WO2015025563A1 - Die coater, coating device, coating method, and method for manufacturing electromagnetic wave-shielding film - Google Patents

Die coater, coating device, coating method, and method for manufacturing electromagnetic wave-shielding film Download PDF

Info

Publication number
WO2015025563A1
WO2015025563A1 PCT/JP2014/062629 JP2014062629W WO2015025563A1 WO 2015025563 A1 WO2015025563 A1 WO 2015025563A1 JP 2014062629 W JP2014062629 W JP 2014062629W WO 2015025563 A1 WO2015025563 A1 WO 2015025563A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
bar
refractive index
index layer
die coater
Prior art date
Application number
PCT/JP2014/062629
Other languages
French (fr)
Japanese (ja)
Inventor
川邉 茂寿
篤志 齋藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015532726A priority Critical patent/JPWO2015025563A1/en
Publication of WO2015025563A1 publication Critical patent/WO2015025563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/007Slide-hopper coaters, i.e. apparatus in which the liquid or other fluent material flows freely on an inclined surface before contacting the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/06Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying two different liquids or other fluent materials, or the same liquid or other fluent material twice, to the same side of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/582No clear coat specified all layers being cured or baked together
    • B05D7/5823No clear coat specified all layers being cured or baked together all layers being applied simultaneously

Definitions

  • the present invention relates to a die coater, a coating apparatus, a coating method, and a method for manufacturing an electromagnetic wave shielding film.
  • the electromagnetic wave shielding film is formed by alternately laminating high refractive index layers and low refractive index layers.
  • the larger the number of layers the higher the electromagnetic wave reflectivity and the higher the shielding effect.
  • the layers are sequentially formed by coating, and there is a problem in productivity (see, for example, Patent Documents 1 and 2). Therefore, in order to improve productivity, application of a slide type die coater capable of performing multilayer coating (simultaneous multilayer coating) at once has been proposed.
  • the number of bars that constitute the slide type die coater corresponds to the number of layers of the electromagnetic shielding film to be manufactured. Therefore, when the number of coating layers is increased in order to increase the number of layers of the electromagnetic shielding film to be manufactured, the number of bars installed increases, so that the slide surface constituted by the end surfaces of the bars through which the coating liquid flows down becomes long. As a result, the flow of the coating liquid is likely to be disturbed, so that uniform coating becomes difficult, and the coating liquid is mixed to adversely affect the electromagnetic shielding film, for example, non-uniformity (fluctuation) in film thickness or There is a possibility that performance such as reflectivity is deteriorated.
  • the bar is pressurized from the higher pressure (the side through which the low refractive index layer coating solution having a large viscosity passes) to the lower side (the side through which the high refractive index layer coating solution having a low viscosity passes), thereby ,
  • the deformation of the bar, the uniformity of the gap in the coating width direction is deteriorated, the coating film thickness becomes non-uniform, and as a result, the uniformity of the optical properties of the electromagnetic wave shielding film to be produced decreases, for example, the color There is a problem that unevenness occurs.
  • a wide bar may bend or warp, which deteriorates the uniformity of the gap in the coating width direction and makes the coating thickness in the coating width direction non-uniform. It has the problem that it is difficult to implement well.
  • the present invention has been made in order to solve the problems associated with the prior art described above, and is capable of satisfactorily performing wide simultaneous multilayer coating even when the number of layers is increased, a coating apparatus, and a coating method. And it aims at providing the manufacturing method of an electromagnetic wave shielding film.
  • the bar A tip that forms a gap between another adjacent bar; A proximal end abutting against the another bar; A pocket portion located between the distal end portion and the base end portion and having a recess that is a coating liquid reservoir,
  • a slide type die coater in which the coating liquid discharged from the gap flows down the end face of the tip, The die coater whose Young's modulus of the material which comprises the said pocket part at least is 240 GPa or more.
  • a first container for holding a first coating liquid A second container for holding a second coating liquid; A first coating liquid supply system for supplying the first coating liquid held in the first container to the die coater; A second coating solution supply system for supplying the second coating solution held in the second container to the die coater; A coating apparatus.
  • the pressure difference between the internal pressure of the concave portion of the pocket portion of the bar supplied with the second coating liquid and the internal pressure of the concave portion of the pocket portion of the bar supplied with the first coating liquid is 0.3 MPa or less.
  • the coating layer of the first coating liquid constitutes the high refractive index layer in the electromagnetic wave shielding film having a high refractive index layer and a low refractive index layer laminated alternately,
  • the first coating liquid and the second coating liquid are supplied to the die coater according to any one of (1) to (8) above, and discharged from the gap at the tip of the bar of the die coater. Then, the coating method of applying the first and second coating liquid coating layers and the second coating liquid coating layer alternately to each other, and simultaneously coating the film substrate by causing the end surface of the tip portion to flow down.
  • the pressure difference between the internal pressure of the concave portion of the pocket portion of the bar supplied with the second coating liquid and the internal pressure of the concave portion of the pocket portion of the bar supplied with the first coating liquid is 0.3 MPa or less.
  • the coating layer of the first coating liquid constitutes the high refractive index layer in the electromagnetic wave shielding film having a high refractive index layer and a low refractive index layer laminated alternately,
  • a method for producing an electromagnetic wave shielding film comprising a step of simultaneously applying a high refractive index layer and a low refractive index layer by using the coating method described in (16) above.
  • the Young's modulus of the material constituting at least the pocket portion is 240 GPa or more. That is, the pocket portion, which is the main portion of the bar that is easily deformed under the influence of pressure, is made of a material having a high Young's modulus that is difficult to twist. This suppresses the deformation of the bar, thereby maintaining the uniformity of the gap in the coating width direction and preventing the coating film thickness in the coating width direction from becoming nonuniform. The uniformity of the optical characteristics is good.
  • the bar can be made wide and thin. Furthermore, by reducing the thickness of the bar, even if the number of installed bars (number of layers) increases, the sliding surface constituted by the end surface of the bar through which the coating liquid flows down is prevented from becoming long. This prevents the turbulence in the flow. Therefore, it is possible to provide a die coater, a coating apparatus, a coating method, and a method for manufacturing an electromagnetic wave shielding film, which are capable of satisfactorily performing wide simultaneous multilayer coating even when the number of layers is increased.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. It is sectional drawing for demonstrating another aspect of the bar
  • FIG. 1 is a schematic view for explaining a coating apparatus having a die coater according to an embodiment of the present invention
  • FIG. 2 is a plan view for explaining a side wall portion of the die coater shown in FIG. 3 is a plan view for explaining the bar of the die coater shown in FIG. 1
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • the coating apparatus 10 is used to manufacture an electromagnetic wave shielding film formed by alternately laminating a plurality of high refractive index layers and low refractive index layers by simultaneous multilayer coating, and is shown in FIG. As described above, a transport system 20, a die coater 30, a coating liquid supply system 70, and pressure sensors 81 and 82 are included.
  • the electromagnetic wave shielding film according to the present embodiment has an optical property having high optical characteristics in the visible light region (wavelength 380 to 780 nm) and high reflectance in the near infrared light region (780 to 2500 nm) ( Near-infrared light reflecting film), which is disposed in a building outdoor window, automobile window, agricultural greenhouse, etc., and used to impart a heat ray reflecting effect.
  • the reflectance in the specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers. The larger the difference in refractive index, the higher the reflectance with a smaller number of layers.
  • the conveyance system 20 includes a film base material 22 and a back roll 24.
  • the film substrate 22 is a belt-like support on which the coating liquid L is applied.
  • the back roll 24 is arranged inside the film base 22 and is configured to transport the film base 22 from the upstream side to the downstream side in the application direction (transport direction) F by being driven to rotate. ing.
  • the die coater 30 is a slide type, and is configured to be able to apply the application layers corresponding to each layer of the electromagnetic wave shielding film in a lump (simultaneous multi-layer application), and the rectangular bars 40 are sequentially stacked. It has the laminated body 32 comprised and the side wall part 60. FIG.
  • the bar 40 includes a front bar 42, a plurality of intermediate bars 44, and a back bar 46, which have substantially the same shape.
  • the front bar 42 is a bar that occupies the lowermost layer of the laminate 32 and is positioned in the vicinity of the film substrate 22.
  • the back bar 46 is a bar that occupies the uppermost layer of the stacked body 32.
  • the intermediate bar 44 is a bar that occupies an intermediate layer located between the front bar 42 and the back bar 46.
  • the side wall portions 60 are disposed on both end surfaces of the laminate 32 in the application width direction W.
  • the application width direction W is orthogonal to the application direction (conveyance direction) F.
  • the bar 40 has a proximal end portion 50, a pocket portion 53, and a distal end portion 56 in order from the proximal end side.
  • the base end portion 50 has a through hole 52 communicating with the coating liquid supply system 70.
  • the through hole 52 is located in the center of the application width direction W of the base end portion 50 and extends from the end surface of the base end portion 50 toward the pocket portion 53.
  • a thickness D 1 of the proximal end portion 50 is set to be larger than a thickness D 2 of the distal end portion 56. Therefore, when the bars 40 are stacked, the base end portion 50 comes into contact with the base end portion 50 of another adjacent bar, while the front end portion 56 and the front end portion 56 of another adjacent bar are in between.
  • a slit (gap) 58 having a thickness D 3 ( D 1 ⁇ D 2 ) is formed. In the following, the thickness D 3 are referenced by the slit spacing D 3.
  • Reference numeral 51 denotes an end face of the base end portion 50.
  • the slit 58 functions as a passage through which the coating liquid passes. Since the coating liquid discharged from the front end of the slit 58 flows down the end surface 57 of the front end portion 56, the end surface 57 functions as a slide surface on which the coating liquid flows down.
  • the pocket portion 53 has a concave portion 54 formed to extend in the coating width direction W of the bar 40.
  • the recess 54 is a coating liquid reservoir that communicates with the slit 58 and the through hole 52.
  • the concave portion 54 is used to stably spread the coating liquid from the through hole 52 (coating liquid supply system 70) in the coating width direction W and stably supply the slit 58.
  • the high-refractive index layer coating solution L 1 which is a first coating liquid constitutes the high refractive index layer and the low refractive index layer and thus the second coating liquid and the low-refractive index layer coating solution L 2, but are alternately introduced.
  • the low refractive index layer coating liquid L 2 is introduced into the through hole 52 of the front bar 42, and the high refractive index layer coating liquid L 1 is introduced into the through hole of the intermediate bar 44 adjacent to the front bar 42.
  • the through hole 52 of another intermediate bar 44 adjacent to the intermediate bar 44, the low refractive index layer coating solution L 2 is introduced.
  • the number of slits 58 is equal to the number of layers of the electromagnetic shielding film, and the number of stacked intermediate bars 44 is adjusted according to the number of layers of the electromagnetic shielding film.
  • the length of the slide surface is the sum of the lengths of the intermediate bar 44 where the coating liquid stacked in two or more layers flows down and the end surface 57 of the front end portion 56 of the front bar 42.
  • the remaining thickness of the intermediate bar 44 and the thickness of the front bar 42 are approximately equal to the total value.
  • Coating liquid supply system 70 is used to provide a low refractive index layer coating solution L 2 and the high-refractive index layer coating solution L 1 die coater 30, the preparation kettle 72 and 76, It has piping systems 73 and 77 and pumps 74 and 78.
  • Preparation kettle 72 a low refractive index layer coating solution L 2 is prepared, a predetermined temperature (e.g., 30 ° C. or higher) is a vessel used to hold in.
  • the piping system 73 connects the preparation kettle 72 and the through hole 52 of the base end portion 50 of the bar 40 for the low refractive index layer coating solution.
  • the pump 74 is used for pumping the prepared low refractive index layer coating liquid L 2 through the piping system 73.
  • Preparation kettle 76 the high refractive index layer coating solution L 1 was prepared, a predetermined temperature (e.g., 30 ° C. or higher) is a vessel used to hold in.
  • the piping system 77 connects the preparation pot 76 and the through hole 52 of the base end portion 50 of the bar 40 for the high refractive index layer coating solution.
  • Pump 78 via the piping system 77 is used has been prepared with high refractive index layer coating solution L 1 for pumping.
  • the pumps 74 and 78 are, for example, gear pumps or tube pumps.
  • the pressure sensors 81 and 82 are disposed in the piping systems 73 and 77 in the vicinity of the die coater 30 and are used for detecting the pressure difference ⁇ P.
  • the pressure difference ⁇ P is, the internal pressure of the recess 54 of the pocket portion 53 of the bar 40 having a low refractive index layer coating solution L 2 is supplied, the recess of the pocket portion 53 of the bar 40 to the high refractive index layer coating solution L 1 is supplied It is a difference between the internal pressure of 54 and 0.3 MPa or less, more preferably 0.1 MPa or less, as will be described later.
  • the pressure sensors 81 and 82 can be disposed on the inner surface of the concave portion 54 of the pocket portion 53 or on the inner surface of the side wall portion 60 in contact with the concave portion 54 of the pocket portion 53, for example.
  • the pressure difference ⁇ P can also be directly detected by a differential pressure gauge.
  • the bar 40 is made of a material having a high Young's modulus E that is difficult to be twisted.
  • the Young's modulus E of the material is 240 GPa or more, preferably 280 GPa or more, more preferably 390 GPa or more, as will be described later.
  • Examples of the material having a large Young's modulus E that hardly causes twisting are ceramics (alumina) and cemented carbide.
  • articles composed of ceramics (alumina) or cemented carbide have been mainly short articles having a length of 500 mm or less, or thin articles having a long diameter of about 50 mm at the longest.
  • due to recent progress in manufacturing technology it is possible to manufacture products having a length of 1 m or more and a cross-sectional major axis of about 80 mm or more.
  • the bar 40 is made of a material having a large Young's modulus E as described above. As a result, the deformation of the bar 40 is suppressed, the uniformity of the slit (gap) 58 in the coating width direction W is maintained, and the coating film thickness in the coating width direction W is prevented from becoming non-uniform. The uniformity of the optical properties of the electromagnetic wave shielding film is good. In addition, since deformation due to the influence of the pressure difference ⁇ P and occurrence of bending and warping due to the widening of the bar are suppressed, the bar 40 can be made wide and thin.
  • the bar 40 by making the bar 40 thin, even if the number of installed bars (number of layers) is increased, the slide surface (end surface 57) is suppressed from becoming long, and the flow of the coating liquid is prevented from being disturbed. Can be removed. Therefore, even when the number of layers is increased, it is possible to satisfactorily perform wide simultaneous multilayer coating.
  • the bar 40 When the bar 40 is manufactured using ceramics, unlike a metal material, internal stress does not accumulate in the manufacturing process, and therefore, distortion deformation due to internal stress does not occur during finish grinding and after finishing. Therefore, it is possible to finish the bar 40 with high accuracy, and it is easy to ensure accuracy such as straightness and flatness of the bar 40. In particular, when the bar 40 is thin, distortion deformation is likely to occur with a metal material, and therefore, the accuracy of the bar 40 can be improved by using ceramics.
  • the bar 40 is not limited to a form in which the entire bar 40 is made of a material having a high Young's modulus E that is less likely to be twisted.
  • the pocket portion 53 which is the main portion of the bar 40, is easily deformed due to the influence of pressure. Therefore, if necessary, only the material constituting the pocket portion 53 is less likely to be twisted and has a large Young's modulus E. It can also be composed of materials.
  • 5 and 6 are cross-sectional views for explaining another embodiment of the bar of the die coater.
  • the pocket portion 53 is not limited to a form composed of a single material, and a composite material integrated using a fastening member such as a bolt or an adhesive can also be applied.
  • a fastening member such as a bolt or an adhesive
  • FIG. 5 it is possible to have a two-layer structure made of different materials, or as shown in FIG. 6, only the periphery of the concave portion 54 of the pocket portion 53 can be made of another material. .
  • FIG. 7 is a flowchart for explaining a method of manufacturing an electromagnetic wave shielding film according to an embodiment of the present invention.
  • the manufacturing method of the electromagnetic wave shielding film according to the embodiment of the present invention includes a preparation process, a coating process, and a drying process, as shown in FIG.
  • metal oxide particles, resin binder, curing agent, additive, solvent and the like are mixed to prepare a high refractive index layer coating solution and a low refractive index layer coating solution, respectively.
  • the high refractive index layer coating liquid and the low refractive index layer coating liquid corresponding to each layer of the electromagnetic wave shielding film are collectively coated (simultaneous multilayer coating) on the film substrate.
  • polyolefin film As the film substrate, various resin films such as polyolefin film, polyester film, polyvinyl chloride film, and cellulose acetate film can be applied.
  • Polyolefin is, for example, polyethylene or polypropylene.
  • polyester examples include polyethylene terephthalate and polyethylene naphthalate.
  • the electromagnetic wave shielding film is produced by drying and thermally curing the film substrate on which the high refractive index layer coating solution and the low refractive index layer coating solution are applied in multiple layers.
  • the drying conditions are appropriately set in consideration of the evaporation temperature of the volatile components contained in the high refractive index layer coating solution and the low refractive index layer coating solution, the curing temperature of the curing agent, the heat resistant temperature of the film substrate, and the like. .
  • the dried electromagnetic shielding film is then cut into an appropriate size as necessary.
  • the metal oxide particles of the high refractive index layer coating liquid are, for example, titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, They are iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon and tin oxide.
  • the concentration of the metal oxide particles is, for example, 1 to 50% by mass.
  • the metal oxide particles of the low refractive index layer coating solution are, for example, silicon dioxide and colloidal silica.
  • the concentration of the metal oxide particles is, for example, 1 to 50% by mass.
  • Resin binders are, for example, polyvinyl alcohol, gelatin, water-soluble cellulose derivatives, thickening polysaccharides, and polymers having reactive functional groups.
  • concentration of the resin binder in the high refractive index layer coating solution is, for example, 0.5 to 10% by mass.
  • concentration of the resin binder in the low refractive index layer coating solution is 1 to 10% by mass.
  • the curing agent is not particularly limited as long as it causes a curing reaction with the resin binder.
  • polyvinyl alcohol for example, boric acid and salts thereof.
  • Additives are, for example, ultraviolet absorbers, fading inhibitors, surfactants, fluorescent brighteners, pH adjusters, antifoaming agents, lubricants, preservatives, and antistatic agents.
  • the solvent is, for example, water, an organic solvent, or a mixed solution thereof.
  • the organic solvent is methanol, ethanol, ethyl acetate or the like.
  • FIG. 8 is a cross-sectional view for explaining a coating process according to an embodiment of the present invention
  • FIG. 9 is a cross-sectional view for explaining a coating condition in the coating process
  • FIG. 10 is for explaining a comparative example. It is sectional drawing.
  • the metal oxide particles for low refractive index layer, the resin binder, a curing agent, additives, solvents and the like after turning the preparation kettle 72, is mixed, the low refractive index layer coating solution L 2 is prepared whereas, the metal oxide particles for high refractive index layer, the resin binder, a curing agent, additives, solvents and the like, after turning the preparation kettle 76, is mixed, the high refractive index layer coating solution L 1 is prepared. Then, the low refractive index layer coating solution L 2 and the high-refractive index layer coating solution L 1 which is prepared is held at a predetermined temperature (e.g., 30 ° C. or higher).
  • a predetermined temperature e.g. 30 ° C. or higher
  • the prepared low refractive index layer coating liquid L 2 and high refractive index layer coating liquid L 1 are pumped by pumps 74 and 78, and are connected to the low refractive index layer coating liquid via the piping systems 73 and 77.
  • the through hole 52 of the base end portion 50 of the bar 40 for use and the through hole 52 of the base end portion 50 of the bar 40 for the high refractive index layer coating solution are pumped by pumps 74 and 78, and are connected to the low refractive index layer coating liquid via the piping systems 73 and 77.
  • the low refractive index layer coating liquid L 2 is introduced into the through hole 52 of the front bar 42, and the high refractive index layer coating liquid L 1 is introduced into the through hole of the intermediate bar 44 adjacent to the front bar 42.
  • the through hole 52 of another intermediate bar 44 adjacent to the intermediate bar 44, the low refractive index layer coating solution L 2 is introduced.
  • the coating solution is spread evenly in the coating width direction W in the concave portion 54 of the pocket portion 53 and introduced into the slit 58.
  • the coating liquid that has passed through the slit 58 flows down the end surface 57 of the front end portion 56 of the bar 40 and flows down the end surface 57 of the front end portion 56 of another bar 40 positioned below. And overlap one after another.
  • the coating liquid which flows down is comprised from the layer corresponding to the number of layers of an electromagnetic wave shielding film, when it overlaps with the coating liquid which passed the slit 58 of the front bar 42.
  • the coating liquid L is separated from the front bar 42 which is the lowermost bar 40 and flows down to the film base material 22 to be applied.
  • the viscosity ⁇ 1 of the high refractive index layer coating liquid L 1 is 3 mPa ⁇ s or more and 30 mPa ⁇ s or less.
  • the viscosity ⁇ 2 of the low refractive index layer coating liquid L 2 is 50 mPa ⁇ s or more and 500 mPa ⁇ s or less, which is one digit or more larger than the viscosity ⁇ 1 of the high refractive index layer coating liquid L 1 . Therefore, the internal pressure P 1 of the concave portion 54 to which the high refractive index layer coating liquid L 1 is supplied is smaller than the internal pressure P 2 of the concave portion 54 to which the low refractive index layer coating liquid L 2 is supplied, and is adjacent (adjacent). An internal pressure difference ⁇ P occurs between the bars 40.
  • the internal pressure P2 of the recess 54 of the pocket portion 53 of the bar 40 having a low refractive index layer coating solution L 2 is supplied, the high-refractive index layer coating solution L 1 is a concave portion 54 of the pocket portion 53 of the bar 40 to be supplied
  • the deformation of the bar caused by the pressure difference ⁇ P between the internal pressure P1 and the internal pressure P1 is considered to be the deflection of the bar 40 due to the load generated by the pressure difference ⁇ P. Therefore, the deformation amount of the bar 40 is inversely proportional to the Young's modulus E of the material constituting the bar 40.
  • the bar 40 made of a material having a high Young's modulus E that is less likely to be twisted is applied.
  • the deformation of the bar 40 is suppressed, the uniformity of the slit (gap) 58 in the coating width direction W is maintained, and the coating film thickness in the coating width direction W is prevented from becoming non-uniform.
  • the uniformity of the optical properties of the electromagnetic wave shielding film is good.
  • the bar 40 can be made wide and thin.
  • the high-refractive index layer coating solution L 1 and the low refractive index layer coating solution L 2 is coated film substrate 22 is cooled once to 1 ⁇ 15 ° C., it is introduced into the drying step.
  • the high-refractive index layer coating solution L 1 and the low refractive index layer coating solution L 2 is dried by heat curing.
  • the drying temperature is 10 ° C. or higher, for example, a wet bulb temperature of 5 to 50 ° C. and a coating surface temperature of 10 to 50 ° C.
  • the film substrate This is to improve the handleability of the 22.
  • FIG. 11 is a table showing test results for explaining the influence of the Young's modulus and pressure difference on the film thickness fluctuation rate of the electromagnetic wave shielding film
  • FIG. 12 shows the Young's modulus and bar with respect to the film thickness fluctuation rate of the electromagnetic wave shielding film. It is a table which shows the test result for demonstrating the influence of the thickness of a pocket part.
  • the coating solution for the low refractive index layer is composed of 12 parts by mass of colloidal silica (Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass), polyvinyl alcohol (PVA-103, polymerization degree 300, saponification degree 98.5 mol%, 2 parts by weight of a 5% by weight aqueous solution of Kuraray Co., Ltd., and 10 parts by weight of a 3% by weight aqueous boric acid solution were added, and the mixture was heated to 45 ° C. and stirred while polyvinyl alcohol (PVA-117, polymerization degree 1700, saponification).
  • colloidal silica Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass
  • PVA-103 polyvinyl alcohol
  • PVA-103 polymerization degree 300, saponification degree 98.5 mol%
  • 2 parts by weight of a 5% by weight aqueous solution of Kuraray Co., Ltd. and 10 parts by weight of
  • the coating solution for the high refractive index layer is 5 parts of polyvinyl alcohol (PVA-103, polymerization degree 300, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.) in 30 parts by mass of silica-attached titanium dioxide sol (solid content 20.0% by mass). After adding 2 parts by weight of 2% by weight aqueous solution, 10 parts by weight of 3% by weight aqueous boric acid solution, and 10 parts by weight of 2% by weight aqueous citric acid solution, the mixture was heated to 45 ° C. and stirred while polyvinyl alcohol (PVA-617, polymerized).
  • PVA-103 polymerization degree 300, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.
  • the silica-attached titanium dioxide sol is obtained by adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.). Then, heated to 90 ° C., 1.3 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 2.0% by mass) It was obtained by gradually adding and heat-treating at 175 ° C. for 18 hours in an autoclave, then cooling and concentrating with an ultrafiltration membrane.
  • SRD-W volume average particle size 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.
  • the low refractive index layer coating solution and the high refractive index layer coating solution were kept at 45 ° C. and supplied to a die coater, and 15 layers were simultaneously coated.
  • the lowermost layer and the uppermost layer are low refractive index layers, and the low refractive index layer is included one more than the high refractive index layer.
  • the slit gap was set to 0.2 mm.
  • the viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution was set to 10 mPa ⁇ s and 100 mPa ⁇ s.
  • the film substrate was a polyethylene terephthalate film (A4300 manufactured by Toyobo Co., Ltd .: double-sided easy-adhesion layer) having a thickness of 50 ⁇ m and a width of 2000 mm, and the temperature was raised to 45 ° C. during application of the coating solution.
  • the front bar and back bar of the die coater were 40 mm thick.
  • the coating speed and coating width were set to 50 m / min and 1950 mm.
  • the coating thickness of the low refractive index layer and the high refractive index layer was set to be 150 nm as an average film thickness during drying.
  • the film thickness fluctuation rate V [%] of the electromagnetic wave shielding film is a value obtained by dividing the film thickness fluctuation width by the film thickness average value and multiplying by 100.
  • the film thickness variation width is a difference between the minimum value and the maximum value of the film thickness.
  • the film thickness average value is an average value related to the entire width of the film thickness measured at intervals of 50 mm in the coating width direction.
  • the film thickness was obtained by measuring each layer after digitizing an image obtained by observing the cross section of the electromagnetic wave shielding film produced under the above conditions and performing image processing for adjusting contrast.
  • the cross section was observed using an electron microscope (FE-SEM, S-5000H type, manufactured by Hitachi, Ltd.) with the number of fields of view selected so that a length of 1 cm could be observed under the condition of an acceleration voltage of 2.0 kV.
  • the film thickness is an average value of 1000 measurement results.
  • the Young's modulus E is changed in the range of 106 to 540 GPa, and the viscosity is adjusted by adding pure water to the coating solution.
  • the pressure difference ⁇ P was changed in the range of 0.1 to 1.0 MPa.
  • the pressure difference ⁇ P is, the internal pressure P 2 of the recess of the pocket portion of the bar having a low refractive index layer coating solution L 2 is supplied, the recess of the pocket portion of the bar which high refractive index layer coating solution L 1 is supplied internal pressure P 1 and the pressure difference.
  • the thickness D 1 and a thickness D 4 of the pocket portion of the proximal end portion of the bars are common, it was set to 15mm and 10 mm.
  • a bar whose constituent material is ceramic and Young's modulus E is 240 GPa or more and a bar whose constituent material is cemented carbide and whose Young's modulus E is 240 GPa or more are pure titanium and Young's modulus E
  • the film thickness variation rate (V) is good and a uniform coating film is obtained. I was able to.
  • a bar whose constituent material is ceramics (zirconia) and Young's modulus E is 240 GPa has a film thickness variation rate (V) of 3.0% or less when the pressure difference ⁇ P is 0.5 MPa or less.
  • a bar whose constituent material is ceramics (alumina 90%) and whose Young's modulus E is 280 GPa has a film thickness variation rate (V) of 1.0% or less regardless of the pressure difference ⁇ P.
  • the bar very thin and the thickness D 4 is 10mm in the pocket of, and even when the pressure difference ⁇ P as exceeding 0.1 MPa, Young's modulus E is equal to or larger than 240 GPa, suppressing deformation of the bars It is shown that the uniformity of the slit (gap) in the coating width direction is maintained, and the Young's modulus E is preferably 280 GPa or more, more preferably 390 GPa or more.
  • the number of layers can be increased, so that it is large, but applicable constituent materials are limited.
  • the Young's modulus E by varying the bar of the material, was varied in the range of 106 ⁇ 540GPa, and a thickness D 4 of the pocket portion of the bar, in the range of 5 ⁇ 15 mm Changed.
  • the thickness D 1 of the proximal end portion of the bars, depending on the thickness of the pocket portion was changed in the range of 10 ⁇ 20 mm.
  • the pressure difference ⁇ P is common and was set to 0.3 MPa.
  • a bar whose constituent material is ceramic and Young's modulus E is 240 GPa or more and a bar whose constituent material is cemented carbide and whose Young's modulus E is 240 GPa or more are composed of pure titanium and Young's modulus E.
  • the film thickness variation rate (V) is good and a uniform coating film is obtained. I was able to.
  • the bar construction material ceramics (zirconia) and Young's modulus E is 240GPa, when the thickness D 4 of the pocket portion is not less than 10 mm, the thickness variation rate (V) was 3.0% or less.
  • Constituent materials are ceramics (90% alumina) and Young's modulus E is 280GPa bars, regardless of the thickness D 4 of the pocket portion, the thickness variation rate (V) was 1.0% or less.
  • the Young's modulus E is preferably 280 GPa or more, and more preferably 390 GPa or more, as in the test results shown in FIG.
  • the thickness D 4 of the pocket portion 53 of the bar 40 is set to 15mm or less, to thin the bar 40 (thinning and weight reduction) it is possible, the installation number of the bar 40 (the number of layers ) Is suppressed, it is possible to prevent the slide surface from becoming long, so that the flow of the coating liquid is prevented from being disturbed.
  • the die coater 30 can be reduced in size, space-saving, energy saving, and apparatus cost can be reduced, handling is easy, and workability can be improved and failure in the coating process can be expected.
  • the lower limit of the thickness D 4 of the pocket portion of the bar restriction is not, it is possible to increase the the thinner the number of layers.
  • the thickness D 4 of the pocket portion of the bar an excessively reduced, it becomes susceptible to the pressure difference [Delta] P, is preferably at least 5 mm.
  • At least the pocket portion which is the main portion of the bar, is made of a material having a high Young's modulus that is unlikely to be twisted.
  • the deformation of the bar is suppressed, the uniformity of the slit (gap) in the coating width direction is maintained, and the coating film thickness in the coating width direction is prevented from becoming non-uniform, so that the manufactured electromagnetic shielding film The uniformity of the optical characteristics is good.
  • the bar can be made wide and thin.
  • the electromagnetic wave shielding film can be applied to a visible light reflecting film, a far infrared reflecting film, and an ultraviolet reflecting film.
  • the electromagnetic wave shielding film is designed to reflect visible light, far infrared light, or ultraviolet light instead of near infrared light by adjusting the optical film thickness of the high refractive index layer and the low refractive index layer. .
  • a layer having another function between the film base and the coating layer or on the surface of the coating layer It is possible to arrange a layer having another function between the film base and the coating layer or on the surface of the coating layer. For example, it is possible to dispose a gas barrier layer or an easy-adhesion layer between the film substrate and the coating layer, or to dispose a hard coat layer or an abrasion-resistant layer on the surface of the coating layer.
  • 10 coating device 20 transport system, 22 film substrate, 24 Backroll, 30 Die coater, 32 laminates, 40 bars, 42 Front bar, 44 middle bar, 46 Backbar, 50 proximal end, 51 end face, 52 through holes, 53 pocket part 54 recess, 56 tip, 57 end face, 58 slit (gap), 60 side wall, 70 coating solution supply system, 72 preparation kettle, 73 Piping system, 74 pumps, 76 Preparation kettle, 77 Piping system, 78 pump, 81,82 pressure sensor, D 1 , D 2 , D 3 , D 31 , D 32 , D 4 thickness, F coating direction, L, L 1 , L 2 coating solution, W coating width direction, ⁇ 1 and ⁇ 2 viscosities.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

[Problem] To provide a die coater, a coating device, a coating method, and a method for manufacturing an electromagnetic wave-shielding film capable of adequately coating wide, simultaneous heavy layers even when the number of layers is increased. [Solution] A sliding-type die coater having a plurality of layered bars (40) for simultaneous heavy-layer coating. The bars (40) have a distal end part (56) in which a slit (gap) (58) is formed between another adjacent bar (40), a proximal end part (50) in contact with another bar (40), and a pocket part (53) having a concavity (54), which is a coating liquid reservoir part, the pocket part (53) being positioned between the distal end part (56) and the proximal end part (50). The coating liquid discharged from the slit (gap) (58) flows down the end face (57) of the distal end part (56). The Young's modulus of the material constituting at least the pocket part (53) is 240 GPa or higher.

Description

ダイコーター、塗布装置、塗布方法および電磁波遮蔽フィルムの製造方法Die coater, coating apparatus, coating method, and electromagnetic wave shielding film manufacturing method
 本発明は、ダイコーター、塗布装置、塗布方法および電磁波遮蔽フィルムの製造方法に関する。 The present invention relates to a die coater, a coating apparatus, a coating method, and a method for manufacturing an electromagnetic wave shielding film.
 近年、省エネルギー対策への関心が高まっており、建物や車両の窓ガラスに貼って、太陽光に含まれる熱線の透過を遮断して冷房設備にかかる負荷を減らすため、近赤外光を反射する機能を有する電磁波遮蔽フィルムの開発が盛んに行われている。 In recent years, interest in energy-saving measures has increased, and it has been applied to building and vehicle window glass to reflect near-infrared light in order to reduce the load on cooling equipment by blocking the transmission of heat rays contained in sunlight. Development of electromagnetic shielding films having functions has been actively conducted.
 電磁波遮蔽フィルムは、高屈折率層と低屈折率層とを交互に積層してなり、一般的に、その層数が多いほど電磁波の反射率が高くなり、遮蔽効果が高くなることが知られているが、塗布によって1層ずつ逐次形成しており、生産性に問題を有している(例えば、特許文献1および2参照。)。そこで、生産性を向上させるために、一括して重層塗布(同時重層塗布)が可能なスライド式のダイコーターの適用が提案されている。 The electromagnetic wave shielding film is formed by alternately laminating high refractive index layers and low refractive index layers. Generally, the larger the number of layers, the higher the electromagnetic wave reflectivity and the higher the shielding effect. However, the layers are sequentially formed by coating, and there is a problem in productivity (see, for example, Patent Documents 1 and 2). Therefore, in order to improve productivity, application of a slide type die coater capable of performing multilayer coating (simultaneous multilayer coating) at once has been proposed.
特開平8-110401号公報JP-A-8-110401 特開2004-123766号公報JP 2004-123766 A
 しかし、スライド式ダイコーターを構成するバーの設置数は、製造される電磁波遮蔽フィルムの層数に対応している。したがって、製造される電磁波遮蔽フィルムの層数を増加させるため、塗布層数を増やす場合、バーの設置数が増加するため、塗布液が流下するバーの端面により構成されるスライド面が長くなる。これにより、塗布液の流れに乱れが生じ易くなることで、均一な塗布が困難となり、また、塗布液の混ざりを生じて、電磁波遮蔽フィルムに悪影響、例えば、膜厚の不均一(変動)や反射率等の性能の低下を招く虞があった。 However, the number of bars that constitute the slide type die coater corresponds to the number of layers of the electromagnetic shielding film to be manufactured. Therefore, when the number of coating layers is increased in order to increase the number of layers of the electromagnetic shielding film to be manufactured, the number of bars installed increases, so that the slide surface constituted by the end surfaces of the bars through which the coating liquid flows down becomes long. As a result, the flow of the coating liquid is likely to be disturbed, so that uniform coating becomes difficult, and the coating liquid is mixed to adversely affect the electromagnetic shielding film, for example, non-uniformity (fluctuation) in film thickness or There is a possibility that performance such as reflectivity is deteriorated.
 塗布液の流れの乱れを防止するためには、スライド面を短くすることが有効であるが、そのためには、バーを薄くする必要がある。しかし、バーを薄くすると、低屈折率層塗布液粘度と高屈折率層塗布液粘度の差による影響、つまり、バー間に形成される塗布液の流路である隙間を、低屈折率層塗布液が通過する際に発生する圧力損失に基づく内部圧力と、高屈折率層塗布液が通過する際に発生する圧力損失に基づく内部圧力と、の圧力差の影響を受ける問題を有する。 In order to prevent disturbance of the flow of the coating liquid, it is effective to shorten the slide surface, but in order to do so, it is necessary to make the bar thinner. However, when the bar is thinned, the effect of the difference between the low refractive index layer coating liquid viscosity and the high refractive index layer coating liquid viscosity, that is, the gap that is the flow path of the coating liquid formed between the bars is applied to the low refractive index layer coating. There is a problem of being affected by the pressure difference between the internal pressure based on the pressure loss generated when the liquid passes and the internal pressure based on the pressure loss generated when the high refractive index layer coating liquid passes.
 例えば、圧力の高い方(粘度が大きい低屈折率層塗布液が通過する側)から低い方(粘度が小さい高屈折率層塗布液が通過する側)へと、バーが加圧され、これにより、バーが変形し、塗布幅方向の隙間の均一性が悪化することで、塗布膜厚が不均一となり、その結果、製造される電磁波遮蔽フィルムの光学特性の均一性が低下し、例えば、色ムラが発生する問題を有する。 For example, the bar is pressurized from the higher pressure (the side through which the low refractive index layer coating solution having a large viscosity passes) to the lower side (the side through which the high refractive index layer coating solution having a low viscosity passes), thereby , The deformation of the bar, the uniformity of the gap in the coating width direction is deteriorated, the coating film thickness becomes non-uniform, and as a result, the uniformity of the optical properties of the electromagnetic wave shielding film to be produced decreases, for example, the color There is a problem that unevenness occurs.
 また、広幅のバーは、曲がりや反りが発生する虞があり、これにより、塗布幅方向の間隙の均一性が悪化し、塗布幅方向の塗布膜厚が不均一となるため、広幅の塗布を良好に実施することが困難である問題を有する。 Also, a wide bar may bend or warp, which deteriorates the uniformity of the gap in the coating width direction and makes the coating thickness in the coating width direction non-uniform. It has the problem that it is difficult to implement well.
 本発明は、上記従来技術に伴う課題を解決するためになされたものであり、層数を増しても広幅の同時重層塗布を良好に実施することが可能であるダイコーター、塗布装置、塗布方法および電磁波遮蔽フィルムの製造方法を提供することを目的とする。 The present invention has been made in order to solve the problems associated with the prior art described above, and is capable of satisfactorily performing wide simultaneous multilayer coating even when the number of layers is increased, a coating apparatus, and a coating method. And it aims at providing the manufacturing method of an electromagnetic wave shielding film.
 本発明の上記目的は、下記の手段によって達成される。 The above object of the present invention is achieved by the following means.
 (1)同時重層塗布をするための複数の積層されたバーを有し、
 前記バーは、
 隣接する別のバーとの間に隙間を形成する先端部と、
 前記別のバーと当接する基端部と、
 前記先端部と前記基端部との間に位置し、塗布液溜まり部である凹部を有するポケット部と、を有し、
 前記隙間から吐出された塗布液が前記先端部の端面を流下するスライド式のダイコーターであって、
 少なくとも前記ポケット部を構成する材料のヤング率は、240GPa以上であるダイコーター。
(1) having a plurality of stacked bars for simultaneous multi-layer application;
The bar
A tip that forms a gap between another adjacent bar;
A proximal end abutting against the another bar;
A pocket portion located between the distal end portion and the base end portion and having a recess that is a coating liquid reservoir,
A slide type die coater in which the coating liquid discharged from the gap flows down the end face of the tip,
The die coater whose Young's modulus of the material which comprises the said pocket part at least is 240 GPa or more.
 (2)前記材料のヤング率は、280GPa以上である上記(1)に記載のダイコーター。 (2) The die coater according to (1) above, wherein the material has a Young's modulus of 280 GPa or more.
 (3)前記材料は、超硬合金あるいはセラミックスである上記(1)又は上記(2)に記載のダイコーター。 (3) The die coater according to (1) or (2) above, wherein the material is cemented carbide or ceramics.
 (4)少なくとも前記ポケット部は、単一の材料から構成されている上記(1)~(3)のいずれか1項に記載のダイコーター。 (4) The die coater according to any one of (1) to (3), wherein at least the pocket portion is made of a single material.
 (5)前記ポケット部の厚みは、15mm以下である上記(1)~(4)のいずれか1項に記載のダイコーター。 (5) The die coater according to any one of (1) to (4), wherein the pocket portion has a thickness of 15 mm or less.
 (6)前記ポケット部の厚みは、10mm以下である上記(5)に記載のダイコーター。 (6) The die coater according to (5), wherein the pocket portion has a thickness of 10 mm or less.
 (7)前記ポケット部の厚みは、5mm以上である上記(5)又は上記(6)に記載のダイコーター。 (7) The die coater according to (5) or (6) above, wherein the pocket portion has a thickness of 5 mm or more.
 (8)前記バーの長さおよび高さは、それぞれ1m以上および80mm以上である上記(1)~(7)のいずれか1項に記載のダイコーター。 (8) The die coater according to any one of (1) to (7), wherein the length and height of the bar are 1 m or more and 80 mm or more, respectively.
 (9)上記(1)~(8)のいずれか1項に記載のダイコーターと、
 第1塗布液を保持する第1容器と、
 第2塗布液を保持する第2容器と、
 前記第1容器に保持されている前記第1塗布液を、前記ダイコーターに供給する第1塗布液供給系と、
 前記第2容器に保持されている前記第2塗布液を、前記ダイコーターに供給する第2塗布液供給系と、
 を有する塗布装置。
(9) The die coater according to any one of (1) to (8) above,
A first container for holding a first coating liquid;
A second container for holding a second coating liquid;
A first coating liquid supply system for supplying the first coating liquid held in the first container to the die coater;
A second coating solution supply system for supplying the second coating solution held in the second container to the die coater;
A coating apparatus.
 (10)前記第2塗布液が供給されるバーのポケット部の凹部の内圧と、前記第1塗布液が供給されるバーのポケット部の凹部の内圧との圧力差は、0.3MPa以下になるように設定されている上記(9)に記載の塗布装置。 (10) The pressure difference between the internal pressure of the concave portion of the pocket portion of the bar supplied with the second coating liquid and the internal pressure of the concave portion of the pocket portion of the bar supplied with the first coating liquid is 0.3 MPa or less. The coating apparatus according to (9), which is set to be
 (11)前記圧力差は、0.1MPa以下になるように設定されている上記(10)に記載の塗布装置。 (11) The coating apparatus according to (10), wherein the pressure difference is set to be 0.1 MPa or less.
 (12)前記第1塗布液の塗布層は、交互に積層された高屈折率層および低屈折率層を有する電磁波遮蔽フィルムにおける前記高屈折率層を構成し、
 前記第2塗布液の塗布層は、前記低折率層を構成する上記(9)~(11)のいずれか1項に記載の塗布装置。
(12) The coating layer of the first coating liquid constitutes the high refractive index layer in the electromagnetic wave shielding film having a high refractive index layer and a low refractive index layer laminated alternately,
The coating apparatus according to any one of (9) to (11), wherein the coating layer of the second coating liquid constitutes the low refractive index layer.
 (13)上記(1)~(8)のいずれか1項に記載のダイコーターに対して、第1塗布液および第2塗布液を供給し、前記ダイコーターのバーの先端部の隙間から吐出させ、前記先端部の端面を流下させることにより、前記第1塗布液の塗布層と、前記第2塗布液の塗布層とを交互に積層させて、フィルム基材に同時重層塗布する塗布方法。 (13) The first coating liquid and the second coating liquid are supplied to the die coater according to any one of (1) to (8) above, and discharged from the gap at the tip of the bar of the die coater. Then, the coating method of applying the first and second coating liquid coating layers and the second coating liquid coating layer alternately to each other, and simultaneously coating the film substrate by causing the end surface of the tip portion to flow down.
 (14)前記第2塗布液が供給されるバーのポケット部の凹部の内圧と、前記第1塗布液が供給されるバーのポケット部の凹部の内圧との圧力差は、0.3MPa以下である上記(13)に記載の塗布方法。 (14) The pressure difference between the internal pressure of the concave portion of the pocket portion of the bar supplied with the second coating liquid and the internal pressure of the concave portion of the pocket portion of the bar supplied with the first coating liquid is 0.3 MPa or less. The coating method according to (13) above.
 (15)前記圧力差は、0.1MPa以下である上記(14)に記載の塗布方法。 (15) The coating method according to (14), wherein the pressure difference is 0.1 MPa or less.
 (16)前記第1塗布液の塗布層は、交互に積層された高屈折率層および低屈折率層を有する電磁波遮蔽フィルムにおける前記高屈折率層を構成し、
 前記第2塗布液の塗布層は、前記低折率層を構成する上記(13)~(15)のいずれか1項に記載の塗布方法。
(16) The coating layer of the first coating liquid constitutes the high refractive index layer in the electromagnetic wave shielding film having a high refractive index layer and a low refractive index layer laminated alternately,
The coating method according to any one of (13) to (15), wherein the coating layer of the second coating liquid constitutes the low-index layer.
 (17)上記(16)に記載の塗布方法を用いて高屈折率層および低屈折率層を同時重層塗布する工程を有する電磁波遮蔽フィルムの製造方法。 (17) A method for producing an electromagnetic wave shielding film comprising a step of simultaneously applying a high refractive index layer and a low refractive index layer by using the coating method described in (16) above.
 本発明に係るダイコーター、塗布装置、塗布方法および電磁波遮蔽フィルムの製造方法によれば、少なくともポケット部を構成する材料のヤング率は、240GPa以上である。つまり、圧力の影響を受けて変形し易いバーの主要部であるポケット部は、ねじれが発生し難いヤング率が大きい材料から構成されている。これにより、バーの変形が抑制されることで、塗布幅方向の隙間の均一性が維持され、塗布幅方向の塗布膜厚が不均一になることが防がれるため、製造される電磁波遮蔽フィルムの光学特性の均一性は、良好である。また、圧力差の影響による変形や、バーの幅広化による曲がりや反りの発生も抑制されるため、バーを広幅かつ薄肉とすることが可能である。さらに、バーを薄肉とすることにより、バーの設置数(層数)が増加しても、塗布液が流下するバーの端面により構成されるスライド面が長くなることが抑制されるため、塗布液の流れに乱れが生じることが防がれる。したがって、層数を増しても広幅の同時重層塗布を良好に実施することが可能であるダイコーター、塗布装置、塗布方法および電磁波遮蔽フィルムの製造方法を提供することが可能である。 According to the die coater, the coating device, the coating method, and the electromagnetic wave shielding film manufacturing method according to the present invention, the Young's modulus of the material constituting at least the pocket portion is 240 GPa or more. That is, the pocket portion, which is the main portion of the bar that is easily deformed under the influence of pressure, is made of a material having a high Young's modulus that is difficult to twist. This suppresses the deformation of the bar, thereby maintaining the uniformity of the gap in the coating width direction and preventing the coating film thickness in the coating width direction from becoming nonuniform. The uniformity of the optical characteristics is good. Further, since deformation due to the effect of the pressure difference and occurrence of bending and warping due to the widening of the bar are suppressed, the bar can be made wide and thin. Furthermore, by reducing the thickness of the bar, even if the number of installed bars (number of layers) increases, the sliding surface constituted by the end surface of the bar through which the coating liquid flows down is prevented from becoming long. This prevents the turbulence in the flow. Therefore, it is possible to provide a die coater, a coating apparatus, a coating method, and a method for manufacturing an electromagnetic wave shielding film, which are capable of satisfactorily performing wide simultaneous multilayer coating even when the number of layers is increased.
 本発明のさらに他の目的、特徴および特質は、以後の説明および添付図面に例示される好ましい実施の形態を参照することによって、明らかになるであろう。 Further objects, features, and characteristics of the present invention will become apparent by referring to the preferred embodiments illustrated in the following description and the accompanying drawings.
本発明の実施の形態に係るダイコーターを有する塗布装置を説明するための概略図である。It is the schematic for demonstrating the coating device which has the die-coater which concerns on embodiment of this invention. 図1に示されるダイコーターの側方壁部を説明するための平面図である。It is a top view for demonstrating the side wall part of the die-coater shown by FIG. 図1に示されるダイコーターのバーを説明するための平面図である。It is a top view for demonstrating the bar | burr of the die-coater shown by FIG. 図3の線IV-IVに関する断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. ダイコーターのバーの別の態様を説明するための断面図である。It is sectional drawing for demonstrating another aspect of the bar | burr of a die-coater. ダイコーターのバーの別の態様を説明するための断面図である。It is sectional drawing for demonstrating another aspect of the bar | burr of a die-coater. 本発明の実施の形態に係る電磁波遮蔽フィルムの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the electromagnetic wave shielding film which concerns on embodiment of this invention. 本発明の実施の形態に係る塗布工程を説明するための断面図である。It is sectional drawing for demonstrating the application | coating process which concerns on embodiment of this invention. 塗布工程における塗布条件を説明するための断面図である。It is sectional drawing for demonstrating the application | coating conditions in an application | coating process. 比較例を説明するための断面図である。It is sectional drawing for demonstrating a comparative example. 電磁波遮蔽フィルムの膜厚変動率に対するヤング率および圧力差の影響を説明するための試験結果を示しているテーブルである。It is a table which shows the test result for demonstrating the influence of the Young's modulus and the pressure difference with respect to the film thickness fluctuation rate of an electromagnetic wave shielding film. 電磁波遮蔽フィルムの膜厚変動率に対するヤング率およびバーのポケット部の厚みの影響を説明するための試験結果を示しているテーブルである。It is a table which shows the test result for demonstrating the influence of the Young's modulus with respect to the film thickness fluctuation rate of an electromagnetic wave shielding film, and the thickness of the pocket part of a bar.
 以下、本発明の実施の形態を、図面を参照しつつ説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1は、本発明の実施の形態に係るダイコーターを有する塗布装置を説明するための概略図、図2は、図1に示されるダイコーターの側方壁部を説明するための平面図、図3は、図1に示されるダイコーターのバーを説明するための平面図、図4は、図3の線IV-IVに関する断面図である。 1 is a schematic view for explaining a coating apparatus having a die coater according to an embodiment of the present invention, FIG. 2 is a plan view for explaining a side wall portion of the die coater shown in FIG. 3 is a plan view for explaining the bar of the die coater shown in FIG. 1, and FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
 本実施の形態に係る塗布装置10は、高屈折率層と低屈折率層とを交互に複数積層してなる電磁波遮蔽フィルムを、同時重層塗布によって製造するために利用され、図1に示されるように、搬送系20、ダイコーター30、塗布液供給系70および圧力センサー81,82を有する。 The coating apparatus 10 according to the present embodiment is used to manufacture an electromagnetic wave shielding film formed by alternately laminating a plurality of high refractive index layers and low refractive index layers by simultaneous multilayer coating, and is shown in FIG. As described above, a transport system 20, a die coater 30, a coating liquid supply system 70, and pressure sensors 81 and 82 are included.
 本実施の形態に係る電磁波遮蔽フィルムは、可視光領域(波長380~780nm)において透過率が高く、近赤外光領域(780~2500nm)において反射率が高い光学特性を有する赤外遮蔽フィルム(近赤外光反射フィルム)であり、建物の屋外の窓、自動車窓、農業用ビニールハウス等に配置され、熱線反射効果を付与するために使用される。 The electromagnetic wave shielding film according to the present embodiment has an optical property having high optical characteristics in the visible light region (wavelength 380 to 780 nm) and high reflectance in the near infrared light region (780 to 2500 nm) ( Near-infrared light reflecting film), which is disposed in a building outdoor window, automobile window, agricultural greenhouse, etc., and used to impart a heat ray reflecting effect.
 「高屈折率層」および「低屈折率層」は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方を高屈折率層、低い方を低屈折率層とすることを意味する。特定波長領域の反射率は、隣接する2層の屈折率差と層数とで決定され、屈折率の差が大きいほど、少ない層数で高い反射率が得られる。 "High refractive index layer" and "low refractive index layer", when comparing the refractive index difference between two adjacent layers, the higher refractive index layer is the high refractive index layer, the lower one is the low refractive index layer Means. The reflectance in the specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers. The larger the difference in refractive index, the higher the reflectance with a smaller number of layers.
 搬送系20は、フィルム基材22およびバックロール24を有する。フィルム基材22は、塗布液Lが塗布される帯状の支持体である。バックロール24は、フィルム基材22の内側に配置され、回転駆動されることによって、塗布方向(搬送方向)Fの上流側から下流側に向かって、フィルム基材22を搬送するように構成されている。 The conveyance system 20 includes a film base material 22 and a back roll 24. The film substrate 22 is a belt-like support on which the coating liquid L is applied. The back roll 24 is arranged inside the film base 22 and is configured to transport the film base 22 from the upstream side to the downstream side in the application direction (transport direction) F by being driven to rotate. ing.
 ダイコーター30は、スライド式であり、電磁波遮蔽フィルムの各層に対応する塗布層を一括して塗布(同時重層塗布)することが可能に構成されており、長方形状のバー40が順に重ねられて構成された積層体32と、側方壁部60とを有する。 The die coater 30 is a slide type, and is configured to be able to apply the application layers corresponding to each layer of the electromagnetic wave shielding film in a lump (simultaneous multi-layer application), and the rectangular bars 40 are sequentially stacked. It has the laminated body 32 comprised and the side wall part 60. FIG.
 バー40は、フロントバー42、複数の中間バー44およびバックバー46から構成され、これらは、略同一形状である。フロントバー42は、積層体32の最下層を占めているバーであり、フィルム基材22の近傍に位置決めされる。バックバー46は、積層体32の最上層を占めているバーである。中間バー44は、フロントバー42とバックバー46との間に位置する中間層を占めているバーである。側方壁部60は、図2に示されるように、積層体32の塗布幅方向Wの両端面に配置されている。なお、塗布幅方向Wは、塗布方向(搬送方向)Fと直交している。 The bar 40 includes a front bar 42, a plurality of intermediate bars 44, and a back bar 46, which have substantially the same shape. The front bar 42 is a bar that occupies the lowermost layer of the laminate 32 and is positioned in the vicinity of the film substrate 22. The back bar 46 is a bar that occupies the uppermost layer of the stacked body 32. The intermediate bar 44 is a bar that occupies an intermediate layer located between the front bar 42 and the back bar 46. As shown in FIG. 2, the side wall portions 60 are disposed on both end surfaces of the laminate 32 in the application width direction W. The application width direction W is orthogonal to the application direction (conveyance direction) F.
 バー40は、図3および図4に示されるように、基端側から順に基端部50、ポケット部53および先端部56を有する。 As shown in FIGS. 3 and 4, the bar 40 has a proximal end portion 50, a pocket portion 53, and a distal end portion 56 in order from the proximal end side.
 基端部50は、塗布液供給系70と連通している貫通孔52を有する。貫通孔52は、基端部50の塗布幅方向W中央に位置し、基端部50端面からポケット部53に向かって延長している。 The base end portion 50 has a through hole 52 communicating with the coating liquid supply system 70. The through hole 52 is located in the center of the application width direction W of the base end portion 50 and extends from the end surface of the base end portion 50 toward the pocket portion 53.
 基端部50の厚みDは、先端部56の厚みDより大きく設定されている。したがって、バー40が積層されると、基端部50は、隣接する別のバーの基端部50と当接する一方、先端部56と、隣接する別のバーの先端部56との間には、厚みD(=D-D)のスリット(隙間)58が形成される。以下において、厚みDは、スリット間隔Dで参照する。なお、符号51は、基端部50の端面を示している。 A thickness D 1 of the proximal end portion 50 is set to be larger than a thickness D 2 of the distal end portion 56. Therefore, when the bars 40 are stacked, the base end portion 50 comes into contact with the base end portion 50 of another adjacent bar, while the front end portion 56 and the front end portion 56 of another adjacent bar are in between. A slit (gap) 58 having a thickness D 3 (= D 1 −D 2 ) is formed. In the following, the thickness D 3 are referenced by the slit spacing D 3. Reference numeral 51 denotes an end face of the base end portion 50.
 スリット58は、塗布液が通過する通路として機能する。スリット58の先端から吐出された塗布液は、先端部56の端面57を流下するため、端面57は、塗布液が流下するスライド面として機能する。 The slit 58 functions as a passage through which the coating liquid passes. Since the coating liquid discharged from the front end of the slit 58 flows down the end surface 57 of the front end portion 56, the end surface 57 functions as a slide surface on which the coating liquid flows down.
 ポケット部53は、バー40の塗布幅方向Wに延長して形成される凹部54を有する。凹部54は、スリット58および貫通孔52に連通している塗布液溜まり部である。凹部54は、貫通孔52(塗布液供給系70)からの塗布液を、塗布幅方向Wに均等に広げて、スリット58に安定的に供給するために使用される。 The pocket portion 53 has a concave portion 54 formed to extend in the coating width direction W of the bar 40. The recess 54 is a coating liquid reservoir that communicates with the slit 58 and the through hole 52. The concave portion 54 is used to stably spread the coating liquid from the through hole 52 (coating liquid supply system 70) in the coating width direction W and stably supply the slit 58.
 バー40の積層位置に応じて、バー40の貫通孔52に、高屈折率層を構成することとなる第1塗布液である高屈折率層塗布液Lと、低屈折率層を構成することとなる第2塗布液である低屈折率層塗布液Lと、が交互に導入される。例えば、フロントバー42の貫通孔52には、低屈折率層塗布液Lが導入され、フロントバー42に隣接する中間バー44の貫通孔には、高屈折率層塗布液Lが導入され、当該中間バー44に隣接する別の中間バー44の貫通孔52には、低屈折率層塗布液Lが導入される。 Depending on the stacking position of the bar 40, the through hole 52 of the bar 40, the high-refractive index layer coating solution L 1 which is a first coating liquid constitutes the high refractive index layer and the low refractive index layer and thus the second coating liquid and the low-refractive index layer coating solution L 2, but are alternately introduced. For example, the low refractive index layer coating liquid L 2 is introduced into the through hole 52 of the front bar 42, and the high refractive index layer coating liquid L 1 is introduced into the through hole of the intermediate bar 44 adjacent to the front bar 42. , the through hole 52 of another intermediate bar 44 adjacent to the intermediate bar 44, the low refractive index layer coating solution L 2 is introduced.
 したがって、スリット58の設置数は、電磁波遮蔽フィルムの層数に一致しており、電磁波遮蔽フィルムの層数に応じて、中間バー44の積層数が調整されることになる。なお、スライド面の長さは、2層以上に積層された塗布液が流下する中間バー44及びフロントバー42の先端部56の端面57長さの合計であり、最上層を占める中間バー44を除いた残余の中間バー44の厚みと、フロントバー42の厚みとを合計した値と略一致する。 Therefore, the number of slits 58 is equal to the number of layers of the electromagnetic shielding film, and the number of stacked intermediate bars 44 is adjusted according to the number of layers of the electromagnetic shielding film. The length of the slide surface is the sum of the lengths of the intermediate bar 44 where the coating liquid stacked in two or more layers flows down and the end surface 57 of the front end portion 56 of the front bar 42. The remaining thickness of the intermediate bar 44 and the thickness of the front bar 42 are approximately equal to the total value.
 塗布液供給系70は、図1に示されるように、低屈折率層塗布液Lおよび高屈折率層塗布液Lをダイコーター30に供給するために使用され、調製釜72,76、配管系73,77およびポンプ74,78を有する。 Coating liquid supply system 70, as shown in FIG. 1, is used to provide a low refractive index layer coating solution L 2 and the high-refractive index layer coating solution L 1 die coater 30, the preparation kettle 72 and 76, It has piping systems 73 and 77 and pumps 74 and 78.
 調製釜72は、低屈折率層塗布液Lを調製し、所定温度(例えば、30℃以上)で保持するために使用される容器である。配管系73は、調製釜72と、低屈折率層塗布液用のバー40の基端部50の貫通孔52と、を連結している。ポンプ74は、配管系73を経由して、調製された低屈折率層塗布液Lを圧送するために使用される。 Preparation kettle 72, a low refractive index layer coating solution L 2 is prepared, a predetermined temperature (e.g., 30 ° C. or higher) is a vessel used to hold in. The piping system 73 connects the preparation kettle 72 and the through hole 52 of the base end portion 50 of the bar 40 for the low refractive index layer coating solution. The pump 74 is used for pumping the prepared low refractive index layer coating liquid L 2 through the piping system 73.
 調製釜76は、高屈折率層塗布液Lを調製し、所定温度(例えば、30℃以上)で保持するために使用される容器である。配管系77は、調製釜76と、高屈折率層塗布液用のバー40の基端部50の貫通孔52と、を連結している。ポンプ78は、配管系77を経由して、調製された高屈折率層塗布液Lを圧送するために使用される。ポンプ74,78は、例えば、ギアポンプやチューブポンプである。 Preparation kettle 76, the high refractive index layer coating solution L 1 was prepared, a predetermined temperature (e.g., 30 ° C. or higher) is a vessel used to hold in. The piping system 77 connects the preparation pot 76 and the through hole 52 of the base end portion 50 of the bar 40 for the high refractive index layer coating solution. Pump 78, via the piping system 77 is used has been prepared with high refractive index layer coating solution L 1 for pumping. The pumps 74 and 78 are, for example, gear pumps or tube pumps.
 圧力センサー81,82は、ダイコーター30の近傍の配管系73,77に配置され、圧力差ΔPを検出するために使用される。圧力差ΔPは、低屈折率層塗布液Lが供給されるバー40のポケット部53の凹部54の内圧と、高屈折率層塗布液Lが供給されるバー40のポケット部53の凹部54の内圧と、の差であり、後述するように、0.3MPa以下が好ましく、0.1MPa以下がより好ましい。 The pressure sensors 81 and 82 are disposed in the piping systems 73 and 77 in the vicinity of the die coater 30 and are used for detecting the pressure difference ΔP. The pressure difference ΔP is, the internal pressure of the recess 54 of the pocket portion 53 of the bar 40 having a low refractive index layer coating solution L 2 is supplied, the recess of the pocket portion 53 of the bar 40 to the high refractive index layer coating solution L 1 is supplied It is a difference between the internal pressure of 54 and 0.3 MPa or less, more preferably 0.1 MPa or less, as will be described later.
 圧力センサー81,82は、例えば、ポケット部53の凹部54の内面に配置したり、ポケット部53の凹部54と当接する側方壁部60の内面に配置したりすることも可能である。また、圧力差ΔPは、差圧計によって直接検出することも可能である。 The pressure sensors 81 and 82 can be disposed on the inner surface of the concave portion 54 of the pocket portion 53 or on the inner surface of the side wall portion 60 in contact with the concave portion 54 of the pocket portion 53, for example. The pressure difference ΔP can also be directly detected by a differential pressure gauge.
 次に、ダイコーター30のバー40の構成材料等を説明する。 Next, the constituent materials of the bar 40 of the die coater 30 will be described.
 バー40は、ねじれが発生し難いヤング率Eが大きい材料から構成されており、当該材料のヤング率Eは、後述するように、240GPa以上であり、280GPa以上が好ましく、390GPa以上がより好ましい。ねじれが発生し難いヤング率Eが大きい材料は、例えば、セラミックス(アルミナ)や超硬合金である。なお、従来、セラミックス(アルミナ)や超硬合金から構成される物品は、長さが500mm以下の短いものや、長くても断面の長径が50mm程度の細いものが主体であった。しかし、近年の製作技術の進歩によって、長さ1m以上かつ断面の長径が80mm程度以上のものも製作が可能となっている。 The bar 40 is made of a material having a high Young's modulus E that is difficult to be twisted. The Young's modulus E of the material is 240 GPa or more, preferably 280 GPa or more, more preferably 390 GPa or more, as will be described later. Examples of the material having a large Young's modulus E that hardly causes twisting are ceramics (alumina) and cemented carbide. Conventionally, articles composed of ceramics (alumina) or cemented carbide have been mainly short articles having a length of 500 mm or less, or thin articles having a long diameter of about 50 mm at the longest. However, due to recent progress in manufacturing technology, it is possible to manufacture products having a length of 1 m or more and a cross-sectional major axis of about 80 mm or more.
 バー40は、上記のように、ヤング率Eが大きい材料から構成されている。これにより、バー40の変形が抑制され、塗布幅方向Wのスリット(隙間)58の均一性が維持され、塗布幅方向Wの塗布膜厚が不均一になることが防がれるため、製造される電磁波遮蔽フィルムの光学特性の均一性は、良好である。また、圧力差ΔPの影響による変形や、バーの幅広化による曲がりや反りの発生も抑制されるため、バー40を広幅かつ薄肉とすることが可能である。さらに、バー40を薄肉とすることにより、バー40の設置数(層数)を増しても、スライド面(端面57)が長くなることが抑制され、塗布液の流れに乱れが生じることが防がれる。したがって、層数を増しても広幅の同時重層塗布を良好に実施することが可能である。 The bar 40 is made of a material having a large Young's modulus E as described above. As a result, the deformation of the bar 40 is suppressed, the uniformity of the slit (gap) 58 in the coating width direction W is maintained, and the coating film thickness in the coating width direction W is prevented from becoming non-uniform. The uniformity of the optical properties of the electromagnetic wave shielding film is good. In addition, since deformation due to the influence of the pressure difference ΔP and occurrence of bending and warping due to the widening of the bar are suppressed, the bar 40 can be made wide and thin. Further, by making the bar 40 thin, even if the number of installed bars (number of layers) is increased, the slide surface (end surface 57) is suppressed from becoming long, and the flow of the coating liquid is prevented from being disturbed. Can be removed. Therefore, even when the number of layers is increased, it is possible to satisfactorily perform wide simultaneous multilayer coating.
 セラミックスによってバー40を製作する場合、金属材料と異なり、製作過程において内部応力が蓄積しないため、仕上げ研削時および仕上がり後において、内部応力による歪変形の発生が無い。そのため、バー40を高精度に仕上げることが可能であり、バー40の真直度や平面度等の精度を確保することが容易である。特に、バー40が薄肉の場合、金属材料では歪変形が発生し易いため、セラミックスを用いることで、バー40の精度向上が期待できる。 When the bar 40 is manufactured using ceramics, unlike a metal material, internal stress does not accumulate in the manufacturing process, and therefore, distortion deformation due to internal stress does not occur during finish grinding and after finishing. Therefore, it is possible to finish the bar 40 with high accuracy, and it is easy to ensure accuracy such as straightness and flatness of the bar 40. In particular, when the bar 40 is thin, distortion deformation is likely to occur with a metal material, and therefore, the accuracy of the bar 40 can be improved by using ceramics.
 なお、バー40は、その全体を、ねじれが発生し難いヤング率Eが大きい材料によって構成する形態に限定されない。例えば、バー40の主要部であるポケット部53は、圧力の影響を受けて変形し易いため、必要に応じて、ポケット部53を構成する材料のみを、ねじれが発生し難いヤング率Eが大きい材料から構成することも可能である。 It should be noted that the bar 40 is not limited to a form in which the entire bar 40 is made of a material having a high Young's modulus E that is less likely to be twisted. For example, the pocket portion 53, which is the main portion of the bar 40, is easily deformed due to the influence of pressure. Therefore, if necessary, only the material constituting the pocket portion 53 is less likely to be twisted and has a large Young's modulus E. It can also be composed of materials.
 図5および図6は、ダイコーターのバーの別の態様を説明するための断面図である。 5 and 6 are cross-sectional views for explaining another embodiment of the bar of the die coater.
 ポケット部53は、単一の材料から構成される形態に限定されず、ボルトなどの締結部材や接着剤を利用して一体化した複合材を、適用することも可能である。例えば、図5に示されるように、異なる材料からなる2層構造としたり、図6に示されるように、ポケット部53の凹部54周辺のみを別の材料から構成したりすることも可能である。 The pocket portion 53 is not limited to a form composed of a single material, and a composite material integrated using a fastening member such as a bolt or an adhesive can also be applied. For example, as shown in FIG. 5, it is possible to have a two-layer structure made of different materials, or as shown in FIG. 6, only the periphery of the concave portion 54 of the pocket portion 53 can be made of another material. .
 次に、本発明の実施の形態に係る電磁波遮蔽フィルムの製造方法を説明する。 Next, a method for manufacturing an electromagnetic wave shielding film according to an embodiment of the present invention will be described.
 図7は、本発明の実施の形態に係る電磁波遮蔽フィルムの製造方法を説明するためのフローチャートである。 FIG. 7 is a flowchart for explaining a method of manufacturing an electromagnetic wave shielding film according to an embodiment of the present invention.
 本発明の実施の形態に係る電磁波遮蔽フィルムの製造方法は、図7に示されるように、調製工程、塗布工程および乾燥工程を有する。 The manufacturing method of the electromagnetic wave shielding film according to the embodiment of the present invention includes a preparation process, a coating process, and a drying process, as shown in FIG.
 調製工程においては、例えば、金属酸化物粒子、樹脂バインダー、硬化剤、添加剤、溶媒等を混合し、高屈折率層塗布液および低屈折率層塗布液がそれぞれ調製される。 In the preparation step, for example, metal oxide particles, resin binder, curing agent, additive, solvent and the like are mixed to prepare a high refractive index layer coating solution and a low refractive index layer coating solution, respectively.
 塗布工程においては、フィルム基材に対し、電磁波遮蔽フィルムの各層に対応する高屈折率層塗布液および低屈折率層塗布液が、一括して重層塗布(同時重層塗布)される。 In the coating step, the high refractive index layer coating liquid and the low refractive index layer coating liquid corresponding to each layer of the electromagnetic wave shielding film are collectively coated (simultaneous multilayer coating) on the film substrate.
 フィルム基材は、ポリオレフィンフィルム、ポリエステルフィルム、ポリ塩化ビニルフィルム、3酢酸セルロースフィルム等の種々の樹脂フィルムを適用すること可能である。ポリオレフィンは、例えば、ポリエチレン、ポリプロピレである。ポリエステルは、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートである。 As the film substrate, various resin films such as polyolefin film, polyester film, polyvinyl chloride film, and cellulose acetate film can be applied. Polyolefin is, for example, polyethylene or polypropylene. Examples of the polyester include polyethylene terephthalate and polyethylene naphthalate.
 乾燥工程においては、高屈折率層塗布液および低屈折率層塗布液が重層塗布されたフィルム基材を乾燥して熱硬化させることにより、電磁波遮蔽フィルムが製造される。乾燥条件は、高屈折率層塗布液および低屈折率層塗布液に含まれている揮発性成分の蒸発温度、硬化剤の硬化温度、フィルム基材の耐熱温度等を考慮して適宜設定される。乾燥された電磁波遮蔽フィルムは、その後、必要に応じて適当なサイズに裁断される。 In the drying step, the electromagnetic wave shielding film is produced by drying and thermally curing the film substrate on which the high refractive index layer coating solution and the low refractive index layer coating solution are applied in multiple layers. The drying conditions are appropriately set in consideration of the evaporation temperature of the volatile components contained in the high refractive index layer coating solution and the low refractive index layer coating solution, the curing temperature of the curing agent, the heat resistant temperature of the film substrate, and the like. . The dried electromagnetic shielding film is then cut into an appropriate size as necessary.
 後述するように、塗布工程は、層数を増しても広幅の同時重層塗布を良好に実施することが可能であり、かつ1層当りの塗布厚が小さくなるため、乾燥工程における乾燥負荷が低減される。 As will be described later, in the coating process, even when the number of layers is increased, a wide simultaneous multilayer coating can be performed satisfactorily, and since the coating thickness per layer is reduced, the drying load in the drying process is reduced. Is done.
 次に、塗布液の構成材料を具体的に説明する。 Next, the constituent materials of the coating liquid will be specifically described.
 高屈折率層塗布液の金属酸化物粒子は、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズである。透明で高い屈折率を得るためには、酸化チタン微粒子、酸化ジルコニア微粒子を含有することが好ましい。金属酸化物粒子の濃度は、例えば、1~50質量%である。 The metal oxide particles of the high refractive index layer coating liquid are, for example, titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, They are iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon and tin oxide. In order to obtain a transparent and high refractive index, it is preferable to contain fine titanium oxide particles and fine zirconia oxide particles. The concentration of the metal oxide particles is, for example, 1 to 50% by mass.
 低屈折率層塗布液の金属酸化物粒子は、例えば、二酸化ケイ素、コロイダルシリカである。金属酸化物粒子の濃度は、例えば、1~50質量%である。 The metal oxide particles of the low refractive index layer coating solution are, for example, silicon dioxide and colloidal silica. The concentration of the metal oxide particles is, for example, 1 to 50% by mass.
 樹脂バインダーは、例えば、ポリビニルアルコール、ゼラチン、水溶性セルロース誘導体、増粘多糖類、反応性官能基を有するポリマー類である。高屈折率層塗布液の樹脂バインダーの濃度は、例えば、0.5~10質量%である。低屈折率層塗布液中の樹脂バインダーの濃度は、1~10質量%である。 Resin binders are, for example, polyvinyl alcohol, gelatin, water-soluble cellulose derivatives, thickening polysaccharides, and polymers having reactive functional groups. The concentration of the resin binder in the high refractive index layer coating solution is, for example, 0.5 to 10% by mass. The concentration of the resin binder in the low refractive index layer coating solution is 1 to 10% by mass.
 硬化剤は、樹脂バインダーと硬化反応を起こすものであれば特に限定されない。樹脂バインダーとしてポリビニルアルコールが選択されている場合は、例えば、ホウ酸およびその塩である。 The curing agent is not particularly limited as long as it causes a curing reaction with the resin binder. When polyvinyl alcohol is selected as the resin binder, for example, boric acid and salts thereof.
 添加剤は、例えば、紫外線吸収剤、退色防止剤、界面活性剤、蛍光増白剤、pH調整剤、消泡剤、潤滑剤、防腐剤、帯電防止剤である。 Additives are, for example, ultraviolet absorbers, fading inhibitors, surfactants, fluorescent brighteners, pH adjusters, antifoaming agents, lubricants, preservatives, and antistatic agents.
 溶媒は、例えば、水、有機溶媒、あるいはこれらの混合溶液である。有機溶媒は、メタノール、エタノール、酢酸エチル等である。 The solvent is, for example, water, an organic solvent, or a mixed solution thereof. The organic solvent is methanol, ethanol, ethyl acetate or the like.
 次に、調製工程および塗布工程を詳述する。 Next, the preparation process and the coating process will be described in detail.
 図8は、本発明の実施の形態に係る塗布工程を説明するための断面図、図9は、塗布工程における塗布条件を説明するための断面図、図10は、比較例を説明するための断面図である。 8 is a cross-sectional view for explaining a coating process according to an embodiment of the present invention, FIG. 9 is a cross-sectional view for explaining a coating condition in the coating process, and FIG. 10 is for explaining a comparative example. It is sectional drawing.
 調製工程においては、低屈折率層用の金属酸化物粒子、樹脂バインダー、硬化剤、添加剤、溶媒等が、調製釜72に投入後、混合され、低屈折率層塗布液Lが調製され、一方、高屈折率層用の金属酸化物粒子、樹脂バインダー、硬化剤、添加剤、溶媒等が、調製釜76に投入後、混合され、高屈折率層塗布液Lが調製される。そして、調製された低屈折率層塗布液Lおよび高屈折率層塗布液Lは、所定温度(例えば、30℃以上)で保持される。 In the preparation process, the metal oxide particles for low refractive index layer, the resin binder, a curing agent, additives, solvents and the like, after turning the preparation kettle 72, is mixed, the low refractive index layer coating solution L 2 is prepared whereas, the metal oxide particles for high refractive index layer, the resin binder, a curing agent, additives, solvents and the like, after turning the preparation kettle 76, is mixed, the high refractive index layer coating solution L 1 is prepared. Then, the low refractive index layer coating solution L 2 and the high-refractive index layer coating solution L 1 which is prepared is held at a predetermined temperature (e.g., 30 ° C. or higher).
 塗布工程において、調製された低屈折率層塗布液Lおよび高屈折率層塗布液Lは、ポンプ74,78によって圧送され、配管系73,77を経由して、低屈折率層塗布液用のバー40の基端部50の貫通孔52および高屈折率層塗布液用のバー40の基端部50の貫通孔52に供給される。 In the coating step, the prepared low refractive index layer coating liquid L 2 and high refractive index layer coating liquid L 1 are pumped by pumps 74 and 78, and are connected to the low refractive index layer coating liquid via the piping systems 73 and 77. To the through hole 52 of the base end portion 50 of the bar 40 for use and the through hole 52 of the base end portion 50 of the bar 40 for the high refractive index layer coating solution.
 これにより、図8に示されるように、バー40の積層位置に応じて、バー40の貫通孔52に、高屈折率層塗布液Lと低屈折率層塗布液Lとが交互に導入される。例えば、フロントバー42の貫通孔52には、低屈折率層塗布液Lが導入され、フロントバー42に隣接する中間バー44の貫通孔には、高屈折率層塗布液Lが導入され、当該中間バー44に隣接する別の中間バー44の貫通孔52には、低屈折率層塗布液Lが導入される。 Thus, as shown in FIG. 8, in accordance with the stacking position of the bar 40, introduced into the through hole 52 of the bar 40, in the high refractive index layer coating solution L 1 and the low refractive index layer coating solution L 2 is alternately Is done. For example, the low refractive index layer coating liquid L 2 is introduced into the through hole 52 of the front bar 42, and the high refractive index layer coating liquid L 1 is introduced into the through hole of the intermediate bar 44 adjacent to the front bar 42. , the through hole 52 of another intermediate bar 44 adjacent to the intermediate bar 44, the low refractive index layer coating solution L 2 is introduced.
 塗布液は、ポケット部53の凹部54において塗布幅方向Wに均等に広げられて、スリット58に導入される。スリット58を通過した塗布液は、図8に示されるように、バー40の先端部56の端面57を流下し、下方に位置する別のバー40の先端部56の端面57を流下する塗布液と、順次重なる。そして、流下する塗布液は、フロントバー42のスリット58を通過した塗布液と重なった時点において、電磁波遮蔽フィルムの層数に一致する層から構成されることになる。 The coating solution is spread evenly in the coating width direction W in the concave portion 54 of the pocket portion 53 and introduced into the slit 58. As shown in FIG. 8, the coating liquid that has passed through the slit 58 flows down the end surface 57 of the front end portion 56 of the bar 40 and flows down the end surface 57 of the front end portion 56 of another bar 40 positioned below. And overlap one after another. And the coating liquid which flows down is comprised from the layer corresponding to the number of layers of an electromagnetic wave shielding film, when it overlaps with the coating liquid which passed the slit 58 of the front bar 42. FIG.
 そして、塗布液Lは、最下層のバー40であるフロントバー42から離間し、フィルム基材22に流下し、塗布される。 Then, the coating liquid L is separated from the front bar 42 which is the lowermost bar 40 and flows down to the film base material 22 to be applied.
 また、塗布液Lがバー40のスリット58を通過する際に、圧力損失(スリット抵抗)を生じ、これにより、ダイコーター30の内部に圧力(内圧)が発生する。内圧は、塗布液Lの粘度によって影響を受ける。 Further, when the coating liquid L passes through the slit 58 of the bar 40, a pressure loss (slit resistance) is generated, and thereby pressure (internal pressure) is generated inside the die coater 30. The internal pressure is affected by the viscosity of the coating liquid L.
 高屈折率層塗布液Lの粘度μは、3mPa・s以上かつ30mPa・s以下である。低屈折率層塗布液Lの粘度μは、50mPa・s以上かつ500mPa・s以下であり、高屈折率層塗布液Lの粘度μよりも1桁以上大きい。したがって、高屈折率層塗布液Lが供給される凹部54の内圧Pは、低屈折率層塗布液Lが供給される凹部54の内圧Pより小さくなり、隣接する(隣り合う)バー40間で内圧の圧力差ΔPが生じる。 The viscosity μ 1 of the high refractive index layer coating liquid L 1 is 3 mPa · s or more and 30 mPa · s or less. The viscosity μ 2 of the low refractive index layer coating liquid L 2 is 50 mPa · s or more and 500 mPa · s or less, which is one digit or more larger than the viscosity μ 1 of the high refractive index layer coating liquid L 1 . Therefore, the internal pressure P 1 of the concave portion 54 to which the high refractive index layer coating liquid L 1 is supplied is smaller than the internal pressure P 2 of the concave portion 54 to which the low refractive index layer coating liquid L 2 is supplied, and is adjacent (adjacent). An internal pressure difference ΔP occurs between the bars 40.
 これにより、図10の比較例に示されるように、高圧の方(低屈折率層塗布液Lが供給される凹部54)と低圧の方(高屈折率層塗布液Lが供給される凹部54)との間に位置するバー40が、高圧の方から低圧の方へ押されて変形する。その結果、低屈折率層塗布液Lが通過するスリット58のスリット間隙D32は拡大し、高屈折率層塗布液Lが通過するスリット58のスリット間隙D31は縮小する。つまり、塗布幅方向のスリット間隙の分布が悪化することにより、スリット58から流出する塗布液Lの塗布幅方向の均一性が低下し、最終的には均一な塗布膜厚が得られなくなる。 Thus, as shown in the comparative example of FIG. 10, towards the low pressure (high refractive index layer coating solution L 1 is fed toward the high pressure (recess 54 having a low refractive index layer coating solution L 2 is supplied) The bar 40 positioned between the recess 54) is pushed and deformed from the high pressure to the low pressure. As a result, the slit gap D 32 of the slit 58 having a low refractive index layer coating solution L 2 passes is enlarged, the slit gap D 31 of the slit 58 the high refractive index layer coating solution L 1 passes is reduced. That is, the distribution of the slit gap in the coating width direction is deteriorated, so that the uniformity in the coating width direction of the coating liquid L flowing out from the slit 58 is lowered, and finally a uniform coating film thickness cannot be obtained.
 一方、低屈折率層塗布液Lが供給されるバー40のポケット部53の凹部54の内圧P2と、高屈折率層塗布液Lが供給されるバー40のポケット部53の凹部54の内圧P1と、の圧力差ΔPにより引き起こされるバーの変形は、圧力差ΔPによって発生する荷重によるバー40の撓みであると考えられる。したがって、バー40の変形量はバー40を構成する材料のヤング率Eに反比例する。 On the other hand, the internal pressure P2 of the recess 54 of the pocket portion 53 of the bar 40 having a low refractive index layer coating solution L 2 is supplied, the high-refractive index layer coating solution L 1 is a concave portion 54 of the pocket portion 53 of the bar 40 to be supplied The deformation of the bar caused by the pressure difference ΔP between the internal pressure P1 and the internal pressure P1 is considered to be the deflection of the bar 40 due to the load generated by the pressure difference ΔP. Therefore, the deformation amount of the bar 40 is inversely proportional to the Young's modulus E of the material constituting the bar 40.
 本実施の形態に係る塗布工程においては、上記のように、ねじれが発生し難いヤング率Eが大きい材料によって構成されたバー40が適用されている。これにより、バー40の変形が抑制され、塗布幅方向Wのスリット(隙間)58の均一性が維持され、塗布幅方向Wの塗布膜厚が不均一になることが防がれるため、製造される電磁波遮蔽フィルムの光学特性の均一性は、良好である。また、圧力差ΔPの影響による変形や、バーの幅広化による曲がりや反りの発生も抑制されるため、バー40を広幅かつ薄肉とすることが可能である。さらに、バー40の設置数(層数)を増しても、スライド面(端面57)が長くなることが抑制され、塗布液の流れに乱れが生じることが防がれる。したがって、層数を増しても広幅の同時重層塗布を良好に実施することが可能である。 In the coating process according to the present embodiment, as described above, the bar 40 made of a material having a high Young's modulus E that is less likely to be twisted is applied. As a result, the deformation of the bar 40 is suppressed, the uniformity of the slit (gap) 58 in the coating width direction W is maintained, and the coating film thickness in the coating width direction W is prevented from becoming non-uniform. The uniformity of the optical properties of the electromagnetic wave shielding film is good. In addition, since deformation due to the influence of the pressure difference ΔP and occurrence of bending and warping due to the widening of the bar are suppressed, the bar 40 can be made wide and thin. Furthermore, even if the number of installed bars (number of layers) is increased, the slide surface (end surface 57) is suppressed from becoming long, and the flow of the coating liquid is prevented from being disturbed. Therefore, even when the number of layers is increased, it is possible to satisfactorily perform wide simultaneous multilayer coating.
 なお、高屈折率層塗布液Lおよび低屈折率層塗布液Lが塗布されたフィルム基材22は、一旦1~15℃に冷却された後、乾燥工程に投入される。これにより、高屈折率層塗布液Lおよび低屈折率層塗布液Lは、乾燥されて熱硬化する。乾燥温度は、10℃以上、例えば、湿球温度5~50℃かつ塗布面温度10~50℃である。なお、フィルム基材を一旦冷却するのは、高屈折率層塗布液Lおよび低屈折率層塗布液Lの粘度を上昇させることにより、塗布層間の混ざりを抑制し、また、フィルム基材22のハンドリング性を向上させるためである。 The high-refractive index layer coating solution L 1 and the low refractive index layer coating solution L 2 is coated film substrate 22 is cooled once to 1 ~ 15 ° C., it is introduced into the drying step. Thus, the high-refractive index layer coating solution L 1 and the low refractive index layer coating solution L 2 is dried by heat curing. The drying temperature is 10 ° C. or higher, for example, a wet bulb temperature of 5 to 50 ° C. and a coating surface temperature of 10 to 50 ° C. Incidentally, to once cool the film substrate, by increasing the viscosity of the high refractive index layer coating solution L 1 and the low refractive index layer coating solution L 2, to suppress the mixing of the coating layers, The film substrate This is to improve the handleability of the 22.
 次に、層数を増しても広幅の同時重層塗布を良好に実施し得る条件を詳述する。 Next, the conditions under which a wide simultaneous multilayer coating can be satisfactorily performed even when the number of layers is increased will be described in detail.
 図11は、電磁波遮蔽フィルムの膜厚変動率に対するヤング率および圧力差の影響を説明するための試験結果を示しているテーブル、図12は、電磁波遮蔽フィルムの膜厚変動率に対するヤング率およびバーのポケット部の厚みの影響を説明するための試験結果を示しているテーブルである。 FIG. 11 is a table showing test results for explaining the influence of the Young's modulus and pressure difference on the film thickness fluctuation rate of the electromagnetic wave shielding film, and FIG. 12 shows the Young's modulus and bar with respect to the film thickness fluctuation rate of the electromagnetic wave shielding film. It is a table which shows the test result for demonstrating the influence of the thickness of a pocket part.
 まず、試験に係る共通の条件、つまり、低屈折率層塗布液の調製条件、高屈折率層塗布液の調製条件および塗布条件を、説明する。 First, common conditions relating to the test, that is, conditions for preparing a low refractive index layer coating solution, conditions for preparing a high refractive index layer coating solution, and coating conditions will be described.
 低屈折率層塗布液は、コロイダルシリカ(スノーテックスOXS、日産化学工業社製、固形分10質量%)12質量部に、ポリビニルアルコール(PVA―103、重合度300、鹸化度98.5mol%、クラレ社製)の5質量%水溶液2質量部、3質量%ホウ酸水溶液10質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(PVA―117、重合度1700、鹸化度98.5mol%、クラレ社製)の5質量%水溶液20質量部、界面活性剤(ラピゾールA30、日油社製)の1質量%水溶液1質量部を添加し、純水55質量部を加えて、攪拌混合することで調製した。 The coating solution for the low refractive index layer is composed of 12 parts by mass of colloidal silica (Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass), polyvinyl alcohol (PVA-103, polymerization degree 300, saponification degree 98.5 mol%, 2 parts by weight of a 5% by weight aqueous solution of Kuraray Co., Ltd., and 10 parts by weight of a 3% by weight aqueous boric acid solution were added, and the mixture was heated to 45 ° C. and stirred while polyvinyl alcohol (PVA-117, polymerization degree 1700, saponification). 20 mass parts of 5 mass% aqueous solution of degree 98.5 mol%, manufactured by Kuraray Co., Ltd., 1 mass part of 1 mass% aqueous solution of surfactant (Rapisol A30, manufactured by NOF Corporation) were added, and 55 mass parts of pure water was added. And prepared by stirring and mixing.
 高屈折率層塗布液は、シリカ付着二酸化チタンゾル(固形分20.0質量%)30質量部に、ポリビニルアルコール(PVA―103、重合度300、鹸化度98.5mol%、クラレ社製)の5質量%水溶液2質量部、3質量%ホウ酸水溶液10質量部、2質量%クエン酸水溶液10質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(PVA―617、重合度1700、鹸化度95.0mol%、クラレ社製)の5質量%水溶液20質量部、界面活性剤(ラピゾールA30、日油社製)の1質量%水溶液1質量部を添加し、純水27質量部を加えて、攪拌混合することで調製した。 The coating solution for the high refractive index layer is 5 parts of polyvinyl alcohol (PVA-103, polymerization degree 300, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.) in 30 parts by mass of silica-attached titanium dioxide sol (solid content 20.0% by mass). After adding 2 parts by weight of 2% by weight aqueous solution, 10 parts by weight of 3% by weight aqueous boric acid solution, and 10 parts by weight of 2% by weight aqueous citric acid solution, the mixture was heated to 45 ° C. and stirred while polyvinyl alcohol (PVA-617, polymerized). 20 parts by weight of a 5% by weight aqueous solution having a degree of 1700, a degree of saponification of 95.0 mol%, manufactured by Kuraray Co., Ltd., and 1 part by weight of a 1% by weight aqueous solution of a surfactant (Rapidol A30, manufactured by NOF Corporation) It was prepared by adding part by mass and stirring and mixing.
 なお、シリカ付着二酸化チタンゾルは、15.0質量%酸化チタンゾル(SRD-W、体積平均粒径5nm、ルチル型二酸化チタン粒子、堺化学社製)0.5質量部に純水2質量部を加えて、90℃に加熱し、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学社製)をSiO濃度が2.0質量%となるように純水で希釈したもの)1.3質量部を徐々に添加し、そして、オートクレーブ中、175℃で18時間加熱処理を行い、その後冷却し、限外濾過膜にて濃縮することにより、得た。 The silica-attached titanium dioxide sol is obtained by adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.). Then, heated to 90 ° C., 1.3 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 2.0% by mass) It was obtained by gradually adding and heat-treating at 175 ° C. for 18 hours in an autoclave, then cooling and concentrating with an ultrafiltration membrane.
 低屈折率層塗布液および高屈折率層塗布液は、45℃に保温して、ダイコーターに供給し、15層の同時重層塗布を実施した。最下層および最上層は、低屈折率層となっており、低屈折率層は、高屈折率層より1つ多く含まれている。 The low refractive index layer coating solution and the high refractive index layer coating solution were kept at 45 ° C. and supplied to a die coater, and 15 layers were simultaneously coated. The lowermost layer and the uppermost layer are low refractive index layers, and the low refractive index layer is included one more than the high refractive index layer.
 スリット間隙は、0.2mmに設定した。高屈折率層塗布液および低屈折率層塗布液粘度は、10mPa・sおよび100mPa・sに設定した。 The slit gap was set to 0.2 mm. The viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution was set to 10 mPa · s and 100 mPa · s.
 フィルム基材は、厚さ50μmかつ幅2000mmのポリエチレンテレフタレートフィルム(東洋紡社製A4300:両面易接着層)からなり、塗布液の塗布時、45℃に昇温した。ダイコーターのフロントバーおよびバックバーは、厚さ40mmのものを使用した。塗布速度および塗布幅は、50m/minおよび1950mmに設定した。低屈折率層および高屈折率層の塗布厚みは、乾燥時の平均膜厚として150nmとなるように設定した。 The film substrate was a polyethylene terephthalate film (A4300 manufactured by Toyobo Co., Ltd .: double-sided easy-adhesion layer) having a thickness of 50 μm and a width of 2000 mm, and the temperature was raised to 45 ° C. during application of the coating solution. The front bar and back bar of the die coater were 40 mm thick. The coating speed and coating width were set to 50 m / min and 1950 mm. The coating thickness of the low refractive index layer and the high refractive index layer was set to be 150 nm as an average film thickness during drying.
 次に、電磁波遮蔽フィルムの膜厚変動率の算出方法を説明する。 Next, a method of calculating the film thickness fluctuation rate of the electromagnetic wave shielding film will be described.
 電磁波遮蔽フィルムの膜厚変動率V[%]は、膜厚変動幅を膜厚平均値によって除し、100を乗じた値である。膜厚変動幅は、膜厚の最小値と最大値との差である。膜厚平均値は、塗布幅方向に50mm間隔で測定された膜厚の全幅に関する平均値である。 The film thickness fluctuation rate V [%] of the electromagnetic wave shielding film is a value obtained by dividing the film thickness fluctuation width by the film thickness average value and multiplying by 100. The film thickness variation width is a difference between the minimum value and the maximum value of the film thickness. The film thickness average value is an average value related to the entire width of the film thickness measured at intervals of 50 mm in the coating width direction.
 膜厚は、上記条件で製造された電磁波遮蔽フィルムの断面を観察して得られた画像を、デジタル化し、コントラストを調整する画像処理を施した後で、各層毎に測定して得た。断面の観察は、電子顕微鏡(FE-SEM、S-5000H型、日立製作所製)を用いて、加速電圧2.0kVの条件で1cm長さが観察できるように視野数を選んで実施した。なお、膜厚は、1000箇所の測定結果の平均値である。 The film thickness was obtained by measuring each layer after digitizing an image obtained by observing the cross section of the electromagnetic wave shielding film produced under the above conditions and performing image processing for adjusting contrast. The cross section was observed using an electron microscope (FE-SEM, S-5000H type, manufactured by Hitachi, Ltd.) with the number of fields of view selected so that a length of 1 cm could be observed under the condition of an acceleration voltage of 2.0 kV. The film thickness is an average value of 1000 measurement results.
 次に、電磁波遮蔽フィルムの膜厚変動率に対するヤング率および圧力差の影響を説明する。 Next, the influence of Young's modulus and pressure difference on the film thickness fluctuation rate of the electromagnetic shielding film will be described.
 試験に係る個別の条件として、バーの構成材料を異ならせることによって、ヤング率Eを、106~540GPaの範囲で変化させ、かつ、塗布液に純水を追加して粘度を調整することで、圧力差ΔPを、0.1~1.0MPaの範囲で変化させた。圧力差ΔPは、低屈折率層塗布液Lが供給されるバーのポケット部の凹部の内圧Pと、高屈折率層塗布液Lが供給されるバーのポケット部の凹部の内圧Pと、の圧力差である。バーの基端部の厚みDおよびポケット部の厚みDは、共通であり、15mmおよび10mmに設定した。 As an individual condition related to the test, by changing the constituent material of the bar, the Young's modulus E is changed in the range of 106 to 540 GPa, and the viscosity is adjusted by adding pure water to the coating solution. The pressure difference ΔP was changed in the range of 0.1 to 1.0 MPa. The pressure difference ΔP is, the internal pressure P 2 of the recess of the pocket portion of the bar having a low refractive index layer coating solution L 2 is supplied, the recess of the pocket portion of the bar which high refractive index layer coating solution L 1 is supplied internal pressure P 1 and the pressure difference. The thickness D 1 and a thickness D 4 of the pocket portion of the proximal end portion of the bars are common, it was set to 15mm and 10 mm.
 図11に示されるように、構成材料がセラミックスかつヤング率Eが240GPa以上であるバーおよび構成材料が超硬合金かつヤング率Eが240GPa以上であるバーは、構成材料が純チタンかつヤング率Eが204GPa以下であるバーおよび構成材料がSUS630(析出硬化系ステンレス鋼)かつヤング率Eが204GPa以下であるバーに比較し、膜厚変動率(V)が良好であり、均一な塗膜を得ることができた。 As shown in FIG. 11, a bar whose constituent material is ceramic and Young's modulus E is 240 GPa or more and a bar whose constituent material is cemented carbide and whose Young's modulus E is 240 GPa or more are pure titanium and Young's modulus E Compared to a bar having a thickness of 204 GPa or less and a constituent material of SUS630 (precipitation hardening stainless steel) and a Young's modulus E of 204 GPa or less, the film thickness variation rate (V) is good and a uniform coating film is obtained. I was able to.
 特に、構成材料がセラミックス(ジルコニア)かつヤング率Eが240GPaであるバーは、圧力差ΔPが0.5MPa以下の場合、膜厚変動率(V)が3.0%以下であった。構成材料がセラミックス(アルミナ90%)かつヤング率Eが280GPaであるバーは、圧力差ΔPに関係なく、膜厚変動率(V)が1.0%以下であった。構成材料がセラミックス(アルミナ99.8%)かつヤング率Eが390GPa以上であるバーおよび構成材料が超硬合金かつヤング率Eが390GPa以上であるバーは、膜厚変動率(V)が0.5%以下であった。 In particular, a bar whose constituent material is ceramics (zirconia) and Young's modulus E is 240 GPa has a film thickness variation rate (V) of 3.0% or less when the pressure difference ΔP is 0.5 MPa or less. A bar whose constituent material is ceramics (alumina 90%) and whose Young's modulus E is 280 GPa has a film thickness variation rate (V) of 1.0% or less regardless of the pressure difference ΔP. A bar whose constituent material is ceramic (alumina 99.8%) and Young's modulus E is 390 GPa or more and a bar whose constituent material is cemented carbide and whose Young's modulus E is 390 GPa or more have a film thickness variation rate (V) of 0. It was 5% or less.
 つまり、バーのポケット部の厚みDが10mmとたいへん薄く、かつ圧力差ΔPが0.1MPaを越えるような場合であっても、ヤング率Eが240GPa以上であれば、バーの変形を抑制することが可能であり、塗布幅方向のスリット(隙間)の均一性が維持され、また、ヤング率Eは、280GPa以上が好ましく、390GPa以上がより好ましいことが示されている。なお、ヤング率Eの上限には特に制約が無く、大きければ大きいほど層数を増やすことが可能であるが、適用可能な構成材料が限定される。 That is, the bar very thin and the thickness D 4 is 10mm in the pocket of, and even when the pressure difference ΔP as exceeding 0.1 MPa, Young's modulus E is equal to or larger than 240 GPa, suppressing deformation of the bars It is shown that the uniformity of the slit (gap) in the coating width direction is maintained, and the Young's modulus E is preferably 280 GPa or more, more preferably 390 GPa or more. In addition, there is no restriction | limiting in particular in the upper limit of the Young's modulus E, The number of layers can be increased, so that it is large, but applicable constituent materials are limited.
 次に、電磁波遮蔽フィルムの膜厚変動率に対するヤング率およびバーのポケット部の厚みの影響を、説明する。 Next, the influence of the Young's modulus and the thickness of the pocket of the bar on the film thickness fluctuation rate of the electromagnetic shielding film will be described.
 試験に係る個別の条件として、ヤング率Eを、バーの構成材料を異ならせることによって、106~540GPaの範囲で変化させ、かつ、バーのポケット部の厚みDを、5~15mmの範囲で変化させた。バーの基端部の厚みDは、ポケット部の厚みに応じて、10~20mmの範囲で変化させた。圧力差ΔPは、共通であり、0.3MPaに設定した。 As a separate condition according to the test, the Young's modulus E, by varying the bar of the material, was varied in the range of 106 ~ 540GPa, and a thickness D 4 of the pocket portion of the bar, in the range of 5 ~ 15 mm Changed. The thickness D 1 of the proximal end portion of the bars, depending on the thickness of the pocket portion was changed in the range of 10 ~ 20 mm. The pressure difference ΔP is common and was set to 0.3 MPa.
 図12に示されるように、構成材料がセラミックスかつヤング率Eが240GPa以上であるバーおよび構成材料が超硬合金かつヤング率Eが240GPa以上であるバーは、構成材料が純チタンかつヤング率Eが204GPa以下であるバーおよび構成材料がSUS630(析出硬化系ステンレス鋼)かつヤング率Eが204GPa以下であるバーに比較し、膜厚変動率(V)が良好であり、均一な塗膜を得ることができた。 As shown in FIG. 12, a bar whose constituent material is ceramic and Young's modulus E is 240 GPa or more and a bar whose constituent material is cemented carbide and whose Young's modulus E is 240 GPa or more are composed of pure titanium and Young's modulus E. Compared to a bar having a thickness of 204 GPa or less and a constituent material of SUS630 (precipitation hardening stainless steel) and a Young's modulus E of 204 GPa or less, the film thickness variation rate (V) is good and a uniform coating film is obtained. I was able to.
 特に、構成材料がセラミックス(ジルコニア)かつヤング率Eが240GPaであるバーは、ポケット部の厚みDが10mm以上の場合、膜厚変動率(V)が3.0%以下であった。構成材料がセラミックス(アルミナ90%)かつヤング率Eが280GPaであるバーは、ポケット部の厚みDに関係なく、膜厚変動率(V)が1.0%以下であった。構成材料がセラミックス(アルミナ99.8%)かつヤング率Eが390GPa以上であるバーおよび構成材料が超硬合金かつヤング率Eが390GPa以上であるバーは、膜厚変動率(V)が0.5%以下であった。 In particular, the bar construction material ceramics (zirconia) and Young's modulus E is 240GPa, when the thickness D 4 of the pocket portion is not less than 10 mm, the thickness variation rate (V) was 3.0% or less. Constituent materials are ceramics (90% alumina) and Young's modulus E is 280GPa bars, regardless of the thickness D 4 of the pocket portion, the thickness variation rate (V) was 1.0% or less. A bar whose constituent material is ceramic (alumina 99.8%) and Young's modulus E is 390 GPa or more and a bar whose constituent material is cemented carbide and whose Young's modulus E is 390 GPa or more have a film thickness variation rate (V) of 0. It was 5% or less.
 つまり、バーのポケット部の厚みDが15mm以下であっても、ヤング率Eが240GPa以上であれば、バーの変形を抑制することが可能であり、塗布幅方向のスリット(隙間)の均一性が維持され、また、ヤング率Eは、図11に示される試験結果と同様に、280GPa以上が好ましく、390GPa以上がより好ましいことが示されている。 That is, even less bar pocket portion thickness D 4 is 15mm in, if the Young's modulus E is 240GPa or more, it is possible to suppress deformation of the bars, uniform slit coating width (clearance) The Young's modulus E is preferably 280 GPa or more, and more preferably 390 GPa or more, as in the test results shown in FIG.
 したがって、例えば、バー40のポケット部53の厚みDを15mm以下に設定することによって、バー40を薄くする(薄肉化および軽量化する)ことが可能であり、バー40の設置数(層数)を増しても、スライド面が長くなることが抑制されるため、塗布液の流れに乱れが生じることが防がれる。また、ダイコーター30の小型化、少スペース化、省エネルギー、装置コストの削減が可能となり、かつ、取り扱いも容易となり、作業性の向上および塗布工程での故障の低減も期待できる。なお、バーのポケット部の厚みDの下限には制約は無く、薄ければ薄いほど層数を増やすことが可能である。しかし、バーのポケット部の厚みDは、過度に小さくなると、圧力差ΔPの影響を受け易くなるため、5mm以上が好ましい。 Thus, for example, by setting the thickness D 4 of the pocket portion 53 of the bar 40 to 15mm or less, to thin the bar 40 (thinning and weight reduction) it is possible, the installation number of the bar 40 (the number of layers ) Is suppressed, it is possible to prevent the slide surface from becoming long, so that the flow of the coating liquid is prevented from being disturbed. In addition, the die coater 30 can be reduced in size, space-saving, energy saving, and apparatus cost can be reduced, handling is easy, and workability can be improved and failure in the coating process can be expected. Note that the lower limit of the thickness D 4 of the pocket portion of the bar restriction is not, it is possible to increase the the thinner the number of layers. However, the thickness D 4 of the pocket portion of the bar, an excessively reduced, it becomes susceptible to the pressure difference [Delta] P, is preferably at least 5 mm.
 以上のように、本実施の形態においては、少なくともバーの主要部であるポケット部が、ねじれが発生し難いヤング率が大きい材料で構成されている。これにより、バーの変形が抑制され、塗布幅方向のスリット(隙間)の均一性が維持され、塗布幅方向の塗布膜厚が不均一になることが防がれるため、製造される電磁波遮蔽フィルムの光学特性の均一性は、良好である。また、圧力差の影響による変形や、バーの幅広化による曲がりや反りの発生も抑制されるため、バーを広幅かつ薄肉とすることが可能である。さらに、バーを薄肉とすることにより、バーの設置数(層数)を増しても、スライド面が長くなることが抑制され、塗布液の流れに乱れが生じることが防がれる。したがって、層数を増しても広幅の同時重層塗布を良好に実施することが可能であるダイコーター、塗布装置、塗布方法および電磁波遮蔽フィルムの製造方法を提供することが可能である。 As described above, in the present embodiment, at least the pocket portion, which is the main portion of the bar, is made of a material having a high Young's modulus that is unlikely to be twisted. As a result, the deformation of the bar is suppressed, the uniformity of the slit (gap) in the coating width direction is maintained, and the coating film thickness in the coating width direction is prevented from becoming non-uniform, so that the manufactured electromagnetic shielding film The uniformity of the optical characteristics is good. Further, since deformation due to the effect of the pressure difference and occurrence of bending and warping due to the widening of the bar are suppressed, the bar can be made wide and thin. Furthermore, by making the bar thin, even if the number of installed bars (number of layers) is increased, the slide surface is prevented from becoming long, and the flow of the coating liquid is prevented from being disturbed. Therefore, it is possible to provide a die coater, a coating apparatus, a coating method, and a method for manufacturing an electromagnetic wave shielding film, which are capable of satisfactorily performing wide simultaneous multilayer coating even when the number of layers is increased.
 本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲で種々改変することができる。例えば、電磁波遮蔽フィルムは、可視光反射フィルム、遠赤外線反射フィルムおよび紫外線反射フィルムに適用することが可能である。この場合、電磁波遮蔽フィルムは、高屈折率層および低屈折率層の光学膜厚を調整することによって、近赤外光に替えて、可視光、遠赤外線あるいは紫外線を反射するように設計される。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims. For example, the electromagnetic wave shielding film can be applied to a visible light reflecting film, a far infrared reflecting film, and an ultraviolet reflecting film. In this case, the electromagnetic wave shielding film is designed to reflect visible light, far infrared light, or ultraviolet light instead of near infrared light by adjusting the optical film thickness of the high refractive index layer and the low refractive index layer. .
 フィルム基材の両面に、高屈折率層と低屈折率層とが交互に積層した構造を配置することも可能である。これは、例えば、フィルム基材の一方の面に、同時重層塗布を実施して乾燥した後で、フィルム基材の他方の面に、再度、同時重層塗布を実施して乾燥することによって実施される。高屈折率層の設置数を、低屈折率層の設置数より多くすることも可能である。これは、高屈折率層と低屈折率層とが交互に積層した構造の最下層および最上層に、高屈折率層を配置することによって実施される。また、低屈折率層の設置数と高屈折率層の設置数とを同一とすることも可能である。 It is also possible to arrange a structure in which high refractive index layers and low refractive index layers are alternately laminated on both surfaces of the film substrate. This is performed, for example, by performing simultaneous multi-layer coating on one side of the film substrate and drying, and then performing simultaneous multi-layer coating again on the other side of the film substrate and drying. The It is also possible to increase the number of installed high refractive index layers than the number of installed low refractive index layers. This is performed by disposing the high refractive index layer in the lowermost layer and the uppermost layer of the structure in which the high refractive index layer and the low refractive index layer are alternately laminated. It is also possible to make the number of the low refractive index layers and the number of the high refractive index layers the same.
 フィルム基材を吸引し、その形状の歪みを矯正する減圧機構を、塗布装置のバックロールの近傍に配置し、ダイコーターとフィルム基材との間のクリアランス精度を向上させることも可能である。 It is also possible to improve the clearance accuracy between the die coater and the film substrate by arranging a decompression mechanism that sucks the film substrate and corrects the distortion of its shape in the vicinity of the back roll of the coating apparatus.
 別の機能を有する層を、フィルム基材と塗布層との間や、塗布層の表面に配置することが可能である。例えば、フィルム基材と塗布層との間にガスバリア層や易接着層を配置したり、塗布層の表面にハードコート層や耐摩耗性層を配置したりすることも可能である。 It is possible to arrange a layer having another function between the film base and the coating layer or on the surface of the coating layer. For example, it is possible to dispose a gas barrier layer or an easy-adhesion layer between the film substrate and the coating layer, or to dispose a hard coat layer or an abrasion-resistant layer on the surface of the coating layer.
 本出願は、2013年8月20日に出願された日本特許出願番号2013-170647号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-170647 filed on August 20, 2013, the disclosures of which are referenced and incorporated as a whole.
10 塗布装置、
20 搬送系、
22 フィルム基材、
24 バックロール、
30 ダイコーター、
32 積層体、
40 バー、
42 フロントバー、
44 中間バー、
46 バックバー、
50 基端部、
51 端面、
52 貫通孔、
53 ポケット部
54 凹部、
56 先端部、
57 端面、
58 スリット(隙間)、
60 側方壁部、
70 塗布液供給系、
72 調製釜、
73 配管系、
74 ポンプ、
76 調製釜、
77 配管系、
78 ポンプ、
81,82 圧力センサー、
,D,D,D31,D32,D 厚み、
F 塗布方向、
L,L,L 塗布液、
W 塗布幅方向、
μ,μ 粘度。
10 coating device,
20 transport system,
22 film substrate,
24 Backroll,
30 Die coater,
32 laminates,
40 bars,
42 Front bar,
44 middle bar,
46 Backbar,
50 proximal end,
51 end face,
52 through holes,
53 pocket part 54 recess,
56 tip,
57 end face,
58 slit (gap),
60 side wall,
70 coating solution supply system,
72 preparation kettle,
73 Piping system,
74 pumps,
76 Preparation kettle,
77 Piping system,
78 pump,
81,82 pressure sensor,
D 1 , D 2 , D 3 , D 31 , D 32 , D 4 thickness,
F coating direction,
L, L 1 , L 2 coating solution,
W coating width direction,
μ 1 and μ 2 viscosities.

Claims (17)

  1.  同時重層塗布をするための複数の積層されたバーを有し、
     前記バーは、
     隣接する別のバーとの間に隙間を形成する先端部と、
     前記別のバーと当接する基端部と、
     前記先端部と前記基端部との間に位置し、塗布液溜まり部である凹部を有するポケット部と、を有し、
     前記隙間から吐出された塗布液が前記先端部の端面を流下するスライド式のダイコーターであって、
     少なくとも前記ポケット部を構成する材料のヤング率は、240GPa以上であるダイコーター。
    Having a plurality of stacked bars for simultaneous multi-layer application;
    The bar
    A tip that forms a gap between another adjacent bar;
    A proximal end abutting against the another bar;
    A pocket portion located between the distal end portion and the base end portion and having a recess that is a coating liquid reservoir,
    A slide type die coater in which the coating liquid discharged from the gap flows down the end face of the tip,
    The die coater whose Young's modulus of the material which comprises the said pocket part at least is 240 GPa or more.
  2.  前記材料のヤング率は、280GPa以上である請求項1に記載のダイコーター。 The die coater according to claim 1, wherein the material has a Young's modulus of 280 GPa or more.
  3.  前記材料は、超硬合金あるいはセラミックスである請求項1又は請求項2に記載のダイコーター。 The die coater according to claim 1 or 2, wherein the material is a cemented carbide or a ceramic.
  4.  少なくとも前記ポケット部は、単一の材料から構成されている請求項1~3のいずれか1項に記載のダイコーター。 The die coater according to any one of claims 1 to 3, wherein at least the pocket portion is made of a single material.
  5.  前記ポケット部の厚みは、15mm以下である請求項1~4のいずれか1項に記載のダイコーター。 The die coater according to any one of claims 1 to 4, wherein the pocket portion has a thickness of 15 mm or less.
  6.  前記ポケット部の厚みは、10mm以下である請求項5に記載のダイコーター。 The die coater according to claim 5, wherein the pocket portion has a thickness of 10 mm or less.
  7.  前記ポケット部の厚みは、5mm以上である請求項5又は請求項6に記載のダイコーター。 The die coater according to claim 5 or 6, wherein the pocket portion has a thickness of 5 mm or more.
  8.  前記バーの長さおよび高さは、それぞれ1m以上および80mm以上である請求項1~7のいずれか1項に記載のダイコーター。 The die coater according to any one of claims 1 to 7, wherein a length and a height of the bar are 1 m or more and 80 mm or more, respectively.
  9.  請求項1~8のいずれか1項に記載のダイコーターと、
     第1塗布液を保持する第1容器と、
     第2塗布液を保持する第2容器と、
     前記第1容器に保持されている前記第1塗布液を、前記ダイコーターに供給する第1塗布液供給系と、
     前記第2容器に保持されている前記第2塗布液を、前記ダイコーターに供給する第2塗布液供給系と、
     を有する塗布装置。
    A die coater according to any one of claims 1 to 8,
    A first container for holding a first coating liquid;
    A second container for holding a second coating liquid;
    A first coating liquid supply system for supplying the first coating liquid held in the first container to the die coater;
    A second coating solution supply system for supplying the second coating solution held in the second container to the die coater;
    A coating apparatus.
  10.  前記第2塗布液が供給されるバーのポケット部の凹部の内圧と、前記第1塗布液が供給されるバーのポケット部の凹部の内圧との圧力差は、0.3MPa以下になるように設定されている請求項9に記載の塗布装置。 The pressure difference between the internal pressure of the concave portion of the pocket portion of the bar supplied with the second coating liquid and the internal pressure of the concave portion of the pocket portion of the bar supplied with the first coating liquid is 0.3 MPa or less. The coating device according to claim 9, which is set.
  11.  前記圧力差は、0.1MPa以下になるように設定されている請求項10に記載の塗布装置。 The coating apparatus according to claim 10, wherein the pressure difference is set to be 0.1 MPa or less.
  12.  前記第1塗布液の塗布層は、交互に積層された高屈折率層および低屈折率層を有する電磁波遮蔽フィルムにおける前記高屈折率層を構成し、
     前記第2塗布液の塗布層は、前記低折率層を構成する請求項9~11のいずれか1項に記載の塗布装置。
    The coating layer of the first coating liquid constitutes the high refractive index layer in the electromagnetic wave shielding film having a high refractive index layer and a low refractive index layer laminated alternately,
    The coating apparatus according to any one of claims 9 to 11, wherein the coating layer of the second coating liquid constitutes the low refractive index layer.
  13.  請求項1~8のいずれか1項に記載のダイコーターに対して、第1塗布液および第2塗布液を供給し、前記ダイコーターのバーの先端部の隙間から吐出させ、前記先端部の端面を流下させることにより、前記第1塗布液の塗布層と、前記第2塗布液の塗布層とを交互に積層させて、フィルム基材に同時重層塗布する塗布方法。 A first coating liquid and a second coating liquid are supplied to the die coater according to any one of claims 1 to 8, and are discharged from a gap at a tip portion of the bar of the die coater. A coating method in which a coating layer of the first coating solution and a coating layer of the second coating solution are alternately laminated by causing the end surface to flow down, and a multilayer coating is simultaneously applied to the film substrate.
  14.  前記第2塗布液が供給されるバーのポケット部の凹部の内圧と、前記第1塗布液が供給されるバーのポケット部の凹部の内圧との圧力差は、0.3MPa以下である請求項13に記載の塗布方法。 The pressure difference between the internal pressure of the concave portion of the pocket portion of the bar supplied with the second coating liquid and the internal pressure of the concave portion of the pocket portion of the bar supplied with the first coating liquid is 0.3 MPa or less. 14. The coating method according to 13.
  15.  前記圧力差は、0.1MPa以下である請求項14に記載の塗布方法。 The coating method according to claim 14, wherein the pressure difference is 0.1 MPa or less.
  16.  前記第1塗布液の塗布層は、交互に積層された高屈折率層および低屈折率層を有する電磁波遮蔽フィルムにおける前記高屈折率層を構成し、
     前記第2塗布液の塗布層は、前記低折率層を構成する請求項13~15のいずれか1項に記載の塗布方法。
    The coating layer of the first coating liquid constitutes the high refractive index layer in the electromagnetic wave shielding film having a high refractive index layer and a low refractive index layer laminated alternately,
    The coating method according to any one of claims 13 to 15, wherein the coating layer of the second coating solution constitutes the low refractive index layer.
  17.  請求項16に記載の塗布方法を用いて高屈折率層および低屈折率層を同時重層塗布する工程を有する電磁波遮蔽フィルムの製造方法。 A method for producing an electromagnetic wave shielding film, comprising a step of simultaneously applying a high refractive index layer and a low refractive index layer by using the coating method according to claim 16.
PCT/JP2014/062629 2013-08-20 2014-05-12 Die coater, coating device, coating method, and method for manufacturing electromagnetic wave-shielding film WO2015025563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532726A JPWO2015025563A1 (en) 2013-08-20 2014-05-12 Die coater, coating apparatus, coating method, and electromagnetic wave shielding film manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013170647 2013-08-20
JP2013-170647 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015025563A1 true WO2015025563A1 (en) 2015-02-26

Family

ID=52483350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062629 WO2015025563A1 (en) 2013-08-20 2014-05-12 Die coater, coating device, coating method, and method for manufacturing electromagnetic wave-shielding film

Country Status (2)

Country Link
JP (1) JPWO2015025563A1 (en)
WO (1) WO2015025563A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140739A (en) * 1998-11-10 2000-05-23 Canon Inc Sheet coating apparatus, coating by using the same and production of color filter
JP2002254007A (en) * 2001-02-27 2002-09-10 Mitsubishi Materials Corp Coating device
JP2004283820A (en) * 2003-03-03 2004-10-14 Toray Ind Inc Slit dye and method and device for manufacturing base having coating film
JP2005046805A (en) * 2003-07-31 2005-02-24 Toppan Printing Co Ltd Coating device and functional film for optical use produced by using it
JP2006167685A (en) * 2004-12-20 2006-06-29 Konica Minolta Medical & Graphic Inc Coating apparatus and method for manufacturing die coater
JP2013049022A (en) * 2011-08-31 2013-03-14 Dainippon Printing Co Ltd Laminate manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140739A (en) * 1998-11-10 2000-05-23 Canon Inc Sheet coating apparatus, coating by using the same and production of color filter
JP2002254007A (en) * 2001-02-27 2002-09-10 Mitsubishi Materials Corp Coating device
JP2004283820A (en) * 2003-03-03 2004-10-14 Toray Ind Inc Slit dye and method and device for manufacturing base having coating film
JP2005046805A (en) * 2003-07-31 2005-02-24 Toppan Printing Co Ltd Coating device and functional film for optical use produced by using it
JP2006167685A (en) * 2004-12-20 2006-06-29 Konica Minolta Medical & Graphic Inc Coating apparatus and method for manufacturing die coater
JP2013049022A (en) * 2011-08-31 2013-03-14 Dainippon Printing Co Ltd Laminate manufacturing method

Also Published As

Publication number Publication date
JPWO2015025563A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
CN107407753B (en) Near-infrared shielding film, its manufacturing method and adhesive compound
US10509251B2 (en) Polymerizable composition, wavelength conversion member, backlight unit, and liquid crystal display device
JP6083386B2 (en) Optical laminated film, infrared shielding film and infrared shielding body
CN113728251B (en) Optical laminate and article
US9597707B2 (en) Manufacturing method for multilayer laminated film
KR101245436B1 (en) Manufacturing method of antireflection film, antireflection film, polarizing plate using the same, and image display apparatus using the same
KR101354417B1 (en) Reflective polizer having bead coating layer
JP3411009B2 (en) Anti-reflection film
KR101354414B1 (en) Multilayer reflective polizer having bead coating layer
KR101149538B1 (en) Optical polyester film with primer layer easily controlling refraction index
WO2015025563A1 (en) Die coater, coating device, coating method, and method for manufacturing electromagnetic wave-shielding film
KR20110133209A (en) High refractive index hard coating compositions using roll printing and printing film using it
WO2014208183A1 (en) Method for manufacturing electromagnetic-wave-shielding film
KR101375238B1 (en) Reflective film with two metal reflective components
JP2015013232A (en) Die coater, method of manufacturing the same, coating applicator, and coating method
CN105670528B (en) A kind of building fenestrated membrane
CN105899978B (en) The manufacturing method of optical reflectance coating
JP2015042388A (en) Apparatus and method for manufacturing film
CN108351448A (en) Optical reflectance coating and optical reflector
WO2015037514A1 (en) Method for manufacturing multilayer dielectric film
WO2014185385A1 (en) Production method for infrared shielding film
CN105228755A (en) The manufacture method of infrared shielding film
CN204758855U (en) Light reflector
JP7338359B2 (en) Optical polyester film roll
WO2017022579A1 (en) Heat-ray reflecting material and window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837163

Country of ref document: EP

Kind code of ref document: A1