WO2023035217A1 - 电池、用电装置、制造电池的方法和装置 - Google Patents

电池、用电装置、制造电池的方法和装置 Download PDF

Info

Publication number
WO2023035217A1
WO2023035217A1 PCT/CN2021/117625 CN2021117625W WO2023035217A1 WO 2023035217 A1 WO2023035217 A1 WO 2023035217A1 CN 2021117625 W CN2021117625 W CN 2021117625W WO 2023035217 A1 WO2023035217 A1 WO 2023035217A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
adhesive
battery cell
bonding
battery according
Prior art date
Application number
PCT/CN2021/117625
Other languages
English (en)
French (fr)
Inventor
吴夏逸
于晶晶
刘文忠
唐彧
李振华
李星
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180086442.0A priority Critical patent/CN116867862A/zh
Priority to PCT/CN2021/117625 priority patent/WO2023035217A1/zh
Priority to JP2023524943A priority patent/JP2023547430A/ja
Priority to EP21956400.2A priority patent/EP4216349A1/en
Priority to KR1020237013960A priority patent/KR20230074555A/ko
Publication of WO2023035217A1 publication Critical patent/WO2023035217A1/zh
Priority to US18/536,262 priority patent/US20240120603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for manufacturing the battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the present application provides a battery, an electrical device, a method and a device for manufacturing the battery, which can enhance the safety of the battery.
  • a battery including: a battery cell; a first part, wherein the first surface of the first part is connected to at least one of the battery cells through an adhesive member, and the The adhesive member includes a first adhesive structure and a second adhesive structure, the first adhesive structure is located at the periphery of the second adhesive structure, and the elongation at break of the first adhesive structure is greater than that of the second adhesive structure. Elongation at break of the bonded structure.
  • an adhesive member including two adhesive structures is provided between the battery cell and the first part to fix the battery cell.
  • the first part may include the battery box or the
  • the upper cover is such that the first adhesive structure with a higher elongation at break is located at the periphery of the second adhesive structure with a smaller elongation at break, so that after the battery cell expands and deforms, the edge position is the first adhesive structure with a higher elongation at break.
  • the bonding structure can keep the connection between the battery cell and the upper cover or between the battery cell and the box body, thereby improving the stability of the battery cell in the battery, thereby improving the safety of the battery.
  • the elongation at break A1 of the first adhesive structure satisfies: 100% ⁇ A1 ⁇ 500%; and/or, the elongation at break B1 of the second adhesive structure satisfies: 10% ⁇ B1 ⁇ 150%.
  • the elongation at break A1 of the first adhesive structure satisfies: 150% ⁇ B1 ⁇ 400%; and/or, the elongation at break B1 of the second adhesive structure satisfies: 60% ⁇ B1 ⁇ 120%.
  • the first adhesive structure with a high elongation at break can maintain the gap between the battery cell and the upper cover or The connection between the battery cells and the case is fixed.
  • the bonding member is used to bond the second surface of at least one of the battery cells to the first surface, and the second bonding structure covers a central point of the second surface.
  • the second adhesive structure with smaller elongation at break and higher strength is arranged at the central position, which can cover the center point of the surface of the battery cell where it is located, and can ensure the stability between the battery cell and the first component. sex.
  • the first adhesive structure surrounds the outer periphery of the second adhesive structure.
  • the first adhesive structure with a larger elongation at break is arranged around the second adhesive structure, which can reduce the risk of glue opening around the edge area of the battery cell after the battery cell expands and deforms.
  • the bonding member is used to bond the second surface of at least one battery cell to the first surface, the area of the second surface is S0, and the first bonding structure
  • the area in contact with the second surface is S1
  • the area in contact with the second adhesive structure is S2
  • S0, S1 and S2 satisfy: 0.25 ⁇ (S1+S2)/S0 ⁇ 1.
  • S0, S1 and S2 satisfy: 0.5 ⁇ (S1+S2))/S0 ⁇ 0.85.
  • the area of the first adhesive structure in contact with the first surface is S1
  • the area of the second adhesive structure in contact with the first surface is S2
  • S1 and S2 satisfy: 0.05 ⁇ S1/(S1+S2) ⁇ 0.85.
  • S1 and S2 satisfy: 0.15 ⁇ S1/(S1+S2) ⁇ 0.55.
  • the amount of glue used can be reduced as much as possible while ensuring the structural strength.
  • the proportion of the glued area of the first adhesive structure at the edge has an impact on the structural strength, and increasing the content of the first adhesive structure within a certain range is conducive to improving the structural strength of the battery and increasing the capacity retention rate.
  • S1/(S1+S2) is equal to 1, that is, only the first bonding structure is used, and the binding strength of the bonding structure to the battery structure is weak.
  • S1/(S1+S2) is equal to 0.02
  • 0.05 ⁇ S1/(S1+S2) ⁇ 0.85 it can not only ensure that the battery will not fail under vibration, but also ensure that the capacity retention rate of the battery is in a better range.
  • 0.15 ⁇ S1/(S1+S2) ⁇ 0.55 the vibration and shock resistance of the battery is better.
  • the elastic modulus of the first adhesive structure is less than the elastic modulus of the second adhesive structure.
  • the elongation at break of adhesive structures such as glue is usually negatively correlated with the elastic modulus. Therefore, setting the elastic modulus of the first adhesive structure to be smaller than the elastic modulus of the second adhesive structure can also ensure that the first adhesive structure The elongation at break is greater than the elongation at break of the second adhesive structure, so as to reduce the risk of glue opening at the edge of the battery cell.
  • the elastic modulus A2 of the first adhesive structure satisfies: 10MPa ⁇ A2 ⁇ 150MPa; and/or, the elastic modulus B2 of the second adhesive structure satisfies: 150MPa ⁇ B2 ⁇ 1000MPa.
  • the elastic modulus A2 of the first adhesive structure satisfies: 30MPa ⁇ A2 ⁇ 60MPa; and/or, the elastic modulus B2 of the second adhesive structure satisfies: 150MPa ⁇ B2 ⁇ 500MPa.
  • the strength of the first bonding structure is less than the strength of the second bonding structure.
  • the strength of the adhesive structure such as glue is generally positively correlated with the elastic modulus, while the elongation at break is negatively correlated with the elastic modulus. Therefore, the strength of the second adhesive structure is higher, which can ensure the stability of the battery cell, while the first 1.
  • the bonded structure has higher strength and higher elongation at break, which can reduce the risk of ungluing at the edge of the battery cell.
  • the strength A3 of the first bonding structure satisfies: 2MPa ⁇ A3 ⁇ 15MPa; and/or,
  • the strength B3 of the second bonding structure satisfies: 6MPa ⁇ B3 ⁇ 25MPa.
  • the strength A3 of the first bonding structure satisfies: 6MPa ⁇ A3 ⁇ 15MPa; and/or, the strength B3 of the second bonding structure satisfies: 8MPa ⁇ B3 ⁇ 25MPa.
  • the battery includes a plurality of battery cell groups arranged along a first direction, the first direction is perpendicular to the first surface, and each battery cell in the plurality of battery cell groups a group comprising at least two battery cells arranged along a second direction, the second direction being perpendicular to the first direction, a first battery cell group of the plurality of battery cell groups being in contact with the first surface
  • the bonding member is disposed therebetween.
  • a plurality of adhesive members are provided between the first battery cell group and the first surface, and the plurality of adhesive members are connected to the first battery cell group.
  • one adhesive member is disposed between the first battery cell group and the first surface to simplify the manufacturing process.
  • a gap is provided between the first adhesive structure and the second adhesive structure.
  • the two when materials with different characteristics of the same system are selected for the first adhesive structure and the second adhesive structure, the two may affect each other, such as the material selection of the first adhesive structure and the second adhesive structure
  • the glue with different properties of the same polyurethane system may react and affect each other.
  • a gap is provided between the first bonding structure 51 and the second bonding structure 52 to reduce the mutual influence between the first bonding structure 51 and the second bonding structure 52 .
  • a barrier is disposed between the first adhesive structure and the second adhesive structure.
  • the material of the first adhesive structure includes at least one of the following: epoxy resin, polyurethane, acrylic resin and silicone rubber; and/or, the material of the second adhesive structure includes at least one of the following One: Epoxy, polyurethane, and acrylic.
  • the battery includes a first box body and a second box body, the first box body and the second box body are fastened together to form an accommodation space for the battery cell, the first box body A part comprises said first case and/or said second case.
  • the battery includes an upper cover, a first box body and a second box body, the first box body and the second box body are fastened together to form an accommodation space for the battery cells,
  • the upper cover is arranged in the accommodating space and covers the battery unit, and the first component includes the upper cover.
  • the surface with the largest area of the first box and/or the second box is the first surface.
  • the arrangement of the above solution can increase the bonding area between the first component and the battery cell, and improve the bonding strength of the two.
  • the battery cell includes: an electrode assembly; a casing with an opening and a cavity for accommodating the electrode assembly; a cover plate for covering the casing opening.
  • the adhesive member is disposed between the largest-area sidewall of the housing and the first surface.
  • the arrangement of the above solution can increase the bonding area of the bonding member and the battery cell, and improve the bonding strength of the two.
  • an electrical device including: the battery in the first aspect, configured to provide electrical energy.
  • the electrical device is a vehicle, ship or spacecraft.
  • a method for manufacturing a battery including: providing a battery cell; providing a first part, wherein the first surface of the first part is connected to at least one of the battery cells through an adhesive member connected, the bonding member includes a first bonding structure and a second bonding structure, the first bonding structure is located at the periphery of the second bonding structure, and the elongation at break of the first bonding structure greater than the elongation at break of the second bonded structure.
  • a device for manufacturing a battery including a module for performing the method of the third aspect above.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application
  • Fig. 3 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an exploded structure of another battery disclosed in an embodiment of the present application.
  • Fig. 5 is a partial cross-sectional view of the battery shown in Fig. 4;
  • Fig. 6 is a schematic diagram of an exploded structure of another battery disclosed in an embodiment of the present application.
  • Figure 7 is a partial cross-sectional view of the battery shown in Figure 6;
  • Fig. 8 is a schematic diagram of an exploded structure of a battery cell and an adhesive member disclosed in an embodiment of the present application;
  • Fig. 9 is a schematic diagram of a battery cell provided with an adhesive member disclosed in an embodiment of the present application.
  • Fig. 10 is a side view of a battery cell provided with an adhesive member when inflated according to an embodiment of the present application
  • Fig. 11 is the partial sectional view of A-A ' direction shown in Fig. 8;
  • Fig. 12 is a schematic diagram of an exploded structure of another battery cell and an adhesive member disclosed in an embodiment of the present application;
  • Fig. 13 is a schematic diagram of another battery cell provided with an adhesive member disclosed in an embodiment of the present application when it expands;
  • Fig. 14 is another partial sectional view of A-A ' direction shown in Fig. 8;
  • Fig. 15 is a schematic diagram of an exploded structure of another battery disclosed in an embodiment of the present application.
  • Figure 16 is a partial cross-sectional view of the battery shown in Figure 15;
  • Fig. 17 is a schematic diagram of an exploded structure of a plurality of battery cells and adhesive members disclosed in an embodiment of the present application;
  • Fig. 18 is a schematic diagram of a plurality of battery cells provided with an adhesive member disclosed in an embodiment of the present application;
  • Fig. 19 is a side view of a plurality of battery cells provided with an adhesive member disclosed in an embodiment of the present application;
  • Fig. 20 is a schematic flowchart of a method for manufacturing a battery disclosed in an embodiment of the present application.
  • Fig. 21 is a schematic block diagram of a device for manufacturing batteries disclosed in an embodiment of the present application.
  • a battery cell may include a primary battery or a secondary battery, such as a lithium-ion battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery, or a magnesium-ion battery, which is not limited in this embodiment of the application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • a battery pack generally includes a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • a pressure relief mechanism is generally provided for the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements. The predetermined threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can adopt elements or components that are sensitive to pressure or temperature, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is actuated, thereby forming a pressure-sensitive or temperature-sensitive pressure relief mechanism. aisle.
  • the safety of the battery includes many aspects. Among them, in terms of fixing the battery cells, in order to improve the stability and safety of the battery cells in the battery, usually a plurality of battery cells are fixed and installed in the box through an adhesive structure. Take structural glue between the battery cell and a certain surface of the box to fix the battery cell in the box as an example. When selecting structural glue, there are usually two types. One is to use "high-strength glue". This kind of glue has high bonding strength and is firmly bonded to the box.
  • the high strength of the "high-strength glue” can realize the simultaneous deformation of the box and the battery cell; but in the battery cell During use, the battery cell may expand and deform, and this "high-strength glue” solution is limited by the strength of the glue. After the battery cell expands and deforms, there may be a risk of glue opening at the edge, and the high-strength glue vibrates at low temperature There is also a risk of glue opening under impact.
  • the adhesive member provided on the surface of the battery cell according to the embodiment of the present application includes two adhesive structures, the first adhesive structure is located on the periphery of the second adhesive structure, and the elongation at break of the first adhesive structure is greater than that of the second adhesive structure. 2.
  • the elongation at break of the bonded structure In this way, the overall rigidity and stability of the battery cells in the battery can be ensured, and the glue will not be opened due to the expansion and deformation of the battery cells, thereby avoiding the battery damage caused by vibration and shock after the glue is opened. invalidated.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • multiple battery cells can be connected in series, parallel or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery 10 may include at least one battery module 200 .
  • the battery module 200 includes a plurality of battery cells 20 .
  • the battery 10 may also include a box body, the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body.
  • the box body may include two parts, referred to here as a first box body 111 and a second box body 112 respectively, and the first box body 111 and the second box body 112 are fastened together.
  • the shapes of the first box body 111 and the second box body 112 may be determined according to the combined shape of the battery modules 200 , and at least one of the first box body 111 and the second box body 112 has an opening.
  • the first box body 111 and the second box body 112 can be hollow cuboids and only one face is an opening face, and the opening of the first box body 111 is opposite to the opening of the second box body 112. set, and the first box body 111 and the second box body 112 are buckled together to form a box body with a closed chamber.
  • only one of the first box body 111 and the second box body 112 may be a hollow cuboid with an opening, while the other may be in the shape of a plate to cover the opening.
  • the second box body 112 is a hollow cuboid and only one face is an opening surface
  • the first box body 111 is a plate-shaped example, so the first box body 111 is covered at the opening of the second box body 112 to form a A box enclosing a chamber that can accommodate a plurality of battery cells 20 .
  • a plurality of battery cells 20 are connected in parallel or connected in series or combined in parallel and placed in the box formed by fastening the first box body 111 and the second box body 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the number of battery cells 20 in the battery module 200 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 are arranged in groups, and each group of battery cells 20 forms a battery module 200.
  • the number of battery cells 20 included in the battery module 200 is not limited, and can be set according to requirements.
  • FIG. 3 is a schematic structural diagram of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the housing 211 and the cover plate 212 form the housing 21 .
  • the walls of the casing 211 and the cover plate 212 are both referred to as walls of the battery cell 20 .
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • the housing 211 when the housing 211 is a hollow cuboid or cube, one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the cover plate 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the cover plate 212, and the two electrode terminals 214 are respectively a first electrode terminal 214a and a second electrode terminal 214b.
  • the polarities of the two electrode terminals 214 are opposite. For example, when the first electrode terminal 214a is a positive electrode terminal, the second electrode terminal 214b is a negative electrode terminal.
  • Each electrode terminal 214 is correspondingly provided with a connection member 23 , which is located between the cover plate 212 and the electrode assembly 22 , and is used for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be arranged as a single one or in multiples. As shown in FIG. 3 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • a pressure relief mechanism can also be provided on a wall of the battery cell 20, for example, a pressure relief mechanism can be provided on the first wall of the battery cell 20, wherein, The first wall may be any wall of the battery cell 20 .
  • the pressure relief mechanism is used for actuating to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism Cracks may occur so that the inside and outside of the shell 211 communicate, and the gas pressure and temperature are released outward through the crack of the pressure relief mechanism, thereby preventing the battery cells 20 from exploding.
  • the battery cell 20 needs to be fixed in the box.
  • a structural adhesive is provided on the surface of the battery cell 20 to fix the battery cell 20 as an example.
  • the structural adhesive usually includes two types. One is to use "high-strength glue", which has a high bonding strength, so that the battery cell 20 is firmly bonded to the box body, and the simultaneous deformation of the box body and the battery cell 20 can be realized through the high strength of the "high-strength glue"; However, during the use of the battery cell 20, the battery cell 20 may expand and deform, and this "high-strength glue” solution is limited by the strength of the glue.
  • the embodiment of the present application provides a battery that can solve the above problems.
  • FIG. 4 and FIG. 6 respectively show exploded diagrams of batteries 10 in different embodiments of the present application.
  • FIG. 5 is a partial cross-sectional view of the battery 10 shown in FIG. 4
  • FIG. 7 is a schematic diagram of the battery 10 shown in FIG. 6 Partial sectional view. As shown in FIGS.
  • the battery 10 includes: a battery cell 20 and a first component, wherein the first surface 1111 of the first component is connected to at least one battery cell 20 through an adhesive member 50 ,
  • the adhesive member 50 includes a first adhesive structure 51 and a second adhesive structure 52, the first adhesive structure 51 is located on the periphery of the second adhesive structure 52, and the elongation at break of the first adhesive structure 51 is greater than that of the second adhesive structure. Elongation at break of structure 52 .
  • an adhesive member 50 including two adhesive structures is provided between the battery cell 20 and the first part to fix the battery cell 20, and the first part may include the case of the battery 10. body or the upper cover 113 in the box, so that the first adhesive structure 51 with a larger elongation at break is located at the periphery of the second adhesive structure 52 with a smaller elongation at break, so that after the battery cell 20 expands and deforms, the edge
  • the position is the first adhesive structure 51 with a high elongation at break, which can keep the connection between the battery cell 20 and the upper cover 113 or between the battery cell 20 and the box body fixed, thereby improving the battery cell 20 in the battery 10. stability, thereby improving the safety of the battery 10 .
  • the arrangement of the first bonding structure 51 on the periphery of the second bonding structure 52 may include: the first bonding structure 51 surrounds the periphery of the second bonding structure 52, or, the first bonding structure 51 surrounds the periphery of the second bonding structure 52, or the first bonding structure 51
  • An adhesive structure 51 is disposed in a local area around the second adhesive structure 52 , not completely surrounding the second adhesive structure 52 , the embodiment of the present application is not limited thereto.
  • the first adhesive structure 51 surrounds the second adhesive structure 52 as an example for description.
  • the shape of the second bonding structure 52 in the embodiment of the present application can be set according to actual applications, for example, the second bonding structure 52 can be rectangular or circular; correspondingly, the shape of the first bonding structure 51 It can also be set according to practical applications.
  • the first bonding structure 52 can be set as a square ring or a circular ring, which is not limited in this embodiment of the present application.
  • the first adhesive structure 51 is a square ring and the second adhesive structure 52 is a square as an example for description.
  • the first surface of the first component in the embodiment of the present application may refer to any surface of the first component connected to the battery cell 20 , and the first component may include one or more first surfaces 1111 .
  • the first component may include a box body, and the box body may include a first box body 111 and a second box body 112, and the first surface 1111 may be any one of the first box body 111 or the second box body 112 surface; in some embodiments, the first component may further include an upper cover 113 , and the first surface 1111 may also be a surface of the upper cover 113 .
  • the upper cover 113 is usually disposed between the battery cell 20 and the case, for example, FIG. 4 to FIG.
  • the upper cover 113 is arranged between the battery cell 20 and the first box body 111 of the box as an example, then the battery cell 20 in the battery 10 can be connected and fixed with the upper cover 113 through the adhesive member 50, that is, the upper cover 113 facing the battery cell 20 is the first surface 1111; in addition, for the side of the box that is not provided with the upper cover 113, for example, between the battery cell 20 and the second box 112 in FIGS.
  • the battery cell 20 can also be fixed directly to the surface of the second box body 112 of the box body through the adhesive member 50, for example, as shown in FIGS.
  • the connection is fixed, that is, the second box body 112 may also have a first surface 1111 .
  • the battery cell 20 and the first box 111 can be fixedly connected by an adhesive member 50, that is, the first box 111 has a first surface 1111 Moreover, an adhesive member 50 may also be provided between the battery cell 10 and the second case 112 , that is, the second case 112 may also have a first surface 1111 , but the embodiment of the present application is not limited thereto.
  • the upper cover 113 in the battery 10 is taken as an example, and the first surface 1111 includes an inner surface of the second box 112 shown in FIGS. 4 to 7 and the upper cover 113 is an example of a surface facing the battery cell 20, that is, the surface of the second box body 112 facing the battery cell 20 with the largest area is the first surface 1111, and the surface of the upper cover facing the battery cell 20 is also the first surface 1111.
  • Surface 1111 but the embodiment of the present application is not limited thereto.
  • the battery 10 in the embodiment of the present application may include a plurality of battery cells 20 , and the arrangement direction of each battery cell 20 in the plurality of battery cells 20 may be flexibly set according to practical applications.
  • the rectangular parallelepiped battery cell 20 as shown in FIG. The setting direction can be the same.
  • the battery 10 may include a plurality of battery cell groups arranged along a first direction Y, and the first direction Y is perpendicular to the first surface 1111 , that is, the battery cells 20 in the battery 10 may be It is arranged in one or more layers, and each layer of battery cells 20 constitutes a battery cell group, for example, two layers are taken as an example in FIGS. 4 to 7 , that is, two battery cell groups are included.
  • Each battery cell group in the plurality of battery cell groups includes at least two battery cells 20 arranged along a second direction X, and the second direction X is perpendicular to the first direction Y, for example, in FIGS.
  • Each battery cell group includes six battery cells 20 arranged along the X direction as an example; and, in this paper, each battery cell group as shown in FIGS. 4 to 7 includes only one row of battery cells.
  • the example is described as an example, but each battery cell group included in the battery 10 may also include multiple rows of battery cells, each row of battery cells includes at least two battery cells 20 arranged along the second direction X, the present application Embodiments are not limited thereto.
  • an adhesive member 50 is provided between the first battery cell group of the plurality of battery cell groups and the first surface 1111, that is, the first battery cell 20 in the first battery cell group
  • An adhesive member 50 is disposed between the second surface 201 and the first surface 1111 .
  • the plurality of battery cell groups may include one or more first battery cell groups.
  • the battery cell group on the uppermost layer can be connected and fixed to the first surface 1111 of the upper cover 113 .
  • the cell group may be the first battery cell group, that is, the upper surface of the battery cells 20 in the uppermost first battery cell group is the second surface 201, and the gap between the second surface 201 and the first surface 1111 is An adhesive member 50 is provided; similarly, as shown in FIGS. Therefore, the lowermost battery cell group can also be the first battery cell group, that is, the lower surface of the battery cells 20 in the lowermost first battery cell group can also be the second surface 201, An adhesive member 50 is disposed between the second surface 201 and the first surface 1111 of the second box body 112 .
  • the battery cell 20 in the embodiment of the present application is a cuboid, and an adhesive member 50 is provided between the second surface 201 and the first surface 1111 of the battery cell 20 in the first battery cell group, wherein the The second surface 201 may be the surface with the largest surface area of each battery cell 20 , so as to increase the bonding area between the adhesive member 50 and the battery cell 20 and improve the bonding strength of the two.
  • the rectangular battery cell 20 has six side walls, wherein the casing 211 has two side walls with larger areas, and the side walls can form the first side wall provided with the adhesive member 50 .
  • the two surfaces 201 such arrangement of the battery cells 20 can be more conducive to the heat dissipation of the battery cells 20 .
  • one or more adhesive members 50 may be disposed between the first battery cell group and the first surface 1111 .
  • the adhesive member 50 of the embodiment of the present application will be described in detail below with reference to the accompanying drawings, taking the example of a plurality of adhesive members 50 disposed between the first battery cell group and the first surface 1111 .
  • a plurality of adhesive members 50 may be provided between the first battery cell group and the first surface 1111, for example, as shown in FIG. 4 to FIG.
  • the combining member 50 is in one-to-one correspondence with the battery cells 20 in the first battery cell group.
  • FIG. 8 shows an exploded schematic view of the battery cell 20 and the bonding member 50 in FIG. 4 and FIG. 5
  • FIG. Schematic diagram FIG. 10 is a side view when the battery cell 20 with the adhesive member 50 on the surface is inflated
  • FIG. 11 is a partial cross-sectional view along the AA' direction shown in FIG. 10 .
  • the second surface 201 of a battery cell 20 is provided with an adhesive member 50
  • the adhesive member 50 includes a first adhesive structure 51 and a second adhesive structure 52
  • the first The adhesive structure 51 is disposed on the periphery of the second adhesive structure 52 . In this way, when the battery cells 20 are expanded and deformed, the stability of each battery cell 20 can be better ensured.
  • the adhesive member 50 can be located on any area of the second surface 201 of a battery cell 20 .
  • the adhesive member 50 can almost completely cover the second surface 201 of the battery cell 20 ; or, the adhesive member 50 can also occupy a partial area of the second surface 201 .
  • FIG. 11 considering that after the battery cell 20 is expanded and deformed, the deformation amount of the central area of the second surface 201 of the battery cell 20 is relatively large, while the deformation amount of the edge area is small, that is to say, the deformation amount of the battery cell 20 is small.
  • the distance between the central position of the body 20 and the first surface 1111 is smaller than the distance between the edge region and the first surface 1111 , therefore, the second adhesive structure 52 with a smaller fracture elongation and higher strength can be arranged on each battery cell 20 , that is, the second adhesive structure 52 covers the central point of the battery cell 20, so that the first adhesive structure 51 is located at the edge position around the second surface 201, wherein the second surface 201 of the battery cell 20
  • the central area or the central position of includes the central point of the second surface 201 of the battery cell 20 .
  • the second adhesive structure 52 at the center of the battery cell 20 can ensure the relative stability between the battery cell 20 and the first surface 1111, while the first adhesive structure 51 around the edge of each battery cell 20
  • the relatively large elongation at break can ensure that there is no glue between the peripheral edge of each battery cell 20 and the first surface 1111 .
  • the area of the second surface 201 of a battery cell 20 is denoted as S0, and correspondingly, the contact area of the first adhesive structure 51 and the second surface 201 is S1 (correspondingly, the first adhesive).
  • S1 the contact area of the first adhesive structure 51 and the second surface 201
  • S2 the area where the second adhesive structure 52 is in contact with the second surface 201
  • the area can also be expressed as S2), then S0, S1 and S2 can be set to satisfy: 0.25 ⁇ (S1+S2)/S0 ⁇ 1.
  • S0, S1 and S2 may be set to satisfy: 0.5 ⁇ (S1+S2)/S0 ⁇ 0.85. Further, S1 and S2 may also be set to satisfy: 0.05 ⁇ S1/(S1+S2) ⁇ 0.85, for example, S1 and S2 may be set to satisfy: 0.15 ⁇ S1/(S1+S2) ⁇ 0.55.
  • the first adhesive structure 51 surrounds the outer periphery of the second adhesive structure 52 in FIGS. 8 to 11 , but considering that the first adhesive structure 51 and the second adhesive structure 52 are made of different materials, Therefore, as shown in FIG. 6 and FIG. 7 , a stopper 53 can also be provided between the first adhesive structure 51 and the second adhesive structure 52 to avoid the gap between the first adhesive structure 51 and the second adhesive structure 52. interaction between.
  • FIG. 12 shows another exploded schematic diagram of the battery cell 20 and the adhesive member 50 in FIG. 6 and FIG. Another schematic diagram when the adhesive member 50 is set and the battery cell expands; and, for the battery cell 20 shown in Figure 12 and Figure 13, its side view can still be Figure 10, and the corresponding AA' direction A partial cross-sectional view is shown in Figure 14.
  • the second surface 201 of a battery cell 20 is provided with an adhesive member 50, and the adhesive member 50 includes a first adhesive structure 51 and a second adhesive structure 52.
  • the A blocking member 53 is disposed between the first adhesive structure 51 and the second adhesive structure 52 .
  • the blocking member 53 can be foam, plastic or the like, so as to block the interaction between the first bonding structure 51 and the second bonding structure 52 .
  • the shape of the blocking member 53 can be set according to practical applications. For example, according to the shapes of the first bonding structure 51 and the second bonding structure 52 , the shape of the blocking member 53 can be correspondingly set. For example, in FIGS. 12 to 14 , the blocking member 53 is a square ring as an example.
  • the blocking member 53 in order to avoid the mutual influence between the first bonding structure 51 and the second bonding structure 52, if the blocking member 53 is not provided, the first bonding structure 51 and the second bonding There are gaps between the structures 52, so that no additional components are required, and the setting method is relatively simple. For example, in FIG. 12 to FIG. 14 , the position of the blocking member 53 is changed to a gap, which can also avoid the mutual influence between the first bonding structure 51 and the second bonding structure 52 , and the embodiment of the present application is not limited thereto.
  • the amount of glue used can be reduced as much as possible while ensuring the structural strength.
  • the battery 10 is tested, wherein both the first adhesive structure 51 and the second adhesive structure 52 can be used Take polyurethane material as an example. Specifically, before the test, first set the area ratio of the bonding member 50 respectively according to the parameters described in "initial ratio (S1+S2)/S0" in Table 1, and the first bonding structure 51 and the second bonding structure 51 The area ratio S1/(S1+S2) of the structure 52 was set to 0.15, and the test condition was 60°C.
  • the cycle capacity retention rate is the 800th
  • the ratio of the 3C discharge capacity of the second cycle to the second 3C discharge capacity, the cycle capacity retention rate is the "capacity retention rate" in Table 1; and, after 800 cycles, a coupled temperature vibration shock test is performed to determine The results of "vibration and shock” in Table 1; if the vibration and shock test is passed, use an ultrasonic probe to determine the area ratio of the remaining adhesive member 50 on the surface of the battery cell 20, that is, corresponding to the last column in Table 1 "residual Adhesive area ratio", the remaining adhesive area ratio is still set as (S1+S2)/S0.
  • Example 2 From the data of Example 1-Example 2, it can be seen that when (S1+S2)/S0 is equal to 0.25, the battery capacity retention rate is lower than that of Example 2 and Example 3, and the remaining adhesive area ratio also lowered. Therefore, when 0.5 ⁇ (S1+S2)/S0 ⁇ 0.85, the vibration impact and capacity retention rate of the battery are better.
  • Example 5 When 0.05 ⁇ S1/(S1+S2) ⁇ 0.85, it can not only ensure that the battery 10 does not fail under vibration, but also ensure that the capacity retention rate of the battery 10 is within a better range. Comparing Example 5 to Example 9, it can be seen that when 0.15 ⁇ S1/(S1+S2) ⁇ 0.55, the remaining adhesive area ratio is 0.62-0.82, and the vibration and shock resistance of the battery 10 is better.
  • the thickness h of the adhesive member 50 can be set to 0.02cm ⁇ h ⁇ 1cm, for example, can be set to 0.05cm ⁇ h ⁇ 0.5cm.
  • a plurality of battery cells 20 in the embodiment of the present application may be provided with one adhesive member 50 correspondingly.
  • FIG. 15 shows an exploded view of another battery 10 according to the embodiment of the present application
  • FIG. 16 is a partial cross-sectional view of FIG. 15.
  • the first battery cell group and the first surface 1111 An adhesive member 50 may be provided between them, that is, an adhesive member 50 may be provided correspondingly to all the battery cells 20 in the first battery cell group;
  • a plurality of bonding members 50 are disposed between them, wherein each bonding member 50 corresponds to a plurality of battery cells 20 .
  • FIG. 17 shows an exploded schematic diagram of a plurality of battery cells 20 and an adhesive member 50 of the embodiment of the present application
  • FIG. 18 shows a plurality of battery cells 20 of the embodiment of the present application with an adhesive member 50 on the surface.
  • an adhesive member 50 is provided on the second surface 201 of three battery cells 20 as an example, that is, the second surface 201 provided with an adhesive member 50 includes One side wall of each of the three battery cells 20 .
  • Multiple battery cells 20 correspond to the same adhesive member 50 , and when the number of battery cells 20 included in the battery 10 is large, the manufacturing process can be simplified.
  • one adhesive member 50 may be located on any area of the second surface 201 of the plurality of battery cells 20 .
  • the adhesive member 50 may almost completely cover the second surface 201 of the plurality of battery cells 20; or, the adhesive member 50 may also occupy a partial area of the second surface 201.
  • the surfaces of a plurality of battery cells 20 form the second surface 201, and after the battery cells 20 are expanded and deformed, the deformation amount of the central area of the side wall of each battery cell 20 is is larger, and the deformation amount of the edge area is small, that is to say, the distance between the center position of the battery cell 20 and the first surface 1111 is smaller than the distance between the edge area and the first surface 1111, therefore, the elongation at break is small and the strength
  • the larger second adhesive structure 52 is arranged at the center of the second surface 201, that is, the second adhesive structure 52 covers the central point of the second surface 201, so that the second adhesive structure 52 can cover as many batteries as possible
  • the central point of the monomer 20, and the first adhesive structure 51 is located at the edge position around the second surface 201, so as to avoid the risk of glue opening at the edge.
  • the central area or central position of the second surface 201 includes the central point of the second surface 201 .
  • the second adhesive structure 52 at the center of the second surface 201 can ensure the relative stability between the plurality of battery cells 20 and the first surface 1111 , while the first adhesive structure 51 around the edge of the second surface 201
  • the relatively large elongation at break can ensure that there is no glue between the peripheral edge of the battery cell 20 and the first surface 1111 .
  • the first adhesive structure 51 and the second adhesive structure can also be A blocking member 53 or a gap is provided between the 52 to avoid mutual influence between the first bonding structure 51 and the second bonding structure 52 .
  • an adhesive is provided between the second surface 201 and the first surface 1111 jointly formed by the plurality of battery cells 20.
  • the area of the second surface 201 is denoted as S0
  • the area where the first adhesive structure 51 contacts the second surface 201 is S1 (correspondingly, the area where the first adhesive structure 51 contacts the first surface 1111 is also can be denoted as S1)
  • the area where the second adhesive structure 52 is in contact with the second surface 201 is S2
  • S0, S1 and S2 satisfy: 0.25 ⁇ (S1+S2)/S0 ⁇ 1.
  • S0, S1 and S2 may be set to satisfy: 0.5 ⁇ (S1+S2)/S0 ⁇ 0.85. Further, S1 and S2 may also be set to satisfy: 0.05 ⁇ S1/(S1+S2) ⁇ 0.85, for example, S1 and S2 may be set to satisfy: 0.15 ⁇ S1/(S1+S2) ⁇ 0.55.
  • the thickness h of the adhesive member 50 can be set to 0.02 cm ⁇ h ⁇ 1 cm, for example, can be set to 0.05 cm ⁇ h ⁇ 0.5 cm.
  • the elongation at break of the first adhesive structure 51 in the embodiment of the present application is greater than the elongation at break of the second adhesive structure 52 .
  • the elongation at break A1 of the first bonding structure 51 can be set to satisfy: 100% ⁇ A1 ⁇ 500%; and/or, the elongation at break B1 of the second bonding structure 52 can be set to satisfy: 10% ⁇ B1 ⁇ 150%.
  • the breaking elongation A1 of the first bonding structure 51 satisfies: 150% ⁇ B1 ⁇ 400%; and/or, the breaking elongation B1 of the second bonding structure 52 satisfies: 60% ⁇ B1 ⁇ 120%.
  • the test method of the elongation at break of the first bonding structure 51 and the second bonding structure 52 in the embodiment of the present application can refer to ISO 527-2, and use a fully cured adhesive strip for testing, wherein , the stretching speed is 10mm/min.
  • first adhesive structure 51 and the second adhesive structure 52 can be peeled off from the first surface 1111 or the second surface 201 by cutting or freezing, and cut into blocks of 10mm*20mm, thickness 1mm, by pulling
  • the elongation at break test is carried out by machine, and the specific test method refers to ISO 527-2.
  • the first adhesive structure 51 and the second adhesive structure 52 can also be set to meet other requirements. relation.
  • the elastic modulus of the first adhesive structure 51 may be set to be smaller than the elastic modulus of the second adhesive structure 52 .
  • the elastic modulus A2 of the first bonding structure 51 can be set to satisfy: 10MPa ⁇ A2 ⁇ 150MPa; and/or, the elastic modulus B2 of the second bonding structure 52 can be set to satisfy: 150MPa ⁇ B2 ⁇ 1000MPa.
  • the elastic modulus A2 of the first bonding structure 51 is set to satisfy: 30MPa ⁇ A2 ⁇ 60MPa; and/or, the elastic modulus B2 of the second bonding structure 52 is set to satisfy: 150MPa ⁇ B2 ⁇ 500MPa.
  • the modulus of elasticity in the embodiment of the present application is a normal temperature elastic module
  • the test method of the modulus of elasticity can refer to IPC-TM-650 2.4.24.4, using dynamic thermomechanical analysis (Dynamic thermomechanical analysis, DMA) to test the standard of glue strength Test Methods.
  • DMA Dynamic thermomechanical analysis
  • the strength of the first bonding structure 51 is smaller than that of the second bonding structure 52 .
  • the strength A3 of the first adhesive structure 51 satisfies: 2MPa ⁇ A3 ⁇ 15MPa; and/or, the strength B3 of the second adhesive structure 52 satisfies: 6MPa ⁇ B3 ⁇ 25MPa.
  • the strength A3 of the first adhesive structure 51 satisfies: 6MPa ⁇ A3 ⁇ 15MPa; and/or, the strength B3 of the second adhesive structure 52 satisfies: 8MPa ⁇ B3 ⁇ 25MPa.
  • the strength of the embodiments of the present application may include body strength and/or shear strength.
  • the body strength refers to ISO 527-2, using fully cured rubber strips for testing, and the tensile speed is 10mm/min. Shear strength is tested according to GB/T 7124.
  • the material of the first adhesive structure 51 in the embodiment of the present application can be selected as a liquid or paste material before solidification, for example, at least one of the following can be selected: epoxy resin, polyurethane, acrylic resin and organic Silicone rubber; and/or, the material of the second adhesive structure 52 can also be liquid or paste material before solidification, for example, at least one of the following can be selected: epoxy resin, polyurethane and acrylic resin.
  • first bonding structure 51 and the second bonding structure 52 when selecting materials for the first bonding structure 51 and the second bonding structure 52, if materials with different characteristics of the same system are selected, the two may affect each other, for example, the first bonding structure 51 and the second bonding structure 52 may affect each other.
  • the material of the second adhesive structure 52 is selected from glue with different properties from the polyurethane system, and the two may react and affect each other, so it is necessary to set a barrier 53 between the first adhesive structure 51 and the second adhesive structure 52 Or a gap; if the materials of the first adhesive structure 51 and the second adhesive structure 52 are selected materials that will not react and will not affect each other, for example, organic silica gel and polyurethane type structural glue are selected respectively, so it is not necessary to set
  • the blocking member 53 and the gap are not limited in this embodiment of the present application.
  • an adhesive member 50 including two adhesive structures is provided between the battery cell 20 and the first part to fix the battery cell 20, and the first part may include the case of the battery 10. body or the upper cover 113 in the box, so that the first adhesive structure 51 with a larger elongation at break is located at the periphery of the second adhesive structure 52 with a smaller elongation at break, so that after the battery cell 20 expands and deforms, the edge
  • the position is the first adhesive structure 51 with a high elongation at break, which can keep the connection between the battery cell 20 and the upper cover 113 or between the battery cell 20 and the box body fixed, thereby improving the battery cell 20 in the battery 10. stability, thereby improving the safety of the battery 10 .
  • the battery 10 of the embodiment of the present application is described above, and the method and device for manufacturing the battery of the embodiment of the present application will be described below, and the parts not described in detail can be referred to the foregoing embodiments.
  • FIG. 20 shows a schematic flowchart of a method 300 for manufacturing a battery according to an embodiment of the present application.
  • the method 300 may include: S310, providing a battery cell 20 ; providing a first component, wherein the first surface 1111 of the first component is bonded to at least one of the battery cells 20
  • the bonding member 50 is connected, and the bonding member 50 includes a first bonding structure 51 and a second bonding structure 52, the first bonding structure 51 is located at the periphery of the second bonding structure 52, and the first bonding structure 52
  • the elongation at break of the first adhesive structure 51 is greater than the elongation at break of the second adhesive structure 52 .
  • Fig. 21 shows a schematic block diagram of an apparatus 400 for manufacturing a battery according to an embodiment of the present application.
  • the apparatus 400 may include: a providing module 410 .
  • the providing module 410 is used to: provide battery cells 20; provide a first component, wherein the first surface 1111 of the first component is connected to at least one of the battery cells 20 through an adhesive member 50, so that
  • the bonding member 50 includes a first bonding structure 51 and a second bonding structure 52, the first bonding structure 51 is located at the periphery of the second bonding structure 52, and the fracture of the first bonding structure 51
  • the elongation is greater than the elongation at break of the second bonding structure 52 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池、用电装置、制造电池的方法和装置。该电池包括:电池单体;第一部件,其中,所述第一部件的第一表面与至少一个所述电池单体之间通过粘合构件相连接,所述粘合构件包括第一粘合结构和第二粘合结构,所述第一粘合结构位于所述第二粘合结构的外围,所述第一粘合结构的断裂延伸率大于所述第二粘合结构的断裂延伸率。本申请实施例的电池、用电装置、制造电池的方法和装置,能够增强电池的安全性。

Description

电池、用电装置、制造电池的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电装置、制造电池的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池、用电装置、制造电池的方法和装置,能够增强电池的安全性。
第一方面,提供了一种电池,包括:电池单体;第一部件,其中,所述第一部件的第一表面与至少一个所述电池单体之间通过粘合构件相连接,所述粘合构件包括第一粘合结构和第二粘合结构,所述第一粘合结构位于所述第二粘合结构的外围,所述第一粘合结构的断裂延伸率大于所述第二粘合结构的断裂延伸率。
因此,本申请实施例的电池,在电池单体与第一部件之间设置包括两种粘合结构的粘合构件以固定电池单体,该第一部件可以包括电池的箱体或者箱体内的上盖,使得断裂延伸率较大的第一粘合结构位于断裂延伸率较小的第二粘合结构的外围,这样,在电池单体膨胀变形后,边缘位置是高断裂延伸率的第一粘合结构,能够保持电池单体与上盖之间或者电池单体与箱体之间的连接固定,从而提高该电池内电池单体的稳定性,进而提高电池的安全。
在一些实施例中,所述第一粘合结构的断裂延伸率A1满足:100%≤A1≤500%;和/或,所述第二粘合结构的断裂延伸率B1满足:10%≤B1≤150%。
在一些实施例中,所述第一粘合结构的断裂延伸率A1满足:150%≤B1≤400%;和/或,所述第二粘合结构的断裂延伸率B1满足:60%≤B1≤120%。
通过合理设置第一粘合结构和第二粘合结构的断裂延伸率,可以在电池单体膨胀变形后,通过高断裂延伸率的第一粘合结构,保持电池单体与上盖之间或者电池单 体与箱体之间的连接固定。
在一些实施例中,所述粘合构件用于粘合至少一个所述电池单体的第二表面和所述第一表面,所述第二粘合结构覆盖所述第二表面的中心点。
考虑到电池单体发生膨胀时,电池单体中心位置变形量较大,边缘区域变形量相对较小,也就是说电池单体的中心位置距离第一表面的距离小于边缘区域距离第一表面的距离,因此,将断裂延伸率较小而强度较大的第二粘合结构设置在中心位置,能够覆盖所在的电池单体表面的中心点,可以保证电池单体与第一部件之间的稳定性。
在一些实施例中,所述第一粘合结构环绕于所述第二粘合结构的外周。
考虑到电池单体发生膨胀时,电池单体中心位置变形量较大,电池单体边缘位置变形量较小,也就是说电池单体的边缘区域距离第一表面的距离大于中心位置距离第一表面的距离,因此,在第二粘合结构的四周环绕设置断裂延伸率较大的第一粘合结构,可以在电池单体膨胀变形后,降低电池单体的四周边缘区域的开胶的风险。
在一些实施例中,所述粘合构件用于粘合至少一个所述电池单体的第二表面和所述第一表面,所述第二表面的面积为S0,所述第一粘合结构与所述第二表面接触的面积为S1,所述第二粘合结构与所述第二表面接触的面积为S2,S0、S1和S2满足:0.25≤(S1+S2)/S0<1。
当粘合构件与第一表面接触的面积或者说与电池单体的第二表面的接触面积较小时,该粘合结构对电池单体的束缚力弱,振动冲击有失效风险,且电池单体容量保持率差;而粘合构件与第一表面的接触面积或者说与电池单体的第二表面的接触面积过大时,又会导致溢胶,粘连到电池单体的电极端子或电池线束等结构件,进而导致振动冲击有失效风险,因此,0.25≤(S1+S2)/S0<1时,既能保证电池在振动下不失效,又能保证电池的容量保持率在较好的区间内。
在一些实施例中,S0、S1和S2满足:0.5≤(S1+S2))/S0≤0.85。
因此0.5≤(S1+S2)/S0≤0.85时,电池的振动冲击和容量保持率更优。
在一些实施例中,所述第一粘合结构与所述第一表面接触的面积为S1,所述第二粘合结构与所述第一表面接触的面积为S2,S1和S2满足:0.05≤S1/(S1+S2)≤0.85。
在一些实施例中,S1和S2满足:0.15≤S1/(S1+S2)≤0.55。
通过上述设置的第一粘合结构和第二粘合结构的面积比例,可以在保证结构强度的情况下,尽可能减少用胶量。
处于边缘位置的第一粘合结构的涂胶面积占比对结构强度有影响,在一定范围内增加第一粘合结构含量有利于提高电池的结构强度,提升容量保持率。当S1/(S1+S2)等于1时,即只用第一粘合结构,粘合结构对电池结构束缚强度弱。当S1/(S1+S2)等于0.02时,说明大部分粘合结构为第二粘合结构时,会导致开胶问题。当0.05≤S1/(S1+S2)≤0.85时,既能保证电池在振动下不失效,又能保证电池的容量保持率在较好的区间内。尤其是0.15≤S1/(S1+S2)≤0.55时,电池的抗振动冲击性能更优。
在一些实施例中,所述第一粘合结构的弹性模量小于所述第二粘合结构的弹性模量。胶水等粘合结构的断裂延伸率通常与弹性模量呈负相关,因此,第一粘合结构的弹性模量设置为小于第二粘合结构的弹性模量,也可以保证第一粘合结构的断裂延 伸率大于第二粘合结构的断裂延伸率,以降低电池单体的边缘的开胶风险。
在一些实施例中,所述第一粘合结构的弹性模量A2满足:10MPa≤A2≤150MPa;和/或,所述第二粘合结构的弹性模量B2满足:150MPa≤B2≤1000MPa。
在一些实施例中,所述第一粘合结构的弹性模量A2满足:30MPa≤A2≤60MPa;和/或,所述第二粘合结构的弹性模量B2满足:150MPa≤B2≤500MPa。
在一些实施例中,所述第一粘合结构的强度小于所述第二粘合结构的强度。胶水等粘合结构的强度与弹性模量通常呈正相关,而断裂延伸率与弹性模量呈负相关,因此,第二粘合结构的强度较大,可以保证电池单体的稳定性,而第一粘合结构强度较大,断裂延伸率较大,可以降低电池单体的边缘的开胶风险。
在一些实施例中,所述第一粘合结构的强度A3满足:2MPa≤A3≤15MPa;和/或,
所述第二粘合结构的强度B3满足:6MPa≤B3≤25MPa。
在一些实施例中,所述第一粘合结构的强度A3满足:6MPa≤A3≤15MPa;和/或,所述第二粘合结构的强度B3满足:8MPa≤B3≤25MPa。
在一些实施例中,所述电池包括沿第一方向排列的多个电池单体组,所述第一方向垂直于所述第一表面,所述多个电池单体组中每个电池单体组包括沿第二方向排列的至少两个电池单体,所述第二方向垂直于所述第一方向,所述多个电池单体组中的第一电池单体组与所述第一表面之间设置有所述粘合构件。
在一些实施例中,所述第一电池单体组与所述第一表面之间设置有多个所述粘合构件,多个所述粘合构件与所述第一电池单体组中的电池单体一一对应。这样,在电池单体发生膨胀变形时,可以更好的保证每个电池单体的稳定性。
在一些实施例中,所述第一电池单体组与所述第一表面之间设置有一个所述粘合构件,以简化加工过程。
在一些实施例中,所述第一粘合结构和所述第二粘合结构之间设置有间隙。
上述方案中,当第一粘合结构和第二粘合结构选择了同一体系的不同特征的材料时,二者之间可能相互影响,例如第一粘合结构和第二粘合结构的材料选择了同聚氨酯体系的不同特性的胶,二者可能发生反应而相互影响。在第一粘合结构51和第二粘合结构52之间设置有间隙,可降低第一粘合结构51与第二粘合结构52之间的相互影响。
在一些实施例中,所述第一粘合结构和所述第二粘合结构之间设置有阻挡件。
可以通过设置阻挡件,以更好的避免第一粘合结构和第二粘合结构之间的相互影响。
在一些实施例中,所述第一粘合结构的材料包括以下至少一种:环氧树脂、聚氨酯、丙烯酸树脂和有机硅橡胶;和/或,所述第二粘合结构的材料包括以下至少一种:环氧树脂、聚氨酯和丙烯酸树脂。
在一些实施例中,所述电池包括第一箱体和第二箱体,所述第一箱体和所述第二箱体扣合以形成容纳所述电池单体的容纳空间,所述第一部件包括所述第一箱体和/或所述第二箱体。
在一些实施例中,所述电池包括上盖、第一箱体和第二箱体,所述第一箱体和所述第二箱体扣合以形成容纳所述电池单体的容纳空间,所述上盖设置于所述容纳空间内并覆盖所述电池单体,所述第一部件包括所述上盖。
在一些实施例中,所述第一箱体和/或所述第二箱体的面积最大的表面为所述第一表面。
上述方案的设置,可以增大第一部件和电池单体的粘接面积,提高两者的粘接强度。
在一些实施例中,所述电池单体包括:电极组件;壳体,设有开口并具有空腔,所述空腔用于容纳所述电极组件;盖板,用于盖合所述壳体的开口。
在一些实施例中,所述粘合构件设置在所述壳体的面积最大的侧壁与所述第一表面之间。
上述方案的设置,可以增大粘合构件和电池单体的粘接面积,提高两者的粘接强度。
第二方面,提供了一种用电装置,包括:第一方面中的电池,用于提供电能。
在一些实施例中,所述用电装置为车辆、船舶或航天器。
第三方面,提供了一种制造电池的方法,包括:提供电池单体;提供第一部件,其中,所述第一部件的第一表面与至少一个所述电池单体之间通过粘合构件相连接,所述粘合构件包括第一粘合结构和第二粘合结构,所述第一粘合结构位于所述第二粘合结构的外围,所述第一粘合结构的断裂延伸率大于所述第二粘合结构的断裂延伸率。
第四方面,提供了一种制造电池的装置,包括执行上述第三方面的方法的模块。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的分解结构示意图;
图4是本申请一实施例公开的另一种电池的分解结构示意图;
图5是图4所示的电池的局部截面图;
图6是本申请一实施例公开的再一种电池的分解结构示意图;
图7是图6所示的电池的局部截面图;
图8是本申请一实施例公开的一种电池单体与粘合构件的分解结构示意图;
图9是本申请一实施例公开的一种设置有粘合构件的电池单体的示意图;
图10是本申请一实施例公开的一种设置有粘合构件的电池单体膨胀时的侧视图;
图11是图8所示的A-A’方向的局部截面图;
图12是本申请一实施例公开的另一种电池单体与粘合构件的分解结构示意图;
图13是本申请一实施例公开的另一种设置有粘合构件的电池单体膨胀时的示意图;
图14是图8所示的A-A’方向的另一局部截面图;
图15是本申请一实施例公开的再一种电池的分解结构示意图;
图16是图15所示的电池的局部截面图;
图17是本申请一实施例公开的一种多个电池单体与粘合构件的分解结构示意图;
图18是本申请一实施例公开的一种设置有粘合构件的多个电池单体的示意图;
图19是本申请一实施例公开的一种设置有粘合构件的多个电池单体的侧视图;
图20是本申请一实施例公开的一种制造电池的方法的示意性流程图;
图21是本申请一实施例公开的一种制造电池的装置的示意性框图;
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括一次电池、二次电池,例如可以是锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池包一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极片、负极片和隔离膜。电 池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
另外,为了提高电池单体的安全性能,对电池单体一般还会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池的安全性包括多个方面,其中,在固定电池单体方面,为提高电池内电池单体的稳定性和安全性,通常将多个电池单体通过粘合结构固定安装在箱体内。以电池单体与箱体的某一表面之间,采用结构胶并通过胶粘的方式,将电池单体固定在箱体内为例,在选择结构胶时,通常包括两种类型。一种是采用“高强胶”,这种胶水粘接强度大,与箱体粘接牢固,通过“高强胶”的高强度能够实现箱体与电池单体的同步变形;但是在电池单体的使用过程中,电池单体可能会发生膨胀形变,而这种“高强胶”的方案受胶水强度的限制,电池单体在膨胀变形后,其边缘很可能存在开胶风险,且高强胶在低温振动冲击下也有开胶风险。而另一种是采用“高弹胶”,这种胶水具有高弹性和高延伸率,胶形变能力强,能够随形变延伸,进而通过胶水形变以实现箱体与电池单体之间的同步变形;但这种“高弹胶”的方案,由于胶水延伸率大,而相对强度较低,从而导致电池整体刚度较低,结构不稳定,在电池使用过程中,电池单体与箱体之间不够稳定,存在结构失效的风险。
因此,本申请实施例的电池单体的表面设置的粘合构件包括两种粘合结构,第一粘合结构位于第二粘合结构的外围,并且第一粘合结构的断裂延伸率大于第二粘合结构的断裂延伸率,这样,既可以保证电池内电池单体的整体刚度和稳定性,又不会由于电池单体的膨胀形变而导致开胶,进而避免开胶后由于振动冲击导致的电池失效。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括至少一个电池模块200。电池模块200包括多个电池单体20。电池10还可以包括箱体,箱体内部为中空结构,多个电池单体20容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一箱体111和第二箱体112,第一箱体111和第二箱体112扣合在一起。第一箱体111和第二箱体112的形状可以根据电池模块200组合的形状而定,第一箱体111和第二箱体112中至少一个具有一个开口。例如,如图2所示,该第一箱体111和第二箱体112均可以为中空长方体且各自只有一个面为开口面,第一箱体111的开口和第二箱体112的开口相对设置,并且第一箱体111和第二箱体112相互扣合形成具有封闭腔室的箱体。再例如,不同于图2所示,第一箱体111和第二箱体112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二箱体112为中空长方体且只有一个面为开口面,第一箱体111为板状为例,那么第一箱体111盖合在第二箱体112的开口处以形成具有封闭腔室的箱体,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一箱体111和第二箱体112扣合后形成的箱体内。
在一些实施例中,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。
根据不同的电力需求,电池模块200中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,将电池单体 20分组设置,每组电池单体20组成电池模块200。电池模块200中包括的电池单体20的数量不限,可以根据需求设置。
图3为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成外壳21。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为第一电极端子214a和第二电极端子214b。两个电极端子214的极性相反。例如,当第一电极端子214a为正电极端子时,第二电极端子214b为负电极端子。每个电极端子214各对应设置一个连接构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图3所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图3所示,电池单体20内设置有4个独立的电极组件22。
除此以外,为了提高电池单体20的安全性,还可以在电池单体20的一个壁上设置泄压机构,例如,可以在电池单体20的第一壁上设置泄压机构,其中,该第一壁可以为电池单体20的任意一个壁。泄压机构用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。具体地,当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构可以发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构的裂开向外释放,进而避免电池单体20发生爆炸。
在本申请实施例中,电池单体20需要固定在箱体内,例如,以在电池单体20的表面设置结构胶,以将电池单体20进行固定为例,在选择结构胶时,通常包括两种类型。一种是采用“高强胶”,这种胶水粘接强度大,使得电池单体20与箱体粘接牢固,通过“高强胶”的高强度能够实现箱体与电池单体20的同步变形;但是在电池单体20的使用过程中,电池单体20可能会发生膨胀形变,而这种“高强胶”的方案受胶 水强度的限制,电池单体20在膨胀变形后,其边缘很可能存在开胶风险,且高强胶在低温振动冲击下也有开胶风险。而另一种是采用“高弹胶”,这种胶水具有高弹性和高延伸率,胶形变能力强,能够随形变延伸,进而通过胶水形变以实现箱体与电池单体20之间的同步变形;但这种“高弹胶”的方案,由于胶水延伸率大,而相对强度较低,从而导致电池10整体刚度较低,结构不稳定,在电池10使用过程中,电池单体20与箱体之间不够稳定,存在结构失效的风险。
因此,本申请实施例提供了一种电池,能够解决上述问题。
图4和图6分别示出了本申请不同实施例的电池10的分解示意图,对应的,图5为图4所示的电池10的局部截面图,图7为图6所示的电池10的局部截面图。如图4至图7所示,该电池10包括:电池单体20和第一部件,其中,第一部件的第一表面1111与至少一个电池单体20之间通过粘合构件50相连接,粘合构件50包括第一粘合结构51和第二粘合结构52,第一粘合结构51位于第二粘合结构52的外围,第一粘合结构51的断裂延伸率大于第二粘合结构52的断裂延伸率。
因此,本申请实施例的电池10,在电池单体20与第一部件之间设置包括两种粘合结构的粘合构件50以固定电池单体20,该第一部件可以包括电池10的箱体或者箱体内的上盖113,使得断裂延伸率较大的第一粘合结构51位于断裂延伸率较小的第二粘合结构52的外围,这样,在电池单体20膨胀变形后,边缘位置是高断裂延伸率的第一粘合结构51,能够保持电池单体20与上盖113之间或者电池单体20与箱体之间的连接固定,从而提高该电池10内电池单体20的稳定性,进而提高电池10的安全。
应理解,本申请实施例中第一粘合结构51设置在第二粘合结构52的外围可以包括:该第一粘合结构51环绕于该第二粘合结构52的外周,或者,该第一粘合结构51设置在第二粘合结构52周围的局部区域,不完全环绕第二粘合结构52,本申请实施例并不限于此。为了便于说明,本申请实施例中主要以第一粘合结构51环绕第二粘合结构52为例进行描述。
并且,本申请实施例中的第二粘合结构52的形状可以根据实际应用进行设置,例如,该第二粘合结构52可以为矩形或者圆形;对应的,第一粘合结构51的形状也可以根据实际应用进行设置,例如,该第一粘合结构52可以设置为方环或者圆环,本申请实施例并不限于此。为了便于说明,本申请实施例中主要以第一粘合结构51为方环且第二粘合结构52为方形为例进行描述。
应理解,本申请实施例的第一部件的第一表面可以指该第一部件的任意一个与电池单体20连接的表面,并且该第一部件可以包括一个或者多个第一表面1111。具体地,该第一部件可以包括箱体,该箱体可以包括第一箱体111和第二箱体112,该第一表面1111可以为第一箱体111或第二箱体112的任意一个表面;在一些实施例中,该第一部件还可以包括上盖113,该第一表面1111还可以为上盖113的一个表面。
在一些实施例中,如图4至图7所示,若电池10中包括上盖113,该上盖113通常设置在电池单体20与箱体之间,例如,图4至图7以该上盖113设置在电池单体20与箱体的第一箱体111之间为例,那么,该电池10内的电池单体20可以通过粘合构件50与上盖113连接固定,即上盖113的朝向电池单体20的表面为第一表面1111; 另外,箱体内对于未设置有上盖113的一侧,例如,图4至图7中电池单体20与第二箱体112之间,还可以通过粘合构件50将电池单体20直接与箱体的第二箱体112的表面进行固定,例如,如图4至图7所示,电池单体20可以与第二箱体112连接固定,即第二箱体112也可以具有第一表面1111。
在一些实施例中,若电池10中不包括上盖113,那么电池单体20与第一箱体111之间可以通过粘合构件50固定连接,即该第一箱体111具有第一表面1111;并且,电池单体10与第二箱体112之间也可以设置粘合构件50,即该第二箱体112也可以具有第一表面1111,但本申请实施例并不限于此。
应理解,为了便于描述,本申请附图中均以电池10中具有上盖113为例,第一表面1111包括图4至图7中示出的第二箱体112的一个内表面以及上盖113朝向电池单体20的一个表面为例,即该第二箱体112的朝向电池单体20的面积最大的表面为第一表面1111,上盖的朝向电池单体20的表面也为第一表面1111,但本申请实施例并不限于此。
应理解,本申请实施例中的电池10可以包括多个电池单体20,该多个电池单体20中每个电池单体20的设置方向可以根据实际应用进行灵活设置。具体地,这里以如图3所示的长方体的电池单体20为例进行描述,并且在将这样的多个电池单体20固定安装在箱体内时,每个电池单体20在箱体内的设置方向可以相同。
如图4至图7所示,电池10中可以包括沿第一方向Y排列的多个电池单体组,第一方向Y垂直于第一表面1111,即可以将电池10内的电池单体20设置为一层或者多层,每一层电池单体20构成一个电池单体组,例如,图4至图7中以两层为例,即包括两个电池单体组。该多个电池单体组中每个电池单体组包括沿第二方向X排列的至少两个电池单体20,第二方向X垂直于第一方向Y,例如,图4至图7中以每个电池单体组内包括沿X方向排列的6个电池单体20为例;并且,本文中以如图4至图7所示的每个电池单体组中仅包括一列电池单体为例为例进行描述,但电池10包括的每个电池单体组内也可以包括多列电池单体,每一列电池单体包括沿第二方向X排列的至少两个电池单体20,本申请实施例并不限于此。
在本申请实施例中,多个电池单体组中的第一电池单体组与第一表面1111之间设置有粘合构件50,即第一电池单体组中的电池单体20的第二表面201与第一表面1111之间设置有粘合构件50。具体地,该多个电池单体组中可以包括一个或者多个第一电池单体组。例如,如图4至图7所示,多个电池单体组中位于最上方一层的电池单体组可以与上盖113的第一表面1111连接固定,因此,该最上方一层的电池单体组可以为第一电池单体组,即该最上方的第一电池单体组内的电池单体20的上表面为第二表面201,该第二表面201与第一表面1111之间设置有粘合构件50;类似的,如图4至图7所示,该多个电池单体组中位于最下方一层的电池单体组可以与第二箱体112的第一表面1111连接固定,因此,该最下方一层的电池单体组也可以为第一电池单体组,即该下方的第一电池单体组的电池单体20的下表面也可以为第二表面201,该第二表面201与第二箱体112的第一表面1111之间设置有粘合构件50。
应理解,本申请实施例中的电池单体20为长方体,第一电池单体组中的电池 单体20的第二表面201与第一表面1111之间设置有粘合构件50,其中,该第二表面201可以为每个电池单体20的表面积最大的一个表面,以增大粘合构件50和电池单体20之间的粘接面积,提高两者的粘接强度。例如,图4至图7所示,长方形的电池单体20具有六个侧壁,其中,壳体211具有两个面积较大的侧壁,该侧壁可以形成设置有粘合构件50的第二表面201,这样设置电池单体20可以更加利于电池单体20的散热。
在本申请实施例中,可以在第一电池单体组与第一表面1111之间设置一个或者多个粘合构件50。为了便于描述,下文中将结合附图,先以该第一电池单体组与第一表面1111之间设置有多个粘合构件50为例,详细描述本申请实施例的粘合构件50。
在一些实施例中,作为一个实施例,该第一电池单体组与第一表面1111之间可以设置有多个粘合构件50,例如,如图4至图7所示,该多个粘合构件50与第一电池单体组中的电池单体20一一对应。
对应于图4与图5,图8示出了图4和图5中电池单体20与粘合构件50的分解示意图,图9示出了在电池单体20的表面设置粘合构件50的示意图,图10为表面设置粘合构件50的电池单体20膨胀时的侧视图,图11为图10所示的A-A’方向的局部截面图。如图8至图11所示,一个电池单体20的第二表面201设置有一个粘合构件50,该粘合构件50包括第一粘合结构51和第二粘合结构52,该第一粘合结构51设置在第二粘合结构52的外围。这样,在电池单体20发生膨胀变形时,可以更好的保证每个电池单体20的稳定性。
应理解,该粘合构件50可以位于一个电池单体20的第二表面201的任意区域。例如,如图8至图11所示,粘合构件50可以几乎完全覆盖该电池单体20的第二表面201;或者,该粘合构件50也可以占据第二表面201的局部区域。并且,如图11所示,考虑到电池单体20在膨胀变形后,电池单体20的第二表面201的中心区域的变形量较大,而边缘区域变形量较小,也就是说电池单体20的中心位置距离第一表面1111的距离小于边缘区域距离第一表面1111的距离,因此,可以将断裂延伸率较小而强度较大第二粘合结构52设置在每个电池单体20的中心位置,即第二粘合结构52覆盖电池单体20的中心点,以使第一粘合结构51位于第二表面201的四周的边缘位置,其中,电池单体20的第二表面201的中心区域或者中心位置包括该电池单体20的第二表面201的中心点。这样,电池单体20的中心位置处的第二粘合结构52可以保证电池单体20与第一表面1111之间的相对稳定,而每个电池单体20四周边缘的第一粘合结构51相对较大的断裂延伸率,能够保证每个电池单体20四周边缘与第一表面1111之间不会开胶。
在一些实施例中,将一个电池单体20的第二表面201的面积表示为S0,对应的,第一粘合结构51与第二表面201接触的面积为S1(对应的,第一粘合结构51与第一表面1111接触的面积也可以表示为S1),第二粘合结构52与第二表面201接触的面积为S2(对应的,第二粘合结构52与第一表面1111接触的面积也可以表示为S2),那么S0、S1和S2可以设置为满足:0.25≤(S1+S2)/S0<1。例如,可以设置S0、S1和S2满足:0.5≤(S1+S2)/S0≤0.85。进一步的,S1和S2还可以设置为满足:0.05 ≤S1/(S1+S2)≤0.85,例如,可以设置S1和S2满足:0.15≤S1/(S1+S2)≤0.55。
在一些实施例中,图8至图11中第一粘合结构51环绕于第二粘合结构52的外周,但是考虑到第一粘合结构51和第二粘合结构52为不同的材料,因此,如图6和图7所示,还可以在第一粘合结构51和第二粘合结构52之间设置阻挡件53,以避免第一粘合结构51和第二粘合结构52之间的相互影响。
对应于图6和图7,图12示出了图6和图7中的电池单体20与粘合构件50的另一分解示意图,相应的,图13示出了在电池单体20的表面设置粘合构件50且电池单体膨胀时的另一示意图;并且,对于图12和图13所示的电池单体20,其侧视图仍然可以为图10,而对应的A-A’方向的局部截面图则图14所示。如图12至图14所示,一个电池单体20的第二表面201设置有一个粘合构件50,该粘合构件50包括第一粘合结构51和第二粘合结构52,另外,该第一粘合结构51和第二粘合结构52之间设置有阻挡件53。
在一些实施例中,该阻挡件53可以为泡棉、塑胶件等,以阻挡第一粘合结构51与第二粘合结构52之间的相互影响。并且,该阻挡件53的形状可以根据实际应用进行设置。例如,可以根据第一粘合结构51和第二粘合结构52的形状,对应设置阻挡件53的形状,例如,图12至图14中以该阻挡件53为方环为例。
在一些实施例中,为了避免第一粘合结构51与第二粘合结构52之间的相互影响,若不设置该阻挡件53,还可以在该第一粘合结构51和第二粘合结构52之间设置有间隙,这样无需设置额外的部件,设置方式较为简单。例如,图12至图14中阻挡件53所在位置改为设置间隙,同样可以避免第一粘合结构51与第二粘合结构52之间的相互影响,本申请实施例并不限于此。
应理解,在存在阻挡件53或者间隙的情况下,仍然可以按照上述S0、S1和S2满足的关系分配第一粘合结构51和第二粘合结构52的比例,在此不再赘述。
对于上文中图4至图14中各个实施例,通过上述设置的第一粘合结构51和第二粘合结构52的面积比例,可以在保证结构强度的情况下,尽可能减少用胶量。
以电池单体20与粘合构件50一一对应,并且设置阻挡件53的情况为例,对电池10进行测试,其中,可以以该第一粘合结构51和第二粘合结构52均采用聚氨酯材料为例。具体地,在测试之前,首先按照表1中“初始比例(S1+S2)/S0”中描述的参数分别设置粘合构件50的面积比例,并且,第一粘合结构51和第二粘合结构52的面积比例S1/(S1+S2)设置为0.15,测试条件为60℃。其中,考虑到粘合构件50设置在一个电池单体20的一个侧壁的表面上,那么该粘合构件50与该表面接触的面积与该表面的面积的比例不可能大于1,因此,表1中“初始比例(S1+S2)/S0”的数值均小于或者等于1。在循环测试试验中,电压范围为2.8V至4.2V,以2C的倍率进行充电,再以3C的倍率进行放电,经过800次循环,以获得循环容量保有率,该循环容量保有率为第800次循环的3C放电容量相对于第2次3C放电容量的比例,该循环容量保有率即为表1中的“容量保持率”;并且,在800次循环后进行耦合温度振动冲击测试,以确定表1中“振动冲击”的结果;若通过振动冲击测试,则用超声探测仪确定电池单体20的表面上,剩余的粘合构件50的面积比例,即对应获得表1中最后一列“剩余粘胶面 积比”,该剩余粘胶面积比仍然设置为(S1+S2)/S0。
表1
Figure PCTCN2021117625-appb-000001
如表1可知,当粘合构件50与第一表面1111接触的面积或者说与电池单体20的第二表面201接触的面积较小时,尤其是面积比例(S1+S2)/S0小于0.25时,例如,(S1+S2)/S0等于0.2时,该粘合结构50对电池单体20的束缚力弱,振动冲击有失效风险,且电池单体20容量保持率差;而粘合构件50与第一表面1111接触的面积或者说与电池单体20的第二表面201接触的面积过大时,比如面积比例(S1+S2)/S0等于1时,又会导致溢胶,粘连到电池单体20的电极端子或电池线束等结构件,进而导致振动冲击有失效风险,因此,0.25≤(S1+S2)/S0<1时,既能保证电池在振动下不失效,又能保证电池的容量保持率在较好的区间内。
由实施例1-实施例2的数据可知,当(S1+S2)/S0等于0.25时,电池容量保持率相比实施例2和实施例3的电池容量保持率降低,且剩余粘胶面积比也降低。因此0.5≤(S1+S2)/S0≤0.85时,电池的振动冲击和容量保持率更优。
进一步的,与表1测试条件类似,仍然以图6和图7的实施例为例,如表2所示,对于S1与S2比值不同时,测试结果如表2所示。具体地,如表2所示,在(S1+S2)/S0设置为0.85的情况下,调节S1与S2的比例,即按照表2中所示的“S1/(S1+S2)”设置S1与S2的比例,以获得对应的三种性能,其中,“剩余粘胶面积比”为经过振动冲击测试后,测量获取的S1/(S1+S2)的比值。
表2
Figure PCTCN2021117625-appb-000002
Figure PCTCN2021117625-appb-000003
由表2可知,处于边缘位置的第一粘合结构51的涂胶面积占比对结构强度有影响,在一定范围内增加第一粘合结构51含量有利于提高电池10的结构强度,提升容量保持率。当S1/(S1+S2)等于1时,电池10的振动冲击失效,说明只用第一粘合结构51,粘合结构50对电池10的束缚强度弱。当S1/(S1+S2)等于0.02时,电池10的振动冲击失效,说明大部分粘合结构50为第二粘合结构52时,依然会导致开胶问题。当0.05≤S1/(S1+S2)≤0.85时,既能保证电池10在振动下不失效,又能保证电池10的容量保持率在较好的区间内。对比实施例5-实施例9可知,0.15≤S1/(S1+S2)≤0.55时,剩余粘胶面积比在0.62-0.82,电池10的抗振动冲击性能更优。
应理解,该粘合构件50的厚度h可以设置为0.02cm≤h≤1cm,例如,可以设置为0.05cm≤h≤0.5cm。
应理解,上述图8至图14均以一个电池单体20对应设置设置一个粘合构件50为例进行描述,与之不同的,还可以设置第一电池单体组中多个电池单体20对应一个粘合构件50。
在一些实施例中,作为另一个实施例,本申请实施例中的多个电池单体20可以对应设置一个粘合构件50。例如,图15示出了本申请实施例的另一电池10的分解示意图,图16为图15的局部截面图,如图15和图16所示,第一电池单体组与第一表面1111之间可以设置有一个粘合构件50,即第一电池单体组中全部电池单体20对应设置一个粘合构件50;再例如,还可以在第一电池单体组与第一表面1111之间设置多个粘合构件50,其中,每个粘合构件50对应多个电池单体20。
具体地,图17示出了本申请实施例的多个电池单体20与粘合构件50的分解示意图,图18示出了本申请实施例的多个电池单体20表面设置粘合构件50的示意图。为了便于说明,如图17和图18所示,这里以三个电池单体20的第二表面201上设置一个粘合构件50为例,即设置有一个粘合构件50的第二表面201包括三个电池单体20中每个电池单体20的一个侧壁。多个电池单体20对应设置同一个粘合构件50,在电池10内包括的电池单体20个数较多时,可以简化加工过程。
应理解,对比图17与图8的区别,或者,对比图18与图9的区别,他们的区别均仅在于一个粘合构件50对应的电池单体20的个数。并且,图19中按照B-B’的方向获取的局部截面图与图11一致,为了简洁,在此不再赘述。
应理解,一个粘合构件50可以位于多个电池单体20的第二表面201的任意区域。例如,如图15至图18所示,粘合构件50可以几乎完全覆盖多个电池单体20的第 二表面201;或者,该粘合构件50也可以占据第二表面201的局部区域。并且,结合图19和图11所示,多个电池单体20的表面构成第二表面201,而电池单体20在膨胀变形后,每个电池单体20的侧壁的中心区域的变形量较大,而边缘区域变形量较小,也就是说电池单体20的中心位置距离第一表面1111的距离小于边缘区域距离第一表面1111的距离,因此,可以将断裂延伸率较小而强度较大第二粘合结构52设置在第二表面201的中心位置,即第二粘合结构52覆盖第二表面201的中心点,以使该第二粘合结构52能够尽可能覆盖多个电池单体20的中心点,而第一粘合结构51位于第二表面201的四周的边缘位置,以避免边缘开胶风险。其中,第二表面201的中心区域或者中心位置包括该第二表面201的中心点。这样,第二表面201的中心位置处的第二粘合结构52可以保证多个电池单体20与第一表面1111之间的相对稳定,而第二表面201四周边缘的第一粘合结构51相对较大的断裂延伸率,能够保证电池单体20四周边缘与第一表面1111之间不会开胶。
在一些实施例中,参照图12与图13的实施例,对于一个粘合构件50设置于多个电池单体20的表面的情况,同样可以在第一粘合结构51与第二粘合结构52之间设置阻挡件53或者设置间隙,以避免第一粘合结构51与第二粘合结构52之间的相互影响。
在一些实施例中,对于一个粘合构件50设置于多个电池单体20的表面的情况,即多个电池单体20共同形成的第二表面201和第一表面1111之间设置一个粘合构件50时,将第二表面201的面积表示为S0,第一粘合结构51与第二表面201接触的面积为S1(对应的,第一粘合结构51与第一表面1111接触的面积也可以表示为S1),第二粘合结构52与第二表面201接触的面积为S2(对应的,第二粘合结构52与第一表面1111接触的面积也可以表示为S2),S0、S1和S2满足:0.25≤(S1+S2)/S0<1。例如,可以设置S0、S1和S2满足:0.5≤(S1+S2)/S0≤0.85。进一步的,S1和S2还可以设置为满足:0.05≤S1/(S1+S2)≤0.85,例如,可以设置S1和S2满足:0.15≤S1/(S1+S2)≤0.55。
与图4至图14的实施例的效果类似,通过上述设置的第一粘合结构51和第二粘合结构52的面积比例,可以在保证结构强度的情况下,尽可能减少用胶量,在此不再赘述。
在一些实施例中,该粘合构件50的厚度h可以设置为0.02cm≤h≤1cm,例如,可以设置为0.05cm≤h≤0.5cm。
应理解,上文中结合附图描述了本申请实施例的粘合构件50的设置位置等,下文将详细介绍粘合构件50的材料。
本申请实施例的第一粘合结构51的断裂延伸率大于第二粘合结构52的断裂延伸率。具体地,第一粘合结构51的断裂延伸率A1可以设置为满足:100%≤A1≤500%;和/或,第二粘合结构52的断裂延伸率B1可以设置为满足:10%≤B1≤150%。例如,第一粘合结构51的断裂延伸率A1满足:150%≤B1≤400%;和/或,第二粘合结构52的断裂延伸率B1满足:60%≤B1≤120%。
在一些实施例中,本申请实施例中的第一粘合结构51和第二粘合结构52的断 裂延伸率的测试方式,可以参照ISO 527-2,使用固化完全的胶条进行测试,其中,拉伸速度为10mm/min。
例如,可以通过切割或者冷冻的方式将第一粘合结构51与第二粘合结构52从第一表面1111或第二表面201剥离,裁切为10mm*20mm,厚度1mm的块状,通过拉力机进行断裂延伸率的测试,具体测试方法参照ISO 527-2。
应理解,考虑到胶水等粘合结构的强度与弹性模量通常呈正相关,而断裂延伸率与弹性模量呈负相关,还可以设置第一粘合结构51和第二粘合结构52满足其他关系。
在一些实施例中,可以设置第一粘合结构51的弹性模量小于第二粘合结构52的弹性模量。具体地,可以设置第一粘合结构51的弹性模量A2满足:10MPa≤A2≤150MPa;和/或,设置第二粘合结构52的弹性模量B2满足:150MPa≤B2≤1000MPa。例如,设置第一粘合结构51的弹性模量A2满足:30MPa≤A2≤60MPa;和/或,设置第二粘合结构52的弹性模量B2满足:150MPa≤B2≤500MPa。
应理解,本申请实施例的弹性模量为常温弹性模块,弹性模量的测试方式可以参照IPC-TM-650 2.4.24.4,使用动态热机械分析(Dynamic thermomechanical analysis,DMA)测试胶水强度的标准测试方法。
在一些实施例中,还可以设置第一粘合结构51的强度小于第二粘合结构52的强度。具体地,可以设置第一粘合结构51的强度A3满足:2MPa≤A3≤15MPa;和/或,第二粘合结构52的强度B3满足:6MPa≤B3≤25MPa。例如,第一粘合结构51的强度A3满足:6MPa≤A3≤15MPa;和/或,第二粘合结构52的强度B3满足:8MPa≤B3≤25MPa。
应理解,本申请实施例的强度可以包括本体强度和/或剪切强度。具体地,本体强度参照ISO 527-2,使用固化完全的胶条进行测试,拉伸速度为10mm/min。剪切强度参照GB/T 7124进行测试。
在一些实施例中,本申请实施例的第一粘合结构51的材料可以选择在凝固前为液态或者膏状的材料,例如可以选择以下至少一种:环氧树脂、聚氨酯、丙烯酸树脂和有机硅橡胶;和/或,该第二粘合结构52的材料也可以选择在凝固前为液态或者膏状的材料,例如可以选择以下至少一种:环氧树脂、聚氨酯和丙烯酸树脂。
应理解,在选择第一粘合结构51和第二粘合结构52的材料时,若选择了同一体系的不同特征的材料,则二者之间可能相互影响,例如第一粘合结构51和第二粘合结构52的材料选择了同聚氨酯体系的不同特性的胶,二者可能发生反应而相互影响,因此需要在第一粘合结构51和第二粘合结构52之间设置阻挡件53或者间隙;若第一粘合结构51和第二粘合结构52的材料选择了不会发生反应也不会相互影响的材料,例如,分别选择了有机硅胶和聚氨酯型结构胶,那么可以不设置阻挡件53和间隙,本申请实施例并不限于此。
因此,本申请实施例的电池10,在电池单体20与第一部件之间设置包括两种粘合结构的粘合构件50以固定电池单体20,该第一部件可以包括电池10的箱体或者箱体内的上盖113,使得断裂延伸率较大的第一粘合结构51位于断裂延伸率较小的第 二粘合结构52的外围,这样,在电池单体20膨胀变形后,边缘位置是高断裂延伸率的第一粘合结构51,能够保持电池单体20与上盖113之间或者电池单体20与箱体之间的连接固定,从而提高该电池10内电池单体20的稳定性,进而提高电池10的安全。
上文描述了本申请实施例的电池10,下面将描述本申请实施例的制造电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
图20示出了本申请一个实施例的制造电池的方法300的示意性流程图。如图20所示,该方法300可以包括:S310,提供电池单体20;提供第一部件,其中,所述第一部件的第一表面1111与至少一个所述电池单体20之间通过粘合构件50相连接,所述粘合构件50包括第一粘合结构51和第二粘合结构52,所述第一粘合结构51位于所述第二粘合结构52的外围,所述第一粘合结构51的断裂延伸率大于所述第二粘合结构52的断裂延伸率。
图21示出了本申请一个实施例的制造电池的装置400的示意性框图。如图21所示,该装置400可以包括:提供模块410。该提供模块410用于:提供电池单体20;提供第一部件,其中,所述第一部件的第一表面1111与至少一个所述电池单体20之间通过粘合构件50相连接,所述粘合构件50包括第一粘合结构51和第二粘合结构52,所述第一粘合结构51位于所述第二粘合结构52的外围,所述第一粘合结构51的断裂延伸率大于所述第二粘合结构52的断裂延伸率。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (24)

  1. 一种电池,包括:
    电池单体(20);和
    第一部件,
    其中,所述第一部件的第一表面(1111)与至少一个所述电池单体(20)之间通过粘合构件(50)相连接,所述粘合构件(50)包括第一粘合结构(51)和第二粘合结构(52),所述第一粘合结构(51)位于所述第二粘合结构(52)的外围,所述第一粘合结构(51)的断裂延伸率大于所述第二粘合结构(52)的断裂延伸率。
  2. 根据权利要求1所述的电池,其中,所述第一粘合结构(51)的断裂延伸率A1满足:100%≤A1≤500%;和/或,
    所述第二粘合结构(52)的断裂延伸率B1满足:10%≤B1≤150%。
  3. 根据权利要求1或2所述的电池,其中,所述粘合构件(50)用于粘合至少一个所述电池单体(20)的第二表面(201)和所述第一表面(1111),所述第二粘合结构(52)覆盖所述第二表面(201)的中心点。
  4. 根据权利要求1至3中任一项所述的电池,其中,所述第一粘合结构(51)环绕于所述第二粘合结构(52)的外周。
  5. 根据权利要求1至4中任一项所述的电池,其中,所述粘合构件(50)用于粘合至少一个所述电池单体(20)的第二表面(201)和所述第一表面(1111),所述第二表面(201)的面积为S0,所述第一粘合结构(51)与所述第二表面(201)接触的面积为S1,所述第二粘合结构(52)与所述第二表面(201)接触的面积为S2,S0、S1和S2满足:
    0.25≤(S1+S2)/S0<1。
  6. 根据权利要求5所述的电池,其中,S0、S1和S2满足:
    0.5≤(S1+S2)/S0≤0.85。
  7. 根据权利要求1至6中任一项所述的电池,其中,所述第一粘合结构(51)与所述第一表面(1111)接触的面积为S1,所述第二粘合结构(52)与所述第一表面(1111)接触的面积为S2,S1和S2满足:0.05≤S1/(S1+S2)≤0.85。
  8. 根据权利要求7所述的电池,其中,S1和S2满足:
    0.15≤S1/(S1+S2)≤0.55。
  9. 根据权利要求1至8中任一项所述的电池,其中,所述第一粘合结构(51)的弹性模量小于所述第二粘合结构(52)的弹性模量。
  10. 根据权利要求9所述的电池,其中,所述第一粘合结构(51)的弹性模量A2满足:10MPa≤A2≤150MPa;和/或,
    所述第二粘合结构(52)的弹性模量B2满足:150MPa≤B2≤1000MPa。
  11. 根据权利要求1至10中任一项所述的电池,其中,所述第一粘合结构(51)的强度小于所述第二粘合结构(52)的强度。
  12. 根据权利要求11所述的电池,其中,所述第一粘合结构(51)的强度A3满足:2MPa≤A3≤15MPa;和/或,
    所述第二粘合结构(52)的强度B3满足:6MPa≤B3≤25MPa。
  13. 根据权利要求1至12中任一项所述的电池,其中,所述电池包括多个所述电池单体(20),多个所述电池单体(20)与所述第一表面(1111)之间设置有多个所述粘合构件(50),多个所述粘合构件(50)与多个所述电池单体(20)一一对应。
  14. 根据权利要求1至13中任一项所述的电池,其中,所述第一粘合结构(51)和所述第二粘合结构(52)之间设置有间隙。
  15. 根据权利要求1至13中任一项所述的电池,其中,所述第一粘合结构(51)和所述第二粘合结构(52)之间设置有阻挡件(53)。
  16. 根据权利要求1至15中任一项所述的电池,其中,所述第一粘合结构(51)的材料包括以下至少一种:环氧树脂、聚氨酯、丙烯酸树脂和有机硅橡胶;和/或,
    所述第二粘合结构(52)的材料包括以下至少一种:环氧树脂、聚氨酯和丙烯酸树脂。
  17. 根据权利要求1至16中任一项所述的电池,其中,所述电池包括第一箱体(111)和第二箱体(112),所述第一箱体(111)和所述第二箱体(112)扣合以形成容纳所述电池单体(20)的容纳空间,所述第一部件包括所述第一箱体(111)和/或所述第二箱体(112)。
  18. 根据权利要求1至16中任一项所述的电池,其中,所述电池包括上盖(113)、第一箱体(111)和第二箱体(112),所述第一箱体(111)和所述第二箱体(112)扣合以形成容纳所述电池单体(20)的容纳空间,所述上盖(113)设置于所述容纳空间内并覆盖所述电池单体(20),所述第一部件包括所述上盖(113)。
  19. 根据权利要求17或18所述的电池,其中,所述第一箱体(111)和/或所述第二箱体(112)的面积最大的表面为所述第一表面(1111)。
  20. 根据权利要求1至19中任一项所述的电池,其中,所述电池单体(20)包括:
    电极组件(22);
    壳体(211),设有开口并具有空腔,所述空腔用于容纳所述电极组件(22);
    盖板(212),用于盖合所述壳体(211)的开口。
  21. 根据权利要求20所述的电池,其中,所述粘合构件(50)设置在所述壳体(211)的面积最大的侧壁与所述第一表面(1111)之间。
  22. 一种用电装置,包括:根据权利要求1至21中任一项所述的电池,所述电池用于为所述用电装置提供电能。
  23. 一种制造电池的方法,包括:
    提供电池单体(20);
    提供第一部件,其中,所述第一部件的第一表面(1111)与至少一个所述电池单体(20)之间通过粘合构件(50)相连接,所述粘合构件(50)包括第一粘合结构(51)和第二粘合结构(52),所述第一粘合结构(51)位于所述第二粘合结构(52)的外围,所述第一粘合结构(51)的断裂延伸率大于所述第二粘合结构(52)的断裂 延伸率。
  24. 一种制造电池的装置,包括:提供模块,所述提供模块用于:
    提供电池单体(20);
    提供第一部件,其中,所述第一部件的第一表面(1111)与至少一个所述电池单体(20)之间通过粘合构件(50)相连接,所述粘合构件(50)包括第一粘合结构(51)和第二粘合结构(52),所述第一粘合结构(51)位于所述第二粘合结构(52)的外围,所述第一粘合结构(51)的断裂延伸率大于所述第二粘合结构(52)的断裂延伸率。
PCT/CN2021/117625 2021-09-10 2021-09-10 电池、用电装置、制造电池的方法和装置 WO2023035217A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180086442.0A CN116867862A (zh) 2021-09-10 2021-09-10 电池、用电装置、制造电池的方法和装置
PCT/CN2021/117625 WO2023035217A1 (zh) 2021-09-10 2021-09-10 电池、用电装置、制造电池的方法和装置
JP2023524943A JP2023547430A (ja) 2021-09-10 2021-09-10 電池、電力利用装置、電池を製造する方法及び装置
EP21956400.2A EP4216349A1 (en) 2021-09-10 2021-09-10 Battery, electrical device, and method and apparatus for manufacturing battery
KR1020237013960A KR20230074555A (ko) 2021-09-10 2021-09-10 배터리, 전기 기기, 배터리를 제조하는 방법과 장치
US18/536,262 US20240120603A1 (en) 2021-09-10 2023-12-12 Battery, electrical apparatus, and method and apparatus for making battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117625 WO2023035217A1 (zh) 2021-09-10 2021-09-10 电池、用电装置、制造电池的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/536,262 Continuation US20240120603A1 (en) 2021-09-10 2023-12-12 Battery, electrical apparatus, and method and apparatus for making battery

Publications (1)

Publication Number Publication Date
WO2023035217A1 true WO2023035217A1 (zh) 2023-03-16

Family

ID=85507158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117625 WO2023035217A1 (zh) 2021-09-10 2021-09-10 电池、用电装置、制造电池的方法和装置

Country Status (6)

Country Link
US (1) US20240120603A1 (zh)
EP (1) EP4216349A1 (zh)
JP (1) JP2023547430A (zh)
KR (1) KR20230074555A (zh)
CN (1) CN116867862A (zh)
WO (1) WO2023035217A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725378A1 (en) * 1995-01-31 1996-08-07 Sharp Kabushiki Kaisha Reusable self-adhesive label
CN109585471A (zh) * 2017-09-29 2019-04-05 三星电子株式会社 半导体封装和图像传感器
CN110190218A (zh) * 2019-05-07 2019-08-30 宁德时代新能源科技股份有限公司 电池包和车辆
CN211017287U (zh) * 2019-12-16 2020-07-14 宁德新能源科技有限公司 电芯
CN112310525A (zh) * 2019-08-14 2021-02-02 宁德时代新能源科技股份有限公司 电池箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725378A1 (en) * 1995-01-31 1996-08-07 Sharp Kabushiki Kaisha Reusable self-adhesive label
CN109585471A (zh) * 2017-09-29 2019-04-05 三星电子株式会社 半导体封装和图像传感器
CN110190218A (zh) * 2019-05-07 2019-08-30 宁德时代新能源科技股份有限公司 电池包和车辆
CN112310525A (zh) * 2019-08-14 2021-02-02 宁德时代新能源科技股份有限公司 电池箱
CN211017287U (zh) * 2019-12-16 2020-07-14 宁德新能源科技有限公司 电芯

Also Published As

Publication number Publication date
US20240120603A1 (en) 2024-04-11
CN116867862A (zh) 2023-10-10
EP4216349A1 (en) 2023-07-26
KR20230074555A (ko) 2023-05-30
JP2023547430A (ja) 2023-11-10

Similar Documents

Publication Publication Date Title
CN216872113U (zh) 电池和用电设备
WO2023061147A1 (zh) 电池单体、电池以及用电装置
CN216872134U (zh) 电池和用电设备
WO2023151494A1 (zh) 一种加热组件、电池以及用电装置
WO2023045400A1 (zh) 用电装置、电池、加热膜及其制造方法和制造设备
EP4087025A1 (en) Battery, electrical device, and method and apparatus for fabricating battery
EP4092818A1 (en) Battery box body, battery, electric device, method and apparatus for preparing box body
WO2023044634A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023035217A1 (zh) 电池、用电装置、制造电池的方法和装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
CN216872190U (zh) 一种电池和用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023155133A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004750A1 (zh) 电池、用电设备、制备电池的方法和设备
CN220984769U (zh) 电池单体、电池及用电设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155210A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023130278A1 (zh) 电极组件及其制备方法、电池单体、电池及用电设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023524943

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237013960

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021956400

Country of ref document: EP

Effective date: 20230418

WWE Wipo information: entry into national phase

Ref document number: 202180086442.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE