WO2023032852A1 - Extrusion die, coating device, and coating film manufacturing method - Google Patents

Extrusion die, coating device, and coating film manufacturing method Download PDF

Info

Publication number
WO2023032852A1
WO2023032852A1 PCT/JP2022/032240 JP2022032240W WO2023032852A1 WO 2023032852 A1 WO2023032852 A1 WO 2023032852A1 JP 2022032240 W JP2022032240 W JP 2022032240W WO 2023032852 A1 WO2023032852 A1 WO 2023032852A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
liquid supply
manifold
die
extrusion die
Prior art date
Application number
PCT/JP2022/032240
Other languages
French (fr)
Japanese (ja)
Inventor
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202280058305.0A priority Critical patent/CN117881485A/en
Priority to KR1020247006383A priority patent/KR20240036095A/en
Priority to JP2023545529A priority patent/JPWO2023032852A1/ja
Publication of WO2023032852A1 publication Critical patent/WO2023032852A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials

Definitions

  • the present disclosure relates to an extrusion die, a coating device, and a coating film manufacturing method.
  • the following method is known as a method for efficiently producing a coating film having a narrow width (for example, a width of 200 mm or less) in a roll-to-roll continuous process. That is, the coating liquid is applied in stripes with an extrusion die on a wide base material that is continuously conveyed, and after drying the resulting striped coating liquid film, the unfinished space between adjacent coating films is removed.
  • This is a method of obtaining a plurality of strips of coating film by cutting the coated portion (that is, the exposed portion of the substrate).
  • Extrusion die used for stripe coating the coating solution for example, disclosed in FIG. 5 of JP-A-2001-006663, and FIG. It is
  • An object of the present invention is to provide an extrusion die that is excellent in thickness uniformity in the width direction.
  • Another problem to be solved by another embodiment of the present disclosure is to provide a coating apparatus equipped with the extrusion die.
  • a problem to be solved by another embodiment of the present disclosure is to provide a method for producing a coating film using the above coating apparatus.
  • An extrusion die used in a method of strip coating a coating liquid exhibiting thixotropic properties comprising two lips and a plurality of spacers sandwiched between the two lips; a plurality of longitudinally aligned slits defined by two lips and a plurality of spacers, one or more manifolds connected to the one or more slits, and coating to the one or more manifolds At least a liquid supply port that supplies liquid, Extrusion die with multiple feed ports per manifold.
  • ⁇ 2> At least part of the plurality of liquid supply ports is sandwiched between two straight lines extending in the circumferential direction along both width direction edges of the spacer between adjacent slits on the surface defining the manifold.
  • the extrusion die according to ⁇ 1> provided in the region R1.
  • ⁇ 3> The extrusion die according to ⁇ 2>, wherein the one or more liquid supply ports provided in the region R1 are provided at positions facing the spacers in the same region R1.
  • ⁇ 4> At least part of the plurality of liquid supply ports is provided in a region R2 sandwiched between straight lines extending in the circumferential direction along both edges in the width direction of the connecting portion with the slit on the surface defining the manifold.
  • ⁇ 5> The extrusion die according to ⁇ 4>, wherein the one or more liquid supply ports provided in the region R2 are provided at positions facing the openings of the slits in the same region R2.
  • ⁇ 6> The extrusion die according to any one of ⁇ 2> to ⁇ 5>, wherein a part of the plurality of liquid supply ports is provided on at least one of both longitudinal ends of the manifold.
  • each of the plurality of liquid supply pipes is provided with a static mixer.
  • each of the plurality of liquid supply pipes is provided with a valve.
  • a coating comprising a step of applying a coating liquid exhibiting thixotropic properties using the coating apparatus according to any one of ⁇ 7> to ⁇ 9> on a continuously conveyed substrate. A method for manufacturing a coating.
  • an extrusion die that is used in a method of stripe coating a coating liquid exhibiting thixotropic properties and that is excellent in thickness uniformity in the width direction of the formed coating liquid film.
  • a coating apparatus equipped with the extrusion die described above.
  • a method for producing a coating film using the above coating apparatus there is provided.
  • FIG. 1 is a schematic perspective view showing an example of an extrusion die according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view of an example of the extrusion die shown in FIG. 1 taken along the length direction (eg, direction Y) at the center of the manifold.
  • FIG. 3 is a QQ sectional view of the extrusion die shown in FIG.
  • FIG. 4 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, taken along the longitudinal direction (for example, direction Y) at the central portion of the manifold.
  • FIG. 5 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold.
  • FIG. 6 is an RR sectional view of the extrusion die shown in FIG.
  • FIG. 7 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold.
  • FIG. 8 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold.
  • FIG. 9 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold.
  • FIG. 8 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold.
  • FIG. 9 is a schematic cross-sectional view of another example of the extrusion die according to the
  • FIG. 10 is a schematic side view showing an example when the coating liquid is discharged from the extrusion die according to this embodiment.
  • FIG. 11 is a schematic cross-sectional view of an example of a conventional extrusion die cut along the length direction (eg, direction Y) at the center of the manifold.
  • FIG. 12 is a schematic cross-sectional view of an example of a conventional extrusion die cut along the length direction (eg, direction Y) at the center of the manifold.
  • FIG. 13 is a schematic diagram of a case in which four strips of the coating film M formed on the base material B are cut along the width direction of the base material in each of Examples 1 to 5.
  • FIG. FIG. 14 is a schematic diagram of a case in which the four coating films M formed on the substrate B are cut along the width direction of the substrate in each of Examples 5 to 9 and Comparative Examples 1 and 2. is.
  • one direction in the width direction of the extrusion die is referred to as direction X
  • one direction in the length direction of the extrusion die and in the length direction of the manifold is referred to as direction Y
  • the extrusion die Let Z be one of the height directions.
  • Direction X, direction Y, and direction Z are orthogonal to each other.
  • the length direction of the extrusion die corresponds to the coating width direction of the coating liquid.
  • the width direction of the spacer and the width direction of the connection portion with the slit in the plane defining the manifold are the direction Y, which is one direction in the length direction of the extrusion die and the manifold. in the same direction.
  • the surface that defines the manifold refers to the surface that defines the boundary of the space called the manifold, and includes a portion of the lip, a portion of the spacer, and an optional stopper. , a boundary surface between the opening of the slit and the slit, and a boundary surface between the opening of the liquid supply port and the liquid supply port.
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the elements in the figures shown in this disclosure are not necessarily to scale, and emphasis is placed on clearly illustrating the principles of the disclosure, and some emphasis is placed on them.
  • symbol is attached
  • coating liquid film refers to a film before or during drying
  • coating film refers to a film after drying
  • the “width direction” of the base material, the coating liquid film, and the coating film refers to the longitudinal direction of any of the long base material, the coating liquid film, and the coating film. It points in the direction orthogonal to
  • thixotropic property refers to a state in which the viscosity is relatively high in a steady state (for example, a state in which no shear stress is applied), and when shear stress is applied, the viscosity decreases, and the shear stress decreases. It exhibits the property of returning to its original viscosity when the application is stopped.
  • the viscosity curve when the shear rate is decreased is lower than the viscosity curve when the shear rate is increased.
  • a liquid located on the viscous side. The above thickness unevenness is caused by contact between the walls of the manifold and the slit and the coating liquid in the flow path when the coating liquid exhibiting thixotropic properties flows inside the die, particularly from the manifold to the slit. A shear stress is applied to the coating liquid.
  • the difference in shear stress applied to the coating liquid according to the distance from the wall surface causes a difference in the viscosity of the coating liquid discharged from the slit.
  • the coating liquid that comes into contact with the wall surfaces at both ends in the longitudinal direction of the manifold and flows into the slit has a relatively low viscosity, and the coating liquid becomes thicker at both ends than at the center in the width direction. It turns out that there is a trend. In a die that performs stripe coating, the flow path of the coating liquid flowing from the manifold to the slit is complicated, and the distance from the liquid supply port of the manifold to the slit is not uniform. There is a tendency.
  • the inventors of the present invention investigated the problem of the thickness unevenness, it was found that a coating liquid exhibiting thixotropic properties was obtained by providing a plurality of liquid supply ports for supplying the coating liquid to the manifold for each manifold.
  • the present inventors have found that the thickness uniformity in the width direction of the coating liquid film to be formed can be improved even by using such a material, and thus have reached the configuration of the extrusion die according to the present embodiment.
  • the extrusion die according to the present embodiment (hereinafter also simply referred to as "die") is an extrusion die used in a method of stripe coating a coating liquid exhibiting thixotropic properties, and comprises two lips and , a plurality of spacers sandwiched between the two lips, a plurality of longitudinally aligned slits defined by the two lips and the plurality of spacers; It includes at least a plurality of manifolds and liquid supply ports for supplying a coating liquid to one or more manifolds, and one manifold has a plurality of liquid supply ports.
  • one manifold is configured to have a plurality of liquid supply ports, so that a coating liquid exhibiting thixotropic properties is subjected to shear applied in the flow channel in the die. Differences in stress and shear stress hysteresis can be reduced. As a result, it is presumed that the difference in the viscosity of the coating liquid when discharged from the die is reduced, and the thickness uniformity in the width direction of the coating liquid film is obtained. Since the thickness unevenness in the coating liquid film remains even in the coating film obtained by drying the coating liquid film, the thickness uniformity in the width direction of the coating liquid film described above is the thickness of the coating film. You can check it by measuring.
  • the extrusion die described in JP-A-2001-006663 and JP-A-2015-191096 does not have a configuration having a plurality of liquid supply ports per manifold, and exhibits thixotropy.
  • a coating liquid it is difficult to obtain thickness uniformity in the width direction of the formed coating liquid film.
  • FIG. 1 is a schematic perspective view showing an example of the extrusion die according to the present embodiment, showing a state in which the second lip 20 portion is seen through.
  • FIG. 2 is a schematic cross-sectional view of an example of the extrusion die shown in FIG. 1 cut along the length direction (for example, direction Y) at the central portion of the manifold.
  • FIG. 2 shows the first lip 10 side.
  • FIG. 3 is a QQ sectional view of the extrusion die shown in FIG.
  • the die 100 includes a first lip 10, a second lip 20, and a spacer 32 sandwiched between the first lip 10 and the second lip 20. It is also, as shown in FIGS. 1 and 2, the die 100 has a longitudinal (i.e., directional Y), two manifolds 40 connected to the four slits 30, and four liquid supply ports 50 for supplying the coating liquid to the two manifolds 40 are defined.
  • the connecting portion between the manifold 40 and the slit 30 is the opening 34 of the slit 30
  • the connecting portion between the manifold 40 and the liquid supply port 50 is the opening 52 of the liquid supply port 50 .
  • a first lip 10, a second lip 20 and five spacers 32 define a slit 30, and a first lip 10, a second lip 20 and three plugs 38 define a manifold. 40 are defined.
  • two slits are connected per manifold and two liquid supply ports are provided per manifold.
  • the four liquid supply ports 50 are all along the width direction both edges of the connection portion with the slit 30 (that is, the opening 34 of the slit 30) on the surface defining the manifold 40. It is provided in a region R2 sandwiched between straight lines extending in the circumferential direction. Further, the die 100 has four regions R2, and one liquid supply port 50 is provided in each of the four regions R2. The four liquid supply ports 50 in the die 100 are sandwiched between two straight lines extending in the circumferential direction along both width direction edges of the spacer 32 between adjacent slits 30 on the surface defining the manifold 40. It can also be said that it is not provided in the region R1.
  • the region R2 does not include the connection portion with the slit (specifically, the opening 34 of the slit 30 shown in FIG. 2), and the region R1 includes a surface formed by the spacer (specifically does not include the surface 36 formed by the spacer 32, shown in FIG.
  • the region R2 refers to a region excluding the connection portion with the slit (specifically, the opening 34 of the slit 30 shown in FIG. 2) from the cylindrical region indicated by the dashed line.
  • the region R1 is the surface formed by the spacer (specifically, the surface 36 formed by the spacer 32 shown in FIG. 2) from the cylindrical region indicated by the dashed line. refers to the area excluding
  • the four liquid supply ports 50 provided in the region R2 are all located at positions facing the openings 34 of the slits 30 in the same region R2. is provided. Further, as shown in FIG. 3 , in the die 100 , the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other inside the manifold 40 . In other words, it can be said that all four liquid supply ports 50 in the die 100 open toward the opening of the slit 30 .
  • a straight line 50L that passes through the midpoint 52C of the straight line 52L indicating the opening surface and is orthogonal to the straight line 52L is connected at the intersection point P to form a straight line. It can be seen that the portion 52 and , are facing each other.
  • the angle ⁇ 1 formed by the straight line 30L and the straight line 50L is 180° with the straight line 30L as a reference.
  • the die 100 has a mode in which the opening 34 of the slit 30 faces the opening 52 of the liquid supply port 50, but it is not limited to this mode.
  • the opening 52 of the liquid supply port 50 can be provided in a desired shape and size, or if the installation of the liquid supply port 50 and its opening 52 can be used to manufacture the die 100
  • the opening 52 of the liquid supply port 50 may be placed at any position within the region R2 as long as it is permitted.
  • the liquid supply port is provided at a position facing the opening of the slit
  • the positional relationship between the opening of the slit and the opening of the liquid supply port is a straight line shown in FIG.
  • the angle ⁇ 1 formed by the line 30L and the straight line 50L satisfies 90° to 270° with the straight line 30L as a reference.
  • FIG. 4 to 9 are schematic diagrams of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the center of the manifold, similar to FIG. It is a sectional view. 4 to 9 show the first lip 10 side.
  • the die 100A shown in FIG. 4 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38 as in FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and two liquid supply ports 50 for supplying the coating liquid to the one manifold 40. .
  • one manifold is connected to four slits, and one manifold has two liquid supply ports.
  • the two liquid supply ports 50 are both circumferentially along both edges in the width direction of the connection portion with the slit 30 (that is, the opening portion 34 of the slit 30) on the surface defining the manifold 40.
  • the two liquid supply ports 50 provided within the region R2 are both provided at positions facing the openings 34 of the slits 30 within the same region R2. Also in the die 100 ⁇ /b>A, the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other in the manifold 40 . In other words, it can be said that all four liquid supply ports 50 in the die 100A open toward the opening of the slit 30 .
  • the die 100B shown in FIG. 5 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38, similar to FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and two liquid supply ports 50 for supplying the coating liquid to the one manifold 40. .
  • four slits are connected to one manifold, and one manifold has two liquid supply ports.
  • both of the two liquid supply ports 50 in the die 100B extend in the circumferential direction along both width direction edges of the spacer 32 between the adjacent slits 30 on the surface defining the manifold 40. It is provided in a region R1 sandwiched between two straight lines.
  • both of the two liquid supply ports 50 provided within the region R1 are provided at positions facing the spacers 32 within the same region R1.
  • FIG. 6 is an RR sectional view of the extrusion die shown in FIG. 6, a straight line 32L that passes through the midpoint 36C of the surface 36 formed by the spacer 32 and is orthogonal to the surface 36, and a straight line that indicates the opening surface of the opening 52 of the liquid supply port 50.
  • a straight line 50L that passes through the midpoint 52C of the straight line 52L and is perpendicular to the straight line 52L is connected at the intersection point P to form a straight line. , are in direct opposition to each other.
  • the angle ⁇ 2 formed by the straight line 32L and the straight line 50L is 180° with the straight line 32L as a reference.
  • surface 36 formed by spacers 32 is part of the surface defining manifold 40 .
  • the die 100B has a mode in which the surface 36 formed by the spacer 32 and the opening 52 of the liquid supply port 50 face each other, but it is not limited to this mode. .
  • the opening 52 of the liquid supply port 50 can be provided in a desired shape and size, or if the installation of the liquid supply port 50 and its opening 52 can be used to manufacture the die 100B.
  • the opening 52 of the liquid supply port 50 may be placed at any position within the region R1 as long as it is permitted.
  • the angle ⁇ 2 formed by the straight line 32L and the straight line 50L may satisfy 90° to 270° with the straight line 32L as the reference.
  • the die 100C shown in FIG. 7 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38, similar to FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and three liquid supply ports 50 for supplying the coating liquid to the one manifold 40. .
  • one manifold is connected to four slits, and one manifold has three liquid supply ports.
  • the three liquid supply ports 50 in the die 100C are arranged along the width direction both edges of the connection portion with the slit 30 (that is, the opening portion 34 of the slit 30) of the surface defining the manifold 40.
  • the three liquid supply ports 50 provided within the region R2 are all provided at positions facing the openings 34 of the slits 30 within the same region R2. Also in the die 100 ⁇ /b>C, the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other in the manifold 40 . In other words, it can be said that all of the three liquid supply ports 50 in the die 100 ⁇ /b>C open toward the opening of the slit 30 .
  • the die 100D shown in FIG. 8 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38 as in FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and two liquid supply ports 50 for supplying the coating liquid to the one manifold 40. . Furthermore, a part of both ends (that is, two plugs 38) of the manifold 40 in the length direction (that is, the direction Y) is open, and the coating liquid is supplied to the manifold 40 on both ends. A liquid supply port 54 is provided.
  • both of the two liquid supply ports 50 in the die 100D extend in the circumferential direction along both width direction edges of the spacer 32 between the adjacent slits 30 on the surface defining the manifold 40. It is provided in a region R1 sandwiched between two straight lines.
  • the two liquid supply ports 50 provided within the region R1 are both located in the same region R1. It is provided at a position facing the spacer 32 inside.
  • the surface 36 formed by the spacer 32 and the opening 52 of the liquid supply port 50 face each other in the manifold 40 . In other words, it can be said that both of the two liquid supply ports 50 in the die 100 ⁇ /b>D open toward the surface closed by the spacer 32 . Also, the openings 56 of the two liquid supply ports 54 face each other.
  • the die 100E shown in FIG. 9 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38, similar to FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and three liquid supply ports 50 for supplying the coating liquid to the one manifold 40. . Furthermore, a part of both ends (that is, two plugs 38) of the manifold 40 in the length direction (that is, the direction Y) is open, and the coating liquid is supplied to the manifold 40 on both ends. A liquid supply port 54 is provided.
  • the die 100E four slits are connected to one manifold, and a total of five liquid supply ports 50 and 54 are provided to one manifold.
  • the three liquid supply ports 50 in the die 100E are arranged in the circumferential direction along both edges in the width direction of the connection portion with the slit 30 (that is, the opening portion 34 of the slit 30) on the surface defining the manifold 40. It is provided in a region R2 sandwiched by straight lines extending to .
  • the three liquid supply ports 50 provided within the region R2 are all provided at positions facing the openings 34 of the slits 30 within the same region R2.
  • the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other inside the manifold 40 .
  • all three liquid supply ports 50 in the die 100E open toward the opening of the slit 30 .
  • the openings 56 of the two liquid supply ports 54 face each other.
  • the number of liquid supply ports, the opening direction of the liquid supply ports, etc. are determined by the size and thickness of the coating liquid film (or coating film) to be formed, the allowable amount of thickness unevenness in the width direction of the coating liquid film, etc. It can be determined accordingly.
  • FIGS. 8 and 9 show the dies 100D and 100E having the liquid supply ports 54 that are open at both longitudinal ends of the manifold 40, the liquid supply ports 54 are opened at both longitudinal ends of the manifold 40. It may be an aspect in which one side is opened. However, from the viewpoint of improving the thickness uniformity in the width direction of the coating liquid film, it is preferable that the manifold is opened at both ends in the length direction.
  • At least a part of the plurality of liquid supply ports is circumferentially along both width direction edges of the spacer between adjacent slits on the surface defining the manifold. At least a part of the plurality of liquid supply ports is provided in a region R1 sandwiched between two extended straight lines, and at least a part of the plurality of liquid supply ports is along both edges in the width direction of the connection portion with the slit on the surface defining the manifold. There is also a mode in which it is provided in a region R2 sandwiched between straight lines extending in the circumferential direction.
  • the former aspect (that is, the aspect in which at least some of the plurality of liquid supply ports are provided within the region R1) is shown by a die 100B shown in FIG. 4 and a die 100D shown in FIG.
  • the latter mode (that is, the mode in which at least some of the plurality of liquid supply ports are provided within the region R2) includes the die 100 shown in FIGS. 1 to 3, the die 100A shown in FIG. 100C and die 100E shown in FIG.
  • the former mode can suppress the influence of dynamic pressure and reduce the flow velocity distribution of the coating liquid.
  • the thickness uniformity in the width direction of the working liquid film can be further improved.
  • first lip and second lip As shown in FIG. 1, the first lip 10 and the second lip 20 are arranged side by side in the X direction. Also, as shown in FIG. 1, the shape of the first lip 10 and the second lip 20 are both columnar with the direction Y as the length direction, and the length direction for forming the manifold 40 is has a recess extending into the The first lip 10 and the second lip 20 having such a shape are provided with a spacer 32 sandwiched between the first lip 10 and the second lip 20 as shown in FIGS. The combination defines the slit 30 , the manifold 40 , and the liquid supply port 50 .
  • the first lip and the second lip are made of metal.
  • Metals include, for example, stainless steel.
  • the first lip may be made of a plurality of metals.
  • the first lip and the second lip, respectively, only the tip portion is formed of ultrafine grain alloy (eg, TF15, Mitsubishi Materials Corporation) or cemented carbide (eg, Nippon Tungsten Co., Ltd.) and the portion other than the tip may be made of stainless steel.
  • the spacer 32 is a member sandwiched between the first lip 10 and the second lip 20 arranged side by side in the X direction.
  • the size and thickness of the spacer determine the size of the slit, and the coating width (that is, the width of the coating liquid film) and the thickness of the coating liquid film are adjusted.
  • the number of manifolds can be determined by the shape and installation position of the spacer. For example, as shown in FIG. 2, two manifolds 40 arranged in the length direction of the die 100 may be formed by providing a spacer 32 at the center of the die 100 in the length direction.
  • the spacer may be a member separate from the first lip and the second lip, or may be formed as part of the first lip and/or the second lip. However, from the viewpoint of facilitating adjustment of the size of the slit, the spacer is preferably a member separate from the first lip and the second lip.
  • stainless steel or fluorine-based resin such as polytetrafluoroethylene (PTFE) is generally suitable.
  • PTFE polytetrafluoroethylene
  • cemented carbide and resins such as polyetheretherketone (PEEK) may be used as materials for the spacers.
  • the plug 38 is a member that is sandwiched between the first lip 10 and the second lip 20 that are arranged side by side in the direction X, and together with the first lip 10 and the second lip 20, the manifold. 40. In other words, it can be said that the plug 38 is a member that constitutes both ends of the manifold 40 in the length direction.
  • stainless steel or fluorine-based resin such as polytetrafluoroethylene (PTFE) is generally suitable.
  • PTFE polytetrafluoroethylene
  • the slit 30 is a space for transferring along the direction Z and discharging the coating liquid accumulated in the manifold 40 .
  • the slit 30 is a space separated by a spacer 32 between the first lip 10 and the second lip 20 arranged side by side in the X direction.
  • the number of slits is not particularly limited as long as it is two or more, and may be appropriately determined according to the application of the coating liquid film (coating film), production efficiency, and the like.
  • the size of the slit may be appropriately determined according to the size of the intended coating liquid film (coating film).
  • the ratio of the total width of the slits (that is, the coating width) to the total length of the manifold is 0.7 to 0.95. (Tentative) is preferable. That is, in the die according to the present embodiment, it is preferable that the total width of the coated portion (that is, the coating width) is larger than the total width of the uncoated portion.
  • the width of the coating liquid discharge port of the slit with respect to the connection portion between the slit and the manifold that is, the opening of the slit in the manifold.
  • the ratio is between 0.9 and 1.0. That is, it is preferable that the width of the slit is substantially the same on the manifold side and the discharge port side.
  • the manifold 40 spreads the coating liquid supplied from the liquid supply port 50 (in some cases, the liquid supply ports 50 and 54) in the length direction of the die (direction Y in FIG. 1), and spreads the coating liquid. It is a space for temporary storage.
  • the manifold 40 is a space formed between the first lip 10 and the second lip 20 arranged side by side in the direction X and closed and/or separated by the spacer 32 .
  • the number of manifolds may be one, or two or more, but preferably one from the viewpoint of improving thickness uniformity in the width direction of the coating liquid film.
  • the shape and size of the manifold may be appropriately determined according to the physical properties of the coating liquid.
  • the shape of the manifold is not particularly limited. For example, as shown in FIG. 1, it may be cylindrical or prismatic.
  • the liquid supply ports 50 and 54 are spaces for supplying the coating liquid to the manifold 40 .
  • the liquid supply port 50 is a space formed between the first lip 10 and the second lip 20 arranged side by side in the X direction.
  • the liquid supply port 54 is a space formed in a part of the spacer 32 existing at both ends of the manifold 40 .
  • a plurality of liquid supply ports 50 and 54 may be provided per manifold 40, and from the viewpoint of improving thickness uniformity in the width direction of the coating liquid film, 2 to 9 ports are provided per manifold 40. more preferably 2 to 5, more preferably 4 to 5.
  • the equivalent diameter of the liquid supply ports 50, 54 is selected to be about 10 mm to 50 mm from the viewpoint of application to the supply of the coating liquid exhibiting thixotropic properties.
  • the coating apparatus includes the above-described extrusion die according to this embodiment, and a plurality of liquid supply pipes that supply a coating liquid to the manifold of the extrusion die through liquid supply ports. And prepare.
  • the liquid supply pipe is not particularly limited as long as it is a pipe capable of supplying a coating liquid exhibiting thixotropy.
  • each of the plurality of liquid supply pipes is provided with a static mixer.
  • a static mixer in the liquid supply pipe, the viscosity of the coating liquid supplied to the manifold 40 can be made uniform, and the thickness uniformity in the width direction of the coating liquid film can be further enhanced.
  • each of the plurality of liquid supply pipes is provided with a valve. By providing a valve in the liquid supply pipe, it becomes possible to adjust the flow rate of the coating liquid supplied from each liquid supply port to the manifold, and the thickness uniformity of the coating liquid film in the width direction can be further enhanced.
  • FIG. 10 is a schematic side view showing an example of when the coating liquid is discharged from the extrusion die according to this embodiment (that is, the coating process).
  • the die 100 is applied to the substrate B, which is the object to be coated, at the openings of the slits 30 (coating liquid ) are arranged to face each other.
  • the distance between the die 100 and the substrate B is not limited, and may be determined, for example, according to the viscosity of the coating liquid and the thickness of the coating liquid film to be formed.
  • a substrate B is transported in the direction X with respect to the die 100 .
  • a coating liquid supplied to the manifold 40 of the die 100 is discharged toward the substrate B through the slit 30 .
  • a coating liquid film can be formed on the substrate B by ejecting the coating liquid from the die 100 while the substrate B is continuously conveyed.
  • FIG. 10 shows an example in which the base material B is wound around the backup roll 200 when the coating liquid is applied, but it is not limited to this aspect.
  • stripe coating using the die according to this embodiment is not limited to the following.
  • the base material used for stripe coating may be selected according to the application of the coating film to be formed, and the applicability to continuous transportation (preferably, applicability to roll-to-roll method) is taken into consideration. can be selected.
  • As the substrate a substrate having high thermal conductivity such as a metal substrate may be used.
  • you may use a resin film as a base material.
  • substrates with high thermal conductivity examples include substrates with a thermal conductivity of 200 W/m ⁇ K or more.
  • the base material used in stripe coating is, for example, a base material with a multilayer structure containing a metal foil and a resin film
  • the heat conductivity of the base as a whole is 200 W / m K or more
  • the heat conduction The base material has a rate of 200 W/m ⁇ K or more.
  • the upper limit of the thermal conductivity of the substrate is not particularly limited, and is, for example, 500 W/m ⁇ K.
  • Examples of substrates exhibiting the above thermal conductivity include metal substrates. More specifically, examples of substrates exhibiting the above thermal conductivity include metal substrates made of copper, aluminum, silver, gold, and alloys thereof. In addition, the metal substrate may be a substrate made of stainless steel, nickel, titanium, or an invar alloy. Among them, a copper base material and an aluminum base material are preferably used in terms of shape stability as a base material, track record of use, and the like.
  • the thermal conductivity of the substrate is measured as follows. First, a base material is cut into a size suitable for the apparatus described later to obtain a measurement sample. The thermal diffusivity in the thickness direction of the obtained measurement sample is measured by a laser flash method. For example, it can be measured using "LFA467” manufactured by NETZSCH. Next, the specific gravity of the measurement sample is measured using a balance. For example, it can be measured using a balance “XS204” (using a “solid specific gravity measurement kit”) manufactured by Mettler Toledo, Inc. Furthermore, using "DSC320/6200” manufactured by Seiko Instruments Inc., the specific heat of the sample for measurement at 25°C is determined using DSC7 software under the condition of temperature increase of 10°C/min. By multiplying the obtained thermal diffusivity by the specific gravity and the specific heat, the thermal conductivity of the measurement sample (that is, the substrate) is calculated.
  • a laser flash method For example, it can be measured using "LFA467” manufactured by NETZSCH.
  • the thickness of the substrate may be appropriately set from the viewpoint of application to the roll-to-roll system.
  • the thickness of the substrate is, for example, preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the width and length of the substrate may be appropriately set from the viewpoint of application to the roll-to-roll method and the width and length of the desired coating film.
  • the thickness of the substrate is measured as follows. That is, using a contact-type thickness measuring machine, the thickness of the substrate at three locations in the width direction (that is, the position 5 mm from both edges in the width direction and the central portion in the width direction) is measured at intervals of 500 mm in the longitudinal direction. Measure at 3 points. An arithmetic mean value of the total nine measured values is determined and taken as the thickness of the base material.
  • a contact-type thickness measuring machine for example, S-2270 manufactured by Fuji Work Co., Ltd. is used.
  • the means for transporting the base material is, for example, a backup roll (specifically, the backup roll 200 in FIG. 10) from the viewpoint that the base material can be transported in a stretched state and the coating accuracy is improved. is preferred.
  • the backup roll is a rotatable member.
  • the base material can be transported by rotating the backup roll.
  • the backup roll can also be conveyed by winding the base material thereon.
  • the backup roll may be a driving roll or a driven roll.
  • the backup roll may be heated from the viewpoint of promoting drying of the coating film and suppressing brushing of the coating film due to a decrease in the film surface temperature (that is, whitening of the coating film due to fine condensation).
  • the surface temperature of the backup roll is preferably controlled by temperature control means. More preferably, the surface temperature of the backup roll is controlled by temperature control means based on the detected surface temperature.
  • temperature control means include heating means and cooling means.
  • heating means for example, induction heating, water heating, or oil heating is used.
  • cooling means for example, cooling by cooling water is used.
  • the diameter of the backup roll is preferably 100 mm to 1,000 mm, more preferably 100 mm to 800 mm, from the viewpoints of easy winding of the base material, easy coating with a die head, and the production cost of the backup roll. is more preferred, and 200 mm to 700 mm is particularly preferred.
  • the transfer speed of the base material by the backup roll is, for example, 10 m/min to 100 m/min.
  • the wrap angle of the substrate with respect to the backup roll is preferably 60° or more, more preferably 90° or more, from the viewpoint of stabilizing the transportation of the substrate during coating and suppressing the occurrence of unevenness in the thickness of the coating film. More preferred. Also, the upper limit of the wrap angle can be set to 180°, for example.
  • the wrap angle is an angle formed by the direction in which the substrate is conveyed when the substrate contacts the backup roll and the direction in which the substrate is conveyed when the substrate separates from the backup roll.
  • a coating liquid used for stripe coating a coating liquid exhibiting thixotropic properties is used.
  • the solid content concentration is high (for example, the solid content concentration is 35% by mass or more), and the solid content contains particles at a high concentration (for example, the particle concentration in the solid content 50% by mass or more) coating liquid.
  • a water-based coating liquid containing particles at a high concentration is preferably applied.
  • the water-based coating liquid includes a coating liquid in which the solvent (or dispersion medium) contained in the coating liquid is substantially water (hereinafter also referred to as water-based coating liquid).
  • the solvent (or dispersion medium) is substantially water
  • the proportion of water in the total solvent (or the total dispersion medium) is 90% by mass or more, and the proportion of water in the total solvent (or the total dispersion medium) is preferably 95% by mass or more, and the total solvent (or or the entire dispersion medium) is particularly preferably water.
  • the solid content refers to components excluding the solvent (or dispersion medium).
  • water contained in the water-based coating liquid examples include natural water, purified water, distilled water, ion-exchanged water, pure water, and ultrapure water (eg, Milli-Q water).
  • the Milli-Q water is ultrapure water obtained by Merck's Milli-Q water production equipment.
  • the content of water in the water-based coating liquid is not particularly limited. For example, it is preferably 20% by mass or more, more preferably 30% by mass or more, relative to the total mass of the water-based coating liquid.
  • the upper limit of the water content is preferably 65% by mass from the viewpoint of expressing thixotropy.
  • the water-based coating liquid preferably contains particles as one of the solid components, as described above. That is, the water-based coating liquid is preferably a coating liquid containing particles.
  • the particles are not particularly limited as long as they are particulate, and may be inorganic particles, organic particles, or composite particles of inorganic and organic substances.
  • inorganic particles known inorganic particles that can be applied to the intended coating film can be used.
  • inorganic particles include particles of metals (alkali metals, alkaline earth metals, transition metals, or alloys of these metals), particles of semimetals (such as silicon), or compounds of metals or semimetals (oxides, particles of hydroxides, nitrides, etc.), particles of pigments containing carbon black and the like, and the like.
  • inorganic particles also include mineral particles such as mica, inorganic pigment particles, and the like.
  • organic particles known organic particles that can be applied to the intended coating film can be used.
  • the organic particles are not particularly limited as long as they are solid organic particles including resin particles and organic pigment particles.
  • Composite particles of inorganic substances and organic substances include composite particles in which inorganic particles are dispersed in a matrix of organic substances, composite particles in which the periphery of organic particles is coated with inorganic substances, and composite particles in which the periphery of inorganic particles is coated with organic substances. composite particles and the like.
  • the particles may be surface-treated for the purpose of imparting dispersibility.
  • the above composite particles may be obtained by subjecting the composite particles to a surface treatment.
  • particle size there are no particular restrictions on the particle size, specific gravity, usage form (for example, whether or not they are used in combination), etc., and may be determined according to the intended coating film or conditions suitable for producing the coating film. can be selected as appropriate.
  • the content of the particles in the water-based coating solution is not particularly limited, and may be appropriately adjusted depending on the desired coating film, conditions suitable for producing the coating film, or purpose of adding the particles. , should be determined.
  • the content of the particles in the water-based coating liquid is preferably 50% by mass or more as the particle concentration in the solid content, for example, from the viewpoint of obtaining a coating liquid exhibiting thixotropic properties.
  • the solid content other than the particles contained in the water-based coating liquid is not particularly limited, and includes various components used for obtaining the intended coating film.
  • the solid content contained in the water-based coating liquid includes, in addition to the above particles, a binder component, a component that contributes to the dispersibility of the particles, a polymerizable compound, a reactive component such as a polymerization initiator, a surfactant, and the like. Ingredients for enhancing coating performance, other additives, and the like.
  • coating liquids exhibiting thixotropic properties include the water-based coating liquids described above, as well as water-based polymer solutions, solvent-based particle dispersions, solvent-based polymer solutions, and the like. Even when these coating liquids are used, the thickness uniformity in the width direction of the coating liquid film can be improved by using the die according to the present embodiment.
  • the film thickness of the coating liquid film formed in stripe coating is not particularly limited, and may be appropriately determined according to the intended coating film.
  • the thickness of the coating liquid film can be selected, for example, from 50 ⁇ m to 350 ⁇ m, from 80 ⁇ m to 300 ⁇ m, and from 80 ⁇ m to 200 ⁇ m.
  • the thickness of the coating liquid film is measured as follows. That is, for the coating liquid film, three locations along the width direction (specifically, the position of 5 mm from both edges in the width direction and the central portion in the width direction), an optical interference thickness measuring machine (for example, Keyence Corporation (Infrared spectroscopic interference type film thickness meter SI-T80). The arithmetic average value of the measured values at three points is obtained, and this value is defined as the thickness of the coating liquid film.
  • an optical interference thickness measuring machine for example, Keyence Corporation (Infrared spectroscopic interference type film thickness meter SI-T80).
  • the width of one strip of coating (that is, the width of one strip of coating liquid film) is not particularly limited, and may be appropriately determined according to the intended coating film.
  • the coating width can be selected to be, for example, 200 mm or less, 150 mm or less, or 100 mm or less.
  • the lower limit of the coating width is, for example, 30 mm.
  • the coating width may be different for each line, or may be the same. However, from the viewpoint of quality control, etc., it is preferable that the coating widths of the plurality of coating liquid films are approximately the same. At this time, it is preferable that the difference in coating width between the plurality of coating liquid films is 2 mm or less.
  • the width of the uncoated portion between the coating liquid films (that is, the width of the exposed portion of the base material between the coating liquid films) is not particularly limited, and may vary depending on the intended use of the coating film. can be determined as appropriate.
  • the width of the uncoated portion between the coating liquid films can be selected, for example, from 5 mm to 100 mm. When there are a plurality of uncoated portions between coating liquid films, the widths of the plurality of uncoated portions may be different or the same.
  • the width of the coating and the width of the uncoated portion are measured as follows. That is, the film surface of the coating liquid film is viewed from above, and the width of one strip of the coating liquid film is measured with a ruler at three points spaced apart by 500 mm in the longitudinal direction. Arithmetic mean value of measured values of three points is obtained, and this value is defined as coating width. In addition, the film surface of the coating liquid film is viewed from above, and the width of the uncoated portion between the coating liquid films is measured by a ruler at three points spaced apart by 500 mm in the longitudinal direction. The arithmetic mean value of the measured values of the three points is determined and taken as the width of the uncoated portion.
  • the number of coating liquid films formed may be two or more. Just do it.
  • the coating liquid film formed in stripes on the substrate in the coating process becomes a coating film through, for example, a drying process.
  • a known drying means can be applied to dry the coating liquid film.
  • Other known treatments may be applied to the coating liquid film.
  • a water-based coating liquid 1 was prepared by mixing the following components.
  • the water-based coating liquid 1 is a coating liquid exhibiting thixotropy.
  • Polyvinyl alcohol 58 parts (CKS-50: degree of saponification 99 mol%, degree of polymerization 300, Nippon Synthetic Chemical Industry Co., Ltd.) ⁇ Daiichi Kogyo Seiyaku Co., Ltd.
  • Cerogen PR 24 parts ⁇ Surfactant (Nippon Emulsion Co., Ltd., Emarex (registered trademark; hereinafter the same) 710): 5 parts ⁇ ARTPEARL J prepared by the following method -7P aqueous dispersion: 913 parts
  • aqueous coating liquid 2 had a viscosity of 20 mPa ⁇ s at 25° C. and an average particle size of 0.108 ⁇ m.
  • the water-based coating liquid 2 is a coating liquid exhibiting thixotropic properties.
  • Dispersion A prepared by the following method: 132.1 parts
  • Dispersion B prepared by the following method: 396.2 parts Boric acid (crosslinking agent): 2.94 parts Polyvinyl alcohol (7.3% Aqueous solution): 230.7 parts (Kuraray Co., Ltd., PVA 235, degree of saponification 88%, degree of polymerization 3500)
  • ⁇ Diethylene glycol monobutyl ether 2.7 parts
  • ⁇ Ion-exchanged water 93.5 parts
  • Ethanol 41.4 parts
  • Dispersion A preparation of Dispersion A.
  • ⁇ Vapor-phase silica fine particles inorganic fine particles
  • AEROSIL 300SF75 Nippon Aerosil Co., Ltd.
  • ⁇ Ion-exchanged water 1400 parts
  • ⁇ Alphine 83 40.0% aqueous solution
  • Dispersion B After the following components were mixed and ultrasonically dispersed, the dispersion was heated to 30° C. and held for 8 hours to prepare Dispersion B.
  • Example 1 Using the coating apparatus equipped with the die 100 shown in FIGS. 1 and 2, as shown in FIG. 10, the water-based coating liquid 1 is applied on the aluminum substrate by stripe coating in four lines. A working liquid film was formed, and the formed four strips of the coating liquid film were dried to obtain four strips of the coating film.
  • a water-based coating liquid 1 is applied onto a continuously conveyed substrate along the longitudinal direction of the substrate. It was coated in a stripe shape with 4 lines.
  • the die 100 has two connected slits per manifold and two liquid supply ports per manifold. The die 100 had a width of 1500 mm and a height of 150 mm.
  • the coating width of one coating liquid film was 300 mm, the film thickness was 0.1 mm, and the width of the uncoated portion between the coating liquid films was 30 mm. , the width of the uncoated portion at both ends of the substrate was 60 mm. Subsequently, hot air at 70° C. was applied to the coating liquid film to dry the coating liquid film. As described above, four coating films were formed on the substrate.
  • Examples 2 to 6 In the same manner as in Example 1, except that the die 100 provided in the coating apparatus in Example 1 was replaced with one of the dies 100A to 100E shown in FIGS. A working film was formed.
  • the die 100A has four slits connected to one manifold and two liquid supply ports to one manifold, as shown in FIG. Both of the two liquid supply ports open toward the opening of the slit.
  • Die 100A differs from die 100 only in that it has one manifold.
  • the die 100B has four slits connected to one manifold and two liquid supply ports to one manifold. Both of the two liquid supply ports open toward the surface closed by the spacer.
  • the die 100B differs from the die 100A only in the opening direction (installation location) of the liquid supply port.
  • the die 100C has four slits connected to one manifold and three liquid supply ports to one manifold. All of the three liquid supply ports open toward the opening of the slit.
  • the die 100C differs from the die 100A only in the number of liquid supply openings and the installation location.
  • the die 100D has four slits connected to one manifold and a total of four liquid supply ports 50 and 54 in one manifold.
  • the die 100D differs from the die 100A only in the number of liquid supply openings and the installation location.
  • the die 100E has four slits connected to one manifold and a total of five liquid supply ports 50 and 54 in one manifold.
  • the die 100E differs from the die 100A only in the number of liquid supply openings and the installation location.
  • Example 7 and 8 In the same manner as in Example 1, except that the coating apparatus equipped with the die 100D used in Example 5 was used and the incidental equipment (static mixer or valve) of the liquid supply pipe was used, four lines were formed on the substrate. A coating film was formed. As a static mixer, N60 series (12 elements) manufactured by Noritake Co., Ltd. was used.
  • Example 9 Four strips of coating film were formed on the substrate in the same manner as in Example 8, except that the water-based coating liquid 1 was replaced with the water-based coating liquid 2.
  • the die 100F shown in FIG. 11 is aligned along the length of the die 100F (i.e., direction Y) by a first lip 10, a second lip (not shown), and five spacers 32, similar to FIG.
  • Four slits 30 , four manifolds 40 connected to the four slits 30 respectively, and four liquid supply ports 50 for supplying the coating liquid to the four manifolds 40 are defined.
  • one slit is connected to one manifold, and one manifold has one liquid supply port.
  • the liquid supply port 50 opens toward the opening 34 of the slit 30 in each of the four manifolds 40 of the die 100F.
  • Die 100F differs from die 100 only in that the number of manifolds is changed and the number of manifolds is four.
  • the die 100G shown in FIG. 12 is aligned in the length direction (i.e., direction Y) of the die 100G by a first lip 10, a second lip (not shown), and five spacers 32, similar to FIG.
  • Four slits 30 , one manifold 40 connected to the four slits 30 , and one liquid supply port 50 for supplying the coating liquid to the one manifold 40 are defined.
  • four slits are connected to one manifold, and one manifold has one liquid supply port.
  • one liquid supply port 50 in the die 100G opens toward the opening 34 of the slit 30 .
  • the die 100G differs from the die 100A only in the number of openings of the liquid supply port and the installation location.
  • the thickness in the width direction of the obtained four coating films was measured with a film thickness measuring device (SI-T80, Keyence Corporation), and based on the obtained measured values, the following evaluations were made. gone.
  • the width direction was equally divided into 10 with respect to one coating film, and the measurement point was taken as the width direction central part. That is, the number of measurement points is 10 for each strip of coating film.
  • the average value X Ave is the arithmetic mean value of the measured values for one line (for 10 points).
  • -standard- A The thickness variation rate is 2% or less.
  • ⁇ B The value of the thickness variation rate is more than 2% and 4% or less.
  • ⁇ C The value of the variation rate of thickness is more than 4% and 6% or less.
  • *D The value of the variation rate of the thickness is more than 6% and 8% or less.
  • E The value of the thickness variation rate is more than 8%.
  • -standard- A Variation in average thickness between four coating liquid films is 0.5% or less.
  • B Variation in thickness average value among four coating liquid films is more than 0.5% and not more than 1.0%.
  • C Variation in thickness average value among four coating liquid films is more than 1.0% and not more than 1.5%.
  • D Variation in thickness average value among four coating liquid films is more than 1.5% and not more than 2.0%.
  • E Variation in thickness average value among four coating liquid films is more than 2.0%.
  • FIGS. 13 and 14 are schematic diagrams in the case of cutting four strips of the coating film M formed on the base material B along the width direction of the base material. Note that the thickness distribution of the four coating films shown in FIGS. 13 and 14 is a schematic diagram emphasizing the tendency thereof, and is not to scale. As is clear from FIGS.
  • four coating films represented by (1) to (8, 9) obtained by manufacturing coating films using the dies of Examples 1 to 9 has a smaller thickness distribution than the four coating films shown in (C1) and (C2) obtained by manufacturing the coating films using the dies of Comparative Examples 1 and 2, and the width of the coating film It can be seen that the thickness uniformity in the direction is excellent.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Coating Apparatus (AREA)

Abstract

Provided are an extrusion die, a coating device equipped with the extrusion die, and a coating-film manufacturing method utilizing the coating device. The extrusion die is used for a method of stripe-coating of coating fluid that exhibits thixotropic properties, wherein the extrusion die: is provided with two lips and a plurality of spacers clamped between the two lips; at least includes a plurality of slits that are lined up lengthwise and that are demarcated by the two lips and the plurality of spacers, one or a plurality of manifolds that are connected to one or a plurality of the slits, and a fluid-feed port that supplies coating fluid to the one or plurality of manifolds; and has a plurality of fluid-feed ports for each manifold.

Description

エクストルージョン型ダイ、塗工装置、及び塗工膜の製造方法Extrusion die, coating device, and coating film manufacturing method
 本開示は、エクストルージョン型ダイ、塗工装置、及び塗工膜の製造方法に関する。 The present disclosure relates to an extrusion die, a coating device, and a coating film manufacturing method.
 ロールトゥロール方式での連続プロセスにて、狭幅(例えば、幅200mm以下)の塗工膜を効率良く製造する方法としては、以下の方法が知られている。
 即ち、連続搬送する広幅の基材上に、塗工液をエクストルージョン型ダイにてストライプ塗工し、得られたストライプ状の塗工液膜を乾燥した後、隣接する塗工膜間の未塗工部(即ち、基材の露出部)を切断することで複数条の塗工膜を得る方法である。
The following method is known as a method for efficiently producing a coating film having a narrow width (for example, a width of 200 mm or less) in a roll-to-roll continuous process.
That is, the coating liquid is applied in stripes with an extrusion die on a wide base material that is continuously conveyed, and after drying the resulting striped coating liquid film, the unfinished space between adjacent coating films is removed. This is a method of obtaining a plurality of strips of coating film by cutting the coated portion (that is, the exposed portion of the substrate).
 塗工液をストライプ塗工する際に用いられるエクストルージョン型ダイは、例えば、特開2001-006663号公報の図5等、及び、特開2015-191096号公報の図4~図7等に開示されている。 Extrusion die used for stripe coating the coating solution, for example, disclosed in FIG. 5 of JP-A-2001-006663, and FIG. It is
 特開2001-006663号公報及び特開2015-191096号公報に記載のエクストルージョン型ダイでは、ストライプ状に複数条の塗工液膜が形成されるが、1つの塗工液膜内の幅方向に厚みのムラが生じたり、また、基材の幅方向に並ぶ複数の塗工液膜間に厚みのムラが生じたりすることがある。これは、チキソトロピー性を示す塗工液を、エクストルージョン型ダイを用いてストライプ塗工する際に顕著に生じる課題である。 In the extrusion die described in JP-A-2001-006663 and JP-A-2015-191096, a plurality of striped coating liquid films are formed, but the width direction in one coating liquid film is In some cases, thickness unevenness may occur between the substrates, and thickness unevenness may occur between a plurality of coating liquid films arranged in the width direction of the substrate. This is a significant problem when a coating liquid exhibiting thixotropic properties is strip-coated using an extrusion die.
 そこで、本開示の一実施形態が解決しようとする課題は、上記事情に鑑みてなされたものであり、チキソトロピー性を示す塗工液をストライプ塗工する方法に用い、形成される塗工液膜の幅方向における厚み均一性に優れるエクストルージョン型ダイを提供することである。
 また、本開示の他の一実施形態が解決しようとする課題は、上記エクストルージョン型ダイを備えた塗工装置を提供することである。
 更に、本開示の他の一実施形態が解決しようとする課題は、上記塗工装置を用いた、塗工膜の製造方法を提供することである。
Therefore, the problem to be solved by one embodiment of the present disclosure was made in view of the above circumstances, and a coating liquid film formed by using a coating liquid exhibiting thixotropic properties in a stripe coating method An object of the present invention is to provide an extrusion die that is excellent in thickness uniformity in the width direction.
Another problem to be solved by another embodiment of the present disclosure is to provide a coating apparatus equipped with the extrusion die.
Furthermore, a problem to be solved by another embodiment of the present disclosure is to provide a method for producing a coating film using the above coating apparatus.
 上記課題を解決するための手段は、以下の実施形態を含む。
<1> チキソトロピー性を示す塗工液をストライプ塗工する方法に用いるエクストルージョン型ダイであって、
 2つのリップ、及び、2つのリップの間に挟持される複数のスペーサーを備え、
 2つのリップ及び複数のスペーサーにより画定された、長さ方向に並ぶ複数のスリットと、1つ又は複数のスリットに接続する1つ又は複数のマニホールドと、1つ又は複数のマニホールドに対して塗工液を供給する給液口と、を少なくとも含み、
 1つのマニホールドにつき複数の給液口を有する、エクストルージョン型ダイ。
<2> 複数の給液口の少なくとも一部が、マニホールドを画定する面の、隣接するスリットとスリットとの間のスペーサーの幅方向両縁に沿って周方向に延長した2直線に挟まれた領域R1内に設けられている、<1>に記載のエクストルージョン型ダイ。
<3> 領域R1内に設けられる1つ又は複数の給液口が、同一領域R1内のスペーサーに対向する位置に設けられている、<2>に記載のエクストルージョン型ダイ。
<4> 複数の給液口の少なくとも一部が、マニホールドを画定する面の、スリットとの接続部の幅方向両縁に沿って周方向に延長した直線に挟まれた領域R2内に設けられている、<1>に記載のエクストルージョン型ダイ。
<5> 領域R2内に設けられた1つ又は複数の給液口が、同一領域R2内のスリットの開口部に対向する位置に設けられている、<4>に記載のエクストルージョン型ダイ。
<6> 複数の給液口の一部が、マニホールドの長さ方向両端の少なくとも一方に設けられている、<2>~<5>のいずれか1つに記載のエクストルージョン型ダイ。
<7> <1>~<6>のいずれか1つに記載のエクストルージョン型ダイと、
 エクストルージョン型ダイのマニホールドに対して給液口を介して塗工液を供給する複数の給液配管と、
 を備えた塗工装置。
<8> 複数の給液配管のそれぞれにはスタティックミキサーが設けられている、<7>に記載の塗工装置。
<9> 複数の給液配管のそれぞれにはバルブが設けられている、<7>又は<8>に記載の塗工装置。
<10> 連続搬送されている基材上に、<7>~<9>のいずれか1つに記載の塗工装置を用い、チキソトロピー性を示す塗工液を塗工する工程を含む、塗工膜の製造方法。
Means for solving the above problems include the following embodiments.
<1> An extrusion die used in a method of strip coating a coating liquid exhibiting thixotropic properties,
comprising two lips and a plurality of spacers sandwiched between the two lips;
a plurality of longitudinally aligned slits defined by two lips and a plurality of spacers, one or more manifolds connected to the one or more slits, and coating to the one or more manifolds At least a liquid supply port that supplies liquid,
Extrusion die with multiple feed ports per manifold.
<2> At least part of the plurality of liquid supply ports is sandwiched between two straight lines extending in the circumferential direction along both width direction edges of the spacer between adjacent slits on the surface defining the manifold. The extrusion die according to <1>, provided in the region R1.
<3> The extrusion die according to <2>, wherein the one or more liquid supply ports provided in the region R1 are provided at positions facing the spacers in the same region R1.
<4> At least part of the plurality of liquid supply ports is provided in a region R2 sandwiched between straight lines extending in the circumferential direction along both edges in the width direction of the connecting portion with the slit on the surface defining the manifold. The extrusion die according to <1>.
<5> The extrusion die according to <4>, wherein the one or more liquid supply ports provided in the region R2 are provided at positions facing the openings of the slits in the same region R2.
<6> The extrusion die according to any one of <2> to <5>, wherein a part of the plurality of liquid supply ports is provided on at least one of both longitudinal ends of the manifold.
<7> the extrusion die according to any one of <1> to <6>;
a plurality of liquid supply pipes for supplying the coating liquid through the liquid supply port to the manifold of the extrusion die;
coating equipment.
<8> The coating apparatus according to <7>, wherein each of the plurality of liquid supply pipes is provided with a static mixer.
<9> The coating apparatus according to <7> or <8>, wherein each of the plurality of liquid supply pipes is provided with a valve.
<10> A coating comprising a step of applying a coating liquid exhibiting thixotropic properties using the coating apparatus according to any one of <7> to <9> on a continuously conveyed substrate. A method for manufacturing a coating.
 本開示の一実施形態によれば、チキソトロピー性を示す塗工液をストライプ塗工する方法に用い、形成される塗工液膜の幅方向における厚み均一性に優れるエクストルージョン型ダイが提供される。
 また、本開示の他の一実施形態によれば、上記エクストルージョン型ダイを備えた塗工装置が提供される。
 更に、本開示の他の一実施形態によれば、上記塗工装置を用いた、塗工膜の製造方法が提供される。
According to one embodiment of the present disclosure, there is provided an extrusion die that is used in a method of stripe coating a coating liquid exhibiting thixotropic properties and that is excellent in thickness uniformity in the width direction of the formed coating liquid film. .
Further, according to another embodiment of the present disclosure, there is provided a coating apparatus equipped with the extrusion die described above.
Furthermore, according to another embodiment of the present disclosure, there is provided a method for producing a coating film using the above coating apparatus.
図1は、本実施形態に係るエクストルージョン型ダイの一例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an example of an extrusion die according to this embodiment. 図2は、図1に示すエクストルージョン型ダイの一例をマニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 2 is a schematic cross-sectional view of an example of the extrusion die shown in FIG. 1 taken along the length direction (eg, direction Y) at the center of the manifold. 図3は、図1に示すエクストルージョン型ダイのQ-Q断面図である。FIG. 3 is a QQ sectional view of the extrusion die shown in FIG. 図4は、本実施形態に係るエクストルージョン型ダイの別の例を、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 4 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, taken along the longitudinal direction (for example, direction Y) at the central portion of the manifold. 図5は、本実施形態に係るエクストルージョン型ダイの別の例を、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 5 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold. 図6は、図5に示すエクストルージョン型ダイのR-R断面図である。FIG. 6 is an RR sectional view of the extrusion die shown in FIG. 図7は、本実施形態に係るエクストルージョン型ダイの別の例を、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 7 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold. 図8は、本実施形態に係るエクストルージョン型ダイの別の例を、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 8 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold. 図9は、本実施形態に係るエクストルージョン型ダイの別の例を、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 9 is a schematic cross-sectional view of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the central portion of the manifold. 図10は、本実施形態に係るエクストルージョン型ダイから塗工液を吐出する際の一例を示す概略側面図である。FIG. 10 is a schematic side view showing an example when the coating liquid is discharged from the extrusion die according to this embodiment. 図11は、従来のエクストルージョン型ダイの例を、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 11 is a schematic cross-sectional view of an example of a conventional extrusion die cut along the length direction (eg, direction Y) at the center of the manifold. 図12は、従来のエクストルージョン型ダイの例を、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。FIG. 12 is a schematic cross-sectional view of an example of a conventional extrusion die cut along the length direction (eg, direction Y) at the center of the manifold. 図13は、実施例1~5のそれぞれにより、基材B上に形成された4条の塗工膜Mを、基材の幅方向に沿って切断した場合の模式図である。FIG. 13 is a schematic diagram of a case in which four strips of the coating film M formed on the base material B are cut along the width direction of the base material in each of Examples 1 to 5. FIG. 図14は、実施例5~9、比較例1、2のそれぞれにより、基材B上に形成された4条の塗工膜Mを、基材の幅方向に沿って切断した場合の模式図である。FIG. 14 is a schematic diagram of a case in which the four coating films M formed on the substrate B are cut along the width direction of the substrate in each of Examples 5 to 9 and Comparative Examples 1 and 2. is.
 以下、エクストルージョン型ダイの実施形態について説明する。但し、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。 An embodiment of the extrusion die will be described below. However, the present disclosure is by no means limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present disclosure.
 本開示の実施形態について図面を参照して説明する場合、図面において重複する構成要素、及び符号については、説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。 When describing the embodiments of the present disclosure with reference to the drawings, descriptions of overlapping components and reference numerals in the drawings may be omitted. Components shown using the same reference numerals in the drawings mean the same components. The dimensional ratios in the drawings do not necessarily represent the actual dimensional ratios.
 本開示の実施形態に関する説明において、エクストルージョン型ダイの幅方向の一方向を方向X、エクストルージョン型ダイの長さ方向の及びマニホールドの長さ方向の一方向を方向Y、及びエクストルージョン型ダイの高さ方向の一方向を方向Zとする。方向X、方向Y、及び方向Zは、互いに直交する。
 また、本開示の実施形態に関する説明において、エクストルージョン型ダイの長さ方向とは、塗工液の塗工幅方向に該当する。
In the description of the embodiments of the present disclosure, one direction in the width direction of the extrusion die is referred to as direction X, one direction in the length direction of the extrusion die and in the length direction of the manifold is referred to as direction Y, and the extrusion die Let Z be one of the height directions. Direction X, direction Y, and direction Z are orthogonal to each other.
Further, in the description of the embodiments of the present disclosure, the length direction of the extrusion die corresponds to the coating width direction of the coating liquid.
 本開示の実施形態に関する説明において、マニホールドを画定する面における、スペーサーの幅方向及びスリットとの接続部の幅方向とは、エクストルージョン型ダイ及びマニホールドの長さ方向の一方向である方向Yと同方向である。
 本開示の実施形態に関する説明において、マニホールドを画定する面とは、マニホールドと呼ばれる空間の境界を示す面を指し、リップの一部分の面、スペーサーの一部分の面、及び、必要に応じて用いられる栓の一部分の面により形成される固体表面と、スリットの開口部によるスリットとの境界面と、給液口の開口部による給液口との境界面と、で構成される。
In the description of the embodiments of the present disclosure, the width direction of the spacer and the width direction of the connection portion with the slit in the plane defining the manifold are the direction Y, which is one direction in the length direction of the extrusion die and the manifold. in the same direction.
In the description of the embodiments of the present disclosure, the surface that defines the manifold refers to the surface that defines the boundary of the space called the manifold, and includes a portion of the lip, a portion of the spacer, and an optional stopper. , a boundary surface between the opening of the slit and the slit, and a boundary surface between the opening of the liquid supply port and the liquid supply port.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示にて示す各図面における各要素は必ずしも正確な縮尺ではなく、本開示の原理を明確に示すことに主眼が置かれており、強調がなされている箇所もある。
 また、各図面において、同一機能を有する構成要素には同一符号を付し、重複する説明は省略する。
In the present disclosure, a numerical range indicated using "to" means a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step. In addition, in the numerical ranges described in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
The elements in the figures shown in this disclosure are not necessarily to scale, and emphasis is placed on clearly illustrating the principles of the disclosure, and some emphasis is placed on them.
Moreover, in each drawing, the same code|symbol is attached|subjected to the component which has the same function, and the overlapping description is abbreviate|omitted.
 本開示の実施形態に関する説明において、「塗工液膜」とは乾燥前又は乾燥中の膜を指し、「塗工膜」とは乾燥が終了後の膜を指す。
 本開示の実施形態に関する説明において、基材、塗工液膜、及び塗工膜の「幅方向」とは、長尺の基材、塗工液膜、及び塗工膜のいずれかの長手方向と直交する方向を指す。
In the description of the embodiments of the present disclosure, "coating liquid film" refers to a film before or during drying, and "coating film" refers to a film after drying.
In the description of the embodiments of the present disclosure, the “width direction” of the base material, the coating liquid film, and the coating film refers to the longitudinal direction of any of the long base material, the coating liquid film, and the coating film. It points in the direction orthogonal to
 本開示において、2以上の好ましい形態又は態様の組み合わせは、より好ましい形態又
は態様である。
In the present disclosure, a combination of two or more preferred forms or aspects is a more preferred form or aspect.
≪エクストルージョン型ダイ≫
 既述のように、ストライプ塗工を行うエクストルージョン型ダイでは、チキソトロピー性を示す塗工液を用いると、ストライプ状に形成された複数条の塗工液膜において、1つの塗工液膜内の幅方向に厚みのムラが生じたり、また、基材の幅方向に並ぶ複数の塗工液膜間に厚みのムラが生じたりすることがある。
 ここで、「チキソトロピー性」とは、定常状態(例えば、せん断応力を印加していない状態)では粘度が比較的高い状態であって、せん断応力を印加すると粘度が低下し、また、せん断応力の印加をやめると元の粘度に戻る性質を示す。チキソトロピー性を示す塗工液として具体的には、例えば、レオメータによる粘度測定にて得られる粘度カーブにおいて、せん断速度の昇速時の粘度カーブよりも、せん断速度の降速時の粘度カーブが低粘側に位置する液体をいう。
 上記の厚みのムラは、チキソトロピー性を示す塗工液が、ダイの内部、特に、マニホールドからスリットへと流れる際に、流路内においてマニホールド及びスリットの壁面と塗工液とが接触することにより塗工液にせん断応力が印加される。この場合、壁面からの距離に応じて塗工液に印加されるせん断応力が異なることで、スリットから吐出される塗工液の粘度に差が生じることに起因するものと推測される。特に、マニホールドの長手方向の両端部の壁面に接触してスリットに流入した塗工液は、相対的に粘度が低くなり、塗工液幅の幅方向にて中央部よりも両端部が厚くなる傾向にあることが判明している。ストライプ塗工を行うダイでは、マニホールドからスリットへと流れる塗工液の流路は複雑となり、マニホールドの給液口からスリットまでの距離も一様でないことから、上記の厚みのムラは、大きくなる傾向にある。
≪Extrusion die≫
As described above, in an extrusion die that performs stripe coating, if a coating liquid exhibiting thixotropic properties is used, in a plurality of coating liquid films formed in stripes, one coating liquid film In some cases, thickness unevenness may occur in the width direction of the substrate, and thickness unevenness may occur between a plurality of coating liquid films arranged in the width direction of the substrate.
Here, "thixotropic property" refers to a state in which the viscosity is relatively high in a steady state (for example, a state in which no shear stress is applied), and when shear stress is applied, the viscosity decreases, and the shear stress decreases. It exhibits the property of returning to its original viscosity when the application is stopped. Specifically, as a coating liquid exhibiting thixotropic properties, for example, in the viscosity curve obtained by viscosity measurement with a rheometer, the viscosity curve when the shear rate is decreased is lower than the viscosity curve when the shear rate is increased. A liquid located on the viscous side.
The above thickness unevenness is caused by contact between the walls of the manifold and the slit and the coating liquid in the flow path when the coating liquid exhibiting thixotropic properties flows inside the die, particularly from the manifold to the slit. A shear stress is applied to the coating liquid. In this case, it is presumed that the difference in shear stress applied to the coating liquid according to the distance from the wall surface causes a difference in the viscosity of the coating liquid discharged from the slit. In particular, the coating liquid that comes into contact with the wall surfaces at both ends in the longitudinal direction of the manifold and flows into the slit has a relatively low viscosity, and the coating liquid becomes thicker at both ends than at the center in the width direction. It turns out that there is a trend. In a die that performs stripe coating, the flow path of the coating liquid flowing from the manifold to the slit is complicated, and the distance from the liquid supply port of the manifold to the slit is not uniform. There is a tendency.
 上記の厚みのムラの課題について本発明者が検討を行ったところ、1つのマニホールドにつき、マニホールドに対して塗工液を供給する給液口を複数設けることで、チキソトロピー性を示す塗工液を用いても、形成される塗工液膜の幅方向における厚み均一性を高められることを見出し、本実施形態に係るエクストルージョン型ダイの構成に至った。 When the inventors of the present invention investigated the problem of the thickness unevenness, it was found that a coating liquid exhibiting thixotropic properties was obtained by providing a plurality of liquid supply ports for supplying the coating liquid to the manifold for each manifold. The present inventors have found that the thickness uniformity in the width direction of the coating liquid film to be formed can be improved even by using such a material, and thus have reached the configuration of the extrusion die according to the present embodiment.
 本実施形態に係るエクストルージョン型ダイ(以下、単に「ダイ」とも称する。)は、チキソトロピー性を示す塗工液をストライプ塗工する方法に用いるエクストルージョン型ダイであって、2つのリップ、及び、2つのリップの間に挟持される複数のスペーサーを備え、2つのリップ及び複数のスペーサーにより画定された、長さ方向に並ぶ複数のスリットと、1つ又は複数のスリットに接続する1つ又は複数のマニホールドと、1つ又は複数のマニホールドに対して塗工液を供給する給液口と、を少なくとも含み、1つのマニホールドにつき複数の給液口を有する。 The extrusion die according to the present embodiment (hereinafter also simply referred to as "die") is an extrusion die used in a method of stripe coating a coating liquid exhibiting thixotropic properties, and comprises two lips and , a plurality of spacers sandwiched between the two lips, a plurality of longitudinally aligned slits defined by the two lips and the plurality of spacers; It includes at least a plurality of manifolds and liquid supply ports for supplying a coating liquid to one or more manifolds, and one manifold has a plurality of liquid supply ports.
 本実施形態に係るダイにおいて、1つのマニホールドにつき複数の給液口を有する構成とすることで、チキソトロピー性を示す塗工液に対して、ダイの中の流路内にて印加される、せん断応力、及びせん断応力の履歴の差を小さくすることができる。その結果、ダイから吐出される際の塗工液の粘度の差が小さくなり、塗工液膜の幅方向における厚み均一性が得られるものと推測される。
 塗工液膜における厚みのムラは、塗工液膜が乾燥して得られる塗工膜においても残ることから、上記の塗工液膜の幅方向における厚み均一性は、塗工膜の厚みを測定することで確認してもよい。
In the die according to the present embodiment, one manifold is configured to have a plurality of liquid supply ports, so that a coating liquid exhibiting thixotropic properties is subjected to shear applied in the flow channel in the die. Differences in stress and shear stress hysteresis can be reduced. As a result, it is presumed that the difference in the viscosity of the coating liquid when discharged from the die is reduced, and the thickness uniformity in the width direction of the coating liquid film is obtained.
Since the thickness unevenness in the coating liquid film remains even in the coating film obtained by drying the coating liquid film, the thickness uniformity in the width direction of the coating liquid film described above is the thickness of the coating film. You can check it by measuring.
 ここで、特開2001-006663号公報及び特開2015-191096号公報に記載のエクストルージョン型ダイでは、1つのマニホールドにつき複数の給液口を有する構成を有しておらず、チキソトロピー性を示す塗工液を用いると、形成される塗工液膜の幅方向における厚み均一性が得られにくい。 Here, the extrusion die described in JP-A-2001-006663 and JP-A-2015-191096 does not have a configuration having a plurality of liquid supply ports per manifold, and exhibits thixotropy. When a coating liquid is used, it is difficult to obtain thickness uniformity in the width direction of the formed coating liquid film.
 以下、本実施形態に係るエクストルージョン型ダイについて、図面を用いて説明する。
 ここで、図1は、本実施形態に係るエクストルージョン型ダイの一例を示す概略斜視図であって、第2のリップ20部分を透視した状態を示している。また、図2は、図1に示すエクストルージョン型ダイの一例をマニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。図2では、第1のリップ10側を示している。更に、図3は、図1に示すエクストルージョン型ダイのQ-Q断面図である。
An extrusion die according to this embodiment will be described below with reference to the drawings.
Here, FIG. 1 is a schematic perspective view showing an example of the extrusion die according to the present embodiment, showing a state in which the second lip 20 portion is seen through. FIG. 2 is a schematic cross-sectional view of an example of the extrusion die shown in FIG. 1 cut along the length direction (for example, direction Y) at the central portion of the manifold. FIG. 2 shows the first lip 10 side. Further, FIG. 3 is a QQ sectional view of the extrusion die shown in FIG.
 図1に示すように、ダイ100は、第1のリップ10と、第2のリップ20と、第1のリップ10と第2のリップ20との間に挟持されたスペーサー32と、を含み構成されている。
 また、図1及び図2に示すように、ダイ100は、第1のリップ10、第2のリップ20、5つのスペーサー32、及び3つの栓38により、ダイ100の長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30に接続する2つのマニホールド40と、2つのマニホールド40に対して塗工液を供給する4つの給液口50と、を画定している。マニホールド40とスリット30との接続部がスリット30の開口部34となり、マニホールド40と給液口50との接続部が、給液口50の開口部52となる。より具体的には、第1のリップ10、第2のリップ20、及び5つのスペーサー32により、スリット30画定され、第1のリップ10、第2のリップ20、及び3つの栓38により、マニホールド40が画定される。
 このように、ダイ100では、1つのマニホールドにつき2つのスリットが接続しており、且つ、1つのマニホールドにつき2つの給液口を有する。
As shown in FIG. 1, the die 100 includes a first lip 10, a second lip 20, and a spacer 32 sandwiched between the first lip 10 and the second lip 20. It is
Also, as shown in FIGS. 1 and 2, the die 100 has a longitudinal (i.e., directional Y), two manifolds 40 connected to the four slits 30, and four liquid supply ports 50 for supplying the coating liquid to the two manifolds 40 are defined. The connecting portion between the manifold 40 and the slit 30 is the opening 34 of the slit 30 , and the connecting portion between the manifold 40 and the liquid supply port 50 is the opening 52 of the liquid supply port 50 . More specifically, a first lip 10, a second lip 20 and five spacers 32 define a slit 30, and a first lip 10, a second lip 20 and three plugs 38 define a manifold. 40 are defined.
Thus, in the die 100, two slits are connected per manifold and two liquid supply ports are provided per manifold.
 図1に示すダイ100は、4つの給液口50が、いずれも、マニホールド40を画定する面の、スリット30との接続部(即ち、スリット30の開口部34)の幅方向両縁に沿って周方向に延長した直線に挟まれた領域R2内に設けられている。また、ダイ100は、4つの領域R2を有しており、4つの領域R2内のそれぞれに、1つずつ給液口50が設けられている。ダイ100における4つの給液口50は、マニホールド40を画定する面の、隣接するスリット30とスリット30との間のスペーサー32の幅方向両縁に沿って周方向に延長した2直線に挟まれた領域R1内には設けられていないとも言える。
 ここで、領域R2には、スリットとの接続部(具体的には、図2に示す、スリット30の開口部34)は含まれず、領域R1には、スペーサーにより形成された面(具体的には、図2に示す、スペーサー32により形成された面36)は含まれない。図1においては、領域R2は、破線で示されている円筒状の領域から、スリットとの接続部(具体的には、図2に示す、スリット30の開口部34)を除いた領域を指す。また、図1においては、領域R1は、一点破線で示されている円筒状の領域から、スペーサーにより形成された面(具体的には、図2に示す、スペーサー32により形成された面36)を除いた領域を指す。
In the die 100 shown in FIG. 1, the four liquid supply ports 50 are all along the width direction both edges of the connection portion with the slit 30 (that is, the opening 34 of the slit 30) on the surface defining the manifold 40. It is provided in a region R2 sandwiched between straight lines extending in the circumferential direction. Further, the die 100 has four regions R2, and one liquid supply port 50 is provided in each of the four regions R2. The four liquid supply ports 50 in the die 100 are sandwiched between two straight lines extending in the circumferential direction along both width direction edges of the spacer 32 between adjacent slits 30 on the surface defining the manifold 40. It can also be said that it is not provided in the region R1.
Here, the region R2 does not include the connection portion with the slit (specifically, the opening 34 of the slit 30 shown in FIG. 2), and the region R1 includes a surface formed by the spacer (specifically does not include the surface 36 formed by the spacer 32, shown in FIG. In FIG. 1, the region R2 refers to a region excluding the connection portion with the slit (specifically, the opening 34 of the slit 30 shown in FIG. 2) from the cylindrical region indicated by the dashed line. . In FIG. 1, the region R1 is the surface formed by the spacer (specifically, the surface 36 formed by the spacer 32 shown in FIG. 2) from the cylindrical region indicated by the dashed line. refers to the area excluding
 また、図1及び図2に示すように、ダイ100において、領域R2内に設けられた4つの給液口50は、いずれも、同一領域R2内のスリット30の開口部34に対向する位置に設けられている。また、図3に示すように、ダイ100においては、マニホールド40内において、スリット30の開口部34と、給液口50の開口部52と、は正対している。つまり、ダイ100における4つの給液口50は、いずれも、スリット30の開口部に向かって開口しているとも言える。図3について、より具体的に説明すれば、スリット30の開口部34の開口面を示す直線34Lの中間点34Cを通り、直線34Lに直交する直線30Lと、給液口50の開口部52の開口面を示す直線52Lの中間点52Cを通り、直線52Lに直交する直線50Lと、が交点Pにて繋がり一直線になっていることから、スリット30の開口部34と、給液口50の開口部52と、が正対していることが分かる。ここで、直線30Lと直線50Lとでなす角θ1は、直線30Lを基準として、180°である。 Further, as shown in FIGS. 1 and 2, in the die 100, the four liquid supply ports 50 provided in the region R2 are all located at positions facing the openings 34 of the slits 30 in the same region R2. is provided. Further, as shown in FIG. 3 , in the die 100 , the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other inside the manifold 40 . In other words, it can be said that all four liquid supply ports 50 in the die 100 open toward the opening of the slit 30 . 3, a straight line 30L passing through an intermediate point 34C of a straight line 34L indicating the opening surface of the opening 34 of the slit 30 and perpendicular to the straight line 34L and the opening 52 of the liquid supply port 50 A straight line 50L that passes through the midpoint 52C of the straight line 52L indicating the opening surface and is orthogonal to the straight line 52L is connected at the intersection point P to form a straight line. It can be seen that the portion 52 and , are facing each other. Here, the angle θ1 formed by the straight line 30L and the straight line 50L is 180° with the straight line 30L as a reference.
 図3に示すように、ダイ100は、スリット30の開口部34と、給液口50の開口部52と、は正対している態様であるが、この態様に限定されるものではない。例えば、ダイ100において、給液口50の開口部52が、所望の形状及び大きさにて設けることが可能であれば、又は、給液口50及びその開口部52の設置がダイ100を製造する上で許される限り、給液口50の開口部52は、領域R2内のいずれの位置に設置されていて
もよい。一例としては、図3に示される、直線30Lと直線50Lとでなす角θ1としては、上記のような180°に限定されず、直線30Lを基準として、60°~300°の範囲内のいずれかの角度を選択することができる。
 本開示において、「給液口がスリットの開口部に対向する位置に設けられている」とは、スリットの開口部と給液口の開口部との位置関係が、図3に示される、直線30Lと直線50Lとでなす角θ1が、直線30Lを基準として、90°~270°を満たすものを含む。
As shown in FIG. 3, the die 100 has a mode in which the opening 34 of the slit 30 faces the opening 52 of the liquid supply port 50, but it is not limited to this mode. For example, in the die 100, if the opening 52 of the liquid supply port 50 can be provided in a desired shape and size, or if the installation of the liquid supply port 50 and its opening 52 can be used to manufacture the die 100 The opening 52 of the liquid supply port 50 may be placed at any position within the region R2 as long as it is permitted. As an example, the angle θ1 formed by the straight line 30L and the straight line 50L shown in FIG. You can choose any angle.
In the present disclosure, "the liquid supply port is provided at a position facing the opening of the slit" means that the positional relationship between the opening of the slit and the opening of the liquid supply port is a straight line shown in FIG. The angle θ1 formed by the line 30L and the straight line 50L satisfies 90° to 270° with the straight line 30L as a reference.
 続いて、図4~図9を用いて、本実施形態に係るエクストルージョン型ダイの別の例を説明する。図4~図9は、本実施形態に係るエクストルージョン型ダイの別の例を、図2と同様に、マニホールドの中央部で長さ方向(例えば、方向Y)に沿って切断したときの概略断面図である。図4~図9では、第1のリップ10側を示している。 Next, another example of the extrusion die according to this embodiment will be described with reference to FIGS. 4 to 9. FIG. 4 to 9 are schematic diagrams of another example of the extrusion die according to the present embodiment, cut along the length direction (eg, direction Y) at the center of the manifold, similar to FIG. It is a sectional view. 4 to 9 show the first lip 10 side.
 図4に示すダイ100Aは、図1と同様に、第1のリップ10、第2のリップ(不図示)、5つのスペーサー32、及び2つの栓38により、ダイ100Aの長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30に接続する1つのマニホールド40と、1つのマニホールド40に対して塗工液を供給する2つの給液口50と、を画定している。
 このように、ダイ100Aでは、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに2つの給液口を有する。
 また、ダイ100Aでは、2つの給液口50は、いずれも、マニホールド40を画定する面の、スリット30との接続部(即ち、スリット30の開口部34)の幅方向両縁に沿って周方向に延長した直線に挟まれた領域R2内に設けられている。そして、ダイ100Aにおいて、領域R2内に設けられた2つの給液口50は、いずれも、同一領域R2内のスリット30の開口部34に対向する位置に設けられている。
 なお、ダイ100Aにおいても、マニホールド40内において、スリット30の開口部34と、給液口50の開口部52と、は正対している。つまり、ダイ100Aにおける4つの給液口50は、いずれも、スリット30の開口部に向かって開口しているとも言える。
The die 100A shown in FIG. 4 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38 as in FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and two liquid supply ports 50 for supplying the coating liquid to the one manifold 40. .
Thus, in the die 100A, one manifold is connected to four slits, and one manifold has two liquid supply ports.
In addition, in the die 100A, the two liquid supply ports 50 are both circumferentially along both edges in the width direction of the connection portion with the slit 30 (that is, the opening portion 34 of the slit 30) on the surface defining the manifold 40. It is provided in a region R2 sandwiched between straight lines extending in the direction. In the die 100A, the two liquid supply ports 50 provided within the region R2 are both provided at positions facing the openings 34 of the slits 30 within the same region R2.
Also in the die 100</b>A, the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other in the manifold 40 . In other words, it can be said that all four liquid supply ports 50 in the die 100A open toward the opening of the slit 30 .
 図5に示すダイ100Bは、図1と同様に、第1のリップ10、第2のリップ(不図示)、5つのスペーサー32、及び2つの栓38により、ダイ100Bの長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30に接続する1つのマニホールド40と、1つのマニホールド40に対して塗工液を供給する2つの給液口50と、を画定している。
 このように、ダイ100Bでは、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに2つの給液口を有する。
 また、ダイ100Bにおける2つの給液口50は、いずれも、マニホールド40を画定する面の、隣接するスリット30とスリット30との間のスペーサー32の幅方向両縁に沿って周方向に延長した2直線に挟まれた領域R1内に設けられている。そして、ダイ100Bにおいて、領域R1内に設けられた2つの給液口50は、いずれも、同一領域R1内のスペーサー32に対向する位置に設けられている。
The die 100B shown in FIG. 5 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38, similar to FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and two liquid supply ports 50 for supplying the coating liquid to the one manifold 40. .
Thus, in the die 100B, four slits are connected to one manifold, and one manifold has two liquid supply ports.
In addition, both of the two liquid supply ports 50 in the die 100B extend in the circumferential direction along both width direction edges of the spacer 32 between the adjacent slits 30 on the surface defining the manifold 40. It is provided in a region R1 sandwiched between two straight lines. In the die 100B, both of the two liquid supply ports 50 provided within the region R1 are provided at positions facing the spacers 32 within the same region R1.
 また、図6に示す通り、ダイ100Bにおいては、マニホールド40内において、スペーサー32により形成された面36と、給液口50の開口部52と、は正対している。つまり、ダイ100Bにおける2つの給液口50は、いずれも、スペーサー32により形成された面36に向かって開口しているとも言える。ここで、図6は、図5に示すエクストルージョン型ダイのR-R断面図である。図6について、より具体的に説明すれば、スペーサー32により形成された面36の中間点36Cを通り、面36に直交する直線32Lと、給液口50の開口部52の開口面を示す直線52Lの中間点52Cを通り、直線52Lに直交する直線50Lと、が交点Pにて繋がり一直線になっていることから、スペーサー32により形成された面36と、給液口50の開口部52と、が正対していることが分かる。ここで、直線32Lと直線50Lとでなす角θ2は、直線32Lを基準として、180°である。
 ここで、スペーサー32により形成された面36は、マニホールド40を画定する面の一部である。
Further, as shown in FIG. 6, in the die 100B, the surface 36 formed by the spacer 32 and the opening 52 of the liquid supply port 50 face each other in the manifold 40 . In other words, it can be said that both of the two liquid supply ports 50 in the die 100B open toward the surface 36 formed by the spacer 32 . Here, FIG. 6 is an RR sectional view of the extrusion die shown in FIG. 6, a straight line 32L that passes through the midpoint 36C of the surface 36 formed by the spacer 32 and is orthogonal to the surface 36, and a straight line that indicates the opening surface of the opening 52 of the liquid supply port 50. A straight line 50L that passes through the midpoint 52C of the straight line 52L and is perpendicular to the straight line 52L is connected at the intersection point P to form a straight line. , are in direct opposition to each other. Here, the angle θ2 formed by the straight line 32L and the straight line 50L is 180° with the straight line 32L as a reference.
Here, surface 36 formed by spacers 32 is part of the surface defining manifold 40 .
 図6に示すように、ダイ100Bは、スペーサー32により形成された面36と、給液口50の開口部52と、は正対している態様であるが、この態様に限定されるものではない。例えば、ダイ100Bにおいて、給液口50の開口部52が、所望の形状及び大きさにて設けることが可能であれば、又は、給液口50及びその開口部52の設置がダイ100Bを製造する上で許される限り、給液口50の開口部52は、領域R1内のいずれの位置に設置されていてもよい。一例としては、図6に示される、直線32Lと直線50Lとでなす角θ2としては、上記のような180°に限定されず、直線32Lを基準として、60°~300°の範囲内のいずれかの角度を選択することができる。
 本開示において、「給液口がスペーサーに対向する位置に設けられている」とは、マニホールドにおけるスペーサーにより閉塞された面と給液口の開口部との位置関係が、図6に示される、直線32Lと直線50Lとでなす角θ2が、直線32Lを基準として、90°~270°を満たすものを含む。
As shown in FIG. 6, the die 100B has a mode in which the surface 36 formed by the spacer 32 and the opening 52 of the liquid supply port 50 face each other, but it is not limited to this mode. . For example, in the die 100B, if the opening 52 of the liquid supply port 50 can be provided in a desired shape and size, or if the installation of the liquid supply port 50 and its opening 52 can be used to manufacture the die 100B. The opening 52 of the liquid supply port 50 may be placed at any position within the region R1 as long as it is permitted. As an example, the angle θ2 formed by the straight line 32L and the straight line 50L shown in FIG. You can choose any angle.
In the present disclosure, "the liquid supply port is provided at a position facing the spacer" means that the positional relationship between the surface of the manifold blocked by the spacer and the opening of the liquid supply port is shown in FIG. The angle θ2 formed by the straight line 32L and the straight line 50L may satisfy 90° to 270° with the straight line 32L as the reference.
 図7に示すダイ100Cは、図1と同様に、第1のリップ10、第2のリップ(不図示)、5つのスペーサー32、及び2つの栓38により、ダイ100Cの長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30に接続する1つのマニホールド40と、1つのマニホールド40に対して塗工液を供給する3つの給液口50と、を画定している。
 このように、ダイ100Cでは、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに3つの給液口を有する。
 また、ダイ100Cにおける3つの給液口50は、いずれも、マニホールド40を画定する面の、スリット30との接続部(即ち、スリット30の開口部34)の幅方向両縁に沿って周方向に延長した直線に挟まれた領域R2内に設けられている。そして、ダイ100Cにおいて、領域R2内に設けられた3つの給液口50は、いずれも、同一領域R2内のスリット30の開口部34に対向する位置に設けられている。
 なお、ダイ100Cにおいても、マニホールド40内において、スリット30の開口部34と、給液口50の開口部52と、は正対している。つまり、ダイ100Cにおける3つの給液口50は、いずれも、スリット30の開口部に向かって開口しているとも言える。
The die 100C shown in FIG. 7 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38, similar to FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and three liquid supply ports 50 for supplying the coating liquid to the one manifold 40. .
Thus, in the die 100C, one manifold is connected to four slits, and one manifold has three liquid supply ports.
In addition, the three liquid supply ports 50 in the die 100C are arranged along the width direction both edges of the connection portion with the slit 30 (that is, the opening portion 34 of the slit 30) of the surface defining the manifold 40. It is provided in a region R2 sandwiched by straight lines extending to . In the die 100C, the three liquid supply ports 50 provided within the region R2 are all provided at positions facing the openings 34 of the slits 30 within the same region R2.
Also in the die 100</b>C, the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other in the manifold 40 . In other words, it can be said that all of the three liquid supply ports 50 in the die 100</b>C open toward the opening of the slit 30 .
 図8に示すダイ100Dは、図1と同様に、第1のリップ10、第2のリップ(不図示)、5つのスペーサー32、及び2つの栓38により、ダイ100Dの長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30に接続する1つのマニホールド40と、1つのマニホールド40に対して塗工液を供給する2つの給液口50と、を画定している。そして、更に、マニホールド40の長さ方向(即ち、方向Y)の両端部の一部(即ち、2つの栓38)が開口しており、この両端側にマニホールド40に対して塗工液を供給する給液口54が設けられている。
 このように、ダイ100Dでは、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに計4つの給液口50,54を有する。
 また、ダイ100Dにおける2つの給液口50は、いずれも、マニホールド40を画定する面の、隣接するスリット30とスリット30との間のスペーサー32の幅方向両縁に沿って周方向に延長した2直線に挟まれた領域R1内に設けられている。そして、ダイ100Bにおいて、領域R1内に設けられた2つの給液口50は、いずれも、同一領域R1
内のスペーサー32に対向する位置に設けられている。
 なお、ダイ100Dにおいては、マニホールド40内において、スペーサー32により形成された面36と、給液口50の開口部52と、は正対している。つまり、ダイ100Dにおける2つの給液口50は、いずれも、スペーサー32により閉塞された面に向かって開口しているとも言える。また、2つの給液口54の開口部56は、互いに対向している。
The die 100D shown in FIG. 8 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38 as in FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and two liquid supply ports 50 for supplying the coating liquid to the one manifold 40. . Furthermore, a part of both ends (that is, two plugs 38) of the manifold 40 in the length direction (that is, the direction Y) is open, and the coating liquid is supplied to the manifold 40 on both ends. A liquid supply port 54 is provided.
Thus, in the die 100D, four slits are connected to one manifold, and a total of four liquid supply ports 50 and 54 are provided in one manifold.
In addition, both of the two liquid supply ports 50 in the die 100D extend in the circumferential direction along both width direction edges of the spacer 32 between the adjacent slits 30 on the surface defining the manifold 40. It is provided in a region R1 sandwiched between two straight lines. In the die 100B, the two liquid supply ports 50 provided within the region R1 are both located in the same region R1.
It is provided at a position facing the spacer 32 inside.
In addition, in the die 100D, the surface 36 formed by the spacer 32 and the opening 52 of the liquid supply port 50 face each other in the manifold 40 . In other words, it can be said that both of the two liquid supply ports 50 in the die 100</b>D open toward the surface closed by the spacer 32 . Also, the openings 56 of the two liquid supply ports 54 face each other.
 図9に示すダイ100Eは、図1と同様に、第1のリップ10、第2のリップ(不図示)、5つのスペーサー32、及び2つの栓38により、ダイ100Eの長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30に接続する1つのマニホールド40と、1つのマニホールド40に対して塗工液を供給する3つの給液口50と、を画定している。そして、更に、マニホールド40の長さ方向(即ち、方向Y)の両端部の一部(即ち、2つの栓38)が開口しており、この両端側にマニホールド40に対して塗工液を供給する給液口54が設けられている。
 このように、ダイ100Eでは、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに計5つの給液口50,54を有する。
 また、ダイ100Eにおける3つの給液口50は、いずれも、マニホールド40を画定する面の、スリット30との接続部(即ち、スリット30の開口部34)の幅方向両縁に沿って周方向に延長した直線に挟まれた領域R2内に設けられている。そして、ダイ100Eにおいて、領域R2内に設けられた3つの給液口50は、いずれも、同一領域R2内のスリット30の開口部34に対向する位置に設けられている。
 なお、ダイ100Eにおいても、マニホールド40内において、スリット30の開口部34と、給液口50の開口部52と、は正対している。つまり、ダイ100Eにおける3つの給液口50は、いずれも、スリット30の開口部に向かって開口しているとも言える。また、2つの給液口54の開口部56は、互いに対向している。
The die 100E shown in FIG. 9 has a first lip 10, a second lip (not shown), five spacers 32, and two plugs 38, similar to FIG. It defines four slits 30 arranged in the direction Y), one manifold 40 connected to the four slits 30, and three liquid supply ports 50 for supplying the coating liquid to the one manifold 40. . Furthermore, a part of both ends (that is, two plugs 38) of the manifold 40 in the length direction (that is, the direction Y) is open, and the coating liquid is supplied to the manifold 40 on both ends. A liquid supply port 54 is provided.
Thus, in the die 100E, four slits are connected to one manifold, and a total of five liquid supply ports 50 and 54 are provided to one manifold.
In addition, the three liquid supply ports 50 in the die 100E are arranged in the circumferential direction along both edges in the width direction of the connection portion with the slit 30 (that is, the opening portion 34 of the slit 30) on the surface defining the manifold 40. It is provided in a region R2 sandwiched by straight lines extending to . In the die 100E, the three liquid supply ports 50 provided within the region R2 are all provided at positions facing the openings 34 of the slits 30 within the same region R2.
Also in the die 100E, the opening 34 of the slit 30 and the opening 52 of the liquid supply port 50 face each other inside the manifold 40 . In other words, it can be said that all three liquid supply ports 50 in the die 100E open toward the opening of the slit 30 . Also, the openings 56 of the two liquid supply ports 54 face each other.
 以上、4つのスリットを有するダイについて説明したが、これらは実施形態の一例を示しただけであって、1つのマニホールドにつき複数の給液口を有する構成であれば、スリットの数、マニホールドの数、給液口の数、給液口の開口方向等は、形成する塗工液膜(又は塗工膜)の大きさ、厚さ、塗工液膜の幅方向における厚みムラの許容量等に応じて、適宜、決定すればよい。
 例えば、図8及び図9では、マニホールド40の長さ方向両端にて開口している給液口54を有するダイ100D,100Eを示しているが、給液口54がマニホールド40の長さ方向両端の一方で開口する態様であってもよい。但し、塗工液膜の幅方向における厚み均一性を高める観点からは、マニホールドの長さ方向の両端で開口する態様であることが好ましい。
Although the die having four slits has been described above, these are only examples of embodiments. , the number of liquid supply ports, the opening direction of the liquid supply ports, etc., are determined by the size and thickness of the coating liquid film (or coating film) to be formed, the allowable amount of thickness unevenness in the width direction of the coating liquid film, etc. It can be determined accordingly.
For example, although FIGS. 8 and 9 show the dies 100D and 100E having the liquid supply ports 54 that are open at both longitudinal ends of the manifold 40, the liquid supply ports 54 are opened at both longitudinal ends of the manifold 40. It may be an aspect in which one side is opened. However, from the viewpoint of improving the thickness uniformity in the width direction of the coating liquid film, it is preferable that the manifold is opened at both ends in the length direction.
 本実施形態に係るダイにおける好ましい態様として、複数の給液口の少なくとも一部が、マニホールドを画定する面の、隣接するスリットとスリットとの間のスペーサーの幅方向両縁に沿って周方向に延長した2直線に挟まれた領域R1内に設けられている態様と、複数の給液口の少なくとも一部が、マニホールドを画定する面の、スリットとの接続部の幅方向両縁に沿って周方向に延長した直線に挟まれた領域R2内に設けられている態様と、がある。
 前者の態様(即ち、複数の給液口の少なくとも一部が領域R1内に設けられる態様)は、図4に示すダイ100B、及び、図8に示すダイ100Dにて示されている。また、後者の態様(即ち、複数の給液口の少なくとも一部が領域R2内に設けられる態様)は、図1~図3に示すダイ100、図4に示すダイ100A、図7に示すダイ100C、及び、図8に示すダイ100Eに示されている。
 前者の態様は、同構成で、給液口の設置方向のみが異なる後者の態様と比較すると、動圧の影響を抑えることができ、塗工液の流速分布を低減させることができることから、塗工液膜の幅方向における厚み均一性をより高められる。
As a preferred aspect of the die according to the present embodiment, at least a part of the plurality of liquid supply ports is circumferentially along both width direction edges of the spacer between adjacent slits on the surface defining the manifold. At least a part of the plurality of liquid supply ports is provided in a region R1 sandwiched between two extended straight lines, and at least a part of the plurality of liquid supply ports is along both edges in the width direction of the connection portion with the slit on the surface defining the manifold. There is also a mode in which it is provided in a region R2 sandwiched between straight lines extending in the circumferential direction.
The former aspect (that is, the aspect in which at least some of the plurality of liquid supply ports are provided within the region R1) is shown by a die 100B shown in FIG. 4 and a die 100D shown in FIG. In addition, the latter mode (that is, the mode in which at least some of the plurality of liquid supply ports are provided within the region R2) includes the die 100 shown in FIGS. 1 to 3, the die 100A shown in FIG. 100C and die 100E shown in FIG.
Compared to the latter mode, which has the same configuration but differs only in the installation direction of the liquid supply port, the former mode can suppress the influence of dynamic pressure and reduce the flow velocity distribution of the coating liquid. The thickness uniformity in the width direction of the working liquid film can be further improved.
(第1のリップ及び第2のリップ)
 図1に示すように、第1のリップ10と第2のリップ20とは、方向Xに並んで配置されている。
 また、図1に示されるように、第1のリップ10及び第2のリップ20の形状は、共に、方向Yを長さ方向とする柱状であって、マニホールド40を形成するための長さ方向に延びる凹部を有している。このような形状を有する第1のリップ10及び第2のリップ20は、図1~図9に示すように、第1のリップ10と第2のリップ20との間に挟持されたスペーサー32と共に組み合わせることで、スリット30と、マニホールド40と、給液口50と、を画定している。
(first lip and second lip)
As shown in FIG. 1, the first lip 10 and the second lip 20 are arranged side by side in the X direction.
Also, as shown in FIG. 1, the shape of the first lip 10 and the second lip 20 are both columnar with the direction Y as the length direction, and the length direction for forming the manifold 40 is has a recess extending into the The first lip 10 and the second lip 20 having such a shape are provided with a spacer 32 sandwiched between the first lip 10 and the second lip 20 as shown in FIGS. The combination defines the slit 30 , the manifold 40 , and the liquid supply port 50 .
 第1のリップ及び第2のリップは、金属によって形成されている。金属としては、例えば、ステンレス鋼が挙げられる。なお、第1のリップは、複数の金属によって形成されてもよい。例えば、第1のリップ及び第2のリップは、それぞれ、その先端部のみ、超微粒合金(例えば、TF15、三菱マテリアル(株))、又は超硬合金(例えば、日本タングステン(株))によって形成され、且つ、先端部以外の部分は、ステンレス鋼によって形成されてもよい。 The first lip and the second lip are made of metal. Metals include, for example, stainless steel. Note that the first lip may be made of a plurality of metals. For example, the first lip and the second lip, respectively, only the tip portion is formed of ultrafine grain alloy (eg, TF15, Mitsubishi Materials Corporation) or cemented carbide (eg, Nippon Tungsten Co., Ltd.) and the portion other than the tip may be made of stainless steel.
(スペーサー)
 図1に示すように、スペーサー32は、方向Xに並んで配置された第1のリップ10と第2のリップ20との間に挟持されている部材である。
 スペーサーの大きさ及び厚さにより、スリットの大きさが決まり、塗工幅(即ち、塗工液膜の形成幅)、塗工液膜の厚さが調整される。
 また、スペーサーの形状及び設置位置により、マニホールドの数を決めることができる。例えば、図2に示すように、ダイ100の長さ方向中央部にスペーサー32を設けることで、ダイ100の長さ方向に並ぶ2つのマニホールド40を形成してもよい。
 なお、スペーサーは、第1のリップ及び第2のリップとは別の部材であってもよいし、第1のリップ及び/又は第2のリップの一部として形成されていてもよい。但し、スリットの大きさを調整しやすい観点からは、スペーサーは、第1のリップ及び第2のリップとは別の部材であることが好ましい。
(spacer)
As shown in FIG. 1, the spacer 32 is a member sandwiched between the first lip 10 and the second lip 20 arranged side by side in the X direction.
The size and thickness of the spacer determine the size of the slit, and the coating width (that is, the width of the coating liquid film) and the thickness of the coating liquid film are adjusted.
Also, the number of manifolds can be determined by the shape and installation position of the spacer. For example, as shown in FIG. 2, two manifolds 40 arranged in the length direction of the die 100 may be formed by providing a spacer 32 at the center of the die 100 in the length direction.
The spacer may be a member separate from the first lip and the second lip, or may be formed as part of the first lip and/or the second lip. However, from the viewpoint of facilitating adjustment of the size of the slit, the spacer is preferably a member separate from the first lip and the second lip.
 スペーサーの材質としては、ステンレス鋼、又はポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂が一般的に好適なものとして挙げられる。また、スペーサーの材質としては、上記以外にも、超硬合金、ポリエーテルエーテルケトン(PEEK)等の樹脂を用いてもよい。 As materials for the spacer, stainless steel or fluorine-based resin such as polytetrafluoroethylene (PTFE) is generally suitable. In addition to the above materials, cemented carbide and resins such as polyetheretherketone (PEEK) may be used as materials for the spacers.
(栓)
 栓38は、方向Xに並んで配置された第1のリップ10と第2のリップ20との間に挟持されている部材であって、第1のリップ10及び第2のリップ20とともに、マニホールド40を画定する部材である。つまり、栓38は、マニホールド40の長さ方向の両端部を構成する部材であるともいえる。
(plug)
The plug 38 is a member that is sandwiched between the first lip 10 and the second lip 20 that are arranged side by side in the direction X, and together with the first lip 10 and the second lip 20, the manifold. 40. In other words, it can be said that the plug 38 is a member that constitutes both ends of the manifold 40 in the length direction.
 栓の材質としては、ステンレス鋼、又はポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂が一般的に好適なものとして挙げられる。 As the material for the plug, stainless steel or fluorine-based resin such as polytetrafluoroethylene (PTFE) is generally suitable.
(スリット)
 スリット30は、マニホールド40に溜まった塗工液を、方向Zに沿って移送、及び吐出するための空間である。
 スリット30は、方向Xに並んで配置された第1のリップ10と第2のリップ20との間であって、スペーサー32にて区切られて形成された空間である。
(slit)
The slit 30 is a space for transferring along the direction Z and discharging the coating liquid accumulated in the manifold 40 .
The slit 30 is a space separated by a spacer 32 between the first lip 10 and the second lip 20 arranged side by side in the X direction.
 スリットの数は、2以上であれば特に制限はなく、適宜、塗工液膜(塗工膜)の用途、製造効率等により、決定さればよい。
 スリットの大きさは、目的とする塗工液膜(塗工膜)の大きさに応じて、適宜、決定されればよい。
The number of slits is not particularly limited as long as it is two or more, and may be appropriately determined according to the application of the coating liquid film (coating film), production efficiency, and the like.
The size of the slit may be appropriately determined according to the size of the intended coating liquid film (coating film).
 なお、塗工液膜の幅方向における厚み均一性を高める観点からは、マニホールドの長さの合計に対する、スリットの幅(即ち、塗工幅)の合計の比率が、0.7~0.95(仮)であることが好ましい。即ち、本実施形態に係るダイにおいて、塗工部の幅(即ち、塗工幅)の合計は、未塗工部の幅の合計に比べて、大きいことが好ましい。
 また、塗工液膜の幅方向における厚み均一性を高める観点からは、スリットとマニホールドとのの接続部(即ち、マニホールドにおけるスリットの開口部)に対する、スリットの塗工液の吐出口の幅の比率が、0.9~1.0であることが好ましい。即ち、スリットの幅は、マニホールド側と吐出口側とでほぼ同じであることが好ましい。
From the viewpoint of improving the thickness uniformity in the width direction of the coating liquid film, the ratio of the total width of the slits (that is, the coating width) to the total length of the manifold is 0.7 to 0.95. (Tentative) is preferable. That is, in the die according to the present embodiment, it is preferable that the total width of the coated portion (that is, the coating width) is larger than the total width of the uncoated portion.
In addition, from the viewpoint of improving the thickness uniformity in the width direction of the coating liquid film, the width of the coating liquid discharge port of the slit with respect to the connection portion between the slit and the manifold (that is, the opening of the slit in the manifold). Preferably the ratio is between 0.9 and 1.0. That is, it is preferable that the width of the slit is substantially the same on the manifold side and the discharge port side.
(マニホールド)
 マニホールド40は、給液口50(場合によっては、給液口50,54)から供給された塗工液を、ダイの長さ方向(図1中の方向Y)に拡流し、塗工液を一時的に貯留する空間である。
 マニホールド40は、方向Xに並んで配置された第1のリップ10と第2のリップ20との間であって、スペーサー32にて閉じられ及び/又は区切られて形成された空間である。
(manifold)
The manifold 40 spreads the coating liquid supplied from the liquid supply port 50 (in some cases, the liquid supply ports 50 and 54) in the length direction of the die (direction Y in FIG. 1), and spreads the coating liquid. It is a space for temporary storage.
The manifold 40 is a space formed between the first lip 10 and the second lip 20 arranged side by side in the direction X and closed and/or separated by the spacer 32 .
 マニホールドの数は、1であってもよく、2以上であってもよいが、塗工液膜の幅方向における厚み均一性を高める観点から、1であることが好ましい。
 マニホールドの形状及び大きさは、塗工液の物性等に応じて、適宜、決定されればよい。マニホールドの形状としては、特に制限はなく、例えば、図1に示すように、円柱状であってもよいし、角柱状であってもよい。
The number of manifolds may be one, or two or more, but preferably one from the viewpoint of improving thickness uniformity in the width direction of the coating liquid film.
The shape and size of the manifold may be appropriately determined according to the physical properties of the coating liquid. The shape of the manifold is not particularly limited. For example, as shown in FIG. 1, it may be cylindrical or prismatic.
(給液口)
 給液口50,54は、マニホールド40に塗工液を供給するための空間である。
 給液口50は、方向Xに並んで配置された第1のリップ10と第2のリップ20との間に形成された空間である。
 また、給液口54は、マニホールド40の両端に存在するスペーサー32の一部に形成された空間である。
(liquid supply port)
The liquid supply ports 50 and 54 are spaces for supplying the coating liquid to the manifold 40 .
The liquid supply port 50 is a space formed between the first lip 10 and the second lip 20 arranged side by side in the X direction.
Also, the liquid supply port 54 is a space formed in a part of the spacer 32 existing at both ends of the manifold 40 .
 給液口50,54は、1つのマニホールド40につき複数設けられていればよく、塗工液膜の幅方向における厚み均一性を高める観点から、1つのマニホールド40につき、2個~9個設けられていることが好ましく、2個~5個設けられていることがより好ましく、4個~5個設けられていることがより好ましい。
 給液口50,54の相当直径としては、チキソトロピー性を示す塗工液の供給への適用の観点から、10mm~50mm程度が選択される。
A plurality of liquid supply ports 50 and 54 may be provided per manifold 40, and from the viewpoint of improving thickness uniformity in the width direction of the coating liquid film, 2 to 9 ports are provided per manifold 40. more preferably 2 to 5, more preferably 4 to 5.
The equivalent diameter of the liquid supply ports 50, 54 is selected to be about 10 mm to 50 mm from the viewpoint of application to the supply of the coating liquid exhibiting thixotropic properties.
≪塗工装置≫
 本実施形態に係る塗工装置は、前述した、本実施形態に係るエクストルージョン型ダイと、エクストルージョン型ダイのマニホールドに対して給液口を介して塗工液を供給する複数の給液配管と、を備える。
 給液配管としては、チキソトロピー性を示す塗工液を給液し得る配管であれば、特に制限はない。
≪Coating equipment≫
The coating apparatus according to this embodiment includes the above-described extrusion die according to this embodiment, and a plurality of liquid supply pipes that supply a coating liquid to the manifold of the extrusion die through liquid supply ports. And prepare.
The liquid supply pipe is not particularly limited as long as it is a pipe capable of supplying a coating liquid exhibiting thixotropy.
 ここで、複数の給液配管のそれぞれにはスタティックミキサーが設けられていることが好ましい。給液配管に、スタティックミキサーを設けることで、マニホールド40に供給される塗工液の粘度を均一化することができ、塗工液膜の幅方向における厚み均一性をより高められる。
 また、塗工液膜の幅方向における厚み均一性を高める観点から、複数の給液配管のそれぞれにはバルブが設けられていることが好ましい。給液配管に、バルブを設けることで、各給液口からマニホールドに供給される塗工液の流量の調整が可能となり、塗工液膜の幅方向における厚み均一性をより高められる。
Here, it is preferable that each of the plurality of liquid supply pipes is provided with a static mixer. By providing a static mixer in the liquid supply pipe, the viscosity of the coating liquid supplied to the manifold 40 can be made uniform, and the thickness uniformity in the width direction of the coating liquid film can be further enhanced.
From the viewpoint of improving the thickness uniformity in the width direction of the coating liquid film, it is preferable that each of the plurality of liquid supply pipes is provided with a valve. By providing a valve in the liquid supply pipe, it becomes possible to adjust the flow rate of the coating liquid supplied from each liquid supply port to the manifold, and the thickness uniformity of the coating liquid film in the width direction can be further enhanced.
≪使用方法、塗工膜の製造方法≫
 以下、本実施形態に係る塗工膜の製造方法について、本実施形態に係るダイ(本実施形態に係る塗布装置内のダイ)の使用方法と共に、図10を参照して説明する。
 本実施形態に係る塗工膜の製造方法は、連続搬送されている基材上に、本実施形態に係る塗工装置を用い、チキソトロピー性を示す塗工液を塗工する工程(以下、塗工工程ともいう)を含む。
 図10は、本実施形態に係るエクストルージョン型ダイから塗工液を吐出する際(即ち、塗工工程)の一例を示す概略側面図である。
≪Method of use, method of producing coating film≫
Hereinafter, a method for producing a coating film according to this embodiment will be described together with a method for using the die according to this embodiment (the die in the coating apparatus according to this embodiment) with reference to FIG.
The method for producing a coating film according to the present embodiment includes a step of applying a coating liquid exhibiting thixotropic properties (hereinafter referred to as coating Also called manufacturing process).
FIG. 10 is a schematic side view showing an example of when the coating liquid is discharged from the extrusion die according to this embodiment (that is, the coating process).
 図10に示されるように、塗工工程、即ち、ダイ100を用いるストライプ塗工では、例えば、ダイ100は、被塗工物である基材Bに対し、スリット30の開口部(塗工液の吐出部)を対向させて配置される。
 ダイ100と基材Bとの距離は、制限されず、例えば、塗工液の粘度、及び形成する塗工液膜の厚さに応じて決定すればよい。
As shown in FIG. 10, in the coating process, that is, stripe coating using the die 100, for example, the die 100 is applied to the substrate B, which is the object to be coated, at the openings of the slits 30 (coating liquid ) are arranged to face each other.
The distance between the die 100 and the substrate B is not limited, and may be determined, for example, according to the viscosity of the coating liquid and the thickness of the coating liquid film to be formed.
 基材Bは、ダイ100に対して、方向Xへ搬送される。
 ダイ100のマニホールド40に供給された塗工液は、スリット30を経て基材Bに向かって吐出される。
 基材Bを連続的に搬送しながら、ダイ100から塗工液を吐出することで、基材B上に塗工液膜を形成することができる。
A substrate B is transported in the direction X with respect to the die 100 .
A coating liquid supplied to the manifold 40 of the die 100 is discharged toward the substrate B through the slit 30 .
A coating liquid film can be formed on the substrate B by ejecting the coating liquid from the die 100 while the substrate B is continuously conveyed.
 ここで、図10では、塗工液が塗工される際の基材Bは、バックアップロール200に巻き掛けられている例を示しているが、この態様に限定されない。 Here, FIG. 10 shows an example in which the base material B is wound around the backup roll 200 when the coating liquid is applied, but it is not limited to this aspect.
 以下、図10に示す、ストライプ塗工に用いられる基材、塗工液等についてについて説明する。ただし、本実施形態に係るダイを用いたストライプ塗工は、下記の内容に制限されるものではない。 The base material, coating solution, etc. used for stripe coating shown in FIG. 10 will be described below. However, stripe coating using the die according to this embodiment is not limited to the following.
-基材-
 ストライプ塗工に用いられる基材は、形成される塗工膜の用途に応じて選択すればよく、また、連続搬送への適用性(好ましくは、ロールトゥロール方式への適用性)を考慮して選択すればよい。
 基材としては、金属基材等の熱伝導性が高い基材を用いてもよい。また、基材としては、樹脂フィルムを用いてもよい。
-Base material-
The base material used for stripe coating may be selected according to the application of the coating film to be formed, and the applicability to continuous transportation (preferably, applicability to roll-to-roll method) is taken into consideration. can be selected.
As the substrate, a substrate having high thermal conductivity such as a metal substrate may be used. Moreover, you may use a resin film as a base material.
 熱伝導性が高い基材としては、例えば、熱伝導率が200W/m・K以上の基材が挙げられる。なお、ストライプ塗工で用いる基材が、例えば、金属箔及び樹脂膜を含む多層構造の基材の場合、その基材全体としての熱伝導率が200W/m・K以上であれば、熱伝導率が200W/m・K以上の基材とする。
 基材の熱伝導率の上限値は特に制限されず、例えば、500W/m・Kである。
Examples of substrates with high thermal conductivity include substrates with a thermal conductivity of 200 W/m·K or more. In addition, when the base material used in stripe coating is, for example, a base material with a multilayer structure containing a metal foil and a resin film, if the heat conductivity of the base as a whole is 200 W / m K or more, the heat conduction The base material has a rate of 200 W/m·K or more.
The upper limit of the thermal conductivity of the substrate is not particularly limited, and is, for example, 500 W/m·K.
 上記熱伝導率を示す基材としては、例えば、金属基材が挙げられる。より具体的には、上記熱伝導率を示す基材としては、銅、アルミニウム、銀、金、及びこれらの合金による金属基材が挙げられる。
 その他、金属基材としては、ステンレス、ニッケル、チタン、又はインバー合金による基材であってもよい。
 中でも、基材としての形状安定性、使用実績等の点から、銅基材、及びアルミニウム基材が好ましく用いられる。
Examples of substrates exhibiting the above thermal conductivity include metal substrates. More specifically, examples of substrates exhibiting the above thermal conductivity include metal substrates made of copper, aluminum, silver, gold, and alloys thereof.
In addition, the metal substrate may be a substrate made of stainless steel, nickel, titanium, or an invar alloy.
Among them, a copper base material and an aluminum base material are preferably used in terms of shape stability as a base material, track record of use, and the like.
 基材の熱伝導率は、以下のようにして測定する。
 まず、基材を後述する装置に適したサイズに切り出し、測定用試料を得る。得られた測定用試料について、レーザーフラッシュ法で厚み方向の熱拡散率を測定する。例えば、NETZSCH社の「LFA467」を用いて測定することができる。次いで、天秤を用いて測定用試料の比重を測定する。例えば、メトラー・トレド(株)の天秤「XS204」(「固体比重測定キット」使用)を用いて測定することができる。更に、セイコーインスツル(株)の「DSC320/6200」を用い、10℃/分の昇温条件の下、25℃における測定用試料の比熱をDSC7のソフトウエアを用いて求める。得られた熱拡散率に比重及び比熱を乗じることで、測定用試料(即ち、基材)の熱伝導率を算出する。
The thermal conductivity of the substrate is measured as follows.
First, a base material is cut into a size suitable for the apparatus described later to obtain a measurement sample. The thermal diffusivity in the thickness direction of the obtained measurement sample is measured by a laser flash method. For example, it can be measured using "LFA467" manufactured by NETZSCH. Next, the specific gravity of the measurement sample is measured using a balance. For example, it can be measured using a balance “XS204” (using a “solid specific gravity measurement kit”) manufactured by Mettler Toledo, Inc. Furthermore, using "DSC320/6200" manufactured by Seiko Instruments Inc., the specific heat of the sample for measurement at 25°C is determined using DSC7 software under the condition of temperature increase of 10°C/min. By multiplying the obtained thermal diffusivity by the specific gravity and the specific heat, the thermal conductivity of the measurement sample (that is, the substrate) is calculated.
 基材の厚みは、ロールトゥロール方式に適用する観点から、適宜、設定すればよい。
 基材の厚みは、例えば、5μm~100μmであることが好ましく、10μm~30μmであることがより好ましい。
 基材の幅及び長さは、ロールトゥロール方式に適用する観点、目的とする塗工膜の幅及び長さから、適宜、設定すればよい。
The thickness of the substrate may be appropriately set from the viewpoint of application to the roll-to-roll system.
The thickness of the substrate is, for example, preferably 5 μm to 100 μm, more preferably 10 μm to 30 μm.
The width and length of the substrate may be appropriately set from the viewpoint of application to the roll-to-roll method and the width and length of the desired coating film.
 基材の厚みは、以下のようにして測定する。
 即ち、接触式の厚み測定機を用い、基材の幅方向の3箇所(即ち、幅方向の両縁部から5mmの位置と幅方向中央部)の厚みを、長手方向に500mmの間隔を開けて3点測定する。
 測定された計9つの測定値の算術平均値を求め、これを基材の厚みとする。
 接触式の厚み測定機としては、例えば、(株)フジワークのS-2270が用いられる。
The thickness of the substrate is measured as follows.
That is, using a contact-type thickness measuring machine, the thickness of the substrate at three locations in the width direction (that is, the position 5 mm from both edges in the width direction and the central portion in the width direction) is measured at intervals of 500 mm in the longitudinal direction. Measure at 3 points.
An arithmetic mean value of the total nine measured values is determined and taken as the thickness of the base material.
As a contact-type thickness measuring machine, for example, S-2270 manufactured by Fuji Work Co., Ltd. is used.
-基材の搬送手段-
 ストライプ塗工の際の基材の搬送手段は、制限されない。
 基材の搬送手段は、例えば、基材を張架した状態で搬送することができ、塗工精度が高まるという観点から、バックアップロール(具体的には、図10中のバックアップロール200)であることが好ましい。
-Conveying Means for Base Material-
There are no restrictions on the means of conveying the substrate during stripe coating.
The means for transporting the base material is, for example, a backup roll (specifically, the backup roll 200 in FIG. 10) from the viewpoint that the base material can be transported in a stretched state and the coating accuracy is improved. is preferred.
 バックアップロールは、回転可能な部材である。バックアップロールが回転することで、基材を搬送することができる。バックアップロールは、基材を巻き掛けて搬送することもできる。バックアップロールは、駆動ロールでも従動ロールでもよい。 The backup roll is a rotatable member. The base material can be transported by rotating the backup roll. The backup roll can also be conveyed by winding the base material thereon. The backup roll may be a driving roll or a driven roll.
 バックアップロールは、塗膜の乾燥の促進、及び膜面温度低下による塗膜のブラッシング(すなわち、微細な結露が生じることによる塗膜の白化)の抑制という観点から、加温されてもよい。 The backup roll may be heated from the viewpoint of promoting drying of the coating film and suppressing brushing of the coating film due to a decrease in the film surface temperature (that is, whitening of the coating film due to fine condensation).
 バックアップロールの表面温度は、温度制御手段によって制御されることが好ましい。バックアップロールの表面温度は、検知された表面温度に基づいて、温度制御手段によって制御されることがより好ましい。 The surface temperature of the backup roll is preferably controlled by temperature control means. More preferably, the surface temperature of the backup roll is controlled by temperature control means based on the detected surface temperature.
 温度制御手段としては、例えば、加熱手段、及び冷却手段が挙げられる。加熱手段においては、例えば、導加熱、水加熱、又は油加熱が用いられる。冷却手段においては、例えば、冷却水による冷却が用いられる。 Examples of temperature control means include heating means and cooling means. In the heating means, for example, induction heating, water heating, or oil heating is used. In the cooling means, for example, cooling by cooling water is used.
 バックアップロールの直径は、基材が巻き掛け易い観点、ダイヘッドによる塗工が容易な観点、及びバックアップロールの製造コストの観点から、100mm~1,000mmであることが好ましく、100mm~800mmであることがより好ましく、200mm~700であることmmが特に好ましい。 The diameter of the backup roll is preferably 100 mm to 1,000 mm, more preferably 100 mm to 800 mm, from the viewpoints of easy winding of the base material, easy coating with a die head, and the production cost of the backup roll. is more preferred, and 200 mm to 700 mm is particularly preferred.
 バックアップロールによる基材の搬送速度は、生産性、及び塗工性の観点から、例えば、10m/分~100m/分であることが好ましい。 From the viewpoint of productivity and coatability, it is preferable that the transfer speed of the base material by the backup roll is, for example, 10 m/min to 100 m/min.
 バックアップロールに対する基材のラップ角は、塗工時の基材搬送を安定化し、塗膜の厚みムラの発生を抑制する観点から、60°以上であることが好ましく、90°以上であることがより好ましい。また、ラップ角の上限は、例えば、180°に設定することができる。
 ラップ角とは、基材がバックアップロールに接触する際の基材の搬送方向と、バックアップロールから基材が離間する際の基材の搬送方向と、からなる角度をいう。
The wrap angle of the substrate with respect to the backup roll is preferably 60° or more, more preferably 90° or more, from the viewpoint of stabilizing the transportation of the substrate during coating and suppressing the occurrence of unevenness in the thickness of the coating film. more preferred. Also, the upper limit of the wrap angle can be set to 180°, for example.
The wrap angle is an angle formed by the direction in which the substrate is conveyed when the substrate contacts the backup roll and the direction in which the substrate is conveyed when the substrate separates from the backup roll.
-塗工液-
 ストライプ塗工に用いる塗工液としては、チキソトロピー性を示す塗工液が用いられる。
 チキソトロピー性を示す塗工液としては、例えば、固形分濃度が高く(例えば、固形分濃度が35質量%以上)且つ、固形分のうち粒子を高濃度に含む(例えば、固形分中の粒子濃度50質量%以上)塗工液が挙げられる。中でも、粒子を高濃度で含む水系塗工液が好ましく適用される。ここで、水系塗工液とは、塗工液中に含まれる溶媒(又は分散媒)が実質的に水である塗工液(以下、水系塗工液ともいう)が挙げられる。
- Coating liquid -
As a coating liquid used for stripe coating, a coating liquid exhibiting thixotropic properties is used.
As a coating liquid exhibiting thixotropic properties, for example, the solid content concentration is high (for example, the solid content concentration is 35% by mass or more), and the solid content contains particles at a high concentration (for example, the particle concentration in the solid content 50% by mass or more) coating liquid. Among them, a water-based coating liquid containing particles at a high concentration is preferably applied. Here, the water-based coating liquid includes a coating liquid in which the solvent (or dispersion medium) contained in the coating liquid is substantially water (hereinafter also referred to as water-based coating liquid).
 ここで、水系塗工液において、「溶媒(又は分散媒)が実質的に水である」とは、固形分を用いる際に導入される水以外の溶媒の含有を許容することを意味し、全溶媒(又は全分散媒)中の水の割合が90質量%以上であること指し、全溶媒(又は全分散媒)中の水の割合が95質量%以上であることが好ましく、全溶媒(又は全分散媒)が水であることが特に好ましい。
 また、固形分とは、溶媒(又は分散媒)を除く成分を指す。
Here, in the water-based coating liquid, "the solvent (or dispersion medium) is substantially water" means that the inclusion of a solvent other than water introduced when using the solid content is allowed, It means that the proportion of water in the total solvent (or the total dispersion medium) is 90% by mass or more, and the proportion of water in the total solvent (or the total dispersion medium) is preferably 95% by mass or more, and the total solvent (or or the entire dispersion medium) is particularly preferably water.
Moreover, the solid content refers to components excluding the solvent (or dispersion medium).
 水系塗工液に含まれる水としては、天然水、精製水、蒸留水、イオン交換水、純水、超純水(例えば、Milli-Q水)等が挙げられる。なお、Milli-Q水とは、メルク(株)のMilli-Q水製造装置により得られる超純水である。 Examples of water contained in the water-based coating liquid include natural water, purified water, distilled water, ion-exchanged water, pure water, and ultrapure water (eg, Milli-Q water). The Milli-Q water is ultrapure water obtained by Merck's Milli-Q water production equipment.
 水系塗工液における水の含有量は特に制限はなく、例えば、水系塗工液の全質量に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。
 水の含有量の上限値は、チキソトロピー性の発現の観点から、65質量%であることが好ましい。
The content of water in the water-based coating liquid is not particularly limited. For example, it is preferably 20% by mass or more, more preferably 30% by mass or more, relative to the total mass of the water-based coating liquid.
The upper limit of the water content is preferably 65% by mass from the viewpoint of expressing thixotropy.
 水系塗工液は、固形分の1つとして、上述したように、粒子を含むことが好ましい。つまり、水系塗工液は、粒子を含む塗工液であることが好ましい。 The water-based coating liquid preferably contains particles as one of the solid components, as described above. That is, the water-based coating liquid is preferably a coating liquid containing particles.
 粒子は、粒状物であれば特に制限はなく、無機粒子であってもよいし、有機粒子であってもよいし、無機物質と有機物質との複合粒子であってもよい。 The particles are not particularly limited as long as they are particulate, and may be inorganic particles, organic particles, or composite particles of inorganic and organic substances.
 無機粒子としては、目的とする塗工膜に適用しうる公知の無機粒子を用いることができる。
 無機粒子としては、例えば、金属(アルカリ金属、アルカリ土類金属、遷移金属、又はこれらの金属の合金)の粒子、半金属(ケイ素等)の粒子、又は金属又は半金属の化合物(酸化物、水酸化物、窒化物等)の粒子、カーボンブラック等を含む顔料の粒子等が挙げられる。
 無機粒子としては、その他、雲母等の鉱物の粒子、無機顔料粒子等も挙げられる。
As the inorganic particles, known inorganic particles that can be applied to the intended coating film can be used.
Examples of inorganic particles include particles of metals (alkali metals, alkaline earth metals, transition metals, or alloys of these metals), particles of semimetals (such as silicon), or compounds of metals or semimetals (oxides, particles of hydroxides, nitrides, etc.), particles of pigments containing carbon black and the like, and the like.
Inorganic particles also include mineral particles such as mica, inorganic pigment particles, and the like.
 有機粒子としては、目的とする塗工膜に適用しうる公知の有機粒子を用いることができる。
 有機粒子としては、樹脂粒子及び有機顔料粒子をはじめ、固体有機物の粒子であれば、特に制限はされない。
As the organic particles, known organic particles that can be applied to the intended coating film can be used.
The organic particles are not particularly limited as long as they are solid organic particles including resin particles and organic pigment particles.
 無機物質と有機物質との複合粒子としては、有機物質によるマトリックス中に無機粒子が分散した複合粒子、有機粒子の周囲を無機物質にて被覆した複合粒子、無機粒子の周囲を有機物質にて被覆した複合粒子等が挙げられる。 Composite particles of inorganic substances and organic substances include composite particles in which inorganic particles are dispersed in a matrix of organic substances, composite particles in which the periphery of organic particles is coated with inorganic substances, and composite particles in which the periphery of inorganic particles is coated with organic substances. composite particles and the like.
 粒子は、分散性の付与等の目的から、表面処理が施されていてもよい。
 なお、表面処理が施されることで、上記の複合粒子となっていてもよい。
The particles may be surface-treated for the purpose of imparting dispersibility.
In addition, the above composite particles may be obtained by subjecting the composite particles to a surface treatment.
 粒子の粒径、比重、使用形態(例えば、併用の有無等)等には、特に制限はなく、目的とする塗工膜に応じて、又は、塗工膜を製造するに適する条件に応じて、適宜、選択すればよい。 There are no particular restrictions on the particle size, specific gravity, usage form (for example, whether or not they are used in combination), etc., and may be determined according to the intended coating film or conditions suitable for producing the coating film. can be selected as appropriate.
 水系塗工液における粒子の含有量としては、特に制限はなく、目的とする塗工膜に応じて、塗工膜を製造するに適する条件に応じて、又は粒子の添加目的に応じて、適宜、決定されればよい。
 水系塗工液中の粒子の含有量は、例えば、チキソトロピー性を示す塗工液とする観点から、固形分中の粒子濃度として、50質量%以上であることが好ましい。
The content of the particles in the water-based coating solution is not particularly limited, and may be appropriately adjusted depending on the desired coating film, conditions suitable for producing the coating film, or purpose of adding the particles. , should be determined.
The content of the particles in the water-based coating liquid is preferably 50% by mass or more as the particle concentration in the solid content, for example, from the viewpoint of obtaining a coating liquid exhibiting thixotropic properties.
 水系塗工液に含まれる粒子以外の固形分としては、特に制限されず、目的とする塗工膜を得るために用いられる各種成分が挙げられる。
 水系塗工液に含まれる固形分として具体的には、上述の粒子の他、バインダー成分、粒子の分散性に寄与する成分、重合性化合物、重合開始剤等の反応性成分、界面活性剤等の塗工性能を高めるための成分、その他の添加剤等が挙げられる。
The solid content other than the particles contained in the water-based coating liquid is not particularly limited, and includes various components used for obtaining the intended coating film.
Specifically, the solid content contained in the water-based coating liquid includes, in addition to the above particles, a binder component, a component that contributes to the dispersibility of the particles, a polymerizable compound, a reactive component such as a polymerization initiator, a surfactant, and the like. Ingredients for enhancing coating performance, other additives, and the like.
 チキソトロピー性を示す塗工液としては、上述した水系塗工液の他、水系高分子溶液、溶剤系粒子分散液、溶剤系高分子溶液等が挙げられる。
 これらの塗工液を用いた場合であっても、本実施形態に係るダイを用いることで、塗工液膜の幅方向における厚み均一性を高めることができる。
Examples of coating liquids exhibiting thixotropic properties include the water-based coating liquids described above, as well as water-based polymer solutions, solvent-based particle dispersions, solvent-based polymer solutions, and the like.
Even when these coating liquids are used, the thickness uniformity in the width direction of the coating liquid film can be improved by using the die according to the present embodiment.
-塗工液膜の膜厚-
 ストライプ塗工において形成される塗工液膜の膜厚は特に制限はなく、目的とする塗工膜に応じて、適宜、決定すればよい。
 塗工液膜の厚みは、例えば、50μm~350μmを選択することができ、80μm~300μmを選択することができ、80μm~200μmを選択することができる。
-Thickness of coating liquid film-
The film thickness of the coating liquid film formed in stripe coating is not particularly limited, and may be appropriately determined according to the intended coating film.
The thickness of the coating liquid film can be selected, for example, from 50 μm to 350 μm, from 80 μm to 300 μm, and from 80 μm to 200 μm.
 塗工液膜の厚みは、以下のようにして測定する。
 即ち、塗工液膜について、幅方向に沿って3箇所(具体的には、幅方向の両縁部から5mmの位置と幅方向中央部)、光干渉式の厚み測定機(例えば、キーエンス社の赤外分光
干渉式膜厚計SI-T80)にて測定する。3点の測定値の算術平均値を求め、これを塗工液膜の厚みとする。
The thickness of the coating liquid film is measured as follows.
That is, for the coating liquid film, three locations along the width direction (specifically, the position of 5 mm from both edges in the width direction and the central portion in the width direction), an optical interference thickness measuring machine (for example, Keyence Corporation (Infrared spectroscopic interference type film thickness meter SI-T80). The arithmetic average value of the measured values at three points is obtained, and this value is defined as the thickness of the coating liquid film.
-塗工幅-
 ストライプ塗工における、1条の塗工幅(即ち、1条の塗工液膜の幅)は特に制限はなく、目的とする塗工膜に応じて、適宜、決定すればよい。
 塗工幅は、例えば、200mm以下を選択することができ、150mm以下を選択することができ、100mm以下を選択することができる。
 塗工幅の下限は、例えば、30mmである。
 なお、塗工幅は、1条ごとに異なっていてもよく、同じであってもよい。但し、品質管理等の観点からは、複数の塗工液膜のそれぞれの塗工幅は同程度であることが好ましい。このとき、複数の塗工液膜のそれぞれの塗工幅の差は2mm以下であることが好ましい。
-Coating Width-
In stripe coating, the width of one strip of coating (that is, the width of one strip of coating liquid film) is not particularly limited, and may be appropriately determined according to the intended coating film.
The coating width can be selected to be, for example, 200 mm or less, 150 mm or less, or 100 mm or less.
The lower limit of the coating width is, for example, 30 mm.
In addition, the coating width may be different for each line, or may be the same. However, from the viewpoint of quality control, etc., it is preferable that the coating widths of the plurality of coating liquid films are approximately the same. At this time, it is preferable that the difference in coating width between the plurality of coating liquid films is 2 mm or less.
-未塗工部の幅-
 ストライプ塗工における、塗工液膜間の未塗工部の幅(即ち、塗工液膜間の基材の露出部の幅)は特に制限はなく、目的とする塗工膜の用途に応じて、適宜、決定すればよい。
 塗工液膜間の未塗工部の幅としては、例えば、5mm~100mmを選択することができる。
 なお、塗工液膜間の未塗工部が複数ある場合、複数ある未塗工部の幅は、それぞれ異なっていてもよく、同じであってもよい。
-Width of uncoated part-
In stripe coating, the width of the uncoated portion between the coating liquid films (that is, the width of the exposed portion of the base material between the coating liquid films) is not particularly limited, and may vary depending on the intended use of the coating film. can be determined as appropriate.
The width of the uncoated portion between the coating liquid films can be selected, for example, from 5 mm to 100 mm.
When there are a plurality of uncoated portions between coating liquid films, the widths of the plurality of uncoated portions may be different or the same.
 塗工幅及び未塗工部の幅は、以下のようにして測定する。
 即ち、塗工液膜の膜面を上面視し、1条の塗工液膜の幅を、定規にて、長手方向に500mmの間隔を開けて3点測定する測定する。測定された3点の測定値の算術平均値を求め、これを塗工幅とする。
 また、塗工液膜の膜面を上面視し、塗工液膜間の未塗工部の幅を、定規にて、長手方向に500mmの間隔を開けて3点測定する測定する。測定された3点の測定値の算術平均値を求め、これを未塗工部の幅とする。
The width of the coating and the width of the uncoated portion are measured as follows.
That is, the film surface of the coating liquid film is viewed from above, and the width of one strip of the coating liquid film is measured with a ruler at three points spaced apart by 500 mm in the longitudinal direction. Arithmetic mean value of measured values of three points is obtained, and this value is defined as coating width.
In addition, the film surface of the coating liquid film is viewed from above, and the width of the uncoated portion between the coating liquid films is measured by a ruler at three points spaced apart by 500 mm in the longitudinal direction. The arithmetic mean value of the measured values of the three points is determined and taken as the width of the uncoated portion.
-塗工液膜の形成数-
 ストライプ塗工では、塗工液膜の形成数としては、2以上であればよく、基材の幅をもとに、塗工液膜の幅及び未塗工部の幅に応じて、決定すればよい。
- Number of coating liquid films formed -
In stripe coating, the number of coating liquid films to be formed may be two or more. Just do it.
 以上のようにして、塗工工程にて、基材上にストライプ状に形成された塗工液膜は、例えば、乾燥工程を経て、塗工膜となる。
 塗工液膜の乾燥には、公知の乾燥手段を適用することができる。
 塗工液膜に対しては、その他、公知の処理が施されてもよい。
As described above, the coating liquid film formed in stripes on the substrate in the coating process becomes a coating film through, for example, a drying process.
A known drying means can be applied to dry the coating liquid film.
Other known treatments may be applied to the coating liquid film.
 以下に、実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、各ダイの構成の詳細等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 なお、「部」及び「%」はいずれも質量基準である。また、表1中の、「100,100A~100G」は、図1~図9、図11、図12に示す「ダイ100,100A~100G」をそれぞれ指し、「給液口50,54は、図1~図9、図11、図12に示す「給液口50,54」をそれぞれ指す。
EXAMPLES The present invention will be described more specifically below with reference to examples. The materials, amounts used, proportions, details of the configuration of each die, and the like shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the scope of the present invention is not limited to the specific examples shown below.
Both "parts" and "%" are based on mass. In addition, "100, 100A to 100G" in Table 1 refer to "dies 100, 100A to 100G" shown in FIGS. 1 to 9, 11, and 12, respectively.
<基材の準備>
 厚み20μm、長さ300mのアルミニウム基材(熱伝導率:230W/m・K)を用意した。
<Preparation of base material>
An aluminum substrate (thermal conductivity: 230 W/m·K) having a thickness of 20 μm and a length of 300 m was prepared.
<塗工液の準備>
[水系塗工液1の調製]
 下記成分を混合して、水系塗工液1を調製した。水系塗工液1は、チキソトロピー性を示す塗工液である。
・ポリビニルアルコール : 58部
 (CKS-50:ケン化度99モル%、重合度300、日本合成化学工業(株))
・第一工業製薬(株)セロゲンPR : 24部
・界面活性剤(日本エマルジョン(株)、エマレックス(登録商標;以下、同じ。) 710) : 5部
・下記方法で調製されたアートパールJ-7Pの水分散物 : 913部
<Preparation of coating solution>
[Preparation of water-based coating liquid 1]
A water-based coating liquid 1 was prepared by mixing the following components. The water-based coating liquid 1 is a coating liquid exhibiting thixotropy.
・ Polyvinyl alcohol: 58 parts (CKS-50: degree of saponification 99 mol%, degree of polymerization 300, Nippon Synthetic Chemical Industry Co., Ltd.)
・Daiichi Kogyo Seiyaku Co., Ltd. Cerogen PR: 24 parts ・Surfactant (Nippon Emulsion Co., Ltd., Emarex (registered trademark; hereinafter the same) 710): 5 parts ・ARTPEARL J prepared by the following method -7P aqueous dispersion: 913 parts
(アートパールJ-7Pの水分散物)
 74部の純水中に、エマレックス 710(日本エマルジョン(株)、ノニオン界面活性剤)を3部と、カルボキシメチルセルロースナトリウムを3部と、を添加溶解した。得られた水溶液に、アートパール(登録商標)J-7P(根上工業(株)、シリカ複合架橋アクリル樹脂微粒子)20部を加え、エースホモジナイザー((株)日本精機製作所)で、10,000rpm(revolutions per minute;以下、同じ。)で、15分間分散し、アートパールJ-7Pの水分散物を得た(粒子濃度:20質量%)。
 得られた水分散物中のシリカ複合架橋アクリル樹脂微粒子の真比重は1.20であり、平均粒径は6.5μmである。
(Aqueous dispersion of Art Pearl J-7P)
In 74 parts of pure water, 3 parts of Emarex 710 (Nippon Emulsion Co., Ltd., nonionic surfactant) and 3 parts of sodium carboxymethylcellulose were added and dissolved. 20 parts of Artpearl (registered trademark) J-7P (Neagari Kogyo Co., Ltd., silica composite crosslinked acrylic resin fine particles) are added to the resulting aqueous solution, and the mixture is stirred at 10,000 rpm with an Ace homogenizer (Nippon Seiki Seisakusho Co., Ltd.). revolutions per minute; hereinafter the same.) for 15 minutes to obtain an aqueous dispersion of Artpearl J-7P (particle concentration: 20% by mass).
The true specific gravity of the silica composite crosslinked acrylic resin fine particles in the obtained aqueous dispersion is 1.20, and the average particle size is 6.5 μm.
[水系塗工液2の調製]
 下記成分を混合し、ディゾルバーで攪拌(2000rpm、30分)して、水系塗工液2(分散物A:分散物B=25:75)を調製した。水系塗工液2の粘度は、25℃で20mPa・sであり、粒子の平均粒径0.108μmであった。水系塗工液2は、チキソトロピー性を示す塗工液である。
・下記方法で調製された分散物A : 132.1部
・下記方法で調製された分散物B : 396.2部
・ホウ酸(架橋剤) : 2.94部
・ポリビニルアルコール(7.3%水溶液) : 230.7部
 ((株)クラレ、PVA 235、鹸化度88%、重合度3500)
・ジエチレングリコールモノブチルエーテル : 2.7部
 (ブチセノール 20-P、KHネオケム(株))
・イオン交換水 : 93.5部
・ポリオキシエチレンラウリルエーテル(界面活性剤) : 0.49部
 (エマルゲン 109Pの10%水溶液、HLB値13.6、花王(株))
・エタノール : 41.4部
[Preparation of water-based coating liquid 2]
The following components were mixed and stirred with a dissolver (2000 rpm, 30 minutes) to prepare a water-based coating liquid 2 (dispersion A:dispersion B=25:75). The aqueous coating liquid 2 had a viscosity of 20 mPa·s at 25° C. and an average particle size of 0.108 μm. The water-based coating liquid 2 is a coating liquid exhibiting thixotropic properties.
Dispersion A prepared by the following method: 132.1 parts Dispersion B prepared by the following method: 396.2 parts Boric acid (crosslinking agent): 2.94 parts Polyvinyl alcohol (7.3% Aqueous solution): 230.7 parts (Kuraray Co., Ltd., PVA 235, degree of saponification 88%, degree of polymerization 3500)
・Diethylene glycol monobutyl ether: 2.7 parts (Butysenol 20-P, KH Neochem Co., Ltd.)
・Ion-exchanged water: 93.5 parts ・Polyoxyethylene lauryl ether (surfactant): 0.49 parts (Emulgen 109P 10% aqueous solution, HLB value 13.6, Kao Corporation)
・ Ethanol: 41.4 parts
(分散物Aの調製)
 下記成分を混合し、超音波分散させた後、分散液を30℃に加熱し8時間保持して分散物Aを調製した。
・気相法シリカ微粒子(無機微粒子) : 299.6部
 (AEROSIL 300SF75、日本アエロジル(株))
・イオン交換水 : 1400部
・アルファイン83(40.0%水溶液) : 300部
 (分散剤、大明化学工業(株))
(Preparation of Dispersion A)
After the following components were mixed and ultrasonically dispersed, the dispersion was heated to 30° C. and held for 8 hours to prepare Dispersion A.
・Vapor-phase silica fine particles (inorganic fine particles): 299.6 parts (AEROSIL 300SF75, Nippon Aerosil Co., Ltd.)
・Ion-exchanged water: 1400 parts ・Alphine 83 (40.0% aqueous solution): 300 parts (dispersant, Taimei Chemical Industry Co., Ltd.)
(分散物Bの調製)
 下記成分を混合し、超音波分散させた後、分散液を30℃に加熱し8時間保持して分散物Bを調製した。
・気相法シリカ微粒子(無機微粒子) : 225.2部
 (AEROSIL 300SF75、日本アエロジル(株))
・イオン交換水 : 1185部
・下記構造のカチオン性ポリマーA(25質量%水溶液、数平均分子量(Mn)10,000) : 90部
(Preparation of Dispersion B)
After the following components were mixed and ultrasonically dispersed, the dispersion was heated to 30° C. and held for 8 hours to prepare Dispersion B.
・Vapor phase silica fine particles (inorganic fine particles): 225.2 parts (AEROSIL 300SF75, Nippon Aerosil Co., Ltd.)
- Ion-exchanged water: 1185 parts - Cationic polymer A having the following structure (25% by mass aqueous solution, number average molecular weight (Mn): 10,000): 90 parts
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[実施例1]
 図1及び図2に示すダイ100を備えた塗工装置を用いて、図10に示すようにして、アルミニウム基材上に、水系塗工液1をストライプ塗工により4条塗工して塗工液膜を形成し、形成された4条の塗工液膜を乾燥させて、4条の塗工膜を得た。
 具体的には、まず、図1及び図2に示すダイ100を備えた塗工装置を用いて、水系塗工液1を、連続搬送されている基材上に、基材の長手方向に沿って4条でストライプ状に塗工した。ダイ100は、図2に示すように、1つのマニホールドにつき2つのスリットが接続しており、且つ、1つのマニホールドにつき2つの給液口を有する。ダイ100は、幅1500mm、高さ150mmであって、マニホールドの端面における断面積は15cmであり、給液口50の相当直径はいずれも15mmであった。また、形成された塗工液膜において、1条の塗工液膜の塗工幅は300mm、膜厚は0.1mmであり、塗工液膜間の未塗工部の幅は30mmであり、基材の両端部における未塗工部の幅はそれぞれ60mmであった。
 続いて、塗工液膜に対し70℃の温風を当て、塗工液膜を乾燥した。
 以上のようにして、基材上に4条の塗工膜を形成した。
[Example 1]
Using the coating apparatus equipped with the die 100 shown in FIGS. 1 and 2, as shown in FIG. 10, the water-based coating liquid 1 is applied on the aluminum substrate by stripe coating in four lines. A working liquid film was formed, and the formed four strips of the coating liquid film were dried to obtain four strips of the coating film.
Specifically, first, using a coating apparatus equipped with a die 100 shown in FIGS. 1 and 2, a water-based coating liquid 1 is applied onto a continuously conveyed substrate along the longitudinal direction of the substrate. It was coated in a stripe shape with 4 lines. As shown in FIG. 2, the die 100 has two connected slits per manifold and two liquid supply ports per manifold. The die 100 had a width of 1500 mm and a height of 150 mm. In the formed coating liquid film, the coating width of one coating liquid film was 300 mm, the film thickness was 0.1 mm, and the width of the uncoated portion between the coating liquid films was 30 mm. , the width of the uncoated portion at both ends of the substrate was 60 mm.
Subsequently, hot air at 70° C. was applied to the coating liquid film to dry the coating liquid film.
As described above, four coating films were formed on the substrate.
[実施例2~6]
 実施例1における塗工装置が備えるダイ100を、図4~図9に示すダイ100A~100Eのいずれかにそれぞれ代えた以外は、実施例1と同様にして、基材上に4条の塗工膜を形成した。
 ここで、ダイ100Aは、図4に示すように、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに2つの給液口を有する。そして、2つの給液口は、いずれも、スリットの開口部に向かって開口している。ダイ100Aは、ダイ100とは、マニホールドの数が1つである点のみ異なる。
 ダイ100Bは、図5に示すように、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに2つの給液口を有する。そして、2つの給液口は、いずれも、スペーサーにより閉塞された面に向かって開口している。ダイ100Bは、ダイ100Aとは、給液口の開口方向(設置個所)のみ異なる。
 ダイ100Cは、図7に示すように、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに3つの給液口を有する。そして、3つの給液口は、いずれも、スリットの開口部に向かって開口している。ダイ100Cは、ダイ100Aとは、給液口の開口数及び設置個所のみ異なる。
 ダイ100Dは、図8に示すように、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに計4つの給液口50,54を有する。ダイ100Dは、ダイ100Aとは、給液口の開口数及び設置個所のみ異なる。
 ダイ100Eは、図9に示すように、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに計5つの給液口50,54を有する。ダイ100Eは、ダイ100Aとは、給液口の開口数及び設置個所のみ異なる。
[Examples 2 to 6]
In the same manner as in Example 1, except that the die 100 provided in the coating apparatus in Example 1 was replaced with one of the dies 100A to 100E shown in FIGS. A working film was formed.
Here, the die 100A has four slits connected to one manifold and two liquid supply ports to one manifold, as shown in FIG. Both of the two liquid supply ports open toward the opening of the slit. Die 100A differs from die 100 only in that it has one manifold.
As shown in FIG. 5, the die 100B has four slits connected to one manifold and two liquid supply ports to one manifold. Both of the two liquid supply ports open toward the surface closed by the spacer. The die 100B differs from the die 100A only in the opening direction (installation location) of the liquid supply port.
As shown in FIG. 7, the die 100C has four slits connected to one manifold and three liquid supply ports to one manifold. All of the three liquid supply ports open toward the opening of the slit. The die 100C differs from the die 100A only in the number of liquid supply openings and the installation location.
As shown in FIG. 8, the die 100D has four slits connected to one manifold and a total of four liquid supply ports 50 and 54 in one manifold. The die 100D differs from the die 100A only in the number of liquid supply openings and the installation location.
As shown in FIG. 9, the die 100E has four slits connected to one manifold and a total of five liquid supply ports 50 and 54 in one manifold. The die 100E differs from the die 100A only in the number of liquid supply openings and the installation location.
[実施例7、8]
 実施例5で用いたダイ100Dを備えた塗工装置を用い、給液配管の付帯設備(スタティックミキサー又はバルブ)を用いた以外は、実施例1と同様にして、基材上に4条の塗工膜を形成した。
 なお、スタティックミキサーとしては、株式会社ノリタケ製N60シリーズ(エレメント数12)を使用した。
[Examples 7 and 8]
In the same manner as in Example 1, except that the coating apparatus equipped with the die 100D used in Example 5 was used and the incidental equipment (static mixer or valve) of the liquid supply pipe was used, four lines were formed on the substrate. A coating film was formed.
As a static mixer, N60 series (12 elements) manufactured by Noritake Co., Ltd. was used.
[実施例9]
 水系塗工液1を水系塗工液2に代えた以外は、実施例8と同様にして、実施例8と同様にして、基材上に4条の塗工膜を形成した。
[Example 9]
Four strips of coating film were formed on the substrate in the same manner as in Example 8, except that the water-based coating liquid 1 was replaced with the water-based coating liquid 2.
[比較例1、2]
 実施例1における塗工装置が備えるダイ100を、図11、図12に示す、ダイ100F,100Gにそれぞれ代えた以外は、実施例1と同様にして、基材上に4条の塗工膜を形成した。
[Comparative Examples 1 and 2]
Four coating films were formed on the substrate in the same manner as in Example 1 except that the die 100 provided in the coating apparatus in Example 1 was replaced with dies 100F and 100G shown in FIGS. formed.
 図11に示すダイ100Fは、図1と同様に、第1のリップ10、第2のリップ(不図示)、及び5つのスペーサー32により、ダイ100Fの長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30のそれぞれに接続する4つのマニホールド40と、4つのマニホールド40に対してそれぞれ塗工液を供給する4つの給液口50と、を画定している。
 このように、ダイ100Fでは、1つのマニホールドに1つのスリットが接続しており、且つ、1つのマニホールドに1つの給液口を有する。
 また、ダイ100Fの4つのマニホールド40内では、いずれも、給液口50は、スリット30の開口部34に向かって開口している。
 ダイ100Fは、ダイ100とは、マニホールドの数が変わり、マニホールドの数が4つである点のみ異なる。
The die 100F shown in FIG. 11 is aligned along the length of the die 100F (i.e., direction Y) by a first lip 10, a second lip (not shown), and five spacers 32, similar to FIG. Four slits 30 , four manifolds 40 connected to the four slits 30 respectively, and four liquid supply ports 50 for supplying the coating liquid to the four manifolds 40 are defined.
Thus, in the die 100F, one slit is connected to one manifold, and one manifold has one liquid supply port.
Further, the liquid supply port 50 opens toward the opening 34 of the slit 30 in each of the four manifolds 40 of the die 100F.
Die 100F differs from die 100 only in that the number of manifolds is changed and the number of manifolds is four.
 図12に示すダイ100Gは、図1と同様に、第1のリップ10、第2のリップ(不図示)、及び5つのスペーサー32により、ダイ100Gの長さ方向(即ち、方向Y)に並ぶ4つのスリット30と、4つのスリット30に接続する1つのマニホールド40と、1つのマニホールド40に対して塗工液を供給する1つの給液口50と、を画定している。
 このように、ダイ100Gでは、1つのマニホールドに4つのスリットが接続しており、且つ、1つのマニホールドに1つの給液口を有する。
 また、ダイ100Gにおける1つ給液口50は、スリット30の開口部34に向かって開口している。
 ダイ100Gは、ダイ100Aとは、ダイ100Aとは、給液口の開口数及び設置個所のみ異なる。
The die 100G shown in FIG. 12 is aligned in the length direction (i.e., direction Y) of the die 100G by a first lip 10, a second lip (not shown), and five spacers 32, similar to FIG. Four slits 30 , one manifold 40 connected to the four slits 30 , and one liquid supply port 50 for supplying the coating liquid to the one manifold 40 are defined.
Thus, in the die 100G, four slits are connected to one manifold, and one manifold has one liquid supply port.
Also, one liquid supply port 50 in the die 100G opens toward the opening 34 of the slit 30 .
The die 100G differs from the die 100A only in the number of openings of the liquid supply port and the installation location.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[厚みムラの評価]
 得られた4条の塗工膜の幅方向における厚みを、膜厚測定器(SI-T80、株式会社キーエンス)にて測定し、得られた測定値をもとに、以下のような評価を行った。
 なお、測定箇所は、1条の塗工膜につき、幅方向を10等分し、その幅方向中央部とした。即ち、測定箇所は、1条の塗工膜につき、10点である。
[Evaluation of thickness unevenness]
The thickness in the width direction of the obtained four coating films was measured with a film thickness measuring device (SI-T80, Keyence Corporation), and based on the obtained measured values, the following evaluations were made. gone.
In addition, the width direction was equally divided into 10 with respect to one coating film, and the measurement point was taken as the width direction central part. That is, the number of measurement points is 10 for each strip of coating film.
(1つの塗工膜における厚みのムラの評価)
 得られた測定値から、塗工膜ごと(即ち、4条分の塗工膜それぞれの)の厚みの変動率を求めた。厚みの変動率は、測定値から得られた最大値XMax及び最小値XMinのうち、平均値XAveからの差が大きい方を選択し、下記式1を用いて算出した。
 式1:厚みの変動率(%)=|最大値XMax又は最小値XMin-平均値XAve|÷平均値XAve×100
 ここで、式1中、最大値XMaxとは1条分の測定値(10点分)中の最大値であり、最小値XMinとは1条分の測定値(10点分)の最小値であり、平均値XAveとは1条分の測定値(10点分)の算術平均値である。
 上述の方法で得られた4条分の厚みの変動率のうち、最も大きな値を示すもの採用し、以下の基準に沿って、厚みのムラの評価とした。
-基準-
・A:厚みの変動率の値が2%以下である。
・B:厚みの変動率の値が2%超4%以下である。
・C:厚みの変動率の値が4%超6%以下である。
・D:厚みの変動率の値が6%超8%以下である。
・E:厚みの変動率の値が8%超である。
(Evaluation of thickness unevenness in one coating film)
From the measured values obtained, the rate of change in thickness for each coating film (that is, for each of the four coating films) was determined. Of the maximum value X Max and the minimum value X Min obtained from the measured values, the variation rate of the thickness was calculated using the following formula 1 by selecting the one with the greater difference from the average value X Ave.
Formula 1: Variation rate of thickness (%) = | maximum value X Max or minimum value X Min - average value X Ave |/average value X Ave × 100
Here, in Equation 1, the maximum value X Max is the maximum value among the measured values for one line (for 10 points), and the minimum value X Min is the minimum value for the measured values for one line (for 10 points). The average value X Ave is the arithmetic mean value of the measured values for one line (for 10 points).
Of the variations in the thickness of the four strips obtained by the method described above, the one showing the largest value was adopted, and the thickness unevenness was evaluated according to the following criteria.
-standard-
A: The thickness variation rate is 2% or less.
·B: The value of the thickness variation rate is more than 2% and 4% or less.
· C: The value of the variation rate of thickness is more than 4% and 6% or less.
*D: The value of the variation rate of the thickness is more than 6% and 8% or less.
E: The value of the thickness variation rate is more than 8%.
(複数の塗工膜間の厚みのムラ)
 得られた測定値から、塗工膜ごと(即ち、4条分の塗工膜それぞれの)の厚み平均値を求め、更に、得られた4つの(4条分の)厚み平均値のばらつきを求めた。厚み平均値のばらつきは、下記式2を用いて算出した。
 式2:厚み平均値のばらつき(%)=(厚み平均値の最大値YMax-厚み平均値の最小値YMin)÷厚み平均値の平均値YAve×100
 ここで、式2中、厚み平均値の最大値YMaxとは4つ厚み平均値における最大値であり、厚み平均値の最小値YMinとは4つの厚み平均値における最小値であり、厚み平均値の平均値YAveとは4つの厚み平均値の算術平均値である。
(Thickness unevenness between multiple coating films)
From the obtained measured values, the average thickness of each coating film (that is, each of the four coating films) is obtained, and the four obtained (four strips) of the average thickness are calculated. asked. Variation in the average thickness value was calculated using Equation 2 below.
Formula 2: Variation in average thickness value (%) = (maximum average thickness value Y Max - minimum average thickness value Y Min ) / average thickness average value Y Ave × 100
Here, in formula 2, the maximum value Y Max of the average thickness value is the maximum value among the four average thickness values, and the minimum value Y Min of the average thickness value is the minimum value among the four average thickness values. The average value Y Ave of the average values is the arithmetic average value of the four thickness average values.
-基準-
・A:4条の塗工液膜間の厚み平均値のばらつきが0.5%以下である。
・B:4条の塗工液膜間の厚み平均値のばらつきが0.5%超1.0%以下である。
・C:4条の塗工液膜間の厚み平均値のばらつきが1.0%超1.5%以下である。
・D:4条の塗工液膜間の厚み平均値のばらつきが1.5%超2.0%以下である。
・E:4条の塗工液膜間の厚み平均値のばらつきが2.0%超である。
-standard-
A: Variation in average thickness between four coating liquid films is 0.5% or less.
B: Variation in thickness average value among four coating liquid films is more than 0.5% and not more than 1.0%.
C: Variation in thickness average value among four coating liquid films is more than 1.0% and not more than 1.5%.
D: Variation in thickness average value among four coating liquid films is more than 1.5% and not more than 2.0%.
E: Variation in thickness average value among four coating liquid films is more than 2.0%.
 表1に明らかなように、実施例のダイを用いた塗工膜の製造によれば、塗工膜の幅方向における厚み均一性に優れることが分かる。 As is clear from Table 1, according to the production of the coating film using the die of the example, it is found that the thickness uniformity in the width direction of the coating film is excellent.
[塗工膜の厚み分布]
 実施例1~9、比較例1、2に記載のダイを用いて得られた4条の塗工膜は、図13及び図14に示すような厚みの分布を有する。ここで、図13及び図14は、基材B上に形成された4条の塗工膜Mを、基材の幅方向に沿って切断した場合の模式図である。なお、図13及び図14に示す4条の塗工膜の厚み分布は、その傾向を強調した模式図であって、正確な縮尺ではない。
 図13及び図14からも明らかなように、実施例1~9のダイを用いた塗工膜の製造により得られた、(1)~(8,9)で示される4条の塗工膜は、比較例1、2のダイを用いた塗工膜の製造により得られた(C1)、(C2)で示される4条の塗工膜に比べ、厚み分布が小さく、塗工膜の幅方向における厚み均一性に優れることが分かる。
[Thickness distribution of coating film]
The four coating films obtained using the dies described in Examples 1 to 9 and Comparative Examples 1 and 2 have thickness distributions as shown in FIGS. 13 and 14. FIG. Here, FIG. 13 and FIG. 14 are schematic diagrams in the case of cutting four strips of the coating film M formed on the base material B along the width direction of the base material. Note that the thickness distribution of the four coating films shown in FIGS. 13 and 14 is a schematic diagram emphasizing the tendency thereof, and is not to scale.
As is clear from FIGS. 13 and 14, four coating films represented by (1) to (8, 9) obtained by manufacturing coating films using the dies of Examples 1 to 9 has a smaller thickness distribution than the four coating films shown in (C1) and (C2) obtained by manufacturing the coating films using the dies of Comparative Examples 1 and 2, and the width of the coating film It can be seen that the thickness uniformity in the direction is excellent.
[符号の説明]
 100,100A~100G ダイ
 10 第1のリップ
 20 第2のリップ
 30 スリット
 32 スペーサー
 34 スリットの開口部
 36 スペーサーにより形成された面
 38 栓
 40 マニホールド
 50 給液口
 52 給液口の開口部
 54 マニホールドの両端における給液口
 56 マニホールドの両端における給液口の開口部
 B 基材
 M 塗工膜
 R1 マニホールドを画定する面の、隣接するスリットとスリットとの間のスペーサーの幅方向両縁に沿って周方向に延長した2直線に挟まれた領域
 R2 マニホールドを画定する面の、スリットとの接続部の幅方向両縁に沿って周方向に延長した直線に挟まれた領域
[Description of symbols]
100, 100A-100G die 10 first lip 20 second lip 30 slit 32 spacer 34 opening of slit 36 face formed by spacer 38 plug 40 manifold 50 inlet 52 opening of inlet 54 of manifold Liquid supply ports at both ends 56 Liquid supply port openings at both ends of the manifold Area sandwiched between two straight lines extending in the R2 direction R2 Area sandwiched between straight lines extending in the circumferential direction along both edges in the width direction of the connection with the slit on the surface defining the manifold
 2021年9月2日に出願された日本国特許出願特願2021-143506号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-143506 filed on September 2, 2021 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually indicated to be incorporated by reference. incorporated herein by reference.

Claims (11)

  1.  チキソトロピー性を示す塗工液をストライプ塗工する方法に用いるエクストルージョン型ダイであって、
     2つのリップ、及び、2つのリップの間に挟持される複数のスペーサーを備え、
     2つのリップ及び複数のスペーサーにより画定された、長さ方向に並ぶ複数のスリットと、1つ又は複数のスリットに接続する1つ又は複数のマニホールドと、1つ又は複数のマニホールドに対して塗工液を供給する給液口と、を少なくとも含み、
     1つのマニホールドにつき複数の給液口を有する、エクストルージョン型ダイ。
    An extrusion type die used in a method of stripe coating a coating liquid exhibiting thixotropic properties,
    comprising two lips and a plurality of spacers sandwiched between the two lips;
    a plurality of longitudinally aligned slits defined by two lips and a plurality of spacers, one or more manifolds connected to the one or more slits, and coating to the one or more manifolds At least a liquid supply port that supplies liquid,
    Extrusion die with multiple feed ports per manifold.
  2.  複数の給液口の少なくとも一部が、マニホールドを画定する面の、隣接するスリットとスリットとの間のスペーサーの幅方向両縁に沿って周方向に延長した2直線に挟まれた領域R1内に設けられている、請求項1に記載のエクストルージョン型ダイ。 At least part of the plurality of liquid supply ports is located in a region R1 sandwiched between two straight lines extending in the circumferential direction along both edges in the width direction of the spacer between adjacent slits on the surface defining the manifold. 2. The extrusion die of claim 1, wherein the extrusion die is provided in a
  3.  領域R1内に設けられる1つ又は複数の給液口が、同一領域R1内のスペーサーに対向する位置に設けられている、請求項2に記載のエクストルージョン型ダイ。 The extrusion die according to claim 2, wherein one or more liquid supply ports provided in the region R1 are provided at positions facing the spacers in the same region R1.
  4.  複数の給液口の一部が、マニホールドの長さ方向両端の少なくとも一方に設けられている、請求項2に記載のエクストルージョン型ダイ。 The extrusion die according to claim 2, wherein a part of the plurality of liquid supply ports is provided on at least one of both longitudinal ends of the manifold.
  5.  複数の給液口の少なくとも一部が、マニホールドを画定する面の、スリットとの接続部の幅方向両縁に沿って周方向に延長した直線に挟まれた領域R2内に設けられている、請求項1に記載のエクストルージョン型ダイ。 At least part of the plurality of liquid supply ports is provided in a region R2 sandwiched between straight lines extending in the circumferential direction along both width direction edges of the connection portion with the slit on the surface defining the manifold, The extrusion die of claim 1.
  6.  領域R2内に設けられた1つ又は複数の給液口が、同一領域R2内のスリットの開口部に対向する位置に設けられている、請求項5に記載のエクストルージョン型ダイ。 The extrusion die according to claim 5, wherein one or more liquid supply ports provided in the region R2 are provided at positions facing the openings of the slits in the same region R2.
  7.  複数の給液口の一部が、マニホールドの長さ方向両端の少なくとも一方に設けられている、請求項5に記載のエクストルージョン型ダイ。 The extrusion die according to claim 5, wherein a part of the plurality of liquid supply ports is provided on at least one of both longitudinal ends of the manifold.
  8.  請求項1~請求項7のいずれか1項に記載のエクストルージョン型ダイと、
     エクストルージョン型ダイのマニホールドに対して給液口を介して塗工液を供給する複数の給液配管と、
     を備えた塗工装置。
    an extrusion die according to any one of claims 1 to 7;
    a plurality of liquid supply pipes for supplying the coating liquid through the liquid supply port to the manifold of the extrusion die;
    coating equipment.
  9.  複数の給液配管のそれぞれにはスタティックミキサーが設けられている、請求項8に記載の塗工装置。 The coating apparatus according to claim 8, wherein each of the plurality of liquid supply pipes is provided with a static mixer.
  10.  複数の給液配管のそれぞれにはバルブが設けられている、請求項8に記載の塗工装置。 The coating device according to claim 8, wherein each of the plurality of liquid supply pipes is provided with a valve.
  11.  連続搬送されている基材上に、請求項8に記載の塗工装置を用い、チキソトロピー性を示す塗工液を塗工する工程を含む、塗工膜の製造方法。 A method for producing a coating film, comprising the step of coating a coating liquid exhibiting thixotropic properties using the coating apparatus according to claim 8 on a continuously conveyed base material.
PCT/JP2022/032240 2021-09-02 2022-08-26 Extrusion die, coating device, and coating film manufacturing method WO2023032852A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280058305.0A CN117881485A (en) 2021-09-02 2022-08-26 Extrusion die, coating device, and method for producing coating film
KR1020247006383A KR20240036095A (en) 2021-09-02 2022-08-26 Extrusion type die, coating device, and method of manufacturing a coating film
JP2023545529A JPWO2023032852A1 (en) 2021-09-02 2022-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021143506 2021-09-02
JP2021-143506 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023032852A1 true WO2023032852A1 (en) 2023-03-09

Family

ID=85412705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032240 WO2023032852A1 (en) 2021-09-02 2022-08-26 Extrusion die, coating device, and coating film manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2023032852A1 (en)
KR (1) KR20240036095A (en)
CN (1) CN117881485A (en)
WO (1) WO2023032852A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128805A (en) * 1997-11-05 1999-05-18 Dainippon Printing Co Ltd Die for thixotropic coating liquid and method for applying thixotropic coating liquid
JP2001029861A (en) * 1999-07-21 2001-02-06 Dainippon Printing Co Ltd Die head
JP2004148184A (en) * 2002-10-30 2004-05-27 Toray Eng Co Ltd Coating method and coating apparatus
JP2004321969A (en) * 2003-04-25 2004-11-18 Nitto Denko Corp Coating apparatus and coating method
JP2015153527A (en) * 2014-02-12 2015-08-24 東レエンジニアリング株式会社 Manufacturing apparatus for electrode plate for battery
JP2016019975A (en) * 2015-08-03 2016-02-04 日東電工株式会社 Coating apparatus
JP2017104793A (en) * 2015-12-08 2017-06-15 三菱マテリアル株式会社 Coating applicator and coating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128805A (en) * 1997-11-05 1999-05-18 Dainippon Printing Co Ltd Die for thixotropic coating liquid and method for applying thixotropic coating liquid
JP2001029861A (en) * 1999-07-21 2001-02-06 Dainippon Printing Co Ltd Die head
JP2004148184A (en) * 2002-10-30 2004-05-27 Toray Eng Co Ltd Coating method and coating apparatus
JP2004321969A (en) * 2003-04-25 2004-11-18 Nitto Denko Corp Coating apparatus and coating method
JP2015153527A (en) * 2014-02-12 2015-08-24 東レエンジニアリング株式会社 Manufacturing apparatus for electrode plate for battery
JP2016019975A (en) * 2015-08-03 2016-02-04 日東電工株式会社 Coating apparatus
JP2017104793A (en) * 2015-12-08 2017-06-15 三菱マテリアル株式会社 Coating applicator and coating method

Also Published As

Publication number Publication date
JPWO2023032852A1 (en) 2023-03-09
KR20240036095A (en) 2024-03-19
CN117881485A (en) 2024-04-12

Similar Documents

Publication Publication Date Title
CN204234272U (en) Applying device
JPS5973076A (en) Method and device for simultaneously forming and applying plurality of ribbon-shaped flow
WO2023032852A1 (en) Extrusion die, coating device, and coating film manufacturing method
JP5249621B2 (en) Application method
JP2003260400A (en) Coating method and apparatus
JP5910731B2 (en) Method for manufacturing heat conductive sheet, heat conductive sheet, heat conductive sheet with metal foil, and semiconductor device
EP1900441B1 (en) Slide curtain coating apparatus and slide curtain coating method
JP2010221202A (en) Method and apparatus for coating microcapsules-containing coating agent, and coated sheet manufactured by the coating method
CN110280449B (en) Coating apparatus and method for producing coating film
JPH03202171A (en) Coating device
JP2008273186A (en) Fluid lamination apparatus and fluid lamination process, and manufacturing apparatus and manufacturing process of laminated film
JP4984312B2 (en) Coating equipment
JP5239511B2 (en) Fluid laminating apparatus, fluid laminating method, laminated film manufacturing apparatus and manufacturing method
JPH0550004A (en) Coating method for coating liquid and coating device therefor
WO2022131272A1 (en) Method for producing multilayer body
JP5080037B2 (en) Fixing rotator and method for manufacturing the same
WO2023145842A1 (en) Drying device and drying method
EP4369428A1 (en) Coating film forming method
JP4269325B2 (en) Printed circuit board drilling method and printed circuit board drilling sheet
JP5089068B2 (en) Fixing rotator and method for manufacturing the same
CN116583359A (en) Method for producing laminated body
JP2000271525A (en) Coating device
CN117651616A (en) Method for producing coating film
WO2015025563A1 (en) Die coater, coating device, coating method, and method for manufacturing electromagnetic wave-shielding film
JPH10146556A (en) Extrusion coater head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545529

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247006383

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006383

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280058305.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE