WO2023032427A1 - Co2を燃料に変換するシステム、及び、その方法 - Google Patents

Co2を燃料に変換するシステム、及び、その方法 Download PDF

Info

Publication number
WO2023032427A1
WO2023032427A1 PCT/JP2022/024909 JP2022024909W WO2023032427A1 WO 2023032427 A1 WO2023032427 A1 WO 2023032427A1 JP 2022024909 W JP2022024909 W JP 2022024909W WO 2023032427 A1 WO2023032427 A1 WO 2023032427A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
reactor
steam
storage unit
Prior art date
Application number
PCT/JP2022/024909
Other languages
English (en)
French (fr)
Inventor
昌俊 杉政
章 軍司
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP22864015.7A priority Critical patent/EP4397646A1/en
Publication of WO2023032427A1 publication Critical patent/WO2023032427A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a system for converting CO2 into hydrocarbons by reacting it with green hydrogen.
  • Japanese Patent Publication No. 2018-537532 discloses that the electrical energy required for electrolysis is taken from a renewable energy source, such as wind energy, and the catalyst used for methanation is preferably a honeycomb structure.
  • a method is disclosed in which the carrier structure is placed on a carrier structure having a high heat storage capacity formed as a heat storage material for the reaction heat generated during methanation.
  • Japanese Patent Laying-Open No. 2018-116834 describes that a heat storage material is combined with a hybrid use of steam electrolysis and steam fuel cell power generation to maintain a high temperature.
  • the systems for the methanation reaction described above supply water to the reactor where the hydrogen and CO2 are reacted so that the proper temperature for the methanation reaction is maintained.
  • the system feeds the steam generated from the water in the process of temperature regulation of the reactor to a high-temperature steam electrolysis field that utilizes fluctuating power derived from renewable energy to generate hydrogen, which is delivered to the reactor. are supplying.
  • an object of the present invention is to provide a system and method that can stably produce hydrocarbons with high efficiency from fluctuating renewable energy power by combining the hydrocarbonation reaction of CO 2 and steam electrolysis. do.
  • the present invention provides a system for converting CO 2 into fuel, comprising: a water electrolysis device that generates hydrogen by electrolyzing water vapor using fluctuating power derived from renewable energy; a reactor for reacting CO 2 with the hydrogen to produce hydrocarbons; an evaporator for producing steam by evaporating water by the heat generated by the reaction in the reactor; A system comprising: a heat exchanger that heats the exhaust gas from the reactor and supplies it to the water electrolysis device; be.
  • the present invention provides a method for converting CO 2 into fuel, comprising an electrolysis step of electrolyzing water vapor using fluctuating power derived from renewable energy to produce hydrogen, and reacting CO 2 with the hydrogen.
  • a hydrocarbylating step of producing hydrocarbons by means of a hydrocarbyl treatment a steam producing step of producing steam by evaporating water by the heat generated by the reaction producing the hydrocarbons;
  • the heat generated in the steam heating step supplied to the electrolysis step and the hydrocarbonation step is stored in a heat storage material, and when the fluctuating power decreases, the heat is released from the heat storage material. accumulating heat to continue said hydrocarbon step and said steam generating step.
  • FIG. 1 is a block diagram of a CO 2 conversion system according to one embodiment of the invention.
  • FIG. 2 shows an example of the cross-sectional structure of the heat storage section.
  • FIG. 3A shows another example of the cross-sectional structure of the heat storage section.
  • FIG. 3B shows still another example of the cross-sectional structure of the heat storage section.
  • FIG. 4A shows a perspective view of one form of the heat store.
  • FIG. 4B shows a perspective view of another form of the heat storage unit.
  • FIG. 5 is a block diagram of another embodiment of a CO2 conversion system.
  • FIG. 1 is a block diagram of a CO2 conversion system according to one embodiment of the invention.
  • This system electrolyzes steam 109 supplied from an evaporator 101 using variable power 111 derived from renewable energy to generate hydrogen (electrolyzed hydrogen) 106.
  • SOEC solid oxide electrolysis cell: water electrolyzer
  • a tubular reactor (reactor tube) 100 for catalytically reacting hydrogen 106 supplied from the SOEC 102 with CO 2 105 to convert the CO 2 to hydrocarbons (fuel) 107; a heat exchanger 104 that heats the steam 109 from the evaporator 101 with the exhaust 110 of the SOEC 102 and supplies the heated steam to the SOEC 102;
  • An example of CO 2 105 may be, for example, flue gas from a coal-fired power plant.
  • the reactor 100 and the evaporator 101 are combined with a heat storage unit 103, for example, integrated.
  • the heat storage unit 103 includes a heat storage material, which will be described later.
  • the heat exchanger 104 is also provided with a heat storage section 103A.
  • the steam 109 generated by the evaporator 101 is input to the heat exchanger 104 and heat-exchanged with the high-temperature gas 110 from the SOEC 102 to become hotter and supplied to the SOEC 102 .
  • Reactor 100 is equipped with a catalyst that converts CO 2 105 to hydrocarbons 107 by hydrogen 106 .
  • the hydrocarbon structure varies depending on the type of catalyst. For example, when Ni/Al 2 O 3 is used as a catalyst, methane is produced from hydrogen and CO 2 . CO may be substituted for CO2 , or both may be used. CO 2 and CO may collectively be referred to as reactant gases or carbon source gases for the hydrocarbonation reaction.
  • the reaction that produces hydrocarbons from hydrogen and CO2 is exothermic, and the hydrocarbonation reaction is accelerated when the temperature rises as the reaction progresses. On the other hand, when the reaction reaches a high temperature range, the main reaction is the production of CO from hydrocarbons. Since the heat generated by the hydrocarbonation reaction is cooled by the heat of vaporization when the evaporator 101 converts water into steam, the reactor 100 is controlled to a temperature suitable for the hydrocarbonation reaction.
  • the methanation reaction starts at around 200°C, and the production of CO becomes dominant from around 500°C. to control. More preferably, the proportion of methane in the reaction product is controlled at 250-400° C., which is more than half.
  • SOEC 102 performs high-temperature electrolysis using steam as a highly efficient process. Since the SOEC 102 performs electrolysis at a high temperature of 600 to 900° C., the heat exchanger 104 heat-exchanges the heat of the high temperature exhaust (400 to 800° C.) from the SOEC 102 to steam 109 to maintain the steam at a high temperature. It supplies SOEC 102 .
  • the electrolysis in the SOEC 102 is suppressed and the amount of hydrogen 106 decreases.
  • the amount of water supplied to the evaporator 101 is adjusted to a temperature suitable for the hydrocarbonation reaction. must be limited so that it does not fall below the threshold. Note that when the fluctuating power exceeds the predicted range, the supply amount of the water 108 may be increased.
  • the amount of water vapor generated by the evaporator 101 decreases due to the restriction of the water supply amount
  • the amount of water vapor to the SOEC 102 decreases.
  • the amount of gas from the SOEC 102 to the heat exchanger 104 decreases, the amount of heat exchanged with steam also decreases, and the temperature rise of the steam becomes insufficient. If the temperature of the steam electrolyzer of the SOEC 102 drops suddenly, the steam electrolyzer may be damaged.
  • the heat storage unit 103 for the reactor 100 provides the amount of heat stored based on the reaction heat of the hydrocarbonation reaction to the environment of the hydrocarbonation reaction while the variable power 111 is decreasing, and as a result, The temperature suitable for the hydrocarbonation reaction is maintained without limiting the amount of water supplied.
  • the heat storage unit 103A of the heat exchanger 104 also provides the steam 109 with the amount of heat stored based on the heat of the exhaust gas 110 from the SOEC 102 before the variable power 111 drops to the steam 109 while the variable power drops. As a result, the temperature drop of the steam 109 is suppressed.
  • the system of FIG. 1 provides a heat storage section 103 with a heat storage material in at least one of the reactor 100 and the heat exchanger 104 as areas where temperature control is required.
  • heat storage materials There are various types of heat storage methods for heat storage materials, which can be roughly classified into sensible heat storage, latent heat storage, and chemical heat storage.
  • Sensible heat storage uses the specific heat of a substance
  • latent heat storage uses the transition heat (latent heat) associated with phase changes and transitions of substances. It utilizes transition heat (latent heat), and chemical heat storage utilizes heat absorption and heat generation during chemical reactions (absorption, mixing, hydration).
  • latent heat storage Compared to sensible heat storage, latent heat storage has a higher heat storage density and can supply heat at a constant temperature of the phase transition temperature. Since the phase transition is repeated, it is easy and excellent in terms of durability. Since the temperature of the reactor 100 is controlled to 250 to 400° C. and the temperature of the heat exchanger 104 is controlled to 400° C. or higher (400° C. to 600° C.), the latent heat type heat storage material is preferable to the sensible heat type heat storage material that undergoes large temperature changes. , or chemical heat storage. The heat generated by the methanation reaction in the reactor 100 may be stored as sensible heat of the catalyst carrier inside the reactor, but it is difficult to compensate for the decrease in the temperature of the reactor 100 with this amount of stored heat.
  • the materials that can be selected are limited in the temperature range to be used. In particular, in the high temperature range of 250° C. or higher, there are few choices of organic substances, so it is preferable to select inorganic substances, particularly salt compounds or metal materials.
  • an inorganic substance that undergoes a phase transition in the range of 250 to 400°C may be selected.
  • nitrate salt compounds such as KNO 3 with a melting point of 307° C. and NaNO 3 with a melting point of 337° C. may be used.
  • One type of specific material may be used, but a mixed material may be used because the melting point can be adjusted by mixing with other materials.
  • Materials to be mixed include LiNO 3 and NaNO 2 .
  • hydroxides such as NaOH with a melting point of 318° C. may be used.
  • metal material for example, lead, which has a melting point of 327.5°C, can be used as a single metal, but lead is not preferable due to its toxicity.
  • Metals are preferably used as alloys because the melting point can be adjusted by forming an alloy with other metals. Examples of metal materials that can be used in areas where temperature control of the reactor 100 is required include alloys such as Zn, Al, Mg, Ag, Sn, and Cu. An Mg--Zn alloy obtained by mixing Mg with a melting point of 650.degree. C. and Zn with a melting point of 419.degree.
  • an inorganic substance that undergoes a phase transition within the gas temperature range of 400 to 800°C input from the SOEC at 400°C or higher, which is necessary for temperature control, should be selected.
  • chlorides such as MgCl 2 with a melting point of 714° C. and KCl with a melting point of 770° C. may be used.
  • one type of specific material may be used, it may be used as a mixed material because the phase change temperature range can be adjusted by mixing with other materials.
  • metals include Al with a melting point of 660°C and Mg with a melting point of 650°C.
  • alloys such as Al, Mg, Cu, and Si may be used.
  • the heat storage units 103 and 103A maintain the reactor 100 and the heat exchanger 104 at optimum temperatures by containing phase-change materials with different melting points.
  • the shape and form of the heat storage unit are not limited as long as heat can be transferred from the high-temperature fluid to the low-temperature fluid.
  • the heat storage region 300 occupies a space sandwiched between a high-temperature fluid circulation portion 201 through which a high-temperature fluid flows and a low-temperature fluid circulation portion 202 through which a low-temperature fluid flows, and the internal space of the heat storage region 300 is filled with the heat storage material described above. It is The filling amount of the heat storage material may be appropriately set according to the target value or design value of the heat storage capacity.
  • the high-temperature fluid circulation part 201 of the heat storage part 103 circulates hydrocarbons 203 produced by the reaction of hydrogen and carbon dioxide in the presence of a catalyst.
  • the cold fluid passage 202 carries water 204 ( 108 in FIG. 1), which is converted to steam by heat from the hot fluid via the heat storage region 300 .
  • hot gas 203 ( 110 in FIG. 1) from SOEC 102 flows through hot fluid circulation portion 201 and steam 204 ( 109 in FIG. 1 ) flows through cold fluid circulation portion 202 .
  • the volume occupied by the heat storage material in the heat storage area 300 differs depending on the material due to the phase change of solid and liquid. 201 and 202 are limited to a range that does not destroy them.
  • the surfaces of the high-temperature and low-temperature fluid circulation parts 201, 202 may be treated to have a high specific surface area in order to increase the efficiency of heat conduction, or may be provided with a structure with a high specific surface area. In order to increase the surface roughness, the surface may be roughened mechanically or chemically by etching or the like. A structure such as a fin or a honeycomb may also be installed.
  • the heat storage material may be formed into powder, pellets, or the like.
  • FIG. 3A Another example of the cross-sectional structure of the heat storage units 103 and 103A is shown in FIG. 3A.
  • a heat storage material is contained inside ceramics or metal spheres 205 having a high melting point, and the internal space of the heat storage region 300 is filled with this. Due to the presence of the spheres, the heat capacity of the heat storage material decreases, but the thermal conductivity is kept constant, so stable heat conduction is expected even when the flow rate of the high-temperature fluid decreases.
  • FIG. 3B shows a form in which the high-temperature fluid circulation part 201 is filled with spheres 205 .
  • the cold fluid circulation part 202 may be filled with spheres. Both flow passages may be filled with spheres.
  • measures to improve the surface specific surface area such as increasing the surface roughness, chemical etching treatment of the surface, adding fins and honeycombs, etc. are applied.
  • FIG. 4A shows a perspective view of one form of the heat storage units 103 and 103A
  • FIG. 4B shows a perspective view of another form of the heat storage parts 103 and 103A
  • the heat storage area 300 and the fluid flow passages 201, 202 may be cylindrical, as in FIG. 4A, or rectangular, as in FIG. 4B.
  • the heat storage area 300 has a hollow cylindrical shape
  • a low-temperature fluid circulation part 202 is inserted in the inner circumference
  • a cylindrical high-temperature fluid circulation part 201 exists on the outer circumference of the heat storage area 300 .
  • the outer peripheral portion of the high-temperature fluid circulation portion 201 may be covered with a heat insulating material to prevent heat from leaking to the outside.
  • the high-temperature fluid circulation part 201 may be arranged on the inner peripheral side of the heat storage area 300, and the low-temperature fluid circulation part 202 may be arranged on the outer peripheral side.
  • the heat storage area 300 and the fluid circulation portions 201 and 202 are rectangular, and the heat storage area 300 is sandwiched between the high temperature fluid circulation portion 201 and the low temperature fluid circulation portion 202 .
  • two opposing surfaces of the heat storage area 300 are entirely provided for high-temperature fluid flow. or the low-temperature fluid circulation part, heat conduction between the fluid circulation part and the heat storage area is performed efficiently.
  • Fig. 5 shows another form of the system of Fig. 1.
  • the system in FIG. 5 differs from the system in FIG. 1 in that instead of the evaporator (101) in FIG. and a heat exchanger 401 for performing heat exchange between the hot oil 403 and water 108 to deliver steam 109 .
  • the evaporator (101) in FIG. instead of the evaporator (101) in FIG. and a heat exchanger 401 for performing heat exchange between the hot oil 403 and water 108 to deliver steam 109 .
  • the same effect as in FIG. 1 can be achieved.
  • Example 1 As the heat storage material, KNO 3 was used for the reactor 100 and an Al-Si-Cu alloy having a melting point of around 520°C was used for the heat exchanger 104 .
  • the shape of the heat storage material was pelletized, and the heat storage portions 103 and 103A were filled with the pellets.
  • the structures of the heat storage units 103 and 103A are cylindrical (FIG. 4A).
  • the SOEC 102 can generate H2 with a maximum flow rate of 60 L/min with a power input of 15 kW from renewable energy, and the reactor 100 can generate methane with a flow rate of 15 L/min with H2 and CO2 with a flow rate of 15 L/min. can. At this time, approximately 110 kJ/min of heat is generated from the reactor 100 . With this amount of heat, the evaporator 101 can convert 90 g/min of water into steam.
  • the heat storage material (KNO 3 : 6.5 kg) filled in the heat storage section 103 can maintain the temperature of the reactor 100 within a range suitable for the methanation reaction for a predetermined time.
  • the SOEC 102 was operated at 750°C, and oxygen gas generated from the SOEC 102 was input to the heat exchanger 104.
  • the heat exchanger 104 was able to control the temperature at approximately 520°C.
  • the temperature of the heat exchanger 104 was raised to approximately 600.degree.
  • Example 2 As the heat storage material, ceramic spheres containing an Mg--Al alloy were used for the reactor 100, and ceramic spheres containing an Al--Si alloy with a melting point of about 580.degree.
  • the structure of the heat storage part was a plate type (Fig. 4B). The same results as in Example 1 could be obtained.
  • Example 1 A system was constructed in the same manner as in Example 1 except that the heat storage units 103 and 103A were not filled with the heat storage material.
  • a mixed gas with a volume ratio of H 2 and CO 2 of 4:1 was prepared, heated to 250° C., and introduced into the reactor 100 .
  • the temperature of the reactor increased and when liquid water was sprayed to the evaporator 101 exceeding 550°C, generation of steam was confirmed.
  • the electric power 111 was reduced to 1/10, the temperature of the reactor 100 dropped rapidly and the methanation reaction stopped. Since the generation of water vapor was also stopped, the input of water vapor 109 to the SOEC 102 was also stopped, and the SOEC 102 was also stopped.
  • reaction tube 101 evaporator 102 SOEC 103 heat storage unit 104 heat exchanger 105 CO 2 106H2 107 Hydrocarbons 108 Water in liquid form 109 Water vapor 110 SOEC generated gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本発明のシステムは、再生可能エネルギー由来の変動電力を利用して水蒸気を電解することにより水素を生成する水電解装置と、CO2を水素と反応させて炭化水素を生成する反応器と、反応器に於ける反応の発生熱によって水を蒸発させて水蒸気を生成する蒸発器と、水蒸気を水電解装置からの排気で加熱して当電解装置に供給する熱交換器と、反応器用の蓄熱部であって、炭化水素化の発生熱を蓄熱する蓄熱材料を有する当該蓄熱部と、を備える。

Description

CO2を燃料に変換するシステム、及び、その方法
 本発明は、CO2をグリーン水素と反応させて炭化水素に変換するシステムに関する。
 CO2を利用しながら再生可能エネルギーを貯蔵する技術として、再生可能エネルギー由来の電力によって水を電気分解し、得られたグリーン水素をCO2と反応させて、CO2をメタンに変換するプロセスが知られている。例えば、特表2018-537532号公報には、電気分解に要される電気エネルギーが再生可能エネルギー源、たとえば風力エネルギーから取り出され、その際、メタン化に使用される触媒が、好ましくはハニカム構造物として形成された、高い蓄熱能を有するキャリア構造物上に配置され、キャリア構造物がメタン化中に発生する反応熱の蓄熱材料として使用される方法が開示されている。さらに、特開2018-116834号公報には、蒸気電解と蒸気燃料電池発電とのハイブリッド利用に蓄熱材を組みわせて高温を維持することが記載されている。
特表2018-537532号公報 特開2018-116834号公報
 既述のメタン化反応のためのシステムは、水素とCO2と反応させる反応器に水を供給してメタン化反応に適した温度が維持されるようにしている。さらに、このシステムは、反応器の温度調整の過程で水から発生した水蒸気を、再生可能エネルギー由来の変動電力を利用する高温蒸気電解場に供給して水素を発生させ、この水素を反応器に供給している。
 しかしながら、変動電力であるが故に電力が低下すると、水蒸気の電解が進まず水素生成量が不足し、反応器でのメタンの生成量が低下する。それに伴い水蒸気量も低下して水蒸気の電解が一層進まないという課題がある。この課題は既述の従来技術では配慮されていない。そこで、本発明は、CO2の炭化水素化反応と水蒸気電解とを組み合わせて、変動する再生可能エネルギー電力から高効率で安定して炭化水素を生成可能なシステムと方法を提供することを目的とする。
 前記目的を達成するために、本発明は、CO2を燃料に変換するシステムであって、再生可能エネルギー由来の変動電力を利用して水蒸気を電解することにより水素を生成する水電解装置と、CO2を前記水素と反応させて炭化水素を生成する反応器と、前記反応器に於ける前記反応の発生熱によって水を蒸発させて水蒸気を生成する蒸発器と、前記水蒸気を前記水電解装置からの排気で加熱して当該水電解装置に供給する熱交換器と、前記反応器用の蓄熱部であって、前記反応の発生熱を蓄熱する蓄熱材料を有する当該蓄熱部と、を備えるシステムである。
 さらに本発明は、CO2を燃料に変換する方法であって、再生可能エネルギー由来の変動電力を利用して水蒸気を電解することにより水素を生成する電解ステップと、CO2を前記水素と反応させて炭化水素を生成する炭化水素化ステップと、前記炭化水素を生成する反応の発生熱によって水を蒸発させて水蒸気を生成する水蒸気生成ステップと、当該水蒸気生成ステップで生成され水蒸気を前記電解ステップで発生した高温ガスで加熱した後、当該電解ステップに供給する水蒸気加熱ステップと、前記炭化水素化ステップで発生した熱を蓄熱材で蓄熱し、前記変動電力が低下した際、当該蓄熱材から放熱して前記炭化水素ステップと前記水蒸気生成ステップを継続させる蓄熱ステップと、を備える方法である。
 本発明によれば、CO2の炭化水素化反応と水蒸気電解とを組み合わせて、変動する再生可能エネルギー電力から高効率で安定して炭化水素を生成可能である。
図1は本発明の一実施形態に係るCO2変換システムのブロック図である。 図2は蓄熱部の断面構造の一例を示す。 図3Aは蓄熱部の断面構造の他の例を示す。 図3Bは蓄熱部の断面構造のさらに他の例を示す。 図4Aは蓄熱部の一形態の斜視図を示す。 図4Bは蓄熱部の他の形態の斜視図を示す。 図5はCO2変換システムの他の実施形態に係るブロック図である。
 以下、本発明の実施形態について説明する。図1は、本発明の一実施形態に係るCO2変換システムのブロック図である。このシステムは、再生可能エネルギー由来の変動電力111によって、蒸発器101から供給された水蒸気109を電気分解して、水素(電解水素)106を発生させるSOEC(固体酸化物形電解セル:水電解装置)102と、SOEC102から供給される水素106とCO2105とを触媒下で反応させてCO2を炭化水素(燃料)107に変換する、管状の反応器(反応管)100と、反応器100に於ける反応発熱によって、液体の水108を水蒸気化する蒸発器101と、蒸発器101からの水蒸気109をSOEC102の排気110で加熱し、加熱した水蒸気をSOEC102に供給する熱交換器104と、を備える。CO2105の一例は、例えば、石炭火力発電所の排ガスでよい。
 反応器100と蒸発器101とは蓄熱部103を備えて組み合わされ、例えば、一体化されている。蓄熱部103は後述の蓄熱材料を備える。熱交換器104にも蓄熱部103Aが設けられている。蒸発器101で生成された水蒸気109は熱交換器104に入力され、SOEC102からの高温ガス110と熱交換されることでより高温となり、SOEC102に供給される。
 反応器100には、水素106によってCO105を炭化水素107に変換する触媒が実装されている。炭化水素の構造は触媒の種類に応じて変化する。例えば、Ni/Al23を触媒とした場合には、水素とCOとからメタンが生成される。CO2に代えてCOでもよく、又は、両方でもよい。CO、及び、COを総称して炭化水素化反応のための反応ガス、又は、炭素源ガスと称してもよい。
 水素とCOとから炭化水素を生成する反応は発熱反応であり、反応の進行に伴い温度が上昇すると炭化水素化反応が促進される。一方、反応が高温域に達すると、炭化水素よりCOの生成が主反応となる。炭化水素化反応の発熱は、蒸発器101が水を水蒸気に変化させる際の気化熱によって冷却されるため、反応器100は炭化水素化反応に適した温度に制御される。
 一例として、メタン化反応の場合は、200℃付近からメタン化反応が開始され、500℃付近からはCOの生成の方が主となるため、反応器100は炭化水素化反応を200~500℃に制御する。より好ましくは、反応生成物でのメタンの割合が過半を超える250~400℃に制御されることが好ましい。
 SOEC102は、蒸気による高温電解を高効率なプロセスとして実行する。SOEC102は電気分解を600~900℃の高温で実行するために、熱交換器104はSOEC102からの高温排気(400~800℃)の熱を水蒸気109に熱交換して水蒸気を高温に維持してSOEC102に供給している。
 再生可能エネルギーに由来の変動電力が低下するとSOEC102での電気分解が抑制されて水素量106が低下する。水素量の低下によって、反応器100の温度が下降して炭化水素化反応が停止してしまうことを防ぐため、蒸発器101に供給される水の供給量が、炭化水素化反応に適した温度域を下回らないように、制限される必要がある。なお、変動電力が予測範囲よりも増加した際には、水108の供給量を増加させればよい。
 水の供給量の制限によって、蒸発器101によって生成される水蒸気量が少なくなるとSOEC102への水蒸気量が低下し、電力の低下と相まって、SOEC102の電気分解がさらに抑制される。さらに、SOEC102から熱交換器104へのガス量が低下して水蒸気に熱交換される熱量も減少し水蒸気の昇温が不足する。SOEC102の蒸気電解部の温度が急激に低下すると蒸気電解部が損傷するおそれもある。
 そこで、反応器100に対する蓄熱部103は、炭化水素化反応の反応熱に基づいて蓄えていた熱量を、変動電力111が低下している間炭化水素化反応の環境に提供して、その結果、水の供給量を制限しなくても炭化水素化反応に適した温度が維持されるようにしている。
 さらに、熱交換器104の蓄熱部103Aも、変動電力111が低下する以前に、SOEC102からの排気ガス110の熱に基づいて蓄えていた熱量を、変動電力が低下している間水蒸気109に提供して水蒸気109の温度低下を抑制する。
 図1のシステムは、温度制御が必要である領域としての、反応器100と熱交換器104との少なくとも一つに、蓄熱材料を有する蓄熱部103を提供している。蓄熱材料の蓄熱方式には様々な種類があり、大別すると、顕熱蓄熱、潜熱蓄熱、化学蓄熱が存在する。顕熱蓄熱は、物質の比熱を利用したものであり、潜熱蓄熱は、物質の相変化、転移に伴う転移熱(潜熱)を利用したもので、転移熱を熱物質の相変化、転移に伴う転移熱(潜熱)を利用したものであり、化学蓄熱は、化学反応(吸収、混合、水和)時の吸熱、発熱を利用したものである。
 潜熱蓄熱は、顕熱蓄熱に比べて、蓄熱密度が高く、相転移温度の一定温度で熱供給が可能であり、そして、化学蓄熱に比べて、基本的には安定・安全・安価な物質の相転移を繰り返すだけなので容易であり、耐久性の面でも優れている。反応器100は250~400℃、熱交換器104は400℃以上(400℃~600℃)に温度制御されるため、温度変化の大きな顕熱型の蓄熱材料より、潜熱型の蓄熱材料が好ましく、また、化学蓄熱でもよい。反応器100のメタン化反応で生じた熱を反応器内部の触媒担体の顕熱で蓄熱することもあるが、この蓄熱量では反応器100の温度低下を補うことは困難である。
 潜熱型の蓄熱材料は、利用する温度領域で選択できる材料が限られる。特に、250℃以上の高温領域では、有機物の選択肢が乏しいため、無機物、特に塩化合物またはもしくは金属材料を選択することが好ましい。
 反応器100用蓄熱部103には250~400℃の範囲で相転移する無機物を選択すればよい。例えば、融点が307℃のKNO3、融点が337℃のNaNO3などの硝酸塩系の塩化合物を用いるとよい。特定の材料を1種類で用いてもよいが、他の材料と混合することで融点を調整できるため、混合材料としてもよい。混合する材料としてはLiNO3、NaNO2などが挙げられる。さらに、融点が318℃のNaOHなどの水酸化物を用いてもよい。
 また、金属材料として、例えば、金属単体では融点327.5℃の鉛が挙げられるが、鉛は毒性のため好ましくない。金属は他の金属と合金を形成することで融点が調整できるため、合金として利用することが好ましい。反応器100の温度制御が必要な領域で活用できる金属材料としては、例えばZn、Al、Mg、Ag、Sn、Cuなどの合金が挙げられる。融点が650℃のMgと融点が419℃のZnを49:51重量パーセントで混合したMg-Zn系合金では融点が342℃付近になるため、蓄熱材料として利用可能である。
 熱交換器104用蓄熱部103Aには温度制御に必要な400℃以上で、SOECから入力されるガス温度400~800℃の範囲内で相転移する無機物を選択すればよい。
 例えば、融点が714℃のMgCl2、770℃のKClなどの塩化物を用いるとよい。特定の材料を1種類で用いてもよいが、他の材料と混合することで相変化温度域を調整できるため、混合材料として用いてもよい。また、金属では、融点が660℃のAlや650℃のMgが挙げられる。またAl、Mg、Cu、Siなどの合金を用いてもよい。
 既述のとおり、蓄熱部103,103Aは、夫々、融点の温度が異なる相変化型の材料を含有することによって、反応器100と熱交換器104とを夫々最適な温度に維持する。蓄熱部は高温流体から低温流体に熱を移送できれば、その形状、形態は制限されない。
 図2に蓄熱部103,103Aの断面構造の一例を示す。蓄熱領域300は、高温流体の流れる高温流体流通部201と低温流体の流れる低温流体流通部202とに挟まれた空間を占めており、蓄熱領域300の内部空間には既述の蓄熱材料が充填されている。蓄熱材料の充填量は、蓄熱容量の目標値、又は、設計値に合わせて、適宜設定されてよい。
 蓄熱部103の高温流体流通部201は、水素と二酸化炭素とが触媒下で反応して生成された炭化水素203を流通させる。低温流体流通部202は水204(図1の108)を流通させ、蓄熱領域300を介して高温流体からの熱によって、水を水蒸気に変換させる。熱交換器104では、SOEC102からの高温ガス203(図1の110)が高温流体流通部201を流れ、水蒸気204(図1の109)が低温流体流通部202を流れる。
 蓄熱領域300中の蓄熱材料の占有体積は、材料によっては固体、液体の相変化による体積変化が異なるため、蓄熱材料の体積膨張時に蓄熱領域300、そして、蓄熱領域に隣接する両側の流体流通部201,202を破壊しない範囲に限定される。
 高温および低温流体流通部201,202の表面は、熱伝導効率を上げるために高比表面積にするための処理が施されている、もしくは、高比表面積の構造が設置されていてもよい。表面ラフネスを上げるために、表面を機械的に荒らしてもよく、エッチングなどで化学的に荒らしてもよい。またフィンやハニカムなどの構造体を設置してもよい。蓄熱材料は、粉体、又は、ペレット等に成形されていてもよい。
 図3Aに蓄熱部103,103Aの断面構造の他の例を示す。蓄熱材料を融点の高いセラミクスもしくは金属の球体205の内部に含有させて、これを蓄熱領域300の内部空間に充填させている。球体の存在によって、蓄熱材料の熱容量は減少するが、熱伝導率は一定に保持されるため、高温流体の流通量が減少した場合でも安定な熱伝導が期待される。
 流体流通部に球体205を充填することにより、蓄熱領域300と流体流通部とを一体化することも可能である。複数の球体の表面を直接に流体が流通するため、伝導効率の向上が図られる。図3Bは高温流体流通部201に球体205を充填した形態を示している。低温流体流通部202に球体を充填してもよい。両方の流通部に球体を充填してもよい。球体を充填していない流体流通部の表面の熱伝導効率を上げるために、表面の比表面積の向上対策、例えば、表面ラフネスの増加、表面の化学エッチング処理、フィンやハニカムの追加等を適用してもよい。
 図4Aは蓄熱部103,103Aの一形態の斜視図を示し、図4Bは蓄熱部103,103Aの他の形態の斜視図を示す。図4Aのように、蓄熱領域300と流体流通部201,202は円筒形でも、図4Bのように矩形でもよい。図4Aにおいて、蓄熱領域300は中空円筒状を呈し、内周に低温流体流通部202が挿入され、蓄熱領域300の外周に円筒状を成す高温流体流通部201が存在する。高温流体流通部201の外周部を断熱材で覆い、熱が外部に漏洩しない構造としてもよい。なお、蓄熱領域300の内周側に高温流体流通部201を、外周側に低温流体流通部202を配置してもよい。
 図4Bにおいて、蓄熱領域300、及び、流体流通部201,202は夫々矩形であり、高温流体流通部201と低温流体流通部202とに蓄熱領域300が挟まれている。図4A,4Bに示す、蓄熱部の形態によれば、蓄熱領域300の対向する二つの面(図4Aでは内周面と外周面、図4Bでは正面と背面)の夫々の全体が高温流体流通部、又は、低温流体流通部に接触しているため、流体流通部と蓄熱領域との間の熱伝導が効率よく行われる。
 図5に図1のシステムの他の形態を示す。図5のシステムが図1のシステムと異なる点は、図1の蒸発器(101)の代わりに、低温油(冷媒)402を反応器100に供給し、炭化水素化反応の反応場を冷却して高温油403を送出する冷却器101と、高温油403と水108との熱交換を実行して水蒸気109を送出する熱交換器401と、を備えていることである。このように、循環型の冷媒によって反応器100の温度制御を実行しても図1と同様の効果を達成できる。
 以下、実施例及び比較例に基づいて本発明をさらに具体的に説明する。
 <実施例1>
 蓄熱材料として、反応器100向けにはKNO3、熱交換器104向けには融点が520℃付近にあるAl-Si-Cu合金を使用した。蓄熱材料の形状をペレットとし、蓄熱部103,103Aに充填した。蓄熱部103,103Aの構造は円筒型(図4A)とした。
 SOEC102は再生可能エネルギー由来の15kWの電力の入力により最大流量60L/minのH2を生成でき、H2と流量15L/minのCO2によって、反応器100は、流量15L/minのメタンを生成できる。この時、反応器100から約110kJ/minの発熱が生じる。この熱量により、蒸発器101は90g/minの水を水蒸気に変換できる。蓄熱部103に充填された蓄熱材料(KNO3:6.5kg)は、反応器100の温度を、メタン化反応に適した範囲に所定時間維持できる。
 60L/minのHと15L/minのCO2を250℃に加熱して、反応器100に入力したところ反応器100の出口ではメタンの合成を確認できた。メタン生成量が既述の値にとなった時点での反応器100の温度は約300℃であり、メタン化反応の温度が制御できていることを確認した。蒸発器101に液体の水を噴霧して導入すると、蒸気の発生を確認した。
 SOEC102を750℃で運転し、熱交換器104にSOEC102から発生した酸素ガスを入力した。熱交換器104ではほぼ520℃で温度制御ができていた。水蒸気109を熱交換器104に入力すると、熱交換器104は約600℃程度まで昇温した。
 この状態で、入力電力を1/10の1.5kWに減少させたところ、Hの発生が6L/minに減少した。H2の発生量に合わせてCO2も1/10にして反応器に入力したところ、メタン発生量が減少した。蓄熱部によって反応器100の温度を10分間維持できた。さらに、入力電力の変動に合わせて水の入力量も1/10にしたところ、約100分間反応器100の温度を維持できることを確認した。これよりSOEC102の蒸気電解部の破損の抑制に必要な1時間以上の間、水蒸気を発生させることができることを確認した。
 以上より、既述のシステムは、再生可能エネルギーの変動により入力電力が変動しても、その間、CO2変換を継続しながら、SOEC102に高温水蒸気を供給できた。
 <実施例2>
 蓄熱材料として、反応器100向けにMg-Al合金を含有したセラミクス球体を、熱交換器104向けに融点が580℃付近Al-Si合金を含有したセラミクス球体を使用した。蓄熱部の構造を板型(図4B)とした。実施例1と同じ結果を得ることができた。
 <比較例1>
 蓄熱部103,103Aに蓄熱材料を充填せず、それ以外は実施例1と同じくしてシステムを構築した。HとCOを体積比で4:1となる混合ガスを作製し、250℃に加熱して、反応器100に導入したところ反応器100の出口ではメタンの生成を確認した。メタン化反応の進行により、反応器の温度が上昇して550℃を超えた蒸発器101に液体の水を噴霧したところ、蒸気の発生を確認した。次に、電力111を1/10にしたところ、反応器100の温度が急速に低下してメタン化反応が停止した。水蒸気の発生も停止したため、SOEC102への水蒸気109の入力もなくなり、SOEC102も停止させることとなった。
 <比較例2>
 図5のシステムを利用した以外は、比較例1と同様な条件、そして、状態にした。比較例1と同様に入力電力を1/10倍にしたところ、油による冷却効果が大きくなるため、比較例1と同様に、反応器100の温度が急速に低下してメタン化反応が停止した。
 実施形態の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。
100 反応器(反応管)
101 蒸発器
102 SOEC
103 蓄熱部
104 熱交換器
105 CO2
106 H2
107 炭化水素
108 液体形状の水
109 水蒸気
110 SOEC発生ガス

Claims (11)

  1.  CO2を燃料に変換するシステムであって、
     再生可能エネルギー由来の変動電力を利用して水蒸気を電解することにより水素を生成する水電解装置と、
     CO2を前記水素と反応させて炭化水素を生成する反応器と、
     前記反応器に於ける前記反応の発生熱によって水を蒸発させて水蒸気を生成する蒸発器と、
     前記水蒸気を前記水電解装置からの排気で加熱して当該水電解装置に供給する熱交換器と、
     前記反応器用の蓄熱部であって、前記反応の発生熱を蓄熱する蓄熱材料を有する当該蓄熱部と、
     を備えるシステム。
  2.  さらに、前記熱交換器の熱を蓄熱する蓄熱材料を有する、前記熱交換器用蓄熱部を有する、請求項1記載のシステム。
  3.  前記反応器用蓄熱部と前記熱交換器用蓄熱部とは夫々相変化もしくは化学変化することで蓄熱する前記材料を有する、請求項2記載のシステム。
  4.  前記反応器用蓄熱部の蓄熱材料の相変化温度領域が、前記熱交換器用蓄熱部の蓄熱材料の相変化温度領域よりも低い、請求項3記載のシステム。
  5.  前記反応器用蓄熱部は前記変動電力が低下した際、当該反応器の温度を前記反応に適する温度域に維持可能である、請求項1記載のシステム。
  6.  前記熱交換器用蓄熱部は、前記変動電力が低下した際、当該熱交換器の温度を水蒸気から水素を生成する電解反応に適する温度域に維持可能である、請求項1記載のシステム。
  7.  前記反応器用蓄熱部の蓄熱材料の融点が、200~500℃の範囲である、請求項4記載のシステム。
  8.  前記熱交換器用蓄熱部の蓄熱材料の融点が、400~800℃の範囲である、請求項4記載のシステム。
  9.  前記反応器用蓄熱部の蓄熱材料は、
     硝酸塩もしくは水酸化物塩と、
     Zn、Al、Mg、Ag、Sn、Cuのいずれか一つもしくは複数からなる合金と、
     の少なくとも何れかを含む、
     請求項1記載のシステム。
  10.  前記熱交換器用蓄熱部の蓄熱材料は、
     塩化物塩もしくは水酸化物塩と、
     Al、Mg、Cu、Siのいずれか一つもしくは複数からなる合金と、
     の少なくとも何れかを含む、
     請求項2記載のシステム。
  11.  CO2を燃料に変換する方法であって、
     再生可能エネルギー由来の変動電力を利用して水蒸気を電解することにより水素を生成する電解ステップと、
     CO2を前記水素と反応させて炭化水素を生成する炭化水素化ステップと、
     前記炭化水素を生成する反応の発生熱によって水を蒸発させて水蒸気を生成する水蒸気生成ステップと、
     当該水蒸気生成ステップで生成され水蒸気を前記電解ステップで発生した高温ガスで加熱した後、当該電解ステップに供給する水蒸気加熱ステップと、
     前記炭化水素化ステップで発生した熱を蓄熱材で蓄熱し、前記変動電力が低下した際、当該蓄熱材から放熱して前記炭化水素ステップと前記水蒸気生成ステップを継続させる蓄熱ステップと、
     を備える方法。
PCT/JP2022/024909 2021-09-01 2022-06-22 Co2を燃料に変換するシステム、及び、その方法 WO2023032427A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22864015.7A EP4397646A1 (en) 2021-09-01 2022-06-22 System and method for converting co2 into fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142771A JP2023035720A (ja) 2021-09-01 2021-09-01 Co2を燃料に変換するシステム、及び、その方法
JP2021-142771 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032427A1 true WO2023032427A1 (ja) 2023-03-09

Family

ID=85412078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024909 WO2023032427A1 (ja) 2021-09-01 2022-06-22 Co2を燃料に変換するシステム、及び、その方法

Country Status (3)

Country Link
EP (1) EP4397646A1 (ja)
JP (1) JP2023035720A (ja)
WO (1) WO2023032427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203304A1 (ja) * 2023-03-24 2024-10-03 国立大学法人北海道大学 反応熱利用システムおよび反応熱利用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513531A (ja) * 2012-02-20 2015-05-14 サーモガス ダイナミクス リミテッドThermogas Dynamics Limited エネルギー変換および生成のための方法およびシステム
JP2018116834A (ja) 2017-01-18 2018-07-26 株式会社東芝 高温蓄熱システム及び高温蓄熱方法
JP2018537532A (ja) * 2015-12-01 2018-12-20 クリストフ・インターナショナル・マネージメント・ゲー・エム・ベー・ハーChristof International Management Gmbh 反応ガスを触媒的メタン化するための方法および設備
JP2019108238A (ja) * 2017-12-18 2019-07-04 株式会社東芝 水素製造装置、燃料製造システム、水素製造方法、および燃料製造方法
JP2021080202A (ja) * 2019-11-19 2021-05-27 三菱パワー株式会社 メタネーション反応装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513531A (ja) * 2012-02-20 2015-05-14 サーモガス ダイナミクス リミテッドThermogas Dynamics Limited エネルギー変換および生成のための方法およびシステム
JP2018537532A (ja) * 2015-12-01 2018-12-20 クリストフ・インターナショナル・マネージメント・ゲー・エム・ベー・ハーChristof International Management Gmbh 反応ガスを触媒的メタン化するための方法および設備
JP2018116834A (ja) 2017-01-18 2018-07-26 株式会社東芝 高温蓄熱システム及び高温蓄熱方法
JP2019108238A (ja) * 2017-12-18 2019-07-04 株式会社東芝 水素製造装置、燃料製造システム、水素製造方法、および燃料製造方法
JP2021080202A (ja) * 2019-11-19 2021-05-27 三菱パワー株式会社 メタネーション反応装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203304A1 (ja) * 2023-03-24 2024-10-03 国立大学法人北海道大学 反応熱利用システムおよび反応熱利用方法

Also Published As

Publication number Publication date
JP2023035720A (ja) 2023-03-13
EP4397646A1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
Zhao et al. Medium-and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review
Nomura et al. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation
Baroutaji et al. Advancements and prospects of thermal management and waste heat recovery of PEMFC
de Rango et al. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration
Samykano Role of phase change materials in thermal energy storage: Potential, recent progress and technical challenges
Dong et al. Thermal optimisation of metal hydride reactors for thermal energy storage applications
US20120122017A1 (en) Heterogeneous hydrogen-catalyst power system
CN102844104A (zh) 导热接口
Li et al. Facile synthesis of Al@ Al2O3 microcapsule for high-temperature thermal energy storage
US20150060008A1 (en) High-density, high-temperature thermal energy storage and retrieval
WO2023032427A1 (ja) Co2を燃料に変換するシステム、及び、その方法
EP3208877B1 (en) Solid state hydrogen storage device
US10443954B1 (en) High performance metal hydride based thermal energy storage systems for concentrating solar power
WO2004109200A1 (ja) 蓄熱式ヒートポンプシステム
JP5531334B2 (ja) ケミカルヒ−トポンプコンテナ
WO2014134186A1 (en) Reversible metal hydride thermal energy storage systems, devices, and process for high temperature applications
JP2005100821A (ja) 高温型燃料電池システム
US20200173734A1 (en) System for energy storage including a heat transfer fluid tank
Miao et al. Review of thermal management technology for metal hydride reaction beds
WO2017013152A1 (en) System and method for storing and releasing heat
RU2232710C1 (ru) Генератор водорода
Zhao et al. Facile synthesis of porous AlN@ C supporting material for stabilizing phase change thermal storage material
Funayama et al. Thermal energy storage with flexible discharge performance based on molten-salt thermocline and thermochemical energy storage
CN105051147A (zh) 借助硝酸改进硝酸盐组合物用作传热介质或储热介质的方法
JP2012145252A (ja) ケミカルヒートポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022864015

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864015

Country of ref document: EP

Effective date: 20240402