意两根天线。
  5. 如权利要求4所述的显示设备,其中,所述广播信号包括第一蓝牙信号和第二蓝牙信号,所述处理器被配置为:
    在根据所述广播信号确定所述至少两个天线组各自的相位差时:
    如果确定所述第二蓝牙信号的信号强度小于所述第一蓝牙信号的信号强度,则根据所述第一蓝牙信号确定所述至少两个天线组各自的相位差;以及
    如果所述第二蓝牙信号与所述第一蓝牙信号的信号强度相同:则根据所述第一蓝牙信号确定所述至少两个天线组各自的第一相位差,以及根据所述至少两个天线组各自的第一相位差分别确定所述至少两个天线组各自的第一到达角;根据所述第二蓝牙信号确定所述至少两个天线组各自的第二相位差,以及根据所述至少两个天线组各自的第二相位差分别确定所述至少两个天线组各自的第二到达角;以及确定并删除所述第一到达角和所述第二到达角中不属于所述可用于定位的预设角度范围的第一到达角或第二到达角。
  6. 如权利要求1-3任一项所述的显示设备,其中,所述显示设备还包括显示屏,所述处理器被配置为在确定所述蓝牙控制设备的位置不位于所述预设范围时在显示屏中显示提示信息,所述提示信息用于提示所述蓝牙控制设备的用户将所述蓝牙控制设备移动至所述预设范围。
  7. 如权利要求1-3任一项所述的显示设备,其中,所述处理器,还被配置为确定所述蓝牙控制设备的位置位于所述显示设备的显示方向上的预设范围外时,禁止通过所述蓝牙组件向所述蓝牙控制设备发送所述连接请求。
  8. 如权利要求1-3任一项所述的显示设备,其中,所述广播信号中包括用于指示承载数据的数据信道的信息,以及所述蓝牙组件被配置为:
    在通过所述至少两个天线组向所述蓝牙控制设备发送所述连接请求之后:
    通过第一天线在所述数据信道上发送连接密钥,其中,所述第一天线为所述至少两个天线组中的任一根天线;以及
    在通过所述第一天线接收到所述蓝牙控制设备返回的连接密钥确认信息时,确定与所述蓝牙控制设备通过所述连接密钥建立蓝牙连接。
  9. 如权利要求1-3任一项所述的显示设备,还包括显示屏,所述显示屏被配置为显示用户界面,其中,所述用户界面包括第一视图显示区和第二视图显示区,所述第一视图显示区在第一层显示,所述第二视图显示区在第二层显示,且在所述第一视图显示区上;
    其中,所述处理器被配置为:
    在所述显示设备与所述蓝牙控制设备建立蓝牙连接之后:
    响应于所述蓝牙组件接收用户输入的第一控制请求,确定所述蓝牙控制设备在所述第二视图显示区的实时位置坐标、以及起始位置坐标,其中,所述第一控制请求是用户通过蓝牙控制设备输入的关于所述第二视图显示区调整显示大小的请求,且包含所述蓝牙控制设备的位置信息;
    响应于所述蓝牙组件接收用户输入的移动请求,确定有效起始坐标以及有效终止坐标,其中,所述移动请求包含所述蓝牙控制设备的位置信息;
    根据所述有效起始坐标和所述有效终止坐标,确定所述移动请求的移动轨迹,以及在所述第二视图显示区中呈现所述移动轨迹;以及
    根据所述移动轨迹的方向调整所述第二视图显示区的显示大小。
  10. 如权利要求1-3任一项所述的显示设备,还包括显示屏,
    其中,所述处理器被配置为:在所述显示设备与所述蓝牙控制设备建立蓝牙连接之后,
    根据持续接收到的所述广播信号确定所述蓝牙控制设备在配置的长方体空间内的第一移动轨迹,其中,所述长方体空间是基于用户配置的第一面通过设定规则形成的,所述第一面为所述长方体空间的外表面中的一面,以及所述第一面在配置的空间坐标系中的位置与所述显示屏包括的各个像素在所述空间坐标系中的位置存在映射关系;
    根据所述映射关系将所述第一移动轨迹投影到所述显示屏在所述空间坐标系中的区域获得第二移动轨迹;以及
    针对所述显示屏的显示界面执行所述第二移动轨迹对应的控制指令。
  11. 如权利要求1-3任一项所述的显示设备,还包括显示屏,
    所述处理器被配置为:在所述显示设备与所述蓝牙控制设备建立蓝牙连接之后,
    根据所述广播信号,在所述显示屏中显示用于实现控制命令的至少一个控件,并在所述显示设备所处的空间中确定映射区域,其中,所述映射区域中的点与所述至少一个控件存在映射关系;
    在检测到所述蓝牙控制设备位于所述映射区域内时,根据所述映射关系确定目标控件,其中,所述目标控件与所述映射区域中的目标点对应,所述目标点是所述蓝牙控制设备的位置对应的点,以及所述目标控件为所述至少一个控件中的一个控件;以及
    在确定所述蓝牙控制设备与所述显示设备的距离缩短时,执行所述目标控件对应的控制命令。
  12. 一种控制显示设备的方法,包括:
    通过至少两个天线组接收蓝牙控制设备发送的广播信号;
    根据所述广播信号分别确定所述至少两个天线组各自的到达角;
    根据所述至少两个天线组各自的到达角和所述至少两个天线组各自的位置确定所述蓝牙控制设备的位置;
    当所述蓝牙控制设备的位置位于所述显示设备的显示方向上的预设范围内时,通过所述至少两个天线组向所述蓝牙控制设备发送连接请求,以使得所述显示设备与所述蓝牙控制设备建立蓝牙连接。
  13. 如权利要求12所述的方法,其中,在根据所述广播信号分别确定所述至少两个天线组各自的到达角之前,检测所述广播信号的信号强度,
    其中,当所述广播信号的信号强度大于设定阈值时,根据所述广播信号分别确定所述至少两个天线组各自的到达角。
  14. 如权利要求12或13所述的方法,其中,根据所述广播信号分别确定所述至少两个天线组各自的到达角包括:根据所述广播信号确定所述至少两个天线组各自的相位差,根据所述至少两个天线组各自的相位差分别确定所述至少两个天线组各自的到达角,
    其中,根据所述广播信号确定所述至少两个天线组中任一天线组的相位差包括:
    在第一设定时长内,检测通过所述任一天线组包括的第一天线接收广播信号的多个相位值;
    在第二设定时长内,检测通过所述任一天线组包括的第二天线接收所述广播信号的多个相位值,所述第二设定时长开始于所述第一设定时长之内或之后;
    滤除所述第二天线对应的多个相位值中满足设定条件的至少两个相位值,所述满足设定条件的至少两个相位值的检测时间连续且与检测时间成反比;
    根据所述任一天线的多个相位值和滤除相位值之后的所述第二天线的多个相位值确定对应于所述广播信号的所述任一天线组的相位差,
    其中所述第一天线和所述第二天线是所述任一天线组中的任意两根天线。
  15. 如权利要求14所述的方法,其中,所述广播信号包括第一蓝牙信号和第二蓝牙信号,根据所述广播信号确定所述至少两个天线组各自的相位差包括:
    如果确定所述第二蓝牙信号的信号强度小于所述第一蓝牙信号的信号强度,则根据所述第一蓝牙信号确定所述至少两个天线组各自的相位差;以及
    如果所述第二蓝牙信号与所述第一蓝牙信号的信号强度相同:则根据所述第一蓝牙信号确定所述至少两个天线组各自的第一相位差,根据所述至少两个天线组各自的第一相位差分别确定所述至少两个天线组各自的第一到达角;根据所述第二蓝牙信号确定所述至少两个天线组各自的第二相位差,根据所述至少两个天线组各自的第二相位差分别确定所述至少两个天线组各自的第二到达角;确定并删除所述第一到达角和所述第二到达角中不属于所述可用于定位的预设角度范围的第一到达 角或第二到达角。
  16. [根据细则91更正 27.06.2022]
    如权利要求12或13所述的方法,其中,所述方法还包括:
    在确定所述蓝牙控制设备的位置不位于所述预设范围时,在所述显示设备的显示屏中显示提示信息,所述提示信息用于提示所述蓝牙控制设备的用户将所述蓝牙控制设备移动至所述预设范围。
PCT/CN2022/095742 2021-09-07 2022-05-27 显示设备及控制显示设备的方法 WO2023035688A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058389.8A CN117917083A (zh) 2021-09-07 2022-05-27 显示设备及控制显示设备的方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202111047340.6 2021-09-07
CN202111047340.6A CN115776596A (zh) 2021-09-07 2021-09-07 一种基于蓝牙的定位方法及显示设备
CN202111104455.4A CN114286153B (zh) 2021-09-18 2021-09-18 一种基于蓝牙aoa的窗口调节方法以及显示设备
CN202111104455.4 2021-09-18
CN202111137956.2 2021-09-27
CN202111137956.2A CN115883894A (zh) 2021-09-27 2021-09-27 一种蓝牙连接的方法及显示设备
CN202111261141.5A CN116055774A (zh) 2021-10-28 2021-10-28 一种显示设备及显示设备的控制方法
CN202111261141.5 2021-10-28
CN202111533745.0 2021-12-15
CN202111533745.0A CN114339341B (zh) 2021-12-15 2021-12-15 显示设备及显示设备的控制方法

Publications (1)

Publication Number Publication Date
WO2023035688A1 true WO2023035688A1 (zh) 2023-03-16

Family

ID=85507130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095742 WO2023035688A1 (zh) 2021-09-07 2022-05-27 显示设备及控制显示设备的方法

Country Status (2)

Country Link
CN (1) CN117917083A (zh)
WO (1) WO2023035688A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882954A (zh) * 2012-04-12 2013-01-16 鲁东大学 基于嵌入式蓝牙技术的交互系统与方法
CN105338391A (zh) * 2015-12-11 2016-02-17 腾讯科技(深圳)有限公司 智能电视控制方法与移动终端
CN105591923A (zh) * 2015-10-28 2016-05-18 杭州华三通信技术有限公司 一种转发表项的存储方法和装置
CN112261454A (zh) * 2020-10-22 2021-01-22 深圳创维-Rgb电子有限公司 电视智能控制方法、装置、系统、电视和可读存储介质
CN112584362A (zh) * 2019-09-27 2021-03-30 中兴通讯股份有限公司 一种蓝牙连接方法、装置、通信节点和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882954A (zh) * 2012-04-12 2013-01-16 鲁东大学 基于嵌入式蓝牙技术的交互系统与方法
CN105591923A (zh) * 2015-10-28 2016-05-18 杭州华三通信技术有限公司 一种转发表项的存储方法和装置
CN105338391A (zh) * 2015-12-11 2016-02-17 腾讯科技(深圳)有限公司 智能电视控制方法与移动终端
CN112584362A (zh) * 2019-09-27 2021-03-30 中兴通讯股份有限公司 一种蓝牙连接方法、装置、通信节点和存储介质
CN112261454A (zh) * 2020-10-22 2021-01-22 深圳创维-Rgb电子有限公司 电视智能控制方法、装置、系统、电视和可读存储介质

Also Published As

Publication number Publication date
CN117917083A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
AU2021269359B2 (en) Display method and apparatus
US10431183B2 (en) Wireless device displaying images and matching resolution or aspect ratio for screen sharing during Wi-Fi direct service
US9462108B2 (en) Mobile terminal and method for controlling the mobile terminal
CN109327602B (zh) 使用多个分立显示器增加显示区域的系统以及方法
EP3678377B1 (en) Wireless device and wireless system
KR101680667B1 (ko) 이동 단말기 및 이동 단말기의 제어방법
US11991594B2 (en) Terminal interaction method and terminal
US20230319724A1 (en) Electronic device and operation method therefor
KR101632220B1 (ko) 이동 단말기, 이동 단말기의 제어방법, 그리고, 제어시스템과 그 제어방법
WO2023035688A1 (zh) 显示设备及控制显示设备的方法
CN114390426A (zh) 一种音量校准方法及装置
KR101549027B1 (ko) 이동 단말기 및 이동 단말기의 제어방법
US20190027021A1 (en) Mobile device and method for controlling mobile device
US11758221B2 (en) Wireless communication connection system including mobile terminal and electronic device to perform wireless communication connection through mobile terminal
CN116055774A (zh) 一种显示设备及显示设备的控制方法
CN114339341B (zh) 显示设备及显示设备的控制方法
CN114513771A (zh) IoT设备的控制方法、装置、控制系统及终端设备
KR101556179B1 (ko) 이동 단말기 및 이동 단말기의 제어방법
US20240078761A1 (en) Systems and methods for managing network devices using augmented reality
US20240080366A1 (en) Systems and methods for controlling network devices in an augmented reality environment
CN115209191A (zh) 显示设备、终端设备和设备间共享摄像头的方法
CN115883894A (zh) 一种蓝牙连接的方法及显示设备
CN118215066A (zh) 局域网内传输数据的方法、系统及计算机存储介质
CN117608392A (zh) 通过vr眼镜操作设备的方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280058389.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22866166

Country of ref document: EP

Kind code of ref document: A1