WO2023032513A1 - 高周波回路および通信装置 - Google Patents

高周波回路および通信装置 Download PDF

Info

Publication number
WO2023032513A1
WO2023032513A1 PCT/JP2022/028391 JP2022028391W WO2023032513A1 WO 2023032513 A1 WO2023032513 A1 WO 2023032513A1 JP 2022028391 W JP2022028391 W JP 2022028391W WO 2023032513 A1 WO2023032513 A1 WO 2023032513A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
filter
selection
band
amplifier
Prior art date
Application number
PCT/JP2022/028391
Other languages
English (en)
French (fr)
Inventor
弘嗣 森
伸也 人見
聡 田中
正英 武部
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023032513A1 publication Critical patent/WO2023032513A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the present invention relates to high frequency circuits and communication devices.
  • the present invention provides a high-frequency circuit and a communication device in which deterioration of transmission characteristics is suppressed when a power class that allows a higher maximum output power than before is applied to the FDD band.
  • a high-frequency circuit is connected between an antenna connection terminal, a power amplifier circuit corresponding to power class 2, and the power amplifier circuit and the antenna connection terminal. and is connected between a first filter having a passband that includes the uplink operating band of the first band for frequency division duplexing, the power amplifier circuit and the antenna connection terminal, and supports power class 3, frequency division a second filter having a passband including the uplink operating band of the first band for duplexing, and a second band for time division duplexing, corresponding to power class 2, connected between the power amplifier circuit and the antenna connection terminal; and a third filter having a passband including the and the second filter, and when the transmission signal of the second band corresponding to power class 2 is output from the antenna connection terminal, the transmission signal of the second band is output from the power amplifier circuit to the third filter.
  • a high-frequency circuit includes a first substrate, a first antenna connection terminal and a second antenna connection terminal, a first amplifier corresponding to power class 2, a first amplifier, and a first antenna connection terminal. and having a passband corresponding to power class 3 and including the uplink operating band of the first band for frequency division duplexing, and between the first amplifier and the first antenna connection terminal a third filter connected to and corresponding to power class 2 and having a passband including a second band for time division duplexing; a first common terminal; a first selection terminal; and a second selection terminal; and the first selection terminal, and the connection between the first common terminal and the second selection terminal; a seventh selection terminal for switching connection and non-connection between the fourth common terminal and the sixth selection terminal; connection between the third common terminal and the fifth selection terminal; and connection between the third common terminal and the seventh selection terminal.
  • a third switch for switching connections, wherein the output terminal of the first amplifier is connected to the first common terminal, the first selection terminal is connected to the input terminal of the first filter, and the second selection terminal is connected to the third filter.
  • a third common terminal connected to the first antenna connection terminal; a fourth common terminal connected to the second antenna connection terminal; a fifth selection terminal connected to the output terminal of the first filter; 7 selection terminal is connected to the output end of the third filter, the first amplifier, the first switch, the third switch, the first filter and the third filter are arranged on the first substrate, the first band corresponding to the power class 2 , when the transmission signal of the uplink operating band of the first band corresponding to power class 3 is input to the sixth selection terminal from the second amplifier different from the first amplifier, the first When outputting a transmission signal in the uplink operating band of the first band corresponding to power class 3 from the amplifier to the first filter and outputting a transmission signal in the second band corresponding to power class 2 from the first amplifier to the second The transmit signal of the band is output to the third filter.
  • the present invention it is possible to provide a high-frequency circuit and a communication device in which deterioration of transmission characteristics is suppressed when a power class that allows a higher maximum output power than before is applied to the FDD band.
  • FIG. 1 is a circuit configuration diagram of a high-frequency circuit and a communication device according to an embodiment.
  • FIG. 2A is a diagram showing a transmission state of an FDD signal of power class 2 in the high frequency circuit according to the embodiment.
  • FIG. 2B is a diagram showing a transmission state of a TDD signal of power class 2 in the high frequency circuit according to the embodiment.
  • 3A is a diagram illustrating a first example of a distribution circuit and a combining circuit according to an embodiment;
  • FIG. 3B is a diagram illustrating a second example of the distribution circuit and the combining circuit according to the embodiment;
  • FIG. 3C is a diagram for explaining impedance fluctuations of the filter with respect to load fluctuations in the second example.
  • FIG. 1 is a circuit configuration diagram of a high-frequency circuit and a communication device according to an embodiment.
  • FIG. 2A is a diagram showing a transmission state of an FDD signal of power class 2 in the high frequency circuit according to the embodiment.
  • FIG. 2B is
  • 3D is a diagram illustrating a third example of a distribution circuit and a combining circuit according to the embodiment
  • 4A is a circuit configuration diagram of a high-frequency circuit according to Modification 1 of the embodiment.
  • FIG. FIG. 4B is a circuit configuration diagram of a high-frequency circuit according to Modification 2 of the embodiment.
  • FIG. 5A is a circuit configuration diagram of a high-frequency circuit according to Modification 3 of the embodiment.
  • FIG. 5B is a circuit configuration diagram of a high-frequency circuit according to Modification 4 of the embodiment.
  • 5C is a circuit configuration diagram of a high-frequency circuit according to Modification 5 of the embodiment.
  • FIG. FIG. 6 is a circuit configuration diagram of a high-frequency circuit according to Modification 6 of the embodiment.
  • FIG. 7 is a circuit configuration diagram of a high-frequency circuit according to Modification 7 of the embodiment.
  • connection includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements.
  • Connected between A and B means connected to both A and B between A and B, in addition to being serially connected in the path connecting A and B, It includes parallel connection (shunt connection) between the path and the ground.
  • the component is placed on the board includes the component being placed on the main surface of the board and the component being placed inside the board.
  • the component is arranged on the main surface of the board means that the component is arranged in contact with the main surface of the board, and that the component is arranged above the main surface without contacting the main surface. (eg, a component is laminated onto another component placed in contact with a major surface).
  • the component is arranged on the main surface of the substrate may include that the component is arranged in a concave portion formed in the main surface.
  • Components are located within a substrate means that, in addition to encapsulating components within a module substrate, all of the components are located between major surfaces of the substrate, but some of the components are located between major surfaces of the substrate. Including not covered by the substrate and only part of the component being placed in the substrate.
  • signal path refers to a transmission line composed of a wire through which a high-frequency signal propagates, an electrode directly connected to the wire, and a terminal directly connected to the wire or the electrode.
  • FIG. 1 is a circuit configuration diagram of a high-frequency circuit 1 and a communication device 5 according to this embodiment.
  • the communication device 5 corresponds to a so-called user terminal (UE: User Equipment), and is typically a mobile phone, a smart phone, a tablet computer, or the like.
  • UE User Equipment
  • Such a communication device 5 includes a high frequency circuit 1 , an antenna 2 and an RFIC (Radio Frequency Integrated Circuit) 3 .
  • RFIC Radio Frequency Integrated Circuit
  • the high frequency circuit 1 transmits high frequency signals between the antenna 2 and the RFIC 3 .
  • the internal configuration of the high frequency circuit 1 will be described later.
  • the antenna 2 is connected to the antenna connection terminal 100 of the high frequency circuit 1 .
  • the antenna 2 receives a high frequency signal from the high frequency circuit 1 and outputs it to the outside.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as up-conversion on a transmission signal input from a BBIC (Baseband Integrated Circuit: not shown), and sends the high-frequency transmission signal generated by the signal processing to the high-frequency circuit 1. Output to the transmission path.
  • the RFIC 3 also has a control section that controls the switch circuit, amplifier circuit, and the like of the high-frequency circuit 1 . A part or all of the functions of the RFIC 3 as a control unit may be configured outside the RFIC 3 , for example, in the BBIC or the high frequency circuit 1 .
  • the antenna 2 is not an essential component in the communication device 5 according to the present embodiment.
  • the high frequency circuit 1 includes filters 11, 12 and 21, a power amplifier 30, a distribution circuit 41, a combining circuit 42, switches 51, 52 and 53, an antenna connection terminal 100, and a high frequency and an input terminal 110 .
  • the antenna connection terminal 100 is connected to the antenna 2.
  • a high-frequency input terminal 110 is a terminal for receiving a high-frequency transmission signal (hereinafter referred to as a transmission signal) from the outside of the high-frequency circuit 1 (RFIC 3).
  • Filter 11 is an example of a second filter, corresponds to power class 3, and has a passband that includes the uplink operating band of band A for FDD. Filter 11 is connected to power amplifier 30 via switch 52 and distribution circuit 41 .
  • the filter 12 is an example of a first filter, corresponds to power class 3, and has a passband that includes the uplink operating band of band A for FDD. Filter 12 is connected to power amplifier 30 via switch 52 and distribution circuit 41 .
  • the filter 21 is an example of a third filter, corresponds to power class 2, and has a passband including band B for time division duplex (TDD). Filter 21 is connected to power amplifier 30 via switches 52 and 53 .
  • the power amplifier 30 is an example of a power amplifier circuit and corresponds to power class 2. Power amplifier 30 can amplify transmission signals of band A and band B input from high-frequency input terminal 110 . Power amplifier 30 is connected between high frequency input terminal 110 and switch 52 .
  • Band A is an example of the first band, and is constructed using a radio access technology (RAT: Radio Access Technology) predefined by standardization organizations (for example, 3GPP and IEEE (Institute of Electrical and Electronics Engineers), etc.) It is a frequency band for a communication system that uses Examples of communication systems that can be used include, but are not limited to, 5GNR (5th Generation New Radio) systems, LTE (Long Term Evolution) systems, and WLAN (Wireless Local Area Network) systems.
  • 5GNR Fifth Generation New Radio
  • LTE Long Term Evolution
  • WLAN Wireless Local Area Network
  • Band A consists of a downlink operating band and an uplink operating band.
  • Band B coincides with the uplink and downlink operating bands, and the entire frequency range of band B is both the uplink operating band and the downlink operating band.
  • the uplink operating band means the frequency range designated for the uplink among the above bands.
  • the downlink operating band means the frequency range designated for the downlink among the above bands.
  • the power class is a classification of UE output power defined by maximum output power, etc.
  • a smaller power class value indicates that a higher power output is allowed.
  • the maximum allowed output power for power class 1 is 31 dBm
  • the maximum allowed output power for power class 1.5 is 29 dBm
  • the maximum allowed output power for power class 2 is 26 dBm
  • the maximum allowed output power for power class 2 is 26 dBm.
  • 3 is 23 dBm.
  • the maximum output power of the UE is defined as the output power at the antenna end of the UE.
  • the measurement of the maximum output power of the UE is done, for example, in a manner defined by 3GPP or the like.
  • the maximum output power is measured by measuring the radiated power at antenna 2 .
  • band A is, for example, band B1 for LTE for FDD, or band n1 for 5GNR (uplink operating band: 1920-1980 MHz, downlink operating band: 2110-2170 MHz, ) and band B is for example band B34 for LTE for TDD or band n34 (2010-2025 MHz) for 5GNR.
  • the distribution circuit 41 has a terminal 41a (first terminal), a terminal 41b (third terminal), and a terminal 41c (second terminal), and distributes the power of the signal input to the terminal 41a, Signals are output from terminals 41b and 41c.
  • the combining circuit 42 has a terminal 42a (sixth terminal), a terminal 42b (fifth terminal), and a terminal 42c (fourth terminal), and power-combines the signals input to the terminals 42b and 42c. The resulting high frequency signal is output from the terminal 42a.
  • the switch 51 is an example of a second switch and is connected between the antenna connection terminal 100 and the combining circuit 42 and filter 21 .
  • the switch 51 has a common terminal 51a (second common terminal), selection terminals 51b (third selection terminal) and 51c (fourth selection terminal).
  • the common terminal 51 a is connected to the antenna connection terminal 100
  • the selection terminal 51 b is connected to the terminal 42 a
  • the selection terminal 51 c is connected to the output end of the filter 21 .
  • the switch 51 switches the connection between the antenna connection terminal 100 and the filters 11 and 12 and the connection between the antenna connection terminal 100 and the filter 21 based on a control signal from the RFIC 3, for example.
  • the switch 52 is an example of a first switch and is connected between the power amplifier 30 and the distribution circuit 41 and the switch 53.
  • the switch 52 has a common terminal 52a (first common terminal), selection terminals 52b (first selection terminal) and 52c (second selection terminal).
  • the common terminal 52a is connected to the output terminal of the power amplifier 30, the selection terminal 52b is connected to the terminal 41a, and the selection terminal 52c is connected to the filter 21 via the switch 53.
  • the switch 53 is an example of a so-called TDD switch, and switches connection between the input end of the filter 21 and the power amplifier 30 and connection between the input end of the filter 21 and a low noise amplifier (not shown).
  • At least one of the switches 51 to 53 may be formed in a semiconductor IC (Integrated Circuit).
  • the semiconductor IC is composed of, for example, CMOS (Complementary Metal Oxide Semiconductor). Specifically, it is formed by an SOI (Silicon On Insulator) process. This makes it possible to manufacture semiconductor ICs at low cost.
  • the semiconductor IC may be made of at least one of GaAs, SiGe and GaN. This makes it possible to output a high frequency signal with high quality amplification performance and noise performance.
  • the high frequency circuit 1 may include at least the power amplifier 30 and the filters 11, 12 and 21, and may not include other circuit elements.
  • FIG. 2A is a diagram showing a transmission state of an FDD signal of band A of power class 2 in the high-frequency circuit 1 according to the embodiment.
  • an FDD signal for example, 26 dBm
  • the common terminal 52a and the selection terminal 52b are connected, and the common terminal 51a and the selection terminal 51b are connected.
  • the transmission signal of band A is divided into high frequency input terminal 110, power amplifier 30, switch 52, distribution circuit 41, filters 11 and 12, combining circuit 42, switch 51, antenna connection terminal 100, and antenna 2. That is, when a transmission signal of band A corresponding to power class 2 is output from the antenna connection terminal 100, the transmission signal of band A is power-divided from the power amplifier 30 to the filters 11 and 12 and output.
  • FIG. 2B is a diagram showing a transmission state of a TDD signal of band B of power class 2 in the high-frequency circuit 1 according to the embodiment.
  • a band B TDD signal for example, 26 dBm
  • the common terminal 52a and the selection terminal 52c are connected, and the common terminal 51a and the selection terminal 51c are connected.
  • the transmission signal of band B passes through a transmission path consisting of high frequency input terminal 110, power amplifier 30, switch 52, switch 53, filter 21, switch 51, antenna connection terminal 100, and antenna 2. transmit. That is, when a transmission signal of band B corresponding to power class 2 is to be output from the antenna connection terminal 100 , the transmission signal of band B is output from the power amplifier 30 to the filter 21 .
  • the filter 21 it is possible to transmit a transmission signal for TDD of power class 2 through the filter 21 .
  • the power density of the FDD transmission signal of power class 2 is high because it is not time-divisionally transmitted but continuously transmitted. Therefore, when a transmission signal for FDD of power class 2 is transmitted by the filter 11 or 12 alone, the filter is in a high temperature state and power durability is critical. Therefore, there is concern that the pass characteristic of the filter 11 or 12 will deteriorate.
  • the filters 11 and 12 which are difficult to independently transmit the FDD transmission signal of power class 2, transmit the transmission signal of power class 3 (for example, 23 dBm). , FDD transmission signals of power class 2 can be transmitted without deteriorating filter pass characteristics.
  • FIG. 3A is a diagram showing a first example of the distribution circuit 41 and the combining circuit 42 according to the embodiment.
  • the distribution circuit 41 of this example has inductors 411 , 412 and 413 .
  • One end of the inductor 411 is connected to the terminal 41a and the other end is grounded.
  • One end of the inductor 412 is connected to the terminal 41 b and the other end is connected to one end of the inductor 413 .
  • the other end of inductor 413 is connected to terminal 41c. That is, the distribution circuit 41 of this example is a transformer having the inductor 411 as an input side coil and the inductors 412 and 413 as output side coils.
  • the synthesis circuit 42 of this example has inductors 421, 422 and 423.
  • One end of the inductor 421 is connected to the terminal 42a, and the other end is grounded.
  • One end of inductor 422 is connected to terminal 42 b and the other end is connected to one end of inductor 423 .
  • the other end of inductor 423 is connected to terminal 42c. That is, the combining circuit 42 of this example is a transformer having the inductor 421 as an output side coil and the inductors 422 and 423 as input side coils.
  • FIG. 3B is a diagram showing a second example of the distribution circuit 41 and the combining circuit 42 according to the embodiment.
  • the distribution circuit 41 of this example has quarter-wave transmission lines 451 and 452 and a resistive element 453 .
  • One end of the quarter-wave transmission line 451 and one end of the quarter-wave transmission line 452 are connected to the terminal 41a, and the other end of the quarter-wave transmission line 451 is connected to one end of the resistive element 453 and the terminal 41b.
  • the other end of the /4 wavelength transmission line 452 is connected to the other end of the resistance element 453 and the terminal 41c. That is, the distribution circuit 41 of this example is a Wilkinson type distributor.
  • the combining circuit 42 of this example has quarter-wave transmission lines 461 and 462 and a resistive element 463 .
  • One end of the quarter-wave transmission line 461 and one end of the quarter-wave transmission line 462 are connected to the terminal 42a, and the other end of the quarter-wave transmission line 461 is connected to one end of the resistive element 463 and the terminal 42b.
  • the other end of the /4 wavelength transmission line 462 is connected to the other end of the resistance element 463 and the terminal 42c. That is, the synthesizing circuit 42 of this example is a Wilkinson type divider.
  • FIG. 3C is a diagram for explaining impedance fluctuations of the filter with respect to load fluctuations in the above second example.
  • (a) of FIG. 4 shows the impedance (reflection coefficient) of the antenna connecting terminal 100 side (load) viewed from each terminal of the combining circuit 42 .
  • (b) of the figure shows the impedance (reflection coefficient) of the filter 12 viewed from the input end of the filter 12 with respect to the impedance (reflection coefficient) viewed from the output end of the filter 12 toward the antenna connection terminal 100 (load). ing.
  • the impedance when the load is viewed from each of terminals 42b and 42c is closer to the reference impedance (eg, 50 ⁇ ) than the impedance when the load is viewed from terminal 42a. It's becoming More specifically, the reflection coefficient ⁇ at each of terminals 42b and 42c is half the reflection coefficient ⁇ at terminal 42a.
  • the load fluctuation (variation of the reflection coefficient ⁇ )
  • the impedance of the filters 11 and 12 can be suppressed from deviating from the reference impedance. This makes it possible to suppress fluctuations in the output impedance of the power amplifier 30 with respect to load fluctuations.
  • FIG. 3D is a diagram showing a third example of the distribution circuit 41 and the synthesis circuit 42 according to the embodiment.
  • the distribution circuit 41 of this example has a 90° hybrid coupler 470 and a terminating resistor 471 .
  • the 0° terminal of the 90° hybrid coupler 470 is connected to the terminal 41 b
  • the 90° terminal is connected to the terminal 41 c
  • the IN terminal is connected to the terminal 41 a
  • the ISO terminal is connected to the terminating resistor 471 .
  • a transmission signal input from the IN terminal is power-divided to the 0° terminal and the 90° terminal and output from the terminals 41b and 41c.
  • the combining circuit 42 of this example has a 90° hybrid coupler 480 and a terminating resistor 481 .
  • the 0° terminal of the 90° hybrid coupler 480 is connected to the terminal 42 b
  • the 90° terminal is connected to the terminal 42 c
  • the OUT terminal is connected to the terminal 42 a
  • the ISO terminal is connected to the terminating resistor 481 .
  • the transmission signal power-divided by the distribution circuit 41 passes through the filters 11 and 12, respectively, and is input to the 0° terminal and the 90° terminal. Signals input to the 0° terminal and the 90° terminal are power-combined and output from the terminal 42a via the OUT terminal.
  • FIG. 4A is a circuit configuration diagram of a high-frequency circuit 1A according to Modification 1 of the embodiment.
  • the high frequency circuit 1A includes filters 11, 12 and 21, power amplifiers 31 and 32, a combining circuit 42, switches 51, 52 and 53, an antenna connection terminal 100, and a high frequency input terminal 111. and 112.
  • a high-frequency circuit 1A according to this modification differs from the high-frequency circuit 1 according to the embodiment in that the configuration of the power amplifier circuit and the distribution circuit 41 are not provided.
  • descriptions of the same points as those of the high-frequency circuit 1 according to the embodiment will be omitted, and different points will be mainly described.
  • the high-frequency input terminals 111 and 112 are terminals for receiving transmission signals from the outside (RFIC 3) of the high-frequency circuit 1A.
  • Filter 11 is an example of a second filter, corresponds to power class 3, and has a passband that includes the uplink operating band of band A for FDD. Filter 11 is connected to power amplifier 32 .
  • the filter 12 is an example of a first filter, corresponds to power class 3, and has a passband that includes the uplink operating band of band A for FDD. Filter 12 is connected to power amplifier 31 via switch 52 .
  • the power amplifier 31 is an example of a first amplifier that constitutes a power amplifier circuit, and corresponds to power class 2. Power amplifier 31 can amplify transmission signals of band A and band B input from high-frequency input terminal 111 . Power amplifier 31 is connected between high frequency input terminal 111 and switch 52 .
  • the power amplifier 32 is an example of a second amplifier that constitutes a power amplifier circuit, and corresponds to power class 3.
  • the power amplifier 32 can amplify the band A transmission signal input from the high frequency input terminal 112 .
  • Power amplifier 32 is connected between high frequency input terminal 112 and filter 11 .
  • the switch 52 is an example of a first switch and is connected between the power amplifier 31 and the filter 12 and the switch 53.
  • the switch 52 has a common terminal 52a (first common terminal), selection terminals 52b (first selection terminal) and 52c (second selection terminal).
  • the common terminal 52 a is connected to the output terminal of the power amplifier 31
  • the selection terminal 52 b is connected to the input terminal of the filter 12
  • the selection terminal 52 c is connected to the input terminal of the filter 21 via the switch 53 .
  • the switch 52 switches the connection between the power amplifier 31 and the filter 12 and the connection between the power amplifier 31 and the filter 21 based on a control signal from the RFIC 3, for example.
  • FIG. 4B is a circuit configuration diagram of a high-frequency circuit 1B according to Modification 2 of the embodiment.
  • the high frequency circuit 1B includes filters 11, 12 and 21, power amplifiers 31 and 32, switches 52, 53 and 54, antenna connection terminals 101 and 102, and high frequency input terminals 111 and 112. , provided.
  • a high-frequency circuit 1B according to this modified example differs from the high-frequency circuit 1A according to the first modified example in that the configuration of the switch 54 and the synthesizing circuit 42 are not provided.
  • description of the same points as those of the high-frequency circuit 1A according to the first modified example will be omitted, and different points will be mainly described.
  • the antenna connection terminal 101 is an example of a first antenna connection terminal, and is connected to the antenna 2a (first antenna).
  • the antenna connection terminal 102 is an example of a second antenna connection terminal, and is connected to an antenna 2b (second antenna) different from the antenna 2a.
  • the switch 54 is an example of a third switch and is connected between the antenna connection terminals 101 and 102 and the filters 11, 12 and 21.
  • the switch 54 includes a common terminal 54a (fourth common terminal), a common terminal 54b (third common terminal), a selection terminal 54c (sixth selection terminal), 54d (fifth selection terminal) and 54e (fifth selection terminal). 7 selection terminals).
  • the common terminal 54a is connected to the antenna connection terminal 102
  • the common terminal 54b is connected to the antenna connection terminal 101
  • the selection terminal 54c is connected to the output terminal of the filter 11
  • the selection terminal 54d is connected to the output terminal of the filter 12
  • the selection terminal 54 e is connected to the output terminal of the filter 21 .
  • the switch 54 switches connection and disconnection between the antenna connection terminal 102 and the filter 11 based on, for example, a control signal from the RFIC 3, and connects the antenna connection terminal 101 and the filter 12 and connects the antenna connection terminal 101. and the connection with the filter 21 are switched.
  • FIG. 5A is a circuit configuration diagram of a high-frequency circuit 1C according to Modification 3 of the embodiment.
  • the high frequency circuit 1C includes filters 11, 12 and 21, power amplifiers 31 and 32, switches 52, 53 and 54, antenna connection terminals 101 and 102, and high frequency input terminals 111 and 112. , a first substrate 61 and a second substrate 62 .
  • a high-frequency circuit 1C according to this modification differs from the high-frequency circuit 1B according to modification 2 in that a first substrate 61 and a second substrate 62 are provided.
  • description of the same points as those of the high-frequency circuit 1B according to the second modified example will be omitted, and different points will be mainly described.
  • Each of the first substrate 61 and the second substrate 62 is a substrate on which circuit components constituting the high frequency circuit 1C are mounted.
  • a low temperature co-fired ceramics (LTCC) substrate having a laminated structure of a plurality of dielectric layers for example, a low temperature co-fired ceramics (LTCC) substrate having a laminated structure of a plurality of dielectric layers, a high temperature co-fired ceramics (LTCC) substrate Ceramics: HTCC) substrate, component-embedded substrate, substrate having a redistribution layer (RDL), printed substrate, or the like is used.
  • LTCC low temperature co-fired ceramics
  • HTCC component-embedded substrate
  • RDL redistribution layer
  • power amplifier 31, switches 52, 53 and 54, and filters 12 and 21 are arranged on first substrate 61, and power amplifier 32 and filter 11 are arranged on second substrate 62. ing.
  • the power amplifier 31 and the power amplifier 32 are arranged on different substrates, and the filters 11 and 12 are arranged on different substrates, so that the heat radiation of the high frequency circuit 1C is improved, and the filter 11 and the filter 12 are arranged on different substrates. 12 characteristic deterioration can be suppressed.
  • FIG. 5B is a circuit configuration diagram of a high-frequency circuit 1D according to Modification 4 of the embodiment.
  • the high frequency circuit 1D includes filters 11, 12 and 21, power amplifiers 31 and 32, switches 52, 53 and 55, an antenna connection terminal 100, high frequency input terminals 111 and 112, and a second A first substrate 61 and a second substrate 62 are provided.
  • the high-frequency circuit 1D according to the present modification differs from the high-frequency circuit 1C according to the third modification in the connection configuration of the switch 55 .
  • descriptions of the same points as those of the high-frequency circuit 1C according to the third modified example will be omitted, and different points will be mainly described.
  • the antenna connection terminal 100 is an example of a first antenna connection terminal, and is connected to the antenna 2a (first antenna).
  • the switch 55 is an example of a second switch and is connected between the antenna connection terminal 100 and the filters 12 and 21 .
  • the switch 55 has a common terminal 55a (second common terminal), selection terminals 55b (third selection terminal) and 55c (fourth selection terminal).
  • the common terminal 55 a is connected to the antenna connection terminal 100
  • the selection terminal 55 b is connected to the output terminal of the filter 12
  • the selection terminal 55 c is connected to the output terminal of the filter 21 .
  • the switch 55 switches connection between the antenna connection terminal 100 and the filter 12 and connection between the antenna connection terminal 100 and the filter 21 based on a control signal from the RFIC 3, for example.
  • the output end of the filter 11 is connected to an antenna 2b (second antenna) different from the antenna 2a.
  • high-frequency circuit 1D In high-frequency circuit 1D according to this modification, power amplifier 31, switches 52, 53 and 55, and filters 12 and 21 are arranged on first substrate 61, and power amplifier 32 and filter 11 are arranged on second substrate 62. ing.
  • the power amplifier 31 and the power amplifier 32 are arranged on different substrates, and the filters 11 and 12 are arranged on different substrates, so that the heat radiation of the high frequency circuit 1D is improved, and the filter 11 and the filter 12 are arranged on different substrates. 12 characteristic deterioration can be suppressed.
  • FIG. 5C is a circuit configuration diagram of a high-frequency circuit 1G according to Modification 5 of the embodiment.
  • the high frequency circuit 1G includes filters 11, 12, 21 and 22, power amplifiers 31, 32 and 35, switches 52, 53 and 54, antenna connection terminals 101 and 102, and a high frequency input terminal. 111 , 112 and 113 , and a first substrate 61 and a second substrate 62 .
  • a high-frequency circuit 1G according to the present modification differs from the high-frequency circuit 1D according to modification 4 in that a filter 22 having a passband including band C is added and the configuration of a switch 54 is different.
  • description of the same points as those of the high-frequency circuit 1D according to the fourth modified example will be omitted, and different points will be mainly described.
  • the antenna connection terminal 101 is an example of a first antenna connection terminal, and is connected to the antenna 2a (first antenna).
  • the antenna connection terminal 102 is an example of a second antenna connection terminal, and is connected to an antenna 2b (second antenna) different from the antenna 2a.
  • High-frequency input terminals 111, 112, and 113 are terminals for receiving transmission signals from the outside (RFIC 3) of the high-frequency circuit 1G, respectively.
  • Filter 11 is an example of a second filter, corresponds to power class 3, and has a passband that includes the uplink operating band of band A for FDD. Filter 11 is connected to power amplifier 32 .
  • the filter 12 is an example of a first filter, corresponds to power class 3, and has a passband that includes the uplink operating band of band A for FDD. Filter 12 is connected to power amplifier 31 via switch 52 .
  • the filter 21 is an example of a third filter, corresponds to power class 2, and has a passband including band B for TDD. Filter 21 is connected to power amplifier 31 via switches 52 and 53 .
  • the filter 22 has a passband that includes the uplink operating band of Band C for FDD, which is different from Band A and Band B. Filter 22 is connected to power amplifier 35 . Note that the filter 22 may have a passband including band C for TDD.
  • the power amplifier 31 is an example of a first amplifier that constitutes a power amplifier circuit, and corresponds to power class 2. Power amplifier 31 can amplify transmission signals of band A and band B input from high-frequency input terminal 111 . Power amplifier 31 is connected between high frequency input terminal 111 and switch 52 .
  • the power amplifier 32 is an example of a second amplifier that constitutes a power amplifier circuit, and corresponds to power class 3.
  • the power amplifier 32 can amplify the band A transmission signal input from the high frequency input terminal 112 .
  • Power amplifier 32 is connected between high frequency input terminal 112 and filter 11 .
  • the power amplifier 35 can amplify the transmission signal of band C input from the high frequency input terminal 113 .
  • Power amplifier 35 is connected between high frequency input terminal 113 and filter 22 .
  • the switch 54 is connected between the antenna connection terminals 101 and 102 and the filters 12, 21 and 22.
  • the switch 54 has a common terminal 54a, a common terminal 54b, select terminals 54c, 54d and 54e.
  • the common terminal 54a is connected to the antenna connection terminal 102
  • the common terminal 54b is connected to the antenna connection terminal 101
  • the selection terminal 54c is connected to the output terminal of the filter 12
  • the selection terminal 54d is connected to the output terminal of the filter 21
  • the selection terminal 54 e is connected to the output terminal of the filter 22 .
  • the switch 54 switches the connection between the antenna connection terminal 102 and the filter 12 and the connection between the antenna connection terminal 102 and the filter 21 based on, for example, a control signal from the RFIC 3 , and switches the connection between the antenna connection terminal 101 and the filter 22 . Toggle between connecting and disconnecting with
  • power amplifiers 31 and 35, switches 52, 53 and 54, and filters 12, 21 and 22 are arranged on a first substrate 61, and power amplifier 32 and filter 11 are arranged on a second substrate. located at 62.
  • the common terminal 54a and the selection terminal 54d are connected.
  • the common terminal 54b and the selection terminal 54e are connected.
  • a transmission signal of band A corresponding to power class 3 is output from the power amplifier 32, and the transmission signal is transmitted from the antenna 2c.
  • a transmission signal of band B is output from the power amplifier 31, and the transmission signal is transmitted from the antenna 2b.
  • a transmission signal of band C is output from the power amplifier 35, and the transmission signal is transmitted from the antenna 2a.
  • the band A FDD signal is divided and output from the two power amplifiers 31 and 32, thereby improving the heat dissipation when transmitting the power class 2 FDD signal. Further, power added efficiency of power amplifiers 31 and 32 can be improved, and noise generated from power amplifiers 31 and 32 and filters 11 and 12 can be reduced.
  • FIG. 6 is a circuit configuration diagram of a high-frequency circuit 1E according to Modification 6 of the embodiment.
  • high frequency circuit 1E includes filters 11, 12, 13 and 21, power amplifiers 31 and 32, low noise amplifier 33, switches 52, 53, 54 and 56, antenna connection terminal 101 and 102 , high frequency input terminals 111 and 112 , high frequency output terminal 120 , first substrate 61 and second substrate 62 .
  • a high-frequency circuit 1E according to this modification differs from the high-frequency circuit 1C according to modification 3 in that a filter 13, a low-noise amplifier 33, and a switch 56 are added.
  • description of the same points as those of the high-frequency circuit 1C according to the third modified example will be omitted, and different points will be mainly described.
  • the high frequency output terminal 120 is an output terminal for supplying the reception signal of band A for FDD and the reception signal of band B for TDD to the outside (RFIC 3) of the high frequency circuit 1E.
  • Filter 13 is an example of a fourth filter and has a passband that includes the downlink operating band of band A for FDD.
  • the input terminal of filter 13 is connected to the output terminal of filter 12 and selection terminal 54 d , and the output terminal of filter 13 is connected to the input terminal of low noise amplifier 33 via switch 56 .
  • Filters 12 and 13 form a duplexer for band A.
  • the low noise amplifier 33 can amplify received signals of band A and band B input from the antenna connection terminal 101 .
  • Low noise amplifier 33 is connected between high frequency output terminal 120 and switch 56 .
  • a switch 56 is connected between the filters 13 and 21 and the low noise amplifier 33 .
  • the switch 56 has a common terminal 56a and selection terminals 56b and 56c.
  • the common terminal 56 a is connected to the input terminal of the low noise amplifier 33
  • the selection terminal 56 b is connected to the output terminal of the filter 13
  • the selection terminal 56 c is connected to the output terminal of the filter 21 via the switch 53 .
  • the switch 56 switches the connection between the low noise amplifier 33 and the filter 13 and the connection between the low noise amplifier 33 and the filter 21 based on the control signal from the RFIC 3, for example.
  • the power amplifier 31, the low noise amplifier 33, the switches 52, 53, 54 and 56, and the filters 12, 13 and 21 are arranged on the first substrate 61, and the power amplifier 32 and the filter 11 are arranged on the second substrate 62 . Note that no filters with passbands that include the Band A downlink operating band are located on the second substrate.
  • the filters 11 and 12 which are difficult to independently transmit the FDD transmission signal of power class 2, transmit the transmission signal of power class 3 (for example, 23 dBm).
  • a transmission signal can be transmitted without deteriorating the pass characteristics of the filters 11 and 12 .
  • the band A FDD signal from the two power amplifiers 31 and 32, it is possible to improve the heat dissipation when transmitting the FDD signal of power class 2, and the power added efficiency of the power amplifiers 31 and 32 can be improved. can be improved and noise generated from filters 11 and 12 and power amplifiers 31 and 32 can be reduced. Furthermore, since the noise can be reduced, the reception sensitivity of the reception signal of band A in the reception path in which the low noise amplifier 33 is arranged can be improved.
  • the low-noise amplifier 33 and the switch 56 may be omitted in the high-frequency circuit 1E according to this modification.
  • FIG. 7 is a circuit configuration diagram of a high-frequency circuit 1F according to Modification 7 of the embodiment.
  • high frequency circuit 1F includes filters 11, 12, 14 and 21, power amplifiers 31 and 32, low noise amplifier 34, switches 52, 53 and 54, antenna connection terminals 101 and 102, and , high-frequency input terminals 111 and 112 , a high-frequency output terminal 130 , a first substrate 61 and a second substrate 62 .
  • a high-frequency circuit 1F according to the present modification differs from the high-frequency circuit 1C according to modification 3 in that a filter 14 and a low-noise amplifier 34 are added.
  • description of the same points as those of the high-frequency circuit 1C according to the third modified example will be omitted, and different points will be mainly described.
  • the high frequency output terminal 130 is an output terminal for supplying a received signal of band A for FDD to the outside (RFIC 3) of the high frequency circuit 1F.
  • Filter 14 is an example of a fifth filter and has a passband that includes the downlink operating band of band A for FDD.
  • the input terminal of the filter 14 is connected to the output terminal of the filter 11 and the selection terminal 54 c , and the output terminal of the filter 14 is connected to the input terminal of the low noise amplifier 34 .
  • Filters 11 and 14 constitute a band A duplexer. Note that the filter 14 may not include the downlink operating band of band A as a passband, or may include a downlink operating band other than band A as a passband.
  • the low noise amplifier 34 can amplify the received signal of band A input from the antenna connection terminal 102 .
  • Low noise amplifier 34 is connected between high frequency output terminal 130 and filter 14 .
  • the power amplifier 31, the switches 52, 53 and 54, the filters 12 and 21 are arranged on the first substrate 61, the power amplifier 32, the low noise amplifier 34, the filters 11 and 14 are It is arranged on the second substrate 62 .
  • the filters 11 and 12 which are difficult to independently transmit the FDD transmission signal of power class 2, transmit the transmission signal of power class 3 (for example, 23 dBm).
  • a transmission signal can be transmitted without deteriorating the pass characteristics of the filters 11 and 12 .
  • the power amplifier 31 and the power amplifier 32 are arranged on separate substrates, and the filters 11 and 12 are arranged on separate substrates, the heat dissipation of the high-frequency circuit 1F is improved, and the characteristics of the filters 11 and 12 are improved. Deterioration can be suppressed.
  • filter 14 and low noise amplifier 34 are arranged on second substrate 62 where filters 12 and 21 are not arranged, the heat dissipation of high frequency circuit 1F is improved, and filter 14 and low noise amplifier 34 are arranged. Therefore, it is possible to suppress the deterioration of the reception sensitivity of the band A in the reception path.
  • the high-frequency circuit according to the present invention is arranged on the first substrate 61 and the first substrate 61 in the high-frequency circuit 1C according to Modification 3, the high-frequency circuit 1E according to Modification 6, and the high-frequency circuit 1F according to Modification 7. may include only the circuit components that are
  • the high-frequency circuit according to the present invention is connected between the first substrate 61, the antenna connection terminals 101 and 102, the power amplifier 31 corresponding to power class 2, and the power amplifier 31 and the antenna connection terminal 101. 3 and is connected between the filter 12 having a passband including the uplink operating band of band A for FDD, the power amplifier 31 and the antenna connection terminal 102, corresponding to power class 2, and the band for TDD A filter 21 having a passband including B, a switch 52 and a switch 54 may be provided.
  • the output terminal of the power amplifier 31 is connected to the common terminal 52a
  • the selection terminal 52b is connected to the input terminal of the filter 12
  • the selection terminal 52c is connected to the input terminal of the filter 21, and the common terminal 54b is the antenna connection terminal.
  • the common terminal 54 a is connected to the antenna connection terminal 102
  • the selection terminal 54 d is connected to the output terminal of the filter 12
  • the selection terminal 54 e is connected to the output terminal of the filter 21 .
  • Power amplifier 31 , switches 52 and 54 , and filters 12 and 21 are arranged on first substrate 61 .
  • the transmission signal of band A corresponding to power class 2 is to be output
  • the transmission signal of the uplink operating band of band A corresponding to power class 3 is input from the power amplifier 32 different from the power amplifier 31 to the selection terminal 54c.
  • the power amplifier 31 outputs a transmission signal of the uplink operating band of band A corresponding to power class 3 to the filter 12 .
  • the transmission signal of band B is output from the power amplifier 31 to the filter 21 .
  • the filter 21 it is possible to transmit a transmission signal for TDD of power class 2 through the filter 21 .
  • the transmission signal for FDD of power class 2 is not time-divisionally transmitted but continuously transmitted, so the power density is high, and the transmission signal is transmitted by the filter 11 or 12 alone. In that case, the filter will be in a high temperature state and the power durability will be in a critical state. Therefore, there is concern that the pass characteristics of the filter 12 may deteriorate.
  • the power class 3 transmission signal for the filter 12 that is difficult to transmit the power class 2 FDD transmission signal alone, the power class 3 transmission signal (for example, 23 dBm) is transmitted together with the filter 11, so that the power class 2 FDD transmission signal is transmitted.
  • a transmission signal can be transmitted without degrading the pass characteristic of the filter 12 .
  • the high-frequency circuit 1 is connected between the antenna connection terminal 100, the power amplifier 30 corresponding to the power class 2, and the power amplifier 30 and the antenna connection terminal 100.
  • the filter 12 having a passband including the band A uplink operating band for FDD, is connected between the power amplifier 30 and the antenna connection terminal 100, corresponds to power class 3, and has a band A uplink operating band.
  • the transmission signal of band A corresponding to power class 2 is output from the antenna connection terminal 100
  • the transmission signal of band A from the power amplifier 30 is distributed and output to the filters 11 and 12, and the transmission signal of band B corresponding to power class 2 is transmitted.
  • the power amplifier 30 outputs the transmission signal of band B to the filter 21 .
  • the filter 21 it is possible to transmit a transmission signal for TDD of power class 2 through the filter 21 .
  • the power class 2 FDD transmission signal is transmitted continuously instead of time division, the power density is high. Power durability becomes critical. Therefore, there is concern that the pass characteristic of the filter 11 or 12 will deteriorate.
  • the filters 11 and 12 which are difficult to independently transmit the FDD transmission signal of power class 2, transmit the transmission signal of power class 3 (for example, 23 dBm).
  • a transmission signal can be transmitted without deteriorating filter pass characteristics. Therefore, it is possible to provide a high-frequency circuit 1 in which deterioration of transmission characteristics is suppressed when a power class that allows a higher maximum output power than in the past is applied to the FDD band.
  • the high frequency circuit 1 further has terminals 41a, 41b and 41c.
  • a synthesizing circuit 42 for synthesizing the signals input to the terminals 42b and 42c and outputting from the terminal 42a, the terminal 41a being connected to the output terminal of the power amplifier 30 and the terminal 41b being the input terminal of the filter 11;
  • the terminal 41c is connected to the input end of the filter 12
  • the terminal 42b is connected to the output end of the filter 11
  • the terminal 42c is connected to the output end of the filter 12
  • the terminal 42a is connected to the antenna connection terminal 100.
  • the transmission circuit for transmitting band A can be simplified.
  • the high-frequency circuit 1 further has a common terminal 52a and selection terminals 52b and 52c. and a switch 51 having a common terminal 51a, select terminals 51b and 51c, and switching between the connection between the common terminal 51a and the select terminal 51b and the connection between the common terminal 51a and the select terminal 51c, and the common terminal 52a.
  • the selection terminal 52b is connected to the terminal 41a
  • the selection terminal 52c is connected to the input terminal of the filter 21
  • the common terminal 51a is connected to the antenna connection terminal 100
  • the selection terminal 51b is connected to It may be connected to the terminal 42 a and the selection terminal 51 c may be connected to the output end of the filter 21 .
  • the transmission signal of band A and the transmission signal of band B can be transmitted with high isolation.
  • the high-frequency circuit 1A includes a power amplifier 31 corresponding to power class 2, a power amplifier 32 corresponding to power class 3, filters 11, 12 and 21, a switch 52, a switch 51, and a combination a circuit 42, wherein the output terminal of the power amplifier 31 is connected to the common terminal 52a, the output terminal of the power amplifier 32 is connected to the input terminal of the filter 11, the selection terminal 52b is connected to the input terminal of the filter 12, The selection terminal 52c is connected to the input terminal of the filter 21, the terminal 42b is connected to the output terminal of the filter 11, the terminal 42c is connected to the output terminal of the filter 12, the terminal 42a is connected to the selection terminal 51b, and the common terminal 51a is connected.
  • the selection terminal 51 c may be connected to the output terminal of the filter 21 .
  • a transmission signal corresponding to power class 3 is output from each of the power amplifiers 31 and 32, and a TDD signal of band B of power class 2 is output.
  • a transmission signal corresponding to power class 2 can be output from the power amplifier 31 .
  • heat dissipation when transmitting the power class 2 FDD signal can be improved.
  • power added efficiency of power amplifiers 31 and 32 can be improved, and noise generated from power amplifiers 31 and 32 and filters 11 and 12 can be reduced.
  • the high-frequency circuit 1B includes antenna connection terminals 101 and 102, power amplifiers 31 and 32, filters 11, 12 and 21, a switch 52, and a switch 54, and the power amplifier 31 is connected to the common terminal 52a, the output terminal of the power amplifier 32 is connected to the input terminal of the filter 11, the selection terminal 52b is connected to the input terminal of the filter 12, and the selection terminal 52c is connected to the input terminal of the filter 21.
  • the common terminal 54b is connected to the antenna connection terminal 101, the common terminal 54a is connected to the antenna connection terminal 102, the selection terminal 54d is connected to the output terminal of the filter 12, and the selection terminal 54c is connected to the output terminal of the filter 11.
  • the selection terminal 54 e may be connected to the output terminal of the filter 21 .
  • a transmission signal corresponding to power class 3 is output from each of power amplifiers 31 and 32 and transmitted from two antennas 2a and 2b.
  • a transmission signal corresponding to power class 2 is output from the power amplifier 31 and transmitted from one antenna 2a.
  • a high-frequency circuit 1C according to Modification 3 further includes a first substrate 61 and a second substrate 62 in addition to the high-frequency circuit 1B. It may be located on the substrate 61 and the power amplifier 32 and the filter 11 may be located on the second substrate 62 .
  • the power amplifier 31 and the power amplifier 32 are arranged on different substrates, and the filters 11 and 12 are arranged on different substrates, so that the heat radiation of the high frequency circuit 1C is improved, and the filter 11 and the filter 12 are arranged on different substrates. 12 characteristic deterioration can be suppressed.
  • a high-frequency circuit 1D includes an antenna connection terminal 100, power amplifiers 31 and 32, filters 11, 12 and 21, a switch 52, a switch 55, a first substrate 61 and a second substrate.
  • the output terminal of the power amplifier 31 is connected to the common terminal 52a
  • the output terminal of the power amplifier 32 is connected to the input terminal of the filter 11
  • the selection terminal 52b is connected to the input terminal of the filter 12 to select
  • the terminal 52c is connected to the input terminal of the filter 21
  • the common terminal 55a is connected to the antenna connection terminal 100
  • the selection terminal 55b is connected to the output terminal of the filter 12
  • the selection terminal 55c is connected to the output terminal of the filter 21
  • Power amplifier 31 , switches 52 and 55 , filters 12 and 21 may be located on first substrate 61 and power amplifier 32 and filter 11 may be located on second substrate 62 .
  • the power amplifier 31 and the power amplifier 32 are arranged on different substrates, and the filters 11 and 12 are arranged on different substrates, so that the heat radiation of the high frequency circuit 1D is improved, and the filter 11 and the filter 12 are arranged on different substrates. 12 characteristic deterioration can be suppressed.
  • the high-frequency circuit 1E includes antenna connection terminals 101 and 102, power amplifiers 31 and 32, filters 11, 12 and 21, and a filter having a passband including the downlink operating band of band A. 13, a switch 52, a switch 54, a first substrate 61 and a second substrate 62, the output terminal of the power amplifier 31 is connected to the common terminal 52a, and the output terminal of the power amplifier 32 is connected to the input of the filter 11.
  • the selection terminal 52b is connected to the input terminal of the filter 12, the selection terminal 52c is connected to the input terminal of the filter 21, the common terminal 54b is connected to the antenna connection terminal 101, and the common terminal 54a is connected to the antenna connection terminal.
  • the selection terminal 54d is connected to the output terminal of the filter 12 and the input terminal of the filter 13
  • the selection terminal 54c is connected to the output terminal of the filter 11, the power amplifier 31, the switches 52 and 54
  • the filters 12 and 13 and 21 may be placed on a first substrate 61 and the power amplifier 32 and filter 11 may be placed on a second substrate 62 .
  • the band A FDD signal by dividing and outputting the band A FDD signal from the two power amplifiers 31 and 32, it is possible to improve the heat dissipation when transmitting the FDD signal of power class 2, and the power of the power amplifiers 31 and 32 can be improved. Added efficiency can be improved, and noise generated from filters 11 and 12 and power amplifiers 31 and 32 can be reduced. Furthermore, since the noise can be reduced, the reception sensitivity of the reception signal of band A in the reception path in which the low noise amplifier 33 is arranged can be improved. Further, since power amplifier 31 and power amplifier 32 are arranged on different substrates, and filter 11 and filter 12 are arranged on different substrates, the heat dissipation of high-frequency circuit 1E is improved, and the characteristics of filters 11 and 12 are improved. Deterioration can be suppressed. Furthermore, only the filter 12 out of the filters 11 and 12 constitutes the band A duplexer together with the filter 13, so that the number of filters can be reduced.
  • a high-frequency circuit 1F includes antenna connection terminals 101 and 102, power amplifiers 31 and 32, filters 11, 12 and 21, and a filter having a passband including a downlink operating band for FDD. 14, a switch 52, a switch 54, a first substrate 61 and a second substrate 62, the output terminal of the power amplifier 31 is connected to the common terminal 52a, and the output terminal of the power amplifier 32 is connected to the input of the filter 11.
  • the selection terminal 52b is connected to the input terminal of the filter 12
  • the selection terminal 52c is connected to the input terminal of the filter 21
  • the common terminal 54b is connected to the antenna connection terminal 101
  • the common terminal 54a is connected to the antenna connection terminal.
  • the selection terminal 54d is connected to the output terminal of the filter 12
  • the selection terminal 54c is connected to the output terminal of the filter 11 and the input terminal of the filter 14
  • the output terminal of the filter 14 is connected to the input terminal of the low noise amplifier 34.
  • the power amplifier 31, the switches 52 and 54, the filters 12 and 21 may be located on the first substrate 61
  • the power amplifier 32, the low noise amplifier 34, the filters 11 and 14 may be located on the second substrate 62.
  • the power amplifier 31 and the power amplifier 32 are arranged on different substrates, and the filters 11 and 12 are arranged on different substrates, so that the heat radiation of the high frequency circuit 1F is improved, and the filter 11 and the filter 12 are arranged on different substrates. 12 characteristic deterioration can be suppressed.
  • filter 14 and low noise amplifier 34 are arranged on second substrate 62 where filters 12 and 21 are not arranged, the heat dissipation of high frequency circuit 1F is improved, and filter 14 and low noise amplifier 34 are arranged. Therefore, it is possible to suppress the deterioration of the reception sensitivity of the band A in the reception path.
  • the high-frequency circuit according to the present invention may include a first substrate 61, a power amplifier 31, a filter 12, a filter 21, antenna connection terminals 101 and 102, and switches 52 and 54.
  • the transmission signal of band A corresponding to power class 2 is to be output
  • the transmission signal of the uplink operating band of band A corresponding to power class 3 is input from the power amplifier 32 different from the power amplifier 31 to the selection terminal 54c.
  • the power amplifier 31 outputs a transmission signal of the uplink operating band of band A corresponding to power class 3 to the filter 12 .
  • the transmission signal of band B is output from the power amplifier 31 to the filter 21 .
  • the filter 21 it is possible to transmit a transmission signal for TDD of power class 2 through the filter 21 .
  • the transmission signal for FDD of power class 2 is not time-divisionally transmitted but continuously transmitted, so the power density is high, and the transmission signal is transmitted by the filter 11 or 12 alone. In that case, the filter will be in a high temperature state and the power durability will be in a critical state. Therefore, there is concern that the pass characteristics of the filter 12 may deteriorate.
  • the power class 3 transmission signal is transmitted together with the filter 11, so that the power class 2 FDD transmission signal is It becomes possible to transmit without deteriorating the pass characteristics of the filter 12 .
  • the communication device 5 includes an RFIC 3 that processes high frequency signals, and a high frequency circuit 1 that transmits high frequency signals between the RFIC 3 and the antenna 2 .
  • the communication device 5 can achieve the same effects as those of the high-frequency circuit 1 described above.
  • bands for 5G-NR or LTE were used, but in addition to or instead of 5G-NR or LTE, communication bands for other radio access technologies are used. good too.
  • communication bands for wireless local area networks may be used.
  • a millimeter wave band of 7 gigahertz or more may be used.
  • the high-frequency circuit 1, the antenna 2, and the RFIC 3 constitute a millimeter wave antenna module, and a distributed constant filter, for example, may be used as the filter.
  • the present invention can be widely used in communication equipment such as mobile phones as a high-frequency circuit arranged in the front end section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

高周波回路(1)は、パワークラス2に対応する電力増幅器(30)と、電力増幅器(30)に接続され、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ(12)と、電力増幅器(30)に接続され、パワークラス3に対応し、バンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ(11)と、電力増幅器(30)に接続され、パワークラス2に対応し、TDD用のバンドBを含む通過帯域を有するフィルタ(21)と、を備え、パワークラス2に対応したバンドAの送信信号を出力する場合には、電力増幅器(30)からバンドAの送信信号をフィルタ(11および12)に分配出力し、パワークラス2に対応したバンドBの送信信号を出力する場合には、電力増幅器(30)からバンドBの送信信号をフィルタ(21)に出力する。

Description

高周波回路および通信装置
 本発明は、高周波回路及び通信装置に関する。
 3GPP(登録商標)(3rd Generation Partnership Project)では、従来よりも高い最大出力パワー(電力)を許容するパワークラス(例えばパワークラス2等)の周波数分割複信(FDD:Frequency Division Duplex)用バンドへの適用が議論されている。
米国特許出願公開第2015/0133067号明細書
 しかしながら、従来よりも高い最大出力パワーを許容するパワークラスがFDD用バンドに適用される場合、フィルタには間欠的ではなく連続的に信号が供給されるため、当該フィルタが高温となり耐電力性能が臨界状態となり、当該フィルタを含む高周波回路の伝送特性が劣化することが懸念される。
 そこで、本発明は、従来よりも高い最大出力パワーを許容するパワークラスがFDD用バンドに適用された場合に、伝送特性の劣化が抑制された高周波回路および通信装置を提供する。
 上記目的を達成するために、本発明の一態様に係る高周波回路は、アンテナ接続端子と、パワークラス2に対応する電力増幅回路と、電力増幅回路とアンテナ接続端子との間に接続され、パワークラス3に対応し、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタと、電力増幅回路とアンテナ接続端子との間に接続され、パワークラス3に対応し、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第2フィルタと、電力増幅回路とアンテナ接続端子との間に接続され、パワークラス2に対応し、時分割複信用の第2バンドを含む通過帯域を有する第3フィルタと、を備え、パワークラス2に対応した第1バンドの送信信号をアンテナ接続端子から出力する場合には、電力増幅回路から第1バンドの送信信号を第1フィルタおよび第2フィルタに分配出力し、パワークラス2に対応した第2バンドの送信信号をアンテナ接続端子から出力する場合には、電力増幅回路から第2バンドの送信信号を第3フィルタに出力する。
 また、本発明の一態様に係る高周波回路は、第1基板と、第1アンテナ接続端子および第2アンテナ接続端子と、パワークラス2に対応する第1増幅器と、第1増幅器と第1アンテナ接続端子との間に接続され、パワークラス3に対応し、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタと、第1増幅器と第1アンテナ接続端子との間に接続され、パワークラス2に対応し、時分割複信用の第2バンドを含む通過帯域を有する第3フィルタと、第1共通端子、第1選択端子および第2選択端子を有し、第1共通端子と第1選択端子との接続、および、第1共通端子と第2選択端子との接続を切り替える第1スイッチと、第3共通端子、第4共通端子、第5選択端子、第6選択端子および第7選択端子を有し、第4共通端子と第6選択端子との接続および非接続を切り替え、第3共通端子と第5選択端子との接続および第3共通端子と第7選択端子との接続を切り替える第3スイッチと、を備え、第1増幅器の出力端子は第1共通端子に接続され、第1選択端子は第1フィルタの入力端に接続され、第2選択端子は第3フィルタの入力端に接続され、第3共通端子は第1アンテナ接続端子に接続され、第4共通端子は第2アンテナ接続端子に接続され、第5選択端子は第1フィルタの出力端に接続され、第7選択端子は第3フィルタの出力端に接続され、第1増幅器、第1スイッチ、第3スイッチ、第1フィルタおよび第3フィルタは、第1基板に配置され、パワークラス2に対応した第1バンドの送信信号を出力する場合には、第1増幅器と異なる第2増幅器からパワークラス3に対応した第1バンドのアップリンク動作バンドの送信信号が第6選択端子に入力されているときに、第1増幅器からパワークラス3に対応した第1バンドのアップリンク動作バンドの送信信号を第1フィルタに出力し、パワークラス2に対応した第2バンドの送信信号を出力する場合には、第1増幅器から第2バンドの送信信号を第3フィルタに出力する。
 本発明によれば、従来よりも高い最大出力パワーを許容するパワークラスがFDD用バンドに適用された場合に、伝送特性の劣化が抑制された高周波回路および通信装置を提供することが可能となる。
図1は、実施の形態に係る高周波回路および通信装置の回路構成図である。 図2Aは、実施の形態に係る高周波回路におけるパワークラス2のFDD信号の伝送状態を示す図である。 図2Bは、実施の形態に係る高周波回路におけるパワークラス2のTDD信号の伝送状態を示す図である。 図3Aは、実施の形態に係る分配回路および合成回路の第1例を示す図である。 図3Bは、実施の形態に係る分配回路および合成回路の第2例を示す図である。 図3Cは、第2例における、負荷変動に対するフィルタのインピーダンス変動を説明する図である。 図3Dは、実施の形態に係る分配回路および合成回路の第3例を示す図である。 図4Aは、実施の形態の変形例1に係る高周波回路の回路構成図である。 図4Bは、実施の形態の変形例2に係る高周波回路の回路構成図である。 図5Aは、実施の形態の変形例3に係る高周波回路の回路構成図である。 図5Bは、実施の形態の変形例4に係る高周波回路の回路構成図である。 図5Cは、実施の形態の変形例5に係る高周波回路の回路構成図である。 図6は、実施の形態の変形例6に係る高周波回路の回路構成図である。 図7は、実施の形態の変形例7に係る高周波回路の回路構成図である。
 以下、本発明の実施の形態について詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態等は、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化する場合がある。
 また、以下において、平行および垂直等の要素間の関係性を示す用語、矩形状等の要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
 本発明の回路構成において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「AおよびBの間に接続される」とは、AおよびBの間でAおよびBの両方に接続されることを意味し、AおよびBを結ぶ経路に直列接続されることに加えて、当該経路とグランドとの間に並列接続(シャント接続)されることを含む。
 また、本発明の部品配置において、「部品が基板に配置される」とは、部品が基板の主面上に配置されること、および、部品が基板内に配置されることを含む。「部品が基板の主面上に配置される」とは、部品が基板の主面に接触して配置されることに加えて、部品が主面と接触せずに当該主面の上方に配置されること(例えば、部品が主面と接触して配置された他の部品上に積層されること)を含む。また、「部品が基板の主面上に配置される」は、主面に形成された凹部に部品が配置されることを含んでもよい。「部品が基板内に配置される」とは、部品がモジュール基板内にカプセル化されることに加えて、部品の全部が基板の両主面の間に配置されているが部品の一部が基板に覆われていないこと、および、部品の一部のみが基板内に配置されていることを含む。
 また、本開示において、「信号経路」とは、高周波信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
 (実施の形態)
 [1 高周波回路1および通信装置5の回路構成]
 本実施の形態に係る高周波回路1およびそれを備える通信装置5の回路構成について、図1を参照しながら説明する。図1は、本実施の形態に係る高周波回路1および通信装置5の回路構成図である。
 [1.1 通信装置5の回路構成]
 通信装置5は、いわゆるユーザ端末(UE:User Equipment)に相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ等である。このような通信装置5は、高周波回路1と、アンテナ2と、RFIC(Radio Frequency Integrated Circuit)3と、を備える。
 高周波回路1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1の内部構成については後述する。
 アンテナ2は、高周波回路1のアンテナ接続端子100に接続される。アンテナ2は、高周波回路1から高周波信号を受信して外部に出力する。
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、BBIC(Baseband Integrated Circuit:図示せず)から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波回路1の送信経路に出力する。また、RFIC3は、高周波回路1が有するスイッチ回路および増幅回路等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部または全部は、RFIC3の外部に構成されてもよく、例えば、BBICまたは高周波回路1に構成されてもよい。
 なお、本実施の形態に係る通信装置5において、アンテナ2は必須の構成要素ではない。
 [1.2 高周波回路1の回路構成]
 次に、高周波回路1の回路構成について説明する。図1に示すように、高周波回路1は、フィルタ11、12および21と、電力増幅器30と、分配回路41と、合成回路42と、スイッチ51、52および53と、アンテナ接続端子100と、高周波入力端子110と、を備える。
 アンテナ接続端子100は、アンテナ2に接続される。高周波入力端子110は、高周波回路1の外部(RFIC3)から高周波送信信号(以下、送信信号と記す)を受けるための端子である。
 フィルタ11は、第2フィルタの一例であり、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有する。フィルタ11は、スイッチ52および分配回路41を介して電力増幅器30に接続されている。
 フィルタ12は、第1フィルタの一例であり、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有する。フィルタ12は、スイッチ52および分配回路41を介して電力増幅器30に接続されている。
 フィルタ21は、第3フィルタの一例であり、パワークラス2に対応し、時分割複信(TDD:Time Division Duplex)用のバンドBを含む通過帯域を有する。フィルタ21は、スイッチ52および53を介して電力増幅器30に接続されている。
 電力増幅器30は、電力増幅回路の一例であり、パワークラス2に対応している。電力増幅器30は、高周波入力端子110から入力されたバンドAおよびバンドBの送信信号を増幅可能である。電力増幅器30は、高周波入力端子110とスイッチ52との間に接続されている。
 バンドAは、第1バンドの一例であり、標準化団体など(例えば3GPP及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのための周波数バンドである。通信システムとしては、例えば5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を用いることができるが、これに限定されない。
 バンドAは、ダウンリンク動作バンドおよびアップリンク動作バンドで構成されている。バンドBは、アップリンク動作バンドとダウンリンク動作バンドとが一致しており、バンドBの周波数範囲全体がアップリンク動作バンドであり、またダウンリンク動作バンドでもある。
 なお、アップリンク動作バンドとは、上記バンドのうちのアップリンク用に指定された周波数範囲を意味する。また、ダウンリンク動作バンドとは、上記バンドのうちのダウンリンク用に指定された周波数範囲を意味する。
 また、パワークラスとは、最大出力パワーなどで定義されるUEの出力パワーの分類であり、パワークラスの値が小さいほど高いパワーの出力を許容することを示す。例えば、3GPPでは、パワークラス1で許容される最大出力パワーは31dBmであり、パワークラス1.5で許容される最大出力パワーは29dBmであり、パワークラス2で許容される最大出力パワーは26dBmであり、パワークラス3で許容される最大出力パワーは23dBmである。
 UEの最大出力パワーは、UEのアンテナ端における出力パワーで定義される。UEの最大出力パワーの測定は、例えば、3GPP等によって定義された方法で行われる。例えば、図1において、アンテナ2における放射パワーを測定することで最大出力パワーが測定される。なお、放射パワーの測定の代わりに、アンテナ2の近傍に端子を設けて、その端子に計測器(例えばスペクトルアナライザなど)を接続することで、アンテナ2の出力パワーを測定することもできる。
 本実施の形態に係る高周波回路1では、バンドAは、例えば、FDD用のLTEのためのバンドB1、または、5GNRのためのバンドn1(アップリンク動作バンド:1920-1980MHz、ダウンリンク動作バンド:2110-2170MHz、)であり、バンドBは、例えば、TDD用のLTEのためのバンドB34、または、5GNRのためのバンドn34(2010-2025MHz)である。
 分配回路41は、端子41a(第1端子)、端子41b(第3端子)および端子41c(第2端子)を有し、端子41aに入力された信号を電力分配し、当該電力分配された高周波信号を、端子41bおよび端子41cから出力する。
 合成回路42は、端子42a(第6端子)、端子42b(第5端子)および端子42c(第4端子)を有し、端子42bおよび端子42cに入力された信号を電力合成し、当該電力合成された高周波信号を端子42aから出力する。
 スイッチ51は、第2スイッチの一例であり、アンテナ接続端子100と合成回路42およびフィルタ21との間に接続されている。具体的には、スイッチ51は、共通端子51a(第2共通端子)、選択端子51b(第3選択端子)および51c(第4選択端子)を有する。共通端子51aはアンテナ接続端子100に接続され、選択端子51bは端子42aに接続され、選択端子51cはフィルタ21の出力端に接続されている。この接続構成により、スイッチ51は、例えばRFIC3からの制御信号に基づいて、アンテナ接続端子100とフィルタ11および12との接続、ならびに、アンテナ接続端子100とフィルタ21との接続を切り替える。
 スイッチ52は、第1スイッチの一例であり、電力増幅器30と分配回路41およびスイッチ53との間に接続されている。具体的には、スイッチ52は、共通端子52a(第1共通端子)、選択端子52b(第1選択端子)および52c(第2選択端子)を有する。共通端子52aは電力増幅器30の出力端子に接続され、選択端子52bは端子41aに接続され、選択端子52cはスイッチ53を介してフィルタ21に接続されている。この接続構成により、スイッチ52は、例えばRFIC3からの制御信号に基づいて、電力増幅器30とフィルタ11および12との接続、ならびに、電力増幅器30とフィルタ21との接続を切り替える。
 スイッチ53は、いわゆるTDDスイッチの一例であり、フィルタ21の入力端と電力増幅器30との接続、および、フィルタ21の入力端と低雑音増幅器(図示せず)との接続を切り替える。
 なお、スイッチ51~53の少なくとも1つは、半導体IC(Integrated Circuit)に形成されていてもよい。半導体ICは、例えば、CMOS(Complementary Metal Oxide Semiconductor)で構成されている。具体的には、SOI(Silicon On Insulator)プロセスにより形成されている。これにより、半導体ICを安価に製造することが可能となる。なお、半導体ICは、GaAs、SiGeおよびGaNの少なくともいずれかで構成されていてもよい。これにより、高品質な増幅性能および雑音性能を有する高周波信号を出力することが可能となる。
 なお、図1に表された回路素子のいくつかは、高周波回路1に含まれなくてもよい。例えば、高周波回路1は、少なくとも電力増幅器30、フィルタ11、12および21を備えればよく、他の回路素子を備えなくてもよい。
 [1.3 高周波回路1のFDD信号およびTDD信号の伝送状態]
 次に、実施の形態に係る高周波回路1がFDD信号およびTDD信号を伝送する状態について説明する。
 図2Aは、実施の形態に係る高周波回路1における、パワークラス2のバンドAのFDD信号の伝送状態を示す図である。パワークラス2のバンドAのFDD信号(例えば26dBm)を伝送する場合、共通端子52aと選択端子52bとが接続状態となり、共通端子51aと選択端子51bとが接続状態となる。
 このとき、バンドAの送信信号は、同図に示すように、高周波入力端子110、電力増幅器30、スイッチ52、分配回路41、フィルタ11および12、合成回路42、スイッチ51、アンテナ接続端子100、およびアンテナ2という送信経路を伝送する。つまり、パワークラス2に対応したバンドAの送信信号をアンテナ接続端子100から出力する場合には、電力増幅器30からバンドAの送信信号をフィルタ11および12に電力分配して出力する。
 図2Bは、実施の形態に係る高周波回路1における、パワークラス2のバンドBのTDD信号の伝送状態を示す図である。パワークラス2のバンドBのTDD信号(例えば26dBm)を伝送する場合、共通端子52aと選択端子52cとが接続状態となり、共通端子51aと選択端子51cとが接続状態となる。
 このとき、バンドBの送信信号は、同図に示すように、高周波入力端子110、電力増幅器30、スイッチ52、スイッチ53、フィルタ21、スイッチ51、アンテナ接続端子100、およびアンテナ2という送信経路を伝送する。つまり、パワークラス2に対応したバンドBの送信信号をアンテナ接続端子100から出力する場合には、電力増幅器30からバンドBの送信信号をフィルタ21に出力する。
 これによれば、パワークラス2のTDD用の送信信号をフィルタ21で伝送することが可能となる。一方、パワークラス2のTDD用の送信信号に対して、パワークラス2のFDD用の送信信号は、時分割でなく連続的に伝送されるため電力密度が高い。このため、フィルタ11または12単独で、パワークラス2のFDD用の送信信号を伝送する場合には、当該フィルタが高温状態となり耐電力性が臨界状態となる。このため、フィルタ11または12の通過特性が劣化することが懸念される。これに対して、図2Aに示すように、パワークラス2のFDD用の送信信号を単独で伝送することが困難なフィルタ11および12について、それぞれ、パワークラス3の送信信号(例えば23dBm)を伝送させるので、パワークラス2のFDD用の送信信号を、フィルタ通過特性を劣化させることなく伝送することが可能となる。
 [1.4 分配回路41および合成回路42の回路構成例]
 次に、実施の形態に係る高周波回路1が備える分配回路41および合成回路42の回路構成例について説明する。
 図3Aは、実施の形態に係る分配回路41および合成回路42の第1例を示す図である。同図に示すように、本例の分配回路41は、インダクタ411、412および413を有する。インダクタ411の一端は端子41aに接続され、他端はグランドに接続されている。インダクタ412の一端は端子41bに接続され、他端はインダクタ413の一端に接続されている。インダクタ413の他端は端子41cに接続されている。つまり、本例の分配回路41は、インダクタ411を入力側コイルとし、インダクタ412および413を出力側コイルとするトランスフォーマである。
 また、図3Aに示すように、本例の合成回路42は、インダクタ421、422および423を有する。インダクタ421の一端は端子42aに接続され、他端はグランドに接続されている。インダクタ422の一端は端子42bに接続され、他端はインダクタ423の一端に接続されている。インダクタ423の他端は端子42cに接続されている。つまり、本例の合成回路42は、インダクタ421を出力側コイルとし、インダクタ422および423を入力側コイルとするトランスフォーマである。
 図3Bは、実施の形態に係る分配回路41および合成回路42の第2例を示す図である。同図に示すように、本例の分配回路41は、1/4波長伝送線路451および452、ならびに抵抗素子453を有する。1/4波長伝送線路451の一端および1/4波長伝送線路452の一端は端子41aに接続され、1/4波長伝送線路451の他端は抵抗素子453の一端および端子41bに接続され、1/4波長伝送線路452の他端は抵抗素子453の他端および端子41cに接続されている。つまり、本例の分配回路41は、ウィルキンソン型の分配器である。
 また、図3Bに示すように、本例の合成回路42は、1/4波長伝送線路461および462、ならびに抵抗素子463を有する。1/4波長伝送線路461の一端および1/4波長伝送線路462の一端は端子42aに接続され、1/4波長伝送線路461の他端は抵抗素子463の一端および端子42bに接続され、1/4波長伝送線路462の他端は抵抗素子463の他端および端子42cに接続されている。つまり、本例の合成回路42は、ウィルキンソン型の分配器である。
 図3Cは、上記の第2例における、負荷変動に対するフィルタのインピーダンス変動を説明する図である。同図の(a)には、合成回路42の各端子からアンテナ接続端子100側(負荷)を見たインピーダンス(反射係数)が示されている。また、同図の(b)には、フィルタ12の出力端からアンテナ接続端子100側(負荷)を見たインピーダンス(反射係数)に対する、フィルタ12の入力端からフィルタ12を見たインピーダンスが示されている。
 図3Cの(a)に示すように、端子42bおよび42cのそれぞれから負荷を見た場合のインピーダンスは、端子42aから負荷を見た場合のインピーダンスと比較して、基準インピーダンス(例えば50Ω)に近くなっている。より具体的には、端子42bおよび42cのそれぞれにおける反射係数Γは、端子42aにおける反射係数Γの1/2となる。
 また、図3Cの(b)に示すように、端子42cの反射係数Γが0.6、0.3、0と小さくなるほど、端子41cから見たフィルタ12のインピーダンスの巻き(変化幅)は、小さくなり、基準インピーダンスに収束していく。
 つまり、ウィルキンソン型の分配器を分配回路41および合成回路42に適用し、分配回路41と合成回路42との間にフィルタ11および12を並列接続することで、負荷変動(反射係数Γの変動)に対してフィルタ11および12のインピーダンスが基準インピーダンスからずれることを抑制できる。これにより、負荷変動に対して電力増幅器30の出力インピーダンスの変動を抑制することが可能となる。
 図3Dは、実施の形態に係る分配回路41および合成回路42の第3例を示す図である。同図に示すように、本例の分配回路41は、90°ハイブリッドカプラ470および終端抵抗471を有する。90°ハイブリッドカプラ470の0°端子は端子41bに接続され、90°端子は端子41cに接続され、IN端子は端子41aに接続され、ISO端子は終端抵抗471に接続されている。IN端子から入力された送信信号は、0°端子および90°端子に電力分配されて端子41bおよび41cから出力される。
 また、本例の合成回路42は、90°ハイブリッドカプラ480および終端抵抗481を有する。90°ハイブリッドカプラ480の0°端子は端子42bに接続され、90°端子は端子42cに接続され、OUT端子は端子42aに接続され、ISO端子は終端抵抗481に接続されている。分配回路41で電力分配された送信信号は、それぞれフィルタ11および12を通過して0°端子および90°端子に入力される。0°端子および90°端子に入力された信号が電力合成されてOUT端子を経由して端子42aから出力される。
 [1.5 変形例1に係る高周波回路1Aの回路構成]
 次に、変形例1に係る高周波回路1Aの回路構成について、図4Aを参照しながら説明する。
 図4Aは、実施の形態の変形例1に係る高周波回路1Aの回路構成図である。同図に示すように、高周波回路1Aは、フィルタ11、12および21と、電力増幅器31および32と、合成回路42と、スイッチ51、52および53と、アンテナ接続端子100と、高周波入力端子111および112と、を備える。本変形例に係る高周波回路1Aは、実施の形態に係る高周波回路1と比較して、電力増幅回路の構成と、分配回路41がないことが異なる。以下、本変形例に係る高周波回路1Aについて、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 高周波入力端子111および112は、それぞれ、高周波回路1Aの外部(RFIC3)から送信信号を受けるための端子である。
 フィルタ11は、第2フィルタの一例であり、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有する。フィルタ11は、電力増幅器32に接続されている。
 フィルタ12は、第1フィルタの一例であり、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有する。フィルタ12は、スイッチ52を介して電力増幅器31に接続されている。
 電力増幅器31は、電力増幅回路を構成する第1増幅器の一例であり、パワークラス2に対応している。電力増幅器31は、高周波入力端子111から入力されたバンドAおよびバンドBの送信信号を増幅可能である。電力増幅器31は、高周波入力端子111とスイッチ52との間に接続されている。
 電力増幅器32は、電力増幅回路を構成する第2増幅器の一例であり、パワークラス3に対応している。電力増幅器32は、高周波入力端子112から入力されたバンドAの送信信号を増幅可能である。電力増幅器32は、高周波入力端子112とフィルタ11との間に接続されている。
 スイッチ52は、第1スイッチの一例であり、電力増幅器31とフィルタ12およびスイッチ53との間に接続されている。具体的には、スイッチ52は、共通端子52a(第1共通端子)、選択端子52b(第1選択端子)および52c(第2選択端子)を有する。共通端子52aは電力増幅器31の出力端子に接続され、選択端子52bはフィルタ12の入力端に接続され、選択端子52cはスイッチ53を介してフィルタ21の入力端に接続されている。この接続構成により、スイッチ52は、例えばRFIC3からの制御信号に基づいて、電力増幅器31とフィルタ12との接続、および、電力増幅器31とフィルタ21との接続を切り替える。
 上記構成によれば、パワークラス2のバンドAのFDD信号をアンテナ接続端子100から出力する場合には、電力増幅器31および32のそれぞれからパワークラス3に対応する送信信号を出力し、パワークラス2のバンドBのTDD信号をアンテナ接続端子100から出力する場合には、電力増幅器31からパワークラス2に対応する送信信号を出力できる。つまり、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上できる。また、電力増幅器31および32の電力付加効率を向上でき、電力増幅器31および32、ならびにフィルタ11および12から発生するノイズを低減できる。
 [1.6 変形例2に係る高周波回路1Bの回路構成]
 次に、変形例2に係る高周波回路1Bの回路構成について、図4Bを参照しながら説明する。
 図4Bは、実施の形態の変形例2に係る高周波回路1Bの回路構成図である。同図に示すように、高周波回路1Bは、フィルタ11、12および21と、電力増幅器31および32と、スイッチ52、53および54と、アンテナ接続端子101および102と、高周波入力端子111および112と、を備える。本変形例に係る高周波回路1Bは、変形例1に係る高周波回路1Aと比較して、スイッチ54の構成と、合成回路42がないことが異なる。以下、本変形例に係る高周波回路1Bについて、変形例1に係る高周波回路1Aと同じ点は説明を省略し、異なる点を中心に説明する。
 アンテナ接続端子101は、第1アンテナ接続端子の一例であり、アンテナ2a(第1アンテナ)に接続される。アンテナ接続端子102は、第2アンテナ接続端子の一例であり、アンテナ2aと異なるアンテナ2b(第2アンテナ)に接続される。
 スイッチ54は、第3スイッチの一例であり、アンテナ接続端子101および102とフィルタ11、12および21との間に接続されている。具体的には、スイッチ54は、共通端子54a(第4共通端子)、共通端子54b(第3共通端子)、選択端子54c(第6選択端子)、54d(第5選択端子)および54e(第7選択端子)を有する。共通端子54aはアンテナ接続端子102に接続され、共通端子54bはアンテナ接続端子101に接続され、選択端子54cはフィルタ11の出力端に接続され、選択端子54dはフィルタ12の出力端に接続され、選択端子54eはフィルタ21の出力端に接続されている。この接続構成により、スイッチ54は、例えばRFIC3からの制御信号に基づいて、アンテナ接続端子102とフィルタ11との接続および非接続を切り替え、アンテナ接続端子101とフィルタ12との接続およびアンテナ接続端子101とフィルタ21との接続を切り替える。
 上記構成によれば、パワークラス2のバンドAのFDD信号を出力する場合には、電力増幅器31および32のそれぞれからパワークラス3に対応する送信信号を出力し、当該2つの送信信号は2つのアンテナ2aおよび2bから送信される。また、パワークラス2のバンドBのTDD信号を出力する場合には、電力増幅器31からパワークラス2に対応する送信信号を出力し、当該1つの送信信号は1つのアンテナ2aから送信される。つまり、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上できる。また、電力増幅器31および32の電力付加効率を向上でき、電力増幅器31および32ならびにフィルタ11および12から発生するノイズを低減できる。
 [1.7 変形例3に係る高周波回路1Cの回路構成]
 次に、変形例3に係る高周波回路1Cの回路構成について、図5Aを参照しながら説明する。
 図5Aは、実施の形態の変形例3に係る高周波回路1Cの回路構成図である。同図に示すように、高周波回路1Cは、フィルタ11、12および21と、電力増幅器31および32と、スイッチ52、53および54と、アンテナ接続端子101および102と、高周波入力端子111および112と、第1基板61および第2基板62と、を備える。本変形例に係る高周波回路1Cは、変形例2に係る高周波回路1Bと比較して、第1基板61および第2基板62を備える点が異なる。以下、本変形例に係る高周波回路1Cについて、変形例2に係る高周波回路1Bと同じ点は説明を省略し、異なる点を中心に説明する。
 第1基板61および第2基板62のそれぞれは、高周波回路1Cを構成する回路部品を実装する基板である。第1基板61および第2基板62としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、高温同時焼成セラミックス(High Temperature Co-fired Ceramics:HTCC)基板、部品内蔵基板、再配線層(Redistribution Layer:RDL)を有する基板、または、プリント基板等が用いられる。
 本変形例に係る高周波回路1Cにおいて、電力増幅器31、スイッチ52、53および54、フィルタ12および21は、第1基板61に配置され、電力増幅器32およびフィルタ11は、第2基板62に配置されている。
 これによれば、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Cの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。
 [1.8 変形例4に係る高周波回路1Dの回路構成]
 次に、変形例4に係る高周波回路1Dの回路構成について、図5Bを参照しながら説明する。
 図5Bは、実施の形態の変形例4に係る高周波回路1Dの回路構成図である。同図に示すように、高周波回路1Dは、フィルタ11、12および21と、電力増幅器31および32と、スイッチ52、53および55と、アンテナ接続端子100と、高周波入力端子111および112と、第1基板61および第2基板62と、を備える。本変形例に係る高周波回路1Dは、変形例3に係る高周波回路1Cと比較して、スイッチ55の接続構成が異なる。以下、本変形例に係る高周波回路1Dについて、変形例3に係る高周波回路1Cと同じ点は説明を省略し、異なる点を中心に説明する。
 アンテナ接続端子100は、第1アンテナ接続端子の一例であり、アンテナ2a(第1アンテナ)に接続される。
 スイッチ55は、第2スイッチの一例であり、アンテナ接続端子100とフィルタ12および21との間に接続されている。具体的には、スイッチ55は、共通端子55a(第2共通端子)、選択端子55b(第3選択端子)および55c(第4選択端子)を有する。共通端子55aはアンテナ接続端子100に接続され、選択端子55bはフィルタ12の出力端に接続され、選択端子55cはフィルタ21の出力端に接続されている。この接続構成により、スイッチ55は、例えばRFIC3からの制御信号に基づいて、アンテナ接続端子100とフィルタ12との接続、および、アンテナ接続端子100とフィルタ21との接続を切り替える。
 また、フィルタ11の出力端はアンテナ2aと異なるアンテナ2b(第2アンテナ)に接続されている。
 本変形例に係る高周波回路1Dにおいて、電力増幅器31、スイッチ52、53および55、フィルタ12および21は、第1基板61に配置され、電力増幅器32およびフィルタ11は、第2基板62に配置されている。
 これによれば、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Dの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。
 [1.9 変形例5に係る高周波回路1Gの回路構成]
 次に、3つの電力増幅器と3つのアンテナとを利用した、変形例5に係る高周波回路1Gの回路構成について、図5Cを参照しながら説明する。
 図5Cは、実施の形態の変形例5に係る高周波回路1Gの回路構成図である。同図に示すように、高周波回路1Gは、フィルタ11、12、21および22と、電力増幅器31、32および35と、スイッチ52、53および54と、アンテナ接続端子101および102と、高周波入力端子111、112および113と、第1基板61および第2基板62と、を備える。本変形例に係る高周波回路1Gは、変形例4に係る高周波回路1Dと比較して、バンドCを含む通過帯域を有するフィルタ22が付加されている点、および、スイッチ54の構成が異なる。以下、本変形例に係る高周波回路1Gについて、変形例4に係る高周波回路1Dと同じ点は説明を省略し、異なる点を中心に説明する。
 アンテナ接続端子101は、第1アンテナ接続端子の一例であり、アンテナ2a(第1アンテナ)に接続される。アンテナ接続端子102は、第2アンテナ接続端子の一例であり、アンテナ2aと異なるアンテナ2b(第2アンテナ)に接続される。
 高周波入力端子111、112および113は、それぞれ、高周波回路1Gの外部(RFIC3)から送信信号を受けるための端子である。
 フィルタ11は、第2フィルタの一例であり、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有する。フィルタ11は、電力増幅器32に接続されている。
 フィルタ12は、第1フィルタの一例であり、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有する。フィルタ12は、スイッチ52を介して電力増幅器31に接続されている。
 フィルタ21は、第3フィルタの一例であり、パワークラス2に対応し、TDD用のバンドBを含む通過帯域を有する。フィルタ21は、スイッチ52および53を介して電力増幅器31に接続されている。
 フィルタ22は、バンドAおよびバンドBと異なるFDD用のバンドCのアップリンク動作バンドを含む通過帯域を有する。フィルタ22は、電力増幅器35に接続されている。なお、フィルタ22は、TDD用のバンドCを含む通過帯域を有していてもよい。
 電力増幅器31は、電力増幅回路を構成する第1増幅器の一例であり、パワークラス2に対応している。電力増幅器31は、高周波入力端子111から入力されたバンドAおよびバンドBの送信信号を増幅可能である。電力増幅器31は、高周波入力端子111とスイッチ52との間に接続されている。
 電力増幅器32は、電力増幅回路を構成する第2増幅器の一例であり、パワークラス3に対応している。電力増幅器32は、高周波入力端子112から入力されたバンドAの送信信号を増幅可能である。電力増幅器32は、高周波入力端子112とフィルタ11との間に接続されている。
 電力増幅器35は、高周波入力端子113から入力されたバンドCの送信信号を増幅可能である。電力増幅器35は、高周波入力端子113とフィルタ22との間に接続されている。
 スイッチ54は、アンテナ接続端子101および102とフィルタ12、21および22との間に接続されている。具体的には、スイッチ54は、共通端子54a、共通端子54b、選択端子54c、54dおよび54eを有する。共通端子54aはアンテナ接続端子102に接続され、共通端子54bはアンテナ接続端子101に接続され、選択端子54cはフィルタ12の出力端に接続され、選択端子54dはフィルタ21の出力端に接続され、選択端子54eはフィルタ22の出力端に接続されている。この接続構成により、スイッチ54は、例えばRFIC3からの制御信号に基づいて、アンテナ接続端子102とフィルタ12との接続およびアンテナ接続端子102とフィルタ21との接続を切り替え、アンテナ接続端子101とフィルタ22との接続および非接続を切り替える。
 本変形例に係る高周波回路1Gにおいて、電力増幅器31および35、スイッチ52、53および54、フィルタ12、21および22は、第1基板61に配置され、電力増幅器32およびフィルタ11は、第2基板62に配置されている。
 上記構成によれば、パワークラス2のバンドAのFDD信号とバンドCのFDD(またはTDD)信号とを同時に出力する場合(2アップリンク)には、共通端子54aと選択端子54cとが接続され、共通端子54bと選択端子54eとが接続される。これにより、電力増幅器31および32のそれぞれからパワークラス3に対応するバンドAの送信信号が出力され、当該2つの送信信号は2つのアンテナ2bおよび2cから送信される。これと同時に、電力増幅器35からバンドCの送信信号が出力され、当該送信信号はアンテナ2aから送信される。
 また、パワークラス3のバンドAのFDD信号とバンドBのTDD信号とバンドCのFDD(またはTDD)信号とを同時に出力する場合(3アップリンク)には、共通端子54aと選択端子54dとが接続され、共通端子54bと選択端子54eとが接続される。これにより、電力増幅器32からパワークラス3に対応するバンドAの送信信号が出力され、当該送信信号はアンテナ2cから送信される。これと同時に、電力増幅器31からバンドBの送信信号が出力され、当該送信信号はアンテナ2bから送信される。さらにこれらと同時に、電力増幅器35からバンドCの送信信号が出力され、当該送信信号はアンテナ2aから送信される。本変形例に係る高周波モジュール1Gによれば、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上できる。また、電力増幅器31および32の電力付加効率を向上でき、電力増幅器31および32ならびにフィルタ11および12から発生するノイズを低減できる。
 [1.10 変形例6に係る高周波回路1Eの回路構成]
 次に、変形例6に係る高周波回路1Eの回路構成について、図6を参照しながら説明する。
 図6は、実施の形態の変形例6に係る高周波回路1Eの回路構成図である。同図に示すように、高周波回路1Eは、フィルタ11、12、13および21と、電力増幅器31および32と、低雑音増幅器33と、スイッチ52、53、54および56と、アンテナ接続端子101および102と、高周波入力端子111および112と、高周波出力端子120と、第1基板61および第2基板62と、を備える。本変形例に係る高周波回路1Eは、変形例3に係る高周波回路1Cと比較して、フィルタ13、低雑音増幅器33およびスイッチ56が付加されている点が異なる。以下、本変形例に係る高周波回路1Eについて、変形例3に係る高周波回路1Cと同じ点は説明を省略し、異なる点を中心に説明する。
 高周波出力端子120は、高周波回路1Eの外部(RFIC3)に、FDD用のバンドAの受信信号およびTDD用のバンドのBの受信信号を供給するための出力端子である。
 フィルタ13は、第4フィルタの一例であり、FDD用のバンドAのダウンリンク動作バンドを含む通過帯域を有する。フィルタ13の入力端は、フィルタ12の出力端および選択端子54dに接続され、フィルタ13の出力端は、スイッチ56を介して低雑音増幅器33の入力端子に接続されている。フィルタ12および13は、バンドA用のデュプレクサを構成している。
 低雑音増幅器33は、アンテナ接続端子101から入力されたバンドAおよびバンドBの受信信号を増幅可能である。低雑音増幅器33は、高周波出力端子120とスイッチ56との間に接続されている。
 スイッチ56は、フィルタ13および21と低雑音増幅器33との間に接続されている。具体的には、スイッチ56は、共通端子56a、選択端子56bおよび56cを有する。共通端子56aは低雑音増幅器33の入力端子に接続され、選択端子56bはフィルタ13の出力端に接続され、選択端子56cはスイッチ53を介してフィルタ21の出力端に接続されている。この接続構成により、スイッチ56は、例えばRFIC3からの制御信号に基づいて、低雑音増幅器33とフィルタ13との接続、および、低雑音増幅器33とフィルタ21との接続を切り替える。
 本変形例に係る高周波回路1Eにおいて、電力増幅器31、低雑音増幅器33、スイッチ52、53、54および56、フィルタ12、13および21は、第1基板61に配置され、電力増幅器32およびフィルタ11は、第2基板62に配置されている。なお、バンドAのダウンリンク動作バンドを含む通過帯域を有するフィルタは、第2基板には配置されていない。
 これによれば、パワークラス2のFDD用の送信信号を単独で伝送することが困難なフィルタ11および12について、それぞれ、パワークラス3の送信信号(例えば23dBm)を伝送させるので、パワークラス2のFDD用の送信信号を、フィルタ11および12の通過特性を劣化させることなく伝送することが可能となる。
 また、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上でき、また、電力増幅器31および32の電力付加効率を向上でき、フィルタ11および12ならびに電力増幅器31および32から発生するノイズを低減できる。さらに、上記ノイズを低減できるため、低雑音増幅器33が配置された受信経路におけるバンドAの受信信号の受信感度を向上できる。
 また、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Eの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。さらに、フィルタ11および12のうちのフィルタ12のみがフィルタ13とバンドAのデュプレクサを構成するので、フィルタ員数を削減できる。
 なお、本変形例に係る高周波回路1Eにおいて、低雑音増幅器33およびスイッチ56はなくてもよい。
 [1.11 変形例7に係る高周波回路1Fの回路構成]
 次に、変形例7に係る高周波回路1Fの回路構成について、図7を参照しながら説明する。
 図7は、実施の形態の変形例7に係る高周波回路1Fの回路構成図である。同図に示すように、高周波回路1Fは、フィルタ11、12、14および21と、電力増幅器31および32と、低雑音増幅器34と、スイッチ52、53および54と、アンテナ接続端子101および102と、高周波入力端子111および112と、高周波出力端子130と、第1基板61および第2基板62と、を備える。本変形例に係る高周波回路1Fは、変形例3に係る高周波回路1Cと比較して、フィルタ14および低雑音増幅器34が付加されている点が異なる。以下、本変形例に係る高周波回路1Fについて、変形例3に係る高周波回路1Cと同じ点は説明を省略し、異なる点を中心に説明する。
 高周波出力端子130は、高周波回路1Fの外部(RFIC3)に、FDD用のバンドAの受信信号を供給するための出力端子である。
 フィルタ14は、第5フィルタの一例であり、FDD用のバンドAのダウンリンク動作バンドを含む通過帯域を有する。フィルタ14の入力端は、フィルタ11の出力端および選択端子54cに接続され、フィルタ14の出力端は低雑音増幅器34の入力端子に接続されている。フィルタ11および14は、バンドA用のデュプレクサを構成している。なお、フィルタ14は、バンドAのダウンリンク動作バンドを通過帯域として含まなくてもよく、バンドA以外のダウンリンク動作バンドを通過帯域として含むフィルタであってもよい。
 低雑音増幅器34は、アンテナ接続端子102から入力されたバンドAの受信信号を増幅可能である。低雑音増幅器34は、高周波出力端子130とフィルタ14との間に接続されている。
 本変形例に係る高周波回路1Fにおいて、電力増幅器31、スイッチ52、53および54、フィルタ12および21は、第1基板61に配置され、電力増幅器32、低雑音増幅器34、フィルタ11および14は、第2基板62に配置されている。
 これによれば、パワークラス2のFDD用の送信信号を単独で伝送することが困難なフィルタ11および12について、それぞれ、パワークラス3の送信信号(例えば23dBm)を伝送させるので、パワークラス2のFDD用の送信信号を、フィルタ11および12の通過特性を劣化させることなく伝送することが可能となる。
 また、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上でき、また、電力増幅器31および32の電力付加効率を向上でき、フィルタ11および12ならびに電力増幅器31および32から発生するノイズを低減できる。
 また、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Fの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。また、フィルタ14および低雑音増幅器34は、フィルタ12および21が配置されていない第2基板62に配置されるので、高周波回路1Fの放熱性が向上し、フィルタ14および低雑音増幅器34が配置された受信経路におけるバンドAの受信感度の劣化を抑制できる。
 なお、本発明に係る高周波回路は、変形例3に係る高周波回路1C、変形例6に係る高周波回路1E、および変形例7に係る高周波回路1Fにおいて、第1基板61および第1基板61に配置された回路部品のみを備えてもよい。
 つまり、本発明に係る高周波回路は、第1基板61と、アンテナ接続端子101および102と、パワークラス2に対応する電力増幅器31と、電力増幅器31とアンテナ接続端子101との間に接続され、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ12と、電力増幅器31とアンテナ接続端子102との間に接続され、パワークラス2に対応し、TDD用のバンドBを含む通過帯域を有するフィルタ21と、スイッチ52と、スイッチ54と、を備えてもよい。ここで、電力増幅器31の出力端子は共通端子52aに接続され、選択端子52bはフィルタ12の入力端に接続され、選択端子52cはフィルタ21の入力端に接続され、共通端子54bはアンテナ接続端子101に接続され、共通端子54aはアンテナ接続端子102に接続され、選択端子54dはフィルタ12の出力端に接続され、選択端子54eはフィルタ21の出力端に接続される。電力増幅器31、スイッチ52および54、ならびにフィルタ12および21は第1基板61に配置されている。このとき、パワークラス2に対応したバンドAの送信信号を出力する場合には、電力増幅器31と異なる電力増幅器32からパワークラス3に対応したバンドAのアップリンク動作バンドの送信信号が選択端子54cに入力されているときに、電力増幅器31からパワークラス3に対応したバンドAのアップリンク動作バンドの送信信号をフィルタ12に出力する。一方、パワークラス2に対応したバンドBの送信信号を出力する場合には、電力増幅器31からバンドBの送信信号をフィルタ21に出力する。
 これによれば、パワークラス2のTDD用の送信信号をフィルタ21で伝送することが可能となる。一方、パワークラス2のTDD用の送信信号に対してパワークラス2のFDD用の送信信号は、時分割でなく連続的に伝送されるため電力密度が高く、フィルタ11または12単独で当該送信信号を伝送する場合には、当該フィルタが高温状態となり耐電力性が臨界状態となる。このため、フィルタ12の通過特性が劣化することが懸念される。これに対して、パワークラス2のFDD用の送信信号を単独で伝送することが困難なフィルタ12について、フィルタ11とともに、パワークラス3の送信信号(例えば23dBm)を伝送させるので、パワークラス2のFDD用の送信信号を、フィルタ12の通過特性を劣化させることなく伝送することが可能となる。
 [2 効果など]
 以上のように、本実施の形態に係る高周波回路1は、アンテナ接続端子100と、パワークラス2に対応する電力増幅器30と、電力増幅器30とアンテナ接続端子100との間に接続され、パワークラス3に対応し、FDD用のバンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ12と、電力増幅器30とアンテナ接続端子100との間に接続され、パワークラス3に対応し、バンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ11と、電力増幅器30とアンテナ接続端子100との間に接続され、パワークラス2に対応し、TDD用のバンドBを含む通過帯域を有するフィルタ21と、を備え、パワークラス2に対応したバンドAの送信信号をアンテナ接続端子100から出力する場合には、電力増幅器30からバンドAの送信信号をフィルタ11および12に分配出力し、パワークラス2に対応したバンドBの送信信号をアンテナ接続端子100から出力する場合には、電力増幅器30からバンドBの送信信号をフィルタ21に出力する。
 これによれば、パワークラス2のTDD用の送信信号をフィルタ21で伝送することが可能となる。一方、パワークラス2のFDD用の送信信号は、時分割でなく連続的に伝送されるため電力密度が高く、フィルタ11または12単独で当該送信信号を伝送する場合には、当該フィルタが高温状態となり耐電力性が臨界状態となる。このため、フィルタ11または12の通過特性が劣化することが懸念される。これに対して、パワークラス2のFDD用の送信信号を単独で伝送することが困難なフィルタ11および12について、それぞれ、パワークラス3の送信信号(例えば23dBm)を伝送させるので、パワークラス2のFDD用の送信信号を、フィルタ通過特性を劣化させることなく伝送することが可能となる。よって、従来よりも高い最大出力パワーを許容するパワークラスがFDD用バンドに適用された場合に、伝送特性の劣化が抑制された高周波回路1を提供できる。
 また例えば、高周波回路1は、さらに、端子41a、41bおよび41cを有し、端子41aに入力された信号を分配して端子41bおよび41cから出力する分配回路41と、端子42a、42bおよび42cを有し、端子42bおよび42cに入力された信号を合成して端子42aから出力する合成回路42と、を備え、端子41aは電力増幅器30の出力端子に接続され、端子41bはフィルタ11の入力端に接続され、端子41cはフィルタ12の入力端に接続され、端子42bはフィルタ11の出力端に接続され、端子42cはフィルタ12の出力端に接続され、端子42aはアンテナ接続端子100に接続されてもよい。
 これによれば、バンドAを伝送する送信回路を簡素化できる。
 また例えば、高周波回路1は、さらに、共通端子52a、選択端子52bおよび52cを有し、共通端子52aと選択端子52bとの接続、および、共通端子52aと選択端子52cとの接続を切り替えるスイッチ52と、共通端子51a、選択端子51bおよび51cを有し、共通端子51aと選択端子51bとの接続、および、共通端子51aと選択端子51cとの接続を切り替えるスイッチ51と、を備え、共通端子52aは電力増幅器30の出力端子に接続され、選択端子52bは端子41aに接続され、選択端子52cはフィルタ21の入力端に接続され、共通端子51aはアンテナ接続端子100に接続され、選択端子51bは端子42aに接続され、選択端子51cはフィルタ21の出力端に接続されてもよい。
 これによれば、バンドAの送信信号とバンドBの送信信号とを、高アイソレーションで伝送できる。
 また例えば、変形例1に係る高周波回路1Aは、パワークラス2に対応する電力増幅器31と、パワークラス3に対応する電力増幅器32と、フィルタ11、12および21と、スイッチ52と、スイッチ51と、合成回路42と、を備え、電力増幅器31の出力端子は共通端子52aに接続され、電力増幅器32の出力端子はフィルタ11の入力端に接続され、選択端子52bはフィルタ12の入力端に接続され、選択端子52cはフィルタ21の入力端に接続され、端子42bはフィルタ11の出力端に接続され、端子42cはフィルタ12の出力端に接続され、端子42aは選択端子51bに接続され、共通端子51aはアンテナ接続端子100に接続され、選択端子51cはフィルタ21の出力端に接続されてもよい。
 これによれば、パワークラス2のバンドAのFDD信号を出力する場合には、電力増幅器31および32のそれぞれからパワークラス3に対応する送信信号を出力し、パワークラス2のバンドBのTDD信号を出力する場合には、電力増幅器31からパワークラス2に対応する送信信号を出力できる。つまり、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上できる。また、電力増幅器31および32の電力付加効率を向上でき、電力増幅器31および32ならびにフィルタ11および12から発生するノイズを低減できる。
 また例えば、変形例2に係る高周波回路1Bは、アンテナ接続端子101および102と、電力増幅器31および32と、フィルタ11、12および21と、スイッチ52と、スイッチ54と、を備え、電力増幅器31の出力端子は共通端子52aに接続され、電力増幅器32の出力端子はフィルタ11の入力端に接続され、選択端子52bはフィルタ12の入力端に接続され、選択端子52cはフィルタ21の入力端に接続され、共通端子54bはアンテナ接続端子101に接続され、共通端子54aはアンテナ接続端子102に接続され、選択端子54dはフィルタ12の出力端に接続され、選択端子54cはフィルタ11の出力端に接続され、選択端子54eはフィルタ21の出力端に接続されてもよい。
 これによれば、パワークラス2のバンドAのFDD信号を出力する場合には、電力増幅器31および32のそれぞれからパワークラス3に対応する送信信号を出力し、2つのアンテナ2aおよび2bから送信される。また、パワークラス2のバンドBのTDD信号を出力する場合には、電力増幅器31からパワークラス2に対応する送信信号を出力し、1つのアンテナ2aから送信される。つまり、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上できる。また、電力増幅器31および32の電力付加効率を向上でき、電力増幅器31および32ならびにフィルタ11および12から発生するノイズを低減できる。
 また例えば、変形例3に係る高周波回路1Cは、高周波回路1Bに対して、さらに、第1基板61および第2基板62を備え、電力増幅器31、スイッチ52、54、フィルタ12および21は第1基板61に配置され、電力増幅器32およびフィルタ11は第2基板62に配置されてもよい。
 これによれば、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Cの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。
 また例えば、変形例4に係る高周波回路1Dは、アンテナ接続端子100と、電力増幅器31および32と、フィルタ11、12および21と、スイッチ52と、スイッチ55と、第1基板61および第2基板62と、を備え、電力増幅器31の出力端子は共通端子52aに接続され、電力増幅器32の出力端子はフィルタ11の入力端に接続され、選択端子52bはフィルタ12の入力端に接続され、選択端子52cはフィルタ21の入力端に接続され、共通端子55aはアンテナ接続端子100に接続され、選択端子55bはフィルタ12の出力端に接続され、選択端子55cはフィルタ21の出力端に接続され、電力増幅器31、スイッチ52および55、フィルタ12および21は第1基板61に配置され、電力増幅器32およびフィルタ11は第2基板62に配置されてもよい。
 これによれば、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Dの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。
 また例えば、変形例6に係る高周波回路1Eは、アンテナ接続端子101および102と、電力増幅器31および32と、フィルタ11、12および21と、バンドAのダウンリンク動作バンドを含む通過帯域を有するフィルタ13と、スイッチ52と、スイッチ54と、第1基板61および第2基板62と、を備え、電力増幅器31の出力端子は共通端子52aに接続され、電力増幅器32の出力端子はフィルタ11の入力端に接続され、選択端子52bはフィルタ12の入力端に接続され、選択端子52cはフィルタ21の入力端に接続され、共通端子54bはアンテナ接続端子101に接続され、共通端子54aはアンテナ接続端子102に接続され、選択端子54dはフィルタ12の出力端およびフィルタ13の入力端に接続され、選択端子54cはフィルタ11の出力端に接続され、電力増幅器31、スイッチ52および54、フィルタ12、13および21は第1基板61に配置され、電力増幅器32およびフィルタ11は第2基板62に配置されてもよい。
 これによれば、バンドAのFDD信号を2つの電力増幅器31および32から分割出力することで、パワークラス2のFDD信号を伝送する場合の放熱性を向上でき、また、電力増幅器31および32の電力付加効率を向上でき、フィルタ11および12ならびに電力増幅器31および32から発生するノイズを低減できる。さらに、上記ノイズを低減できるため、低雑音増幅器33が配置された受信経路におけるバンドAの受信信号の受信感度を向上できる。また、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Eの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。さらに、フィルタ11および12のうちのフィルタ12のみがフィルタ13とバンドAのデュプレクサを構成するので、フィルタ員数を削減できる。
 また例えば、変形例7に係る高周波回路1Fは、アンテナ接続端子101および102と、電力増幅器31および32と、フィルタ11、12および21と、FDD用のダウンリンク動作バンドを含む通過帯域を有するフィルタ14と、スイッチ52と、スイッチ54と、第1基板61および第2基板62と、を備え、電力増幅器31の出力端子は共通端子52aに接続され、電力増幅器32の出力端子はフィルタ11の入力端に接続され、選択端子52bはフィルタ12の入力端に接続され、選択端子52cはフィルタ21の入力端に接続され、共通端子54bはアンテナ接続端子101に接続され、共通端子54aはアンテナ接続端子102に接続され、選択端子54dはフィルタ12の出力端に接続され、選択端子54cはフィルタ11の出力端およびフィルタ14の入力端に接続され、フィルタ14の出力端は低雑音増幅器34の入力端子に接続され、電力増幅器31、スイッチ52および54、フィルタ12および21は第1基板61に配置され、電力増幅器32、低雑音増幅器34、フィルタ11および14は第2基板62に配置されてもよい。
 これによれば、電力増幅器31と電力増幅器32とが別基板に配置され、フィルタ11とフィルタ12とが別基板に配置されるので、高周波回路1Fの放熱性が向上し、また、フィルタ11および12の特性劣化を抑制できる。また、フィルタ14および低雑音増幅器34は、フィルタ12および21が配置されていない第2基板62に配置されるので、高周波回路1Fの放熱性が向上し、フィルタ14および低雑音増幅器34が配置された受信経路におけるバンドAの受信感度の劣化を抑制できる。
 また例えば、本発明に係る高周波回路は、第1基板61と、電力増幅器31と、フィルタ12と、フィルタ21と、アンテナ接続端子101および102と、スイッチ52および54と、を備えてもよい。このとき、パワークラス2に対応したバンドAの送信信号を出力する場合には、電力増幅器31と異なる電力増幅器32からパワークラス3に対応したバンドAのアップリンク動作バンドの送信信号が選択端子54cに入力されているときに、電力増幅器31からパワークラス3に対応したバンドAのアップリンク動作バンドの送信信号をフィルタ12に出力する。一方、パワークラス2に対応したバンドBの送信信号を出力する場合には、電力増幅器31からバンドBの送信信号をフィルタ21に出力する。
 これによれば、パワークラス2のTDD用の送信信号をフィルタ21で伝送することが可能となる。一方、パワークラス2のTDD用の送信信号に対してパワークラス2のFDD用の送信信号は、時分割でなく連続的に伝送されるため電力密度が高く、フィルタ11または12単独で当該送信信号を伝送する場合には、当該フィルタが高温状態となり耐電力性が臨界状態となる。このため、フィルタ12の通過特性が劣化することが懸念される。これに対して、パワークラス2のFDD用の送信信号を単独で伝送することが困難なフィルタ12について、フィルタ11とともに、パワークラス3の送信信号を伝送させるので、パワークラス2のFDD用の送信信号を、フィルタ12の通過特性を劣化させることなく伝送することが可能となる。
 また、本実施の形態に係る通信装置5は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波回路1と、を備える。
 これによれば、通信装置5は、高周波回路1の上記効果と同様の効果を奏することができる。
 (その他の実施の形態)
 以上、本発明に係る高周波回路および通信装置について、実施の形態および変形例に基づいて説明したが、本発明に係る高周波回路および通信装置は、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路および通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態および変形例に係る高周波回路および通信装置の回路構成において、図面に表された各回路素子および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されてもよい。
 また、上記実施の形態において、5G-NRまたはLTEのためのバンドが用いられていたが、5G-NRまたはLTEに加えてまたは代わりに、他の無線アクセス技術のための通信バンドが用いられてもよい。例えば、無線ローカルエリアネットワークのための通信バンドが用いられてもよい。また例えば、7ギガヘルツ以上のミリ波帯域が用いられてもよい。この場合、高周波回路1と、アンテナ2と、RFIC3とは、ミリ波アンテナモジュールを構成し、フィルタとして、例えば分布定数型フィルタが用いられてもよい。
 本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。
 1、1A、1B、1C、1D、1E、1F、1G  高周波回路
 2、2a、2b、2c  アンテナ
 3  RF信号処理回路(RFIC)
 5  通信装置
 11、12、13、14、21、22  フィルタ
 30、31、32、35  電力増幅器
 33、34  低雑音増幅器
 41  分配回路
 41a、41b、41c、42a、42b、42c  端子
 42  合成回路
 51、52、53、54、55、56  スイッチ
 51a、52a、54a、54b、55a、56a  共通端子
 51b、51c、52b、52c、54c、54d、54e、55b、55c、56b、56c  選択端子
 61  第1基板
 62  第2基板
 100、101、102  アンテナ接続端子
 110、111、112、113  高周波入力端子
 120、130  高周波出力端子
 411、412、413、421、422、423  インダクタ
 451、452、461、462  1/4波長伝送線路
 453、463  抵抗素子
 470、480  90°ハイブリッドカプラ
 471、481  終端抵抗

Claims (11)

  1.  アンテナ接続端子と、
     パワークラス2に対応する電力増幅回路と、
     前記電力増幅回路と前記アンテナ接続端子との間に接続され、パワークラス3に対応し、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタと、
     前記電力増幅回路と前記アンテナ接続端子との間に接続され、パワークラス3に対応し、前記第1バンドの前記アップリンク動作バンドを含む通過帯域を有する第2フィルタと、
     前記電力増幅回路と前記アンテナ接続端子との間に接続され、パワークラス2に対応し、時分割複信用の第2バンドを含む通過帯域を有する第3フィルタと、を備え、
     パワークラス2に対応した前記第1バンドの送信信号を前記アンテナ接続端子から出力する場合には、前記電力増幅回路から前記第1バンドの送信信号を前記第1フィルタおよび前記第2フィルタに分配出力し、
     パワークラス2に対応した前記第2バンドの送信信号を前記アンテナ接続端子から出力する場合には、前記電力増幅回路から前記第2バンドの送信信号を前記第3フィルタに出力する、
     高周波回路。
  2.  さらに、
     第1端子、第2端子および第3端子を有し、前記第1端子に入力された信号を電力分配して前記第2端子および前記第3端子から出力する分配回路と、
     第4端子、第5端子および第6端子を有し、前記第4端子および前記第5端子に入力された信号を電力合成して前記第6端子から出力する合成回路と、を備え、
     前記第1端子は前記電力増幅回路の出力端子に接続され、前記第2端子は前記第1フィルタの入力端に接続され、前記第3端子は前記第2フィルタの入力端に接続され、
     前記第4端子は前記第1フィルタの出力端に接続され、前記第5端子は前記第2フィルタの出力端に接続され、前記第6端子は前記アンテナ接続端子に接続される、
     請求項1に記載の高周波回路。
  3.  さらに、
     第1共通端子、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を切り替える第1スイッチと、
     第2共通端子、第3選択端子および第4選択端子を有し、前記第2共通端子と前記第3選択端子との接続、および、前記第2共通端子と前記第4選択端子との接続を切り替える第2スイッチと、を備え、
     前記第1共通端子は前記電力増幅回路の前記出力端子に接続され、前記第1選択端子は前記第1端子に接続され、前記第2選択端子は前記第3フィルタの入力端に接続され、
     前記第2共通端子は前記アンテナ接続端子に接続され、前記第3選択端子は前記第6端子に接続され、前記第4選択端子は前記第3フィルタの出力端に接続される、
     請求項2に記載の高周波回路。
  4.  さらに、
     第1共通端子、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を切り替える第1スイッチと、
     第2共通端子、第3選択端子および第4選択端子を有し、前記第2共通端子と前記第3選択端子との接続、および、前記第2共通端子と前記第4選択端子との接続を切り替える第2スイッチと、
     第4端子、第5端子および第6端子を有し、前記第4端子および前記第5端子に入力された信号を合成して前記第6端子から出力する合成回路と、を備え、
     前記電力増幅回路は、
     パワークラス2に対応する第1増幅器と、
     パワークラス3に対応する第2増幅器と、を有し、
     前記第1増幅器の出力端子は前記第1共通端子に接続され、
     前記第2増幅器の出力端子は前記第2フィルタの入力端に接続され、
     前記第1選択端子は前記第1フィルタの入力端に接続され、前記第2選択端子は前記第3フィルタの入力端に接続され、
     前記第4端子は前記第1フィルタの出力端に接続され、前記第5端子は前記第2フィルタの出力端に接続され、前記第6端子は前記第3選択端子に接続され、
     前記第2共通端子は前記アンテナ接続端子に接続され、前記第4選択端子は前記第3フィルタの出力端に接続される、
     請求項1に記載の高周波回路。
  5.  前記アンテナ接続端子は、第1アンテナ接続端子および第2アンテナ接続端子を含み、
     第1共通端子、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を切り替える第1スイッチと、
     第3共通端子、第4共通端子、第5選択端子、第6選択端子および第7選択端子を有し、前記第4共通端子と前記第6選択端子との接続および非接続を切り替え、前記第3共通端子と前記第5選択端子との接続および前記第3共通端子と前記第7選択端子との接続を切り替える第3スイッチと、を備え、
     前記電力増幅回路は、
     パワークラス2に対応する第1増幅器と、
     パワークラス3に対応する第2増幅器と、を有し、
     前記第1増幅器の出力端子は前記第1共通端子に接続され、
     前記第2増幅器の出力端子は前記第2フィルタの入力端に接続され、
     前記第1選択端子は前記第1フィルタの入力端に接続され、前記第2選択端子は前記第3フィルタの入力端に接続され、
     前記第3共通端子は前記第1アンテナ接続端子に接続され、前記第4共通端子は前記第2アンテナ接続端子に接続され、前記第5選択端子は前記第1フィルタの出力端に接続され、前記第6選択端子は前記第2フィルタの出力端に接続され、前記第7選択端子は前記第3フィルタの出力端に接続される、
     請求項1に記載の高周波回路。
  6.  さらに、第1基板および第2基板を備え、
     前記第1増幅器、前記第1スイッチ、前記第3スイッチ、前記第1フィルタおよび前記第3フィルタは、前記第1基板に配置され、
     前記第2増幅器および前記第2フィルタは、前記第2基板に配置される、
     請求項5に記載の高周波回路。
  7.  さらに、
     第1基板および第2基板と、
     第1共通端子、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を切り替える第1スイッチと、
     第2共通端子、第3選択端子および第4選択端子を有し、前記第2共通端子と前記第3選択端子との接続、および、前記第2共通端子と前記第4選択端子との接続を切り替える第2スイッチと、を備え、
     前記電力増幅回路は、
     パワークラス2に対応する第1増幅器と、
     パワークラス3に対応する第2増幅器と、を有し、
     前記第1増幅器の出力端子は前記第1共通端子に接続され、
     前記第2増幅器の出力端子は前記第2フィルタの入力端に接続され、
     前記第1選択端子は前記第1フィルタの入力端に接続され、前記第2選択端子は前記第3フィルタの入力端に接続され、
     前記第2共通端子は前記アンテナ接続端子に接続され、前記第3選択端子は前記第1フィルタの出力端に接続され、前記第4選択端子は前記第3フィルタの出力端に接続され、
     前記第1増幅器、前記第1スイッチ、前記第2スイッチ、前記第1フィルタおよび前記第3フィルタは、前記第1基板に配置され、
     前記第2増幅器および前記第2フィルタは、前記第2基板に配置される、
     請求項1に記載の高周波回路。
  8.  さらに、
     前記第1バンドのダウンリンク動作バンドを含む通過帯域を有する第4フィルタを備え、
     前記第4フィルタの入力端は、前記第1フィルタの出力端に接続され、
     前記第4フィルタは、前記第1基板に配置される、
     請求項6または7に記載の高周波回路。
  9.  さらに、
     周波数分割複信用のダウンリンク動作バンドを含む通過帯域を有する第5フィルタと、
     前記第5フィルタの出力端に接続された低雑音増幅器と、を備え、
     前記第5フィルタおよび前記低雑音増幅器は、前記第2基板に配置される、
     請求項6または7に記載の高周波回路。
  10.  第1基板と、
     第1アンテナ接続端子および第2アンテナ接続端子と、
     パワークラス2に対応する第1増幅器と、
     前記第1増幅器と前記第1アンテナ接続端子との間に接続され、パワークラス3に対応し、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタと、
     前記第1増幅器と前記第1アンテナ接続端子との間に接続され、パワークラス2に対応し、時分割複信用の第2バンドを含む通過帯域を有する第3フィルタと、
     第1共通端子、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を切り替える第1スイッチと、
     第3共通端子、第4共通端子、第5選択端子、第6選択端子および第7選択端子を有し、前記第4共通端子と前記第6選択端子との接続および非接続を切り替え、前記第3共通端子と前記第5選択端子との接続および前記第3共通端子と前記第7選択端子との接続を切り替える第3スイッチと、を備え、
     前記第1増幅器の出力端子は前記第1共通端子に接続され、
     前記第1選択端子は前記第1フィルタの入力端に接続され、前記第2選択端子は前記第3フィルタの入力端に接続され、
     前記第3共通端子は前記第1アンテナ接続端子に接続され、前記第4共通端子は前記第2アンテナ接続端子に接続され、前記第5選択端子は前記第1フィルタの出力端に接続され、前記第7選択端子は前記第3フィルタの出力端に接続され、
     前記第1増幅器、前記第1スイッチ、前記第3スイッチ、前記第1フィルタおよび前記第3フィルタは、前記第1基板に配置され、
     パワークラス2に対応した前記第1バンドの送信信号を出力する場合には、前記第1増幅器と異なる第2増幅器からパワークラス3に対応した前記第1バンドの前記アップリンク動作バンドの送信信号が前記第6選択端子に入力されているときに、前記第1増幅器からパワークラス3に対応した前記第1バンドの前記アップリンク動作バンドの送信信号を前記第1フィルタに出力し、
     パワークラス2に対応した前記第2バンドの送信信号を出力する場合には、前記第1増幅器から前記第2バンドの送信信号を前記第3フィルタに出力する、
     高周波回路。
  11.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する請求項1~10のいずれか1項に記載の高周波回路と、備える、
     通信装置。
PCT/JP2022/028391 2021-09-02 2022-07-21 高周波回路および通信装置 WO2023032513A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021143388 2021-09-02
JP2021-143388 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023032513A1 true WO2023032513A1 (ja) 2023-03-09

Family

ID=85412112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028391 WO2023032513A1 (ja) 2021-09-02 2022-07-21 高周波回路および通信装置

Country Status (1)

Country Link
WO (1) WO2023032513A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260703A (ja) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd 電力合成型増幅器
JP2006311300A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 高周波増幅器
JP2011030069A (ja) * 2009-07-28 2011-02-10 Mitsubishi Electric Corp 高周波増幅器
US20150133067A1 (en) * 2013-09-17 2015-05-14 Skyworks Solutions, Inc. Systems and methods related to carrier aggregation front-end module applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260703A (ja) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd 電力合成型増幅器
JP2006311300A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 高周波増幅器
JP2011030069A (ja) * 2009-07-28 2011-02-10 Mitsubishi Electric Corp 高周波増幅器
US20150133067A1 (en) * 2013-09-17 2015-05-14 Skyworks Solutions, Inc. Systems and methods related to carrier aggregation front-end module applications

Similar Documents

Publication Publication Date Title
KR101998455B1 (ko) 듀플렉서들 및 공존 무선 통신 시스템들을 위한 수동 누설 소거 회로망들
US7454178B2 (en) Low-loss transmitter module
US11336312B2 (en) Radio frequency module and communication device
CN111919338B (zh) 天线模块
US11652499B2 (en) Radio frequency module and communication device
US11658794B2 (en) Radio frequency module and communication device
US20230216536A1 (en) Acoustic wave filter circuit, multiplexer, front-end circuit, and communication apparatus
US11757476B2 (en) Radio frequency module and communication device
US10847306B2 (en) High-frequency module
JP2021175073A (ja) 高周波モジュールおよび通信装置
JP2021158569A (ja) 高周波モジュールおよび通信装置
CN111416633A (zh) 射频模块和通信装置
JP2021197644A (ja) 高周波モジュールおよび通信装置
WO2023032513A1 (ja) 高周波回路および通信装置
JP2021158554A (ja) 高周波モジュールおよび通信装置
US20220368442A1 (en) Multiplexer and communication device
WO2022153926A1 (ja) 高周波回路および通信装置
WO2022034818A1 (ja) 高周波モジュール
US20230036705A1 (en) An Ultra-Wide Bandwidth Ultra-Isolation DC-100 Gigahertz Front-End Module with Integrated Duplexer, Low Noise Amplifier, and Power Amplifier for Wireless Communication Applications
CN115211042A (zh) 一种收发机装置、无线通信装置及芯片组
WO2023037978A1 (ja) 高周波回路および通信装置
WO2023120073A1 (ja) 高周波回路および通信装置
WO2022264862A1 (ja) 高周波回路および通信装置
WO2023017761A1 (ja) 電力増幅回路及び電力増幅方法
US20240195441A1 (en) Radio-frequency circuit and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE