WO2023032332A1 - モータ装置 - Google Patents

モータ装置 Download PDF

Info

Publication number
WO2023032332A1
WO2023032332A1 PCT/JP2022/014844 JP2022014844W WO2023032332A1 WO 2023032332 A1 WO2023032332 A1 WO 2023032332A1 JP 2022014844 W JP2022014844 W JP 2022014844W WO 2023032332 A1 WO2023032332 A1 WO 2023032332A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
windings
switch
motor
winding
Prior art date
Application number
PCT/JP2022/014844
Other languages
English (en)
French (fr)
Inventor
昇 新口
勝弘 平田
寛典 鈴木
望 竹村
Original Assignee
国立大学法人大阪大学
株式会社A.H.MotorLab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 株式会社A.H.MotorLab filed Critical 国立大学法人大阪大学
Publication of WO2023032332A1 publication Critical patent/WO2023032332A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor device, and more particularly to a motor device for a switched reluctance motor using a ferromagnetic material for the rotor.
  • three-phase motors have been used as power sources because they can control the number of revolutions by changing the frequency of the alternating current and obtain a stable number of revolutions.
  • a switched reluctance motor using a ferromagnetic material for the rotor has also been proposed (see Patent Document 1, for example). Also proposed is a motor device having a plurality of systems of polyphase windings each having a plurality of phases.
  • FIG. 8 is a circuit diagram showing a simplified drive circuit of a conventional motor device having two systems of six-phase windings.
  • the motor device has A1 phase coil, B1 phase coil, C1 phase coil, D1 phase coil, E1 phase coil and F1 phase coil as six-phase windings of the first system. It has an A2-phase coil, a B2-phase coil, a C2-phase coil, a D2-phase coil, an E2-phase coil and an F2-phase coil as six-phase windings.
  • A1 phase coil and A2 phase coil, B1 phase coil and B2 phase coil, C1 phase coil and C2 phase coil, D1 phase coil and D2 phase coil, E1 phase coil and E2 phase coil, and F1 phase coil and F2 phase coil are connected in parallel, and the AF phases are connected in series.
  • the F-phase coil and the A-phase coil between the F-phase coil and the A-phase coil, between the A-phase coil and the B-phase coil, between the B-phase coil and the C-phase coil, between the C-phase coil and the D-phase coil, between the D-phase coil and the E-phase coil and between the E-phase coil and the F-phase coil are connected to the A-phase switch to the F-phase switch of the switch inverter unit, respectively, and the potentials Va to Vf are supplied when each switch is on.
  • the A-phase switch to the F-phase switch of the switch inverter section are sequentially turned on/off, so that a current flows due to the potential difference applied across each coil, and the rotor rotates.
  • the present invention has been made in view of the above-mentioned conventional problems, and provides a motor device that can easily connect wires even when multiple systems of polyphase windings are wound on the teeth of a stator. intended to provide
  • the motor device of the present invention includes: a motor unit having a rotor arranged to be rotatable about a rotation axis; a stator having a plurality of teeth formed on its inner periphery; A switched reluctance motor device comprising a switch inverter unit that supplies electric power to a motor unit and a switch control unit that controls each switch included in the switch inverter unit, wherein the rotor is made of a ferromagnetic material.
  • n-phase windings in which n phases are adjacently connected in series, where n and m are natural numbers of 2 or more, are wound around the plurality of teeth portions, and the n phases of m systems are wound.
  • the phase windings are annularly connected in series, and each phase corresponding to each other in each system is electrically connected to the same phase in the switch inverter section.
  • n-phase windings in which n phases are adjacently connected in series have m systems connected in series in a ring, and each corresponding phase is connected in a switch inverter section. connected to the same phase.
  • current can be supplied to each phase by connecting the middle of each phase connected in series in a ring shape to the switch inverter unit, so that the wiring work can be easily performed.
  • the stator has n bus bars outside the stator, the bus bars are electrically connected to the respective phases of the switch inverter section, and the respective systems correspond to each other.
  • the phases are electrically connected to a common said busbar.
  • one end of the winding wound around the tooth portion is led out of the stator together with the other end of the adjacent winding.
  • the n-phase windings are two 3-phase windings, and include A phase, B phase, C phase, D phase, E phase and F phase.
  • the present invention it is possible to provide a motor device in which even when multiple systems of multiphase windings are wound around the teeth of the stator, the wiring work can be easily performed.
  • FIG. 1 is a circuit diagram
  • FIG.1(b) is a schematic diagram which shows the structural example of the motor part 10.
  • FIG. 3 is an equivalent circuit diagram showing connection between a motor section 10 and a switch inverter section of the motor device according to the first embodiment
  • FIG. 3A is a timing chart showing control of the switch inverter section in the motor device according to the first embodiment
  • FIG. 3A shows signals applied to each phase switch of the switch inverter section
  • FIG. shows the current flowing in each phase coil.
  • FIG. 7 is an equivalent circuit diagram showing connections between a motor unit 10 and a switch inverter unit of a motor device according to a second embodiment; It is a figure which shows the structure of the motor part 10 in the motor apparatus which concerns on 3rd Embodiment, Fig.5 (a) is a circuit diagram, FIG.5(b) is a schematic diagram which shows the structural example of the motor part 10. FIG. It is a schematic diagram which shows the structure of the motor apparatus which concerns on 4th Embodiment, Fig.6 (a) is a model perspective view, FIG.6(b) is a top view.
  • FIG. 11 is a circuit diagram showing an equivalent circuit of a motor section 10 in a motor device according to a fourth embodiment; 1 is a circuit diagram showing a simplified drive circuit of a conventional motor device having two systems of six-phase windings; FIG.
  • FIGS. 1A and 1B are diagrams showing the configuration of a motor unit 10 in a motor device according to the present embodiment, FIG. 1A being a circuit diagram, and FIG. 1B being a schematic diagram showing a structural example of the motor unit 10. is.
  • the motor device constitutes a switched reluctance motor with 10 salient poles and 12 slots.
  • the motor section 10 of this embodiment includes a rotor 11 and a stator 12 arranged around the rotor 11.
  • Rotor teeth (salient poles) made of a ferromagnetic material are arranged along the outer circumference of the rotor 11 .
  • the stator 12 has a core back portion and a plurality of tooth portions 13 protruding from the inner periphery thereof. Windings (coils) 14 are wound around each tooth portion 13 as A1-phase winding to F1-phase winding and A2-phase winding to F2-phase winding.
  • the A1-phase winding to the F1-phase winding are arranged with a difference of 1/6 period, respectively, and constitute a first system of six-phase windings (two three-phase windings).
  • the A2-phase to F2-phase windings are arranged with a difference of 1/6 period, and form a second system of 6-phase windings (two 3-phase windings).
  • FIG. 1(b) shows an example of a 10-pole, 12-slot switched reluctance motor in which the rotor 11 has 10 rotor teeth and the stator 12 has 12 teeth portions 13 .
  • the method of winding each phase around the tooth portion 13 is not limited to concentrated winding, but may be distributed winding.
  • the core back portion is a portion that is arranged on the outer side of the rotor 11 so as to circumferentially surround the outer periphery of the rotor 11, and a plurality of tooth portions 13 are formed on the inner periphery so as to protrude at regular intervals.
  • a known material can be used for the core-back portion, and the material and structure of the core-back portion are not limited. Further, a member such as a motor housing is separately provided on the outer circumference of the core back portion.
  • the teeth 13 are projecting portions formed to protrude from the inner peripheral surface of the core-back portion toward the rotor 11.
  • Each of the teeth 13 has the same length and shape and is arranged at regular intervals. Intervals are provided between the teeth 13 to form slots.
  • a winding 14 is wound around each tooth portion 13 and the slot, and a magnetic field is generated in the tooth portion 13 when a current flows through the winding 14 .
  • the phases A1 to F1 and A2 to F2 corresponding to the first system and the second system are wound around teeth 13 of the stator 12 that are 180 degrees apart.
  • FIG. 2 is an equivalent circuit diagram showing the connection between the motor section 10 and the switch inverter section of the motor device according to this embodiment.
  • the switch inverter section of this embodiment six switches A-phase to F-phase are connected in parallel between the power supply voltage (+V) and the ground voltage (0V).
  • Reverse-connected diodes are connected in series on the downstream side of the switches A-phase, C-phase, and E-phase, and reverse-connected diodes are connected in series on the upstream side of the switches B-phase, D-phase, and F-phase.
  • switches A-phase to switch F-phase and six reverse-connected diodes constitute a three-phase asymmetric switch inverter section.
  • Each switch has a drain connected to the power supply voltage side (upstream side) and a source connected to the ground voltage side (downstream side). Also, when a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) is used as each switch, an equivalent circuit is obtained in which a parasitic diode is reversely connected in parallel between the source and the drain. The operation of each switch is controlled by a switch control section (not shown).
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • the windings A1 and B1 and between the windings A2 and B2 of the motor section 10 are connected between the switch B phase and the reverse-connected diode. Further, the windings B1 and C1 of the motor section 10 and the windings B2 and C2 are connected between the switch C phase and the reverse connection diode.
  • the windings C1 and D1 of the motor section 10 and the windings C2 and D2 are connected between the D-phase switch and the reverse-connected diode. Further, the windings D1 and E1 of the motor section 10 and the windings D2 and E2 are connected between the E-phase switch and the reverse-connected diode.
  • windings E1 and F1 of the motor section 10 and the windings E2 and F2 are connected between the F-phase switch and the reverse-connected diode. Further, the windings F1 and A1 of the motor section 10 and the windings F2 and A2 are connected between the switch A phase and the reverse connection diode. That is, the phases of the windings A1 to F1 and the windings A2 to F2 corresponding to each other in each system of the first system and the second system are electrically connected to the same phase in the switch inverter section. .
  • the source side potential Va of the switch A phase and the drain side potential Vb of the switch B phase are applied to both ends of the windings A1 and A2.
  • the drain side potential Vb of the switch B phase and the source side potential Vc of the switch C phase are applied to both ends of the windings B1 and B2.
  • the source side potential Vc of the switch C phase and the drain side potential Vd of the switch D phase are applied across the windings C1 and C2.
  • the drain side potential Vd of the switch D phase and the source side potential Ve of the switch E phase are applied to both ends of the windings D1 and D2.
  • the E-phase source potential Ve of the switch E and the drain-side potential Vf of the F-phase switch are applied across the windings E1 and E2.
  • the drain side potential Vf of the switch F phase and the source side potential Va of the switch A phase are applied to both ends of the windings F1 and F2.
  • the midpoints of the windings A1 to F1 and A2 to F2 of each phase connected in series in a ring are connected to the switch inverter section.
  • the switch inverter section As a result, there is no need to run wires for supplying currents to the windings A1 to F1 and A2 to F2 of each phase outside the stator 12, making it possible to easily perform the wiring work.
  • FIG. 3A and 3B are timing charts showing the control of the switch inverter section in the motor device according to the present embodiment.
  • FIG. 3A shows signals applied to each phase switch of the switch inverter section, and FIG. indicates the current flowing in each phase coil of each system.
  • the horizontal axis of FIG. 3(a) indicates the electrical angle (degrees), and the vertical axis indicates the ON signal and OFF signal applied to each switch.
  • the horizontal axis of FIG. 3B indicates the electrical angle (degrees), and the vertical axis indicates the current flowing through each winding.
  • corresponding windings A1 to F1 and windings A2 to F2 of each system are represented by A to F, respectively.
  • on-signals and off-signals are applied alternately by 180 degrees ( ⁇ ) to each of the A-phase to F-phase switches.
  • the phases of the on-signals and off-signals of the A-phase to F-phase are shifted by 60 degrees ( ⁇ /3) from each other.
  • the A phase and the D phase, the B phase and the E phase, and the C phase and the F phase are applied with mutually inverted signals with a phase difference of 180 degrees ( ⁇ ).
  • two three-phase AC signals of A-phase, C-phase, E-phase and B-phase, D-phase and F-phase are applied to each of the A-phase to F-phase switches. Therefore, the windings A1 to F1 and the windings A2 to F2 are controlled by the switches A to F to function as a motor having two three-phase motors and a total of six phases. .
  • the currents flowing through the windings A1 to F1 and the windings A2 to F2 are 30 degrees ( ⁇ / 6) is advanced in phase.
  • the phases A and D, the B phase and the E phase, and the C phase and the F phase are different in phase by 180 degrees ( ⁇ ), and mutually opposite currents flow.
  • the windings A1 to F1 and the windings A2 to F2, which are coils are connected in series in a ring, and the spaces between the windings are connected to the switches of the switch inverter section.
  • a current flows from the power supply potential +V of the inverter section to the ground potential through each of the ON-state switches and windings, and then through the other ON-state switches.
  • currents with different phases of 60 degrees flow sequentially through the windings A1 to F1 and the windings A2 to F2, and magnetic fields are generated in the tooth portions 13, and the rotor 11 can be rotated.
  • FIG. 4 is an equivalent circuit diagram showing the connection between the motor section 10 and the switch inverter section of the motor device according to this embodiment.
  • each switch group is connected in parallel between a power supply voltage (+V) and a ground voltage (0 V).
  • Each switch group is connected in series with two switches and reverse-connected diodes between them, for a total of 6 switches (switch A-phase to switch F-phase) and 3 reverse-connected diodes for improved 9 switches.
  • the inverter constitutes a switch inverter section.
  • Each switch has a drain connected to the power supply voltage side (upstream side) and a source connected to the ground voltage side (downstream side).
  • MOSFET MOSFET
  • the windings A1 to F1 and the windings A2 to F2 of the motor section 10 are adjacently connected in series in a ring. Further, the phases of the windings A1 to F1 and the windings A2 to F2 corresponding to each other in each system of the first system and the second system are electrically connected to the same phase in the switch inverter section. . Also, the relationship between the signals applied to the respective switches A-phase F in the switch inverter section and the currents flowing through the windings A1-F1 and A2-F2 are the same as those shown in FIG. become.
  • FIG. 5A and 5B are diagrams showing the configuration of the motor section 10 in the motor device according to the present embodiment.
  • FIG. 5A is a circuit diagram
  • FIG. 5B is a schematic diagram showing a structural example of the motor section 10. is.
  • the motor device constitutes a switched reluctance motor with 15 salient poles and 18 slots.
  • the motor section 10 of the present embodiment has windings (coils) 14 on each tooth section 13, A1-phase winding to F1-phase winding, A2-phase winding to F2 It is wound as a phase winding, A3-phase winding to F3-phase winding.
  • the A1-phase winding to the F1-phase winding are arranged with a difference of 1/6 period, respectively, and constitute a first system of six-phase windings (two three-phase windings).
  • the A2-phase to F2-phase windings are arranged with a difference of 1/6 period, and form a second system of 6-phase windings (two 3-phase windings).
  • the A3-phase winding to the F3-phase winding are arranged with a difference of 1/6 period from each other to form a third system of six-phase windings (two three-phase windings).
  • the windings A1 to F1 and the windings A2 to F2 of the motor section 10 are adjacently connected in series in a ring. Further, each phase of windings A1 to F1 and windings A2 to F2 corresponding to each other in each of the first to third systems is electrically connected to the same phase in the switch inverter section. . Also, the relationship between the signals applied to the respective switches A-phase F in the switch inverter section and the currents flowing through the windings A1-F1, A2-F2, and A3-F3 are as follows: It will be similar to that shown in FIG.
  • FIGS. 6 and 7 are schematic diagrams showing the structure of the motor device according to the present embodiment, FIG. 6A being a schematic perspective view and FIG. 6B being a top view.
  • FIG. 7 is a circuit diagram showing an equivalent circuit of the motor section 10 in the motor device according to this embodiment.
  • the motor section 10 of this embodiment includes a rotor 11, a stator 12, teeth 13, windings 14, and a busbar 21.
  • the windings 14 wound around the teeth 13 are arranged with a difference of 1/6 cycle, and the A2-phase winding to the F2-phase winding are the first six-phase windings (two windings).
  • A2-phase winding to F2-phase winding constitute a second system of 6-phase windings (two 3-phase windings).
  • One end of each winding 14 is led out of the stator 12 together with the other end of the adjacent winding 14 and electrically connected to the bus bar 21 .
  • leading out both one end and the other end of the adjacent winding 14 means that, for example, one end (B1 side) of the wire constituting the A1 winding is extended and the other end (A1 side) of the wire constituting the B1 winding is extended. ) are extended and taken out at the same position.
  • the two wires are preferably twisted to form a stranded wire in order to improve the strength of the wire and facilitate handling.
  • One end of the windings 14 wound around the tooth portion 13 and the other end of the adjacent windings 14 are both led out of the stator 12, so that the two windings 14 are grouped into a switch inverter portion. Workability is improved when connecting to
  • the busbar 21 is a conductive member arranged outside the stator 12 of the motor section 10 .
  • the number of busbars 21 is the same as the number of phases of the windings 14 , and the busbars 21 are arranged above the windings 14 in a semicircular (arcuate) shape.
  • Bus bar 21 electrically connects corresponding phases of A1 winding to F1 winding and A2 winding to F2 winding, and is electrically connected to the switch inverter section.
  • the example shown in FIG. 6 has six busbars 21a to 21f.
  • the bus bar 21a connects the ends of the windings drawn between the A1 winding and the B1 winding and between the A2 winding and the B2 winding, and connects the switches of the switch inverter section. It is electrically connected to the A phase.
  • the bus bar 21b is connected to the ends of the windings drawn between the B1 winding and the C1 winding and between the B2 winding and the C2 winding, and is electrically connected to the switch B phase of the switch inverter section.
  • the bus bar 21c is connected to the ends of the windings drawn between the C1 winding and the D1 winding and between the C2 winding and the D2 winding, and is electrically connected to the switch C phase of the switch inverter section.
  • the bus bar 21d is connected to the ends of the windings drawn between the D1 winding and the E1 winding and between the D2 winding and the E2 winding, and is electrically connected to the switch D phase of the switch inverter section.
  • the bus bar 21e is connected to the ends of the windings drawn between the E1 winding and the F1 winding and between the E2 winding and the F2 winding, and is electrically connected to the switch E phase of the switch inverter section.
  • the bus bar 21f is connected to the ends of the windings drawn between the F1 winding and the A1 winding and between the F2 winding and the A2 winding, and is electrically connected to the switch F phase of the switch inverter section. connected to In other words, corresponding windings in a plurality of systems are connected to a common busbar 21 and connected to corresponding phases of the switched inverter section.
  • an arc shape is exemplified as the shape of the bus bar 21, but a straight shape, a curved shape, a flat plate shape, or a three-dimensional shape can be used as long as the corresponding phase windings in a plurality of systems can be electrically connected. and so on.
  • the position where the bus bar 21 is provided is not limited to the top surface, and may be provided on the side surface, the bottom surface, or the like of the stator 12 as long as it is outside the stator 12 .
  • FIG. 6 there are two systems of six-phase windings (two three-phase windings). It will correspond.
  • the number of bus bars 21 corresponding to the number of phases n is provided outside the stator 12.
  • the bus bars 21 are electrically connected to the respective phases of the switch inverter section, and are connected to each other in each system. Since each corresponding phase is electrically connected to the common bus bar 21, there is no need to route the windings 14 outside the stator 12. - ⁇ This makes it possible to perform the wire connection work even more easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Control Of Electric Motors In General (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Synchronous Machinery (AREA)

Abstract

複数系統の多相巻線を固定子のティース部に巻回しても、結線作業を容易に行うことが可能なモータ装置を提供する。 回転子(11)と、モータ部(10)と、スイッチインバータ部と、スイッチ制御部とを備えるモータ装置であって、回転子(11)が強磁性体で構成されたスイッチトリラクタンスモータであり、複数のティース部(13)には、n,mを2以上の自然数として、n個の相が隣接して直列接続されたn相巻線が巻回されており、m系統のn相巻線(A1~F1、A2~F2)が環状に直列接続されており、各系統において互いに対応する各相(A1~F1、A2~F2)は、それぞれスイッチインバータ部における同じ相(A相~F相)に電気的に接続されている。

Description

モータ装置
 本発明は、モータ装置に関し、特に、回転子に強磁性体を用いるスイッチトリラクタンスモータのモータ装置に関する。
 従来から様々な技術分野において、交流の周波数を変化させることで回転数を制御でき、安定した回転数を得られる三相モータが動力源として用いられている。また、回転子に強磁性体を用いるスイッチトリラクタンスモータも提案されている(例えば特許文献1を参照)。また、複数の相を備えた多相巻線を複数系統備えたモータ装置も提案されている。
 図8は、従来の6相巻線を2系統備えたモータ装置の駆動回路を簡略化して示す回路図である。図8に示すようにモータ装置は、第1系統の6相巻線としてA1相コイル、B1相コイル、C1相コイル、D1相コイル、E1相コイルおよびF1相コイルを有し、第2系統の6相巻線としてA2相コイル、B2相コイル、C2相コイル、D2相コイル、E2相コイルおよびF2相コイルを有している。また、A1相コイルとA2相コイル、B1相コイルとB2相コイル、C1相コイルとC2相コイル、D1相コイルとD2相コイル、E1相コイルとE2相コイル、およびF1相コイルとF2相コイルは、それぞれ並列接続されると共に、A-F相が直列接続されている。
 また、F相コイルとA相コイルの間、A相コイルとB相コイルの間、B相コイルとC相コイルの間、C相コイルとD相コイルの間、D相コイルとE相コイルの間、およびE相コイルとF相コイルの間は、それぞれスイッチインバータ部のA相スイッチからF相スイッチに接続され、各スイッチがオンの場合には電位Va~Vfが供給される。このようなモータ装置では、スイッチインバータ部のA相スイッチからF相スイッチが順次オン/オフ切り替えされることで、各コイルの両端に印加される電位差によって電流が流れ、回転子が回転される。
特開2016-103957号公報
 図8に示した従来のモータ装置では、2系統の対応する各相(例えばA1相とA2相)は固定子の対向するティース(突極)に巻回され、コイルの両端が並列接続される。そのため2系統の6相巻線では、合計12本の配線が固定子の外周で引き回されて直並列に接続されることになり、結線作業が煩雑化するという問題があった。固定子のティース数を増加させて、2系統以上の6相巻線を巻回する場合にはさらに配線数が増加し、結線作業がさらに煩雑化してしまう。
 そこで本発明は、上記従来の問題点に鑑みなされたものであり、複数系統の多相巻線を固定子のティース部に巻回しても、結線作業を容易に行うことが可能なモータ装置を提供することを目的とする。
 上記課題を解決するために、本発明のモータ装置は、回転軸を中心に回転可能に配置された回転子と、内周に複数のティース部が形成された固定子を有するモータ部と、前記モータ部に電力を供給するスイッチインバータ部と、前記スイッチインバータ部に含まれる各スイッチを制御するスイッチ制御部とを備えるモータ装置であって、前記回転子が強磁性体で構成されたスイッチトリラクタンスモータであり、前記複数のティース部には、n,mを2以上の自然数として、n個の相が隣接して直列接続されたn相巻線が巻回されており、m系統の前記n相巻線が環状に直列接続されており、各系統において互いに対応する各相は、それぞれ前記スイッチインバータ部における同じ相に電気的に接続されていることを特徴とする。
 このような本発明のモータ装置では、n個の相が隣接して直列接続されたn相巻線は、m系統が環状に直列接続されており、対応する各相は、それぞれスイッチインバータ部における同じ相に接続される。これにより、環状に直列接続された各相の中間をスイッチインバータ部に接続することで各相に電流を供給できるため、結線作業を容易に行うことが可能となる。
 また、本発明の一態様では、前記固定子の外部にn本のバスバーを有し、前記バスバーは各々前記スイッチインバータ部の各相に電気的に接続され、前記各系統において互いに対応する前記各相は、共通の前記バスバーに電気的に接続されている。
 また、本発明の一態様では、前記ティース部に巻回された前記巻線の一端は、隣接する前記巻線の他端と共に前記固定子の外部に導出されている。
 また、本発明の一態様では、前記n相巻線は2つの3相巻線であり、A相、B相、C相、D相、E相およびF相を備える。
 また、本発明の一態様では、前記回転子の極数Pと、前記ティース部のスロット数Sの比は、P:S=5:6である。
 本発明では、複数系統の多相巻線を固定子のティース部に巻回しても、結線作業を容易に行うことが可能なモータ装置を提供することができる。
第1実施形態に係るモータ装置におけるモータ部10の構成を示す図であり、図1(a)は回路図であり、図1(b)はモータ部10の構造例を示す模式図である。 第1実施形態に係るモータ装置のモータ部10とスイッチインバータ部の接続を示す等価回路図である。 第1実施形態に係るモータ装置におけるスイッチインバータ部の制御を示すタイミングチャートであり、図3(a)はスイッチインバータ部の各相スイッチに印加される信号を示し、図3(b)は各系統の各相コイルに流れる電流を示している。 第2実施形態に係るモータ装置のモータ部10とスイッチインバータ部の接続を示す等価回路図である。 第3実施形態に係るモータ装置におけるモータ部10の構成を示す図であり、図5(a)は回路図であり、図5(b)はモータ部10の構造例を示す模式図である。 第4実施形態に係るモータ装置の構造を示す模式図であり、図6(a)は模式斜視図であり、図6(b)は上面図である。 第4実施形態に係るモータ装置におけるモータ部10の等価回路を示す回路図である。 従来の6相巻線を2系統備えたモータ装置の駆動回路を簡略化して示す回路図である。
 (第1実施形態)
 以下、本発明の実施形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本実施形態に係るモータ装置におけるモータ部10の構成を示す図であり、図1(a)は回路図であり、図1(b)はモータ部10の構造例を示す模式図である。図1に示した例では、モータ装置は10突極12スロットのスイッチトリラクタンスモータを構成している。
 図1(a)(b)に示すように本実施形態のモータ部10は、回転子(ロータ)11と、回転子11の周囲に配置された固定子(ステータ)12を備えている。また、回転子11には、外周に沿って強磁性体からなるロータティース(突極)が配置されている。また固定子12は、コアバック部とその内周に突出して形成された複数のティース部13を備えている。また、各ティース部13に巻線(コイル)14が、A1相巻線~F1相巻線、A2相巻線~F2相巻線として巻回されている。A1相巻線~F1相巻線は、それぞれ1/6周期の差で配置されており第1系統の6相巻線(2つの3相巻線)を構成している。同様に、A2相巻線~F2相巻線は、それぞれ1/6周期の差で配置されており第2系統の6相巻線(2つの3相巻線)を構成している。
 図1(b)では、回転子11が10個のロータティースを備え、固定子12が12個のティース部13を備えた10極12スロットのスイッチトリラクタンスモータの例を示している。モータ部10の極数Pとスロット数Sは、10極12スロットには限定されないが、P:S=5:6の比率となっている。また、ティース部13への各相の巻回方法も集中巻きに限定されず分布巻きであってもよい。
 コアバック部は、回転子11の外側に回転子11の外周を円周状に取り囲むように配置された部分であり、内周に複数のティース部13が等間隔に突出して形成されている。コアバック部には公知のものを用いることができ、構成する材料や構造は限定されない。また、コアバック部よりも外周には別途モータハウジング等の部材が設けられている。
 ティース部13は、コアバック部の内周面から回転子11に向かって突出して形成された突起状部分であり、各ティース部13は同じ長さと形状で形成されると共に等間隔に配置されており、各ティース部13の間には間隔が設けられてスロットを構成している。各ティース部13およびスロットには、巻線14が巻回されており、巻線14に電流が流れることでティース部13に磁界が発生する。
 第1系統の6相巻線A1~F1と第2系統の6相巻線A2~F2は、それぞれ隣接したティース部13に順に巻回されて環状に直列接続されている。つまり、固定子12のティース部13には、6個の相(n=6)が隣接して直列接続された6相巻線が、2系統(m=2)環状に直列接続されている。また、第1系統と第2系統の対応するA1~F1とA2~F2の各相は、固定子12において180度異なるティース部13に巻回されている。
 図2は、本実施形態に係るモータ装置のモータ部10とスイッチインバータ部の接続を示す等価回路図である。図2に示すように、本実施形態のスイッチインバータ部は、電源電圧(+V)と接地電圧(0V)の間に6つのスイッチA相~F相が並列に接続されている。スイッチA相,C相,E相は、下流側に逆接続ダイオードが直列接続され、スイッチB相,D相,F相は、上流側に逆接続ダイオードが直列接続されている。これにより、合計6個のスイッチ(スイッチA相~スイッチF相)と6個の逆接続ダイオードで三相非対称型のスイッチインバータ部が構成されている。各スイッチは、それぞれドレインが電源電圧側(上流側)に接続され、ソースが接地電圧側(下流側)に接続されている。また、各スイッチとしてMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を用いる場合には、ソースとドレインの間に寄生ダイオードが並列に逆接続された等価回路となる。また、各スイッチはスイッチ制御部(図示省略)によって動作が制御される。
 図1および図2に示したように、モータ部10の巻線A1と巻線B1の間、および巻線A2と巻線B2間はスイッチB相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線B1と巻線C1の間、および巻線B2と巻線C2間はスイッチC相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線C1と巻線D1の間、および巻線C2と巻線D2間はスイッチD相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線D1と巻線E1の間、および巻線D2と巻線E2間はスイッチE相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線E1と巻線F1の間、および巻線E2と巻線F2間はスイッチF相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線F1と巻線A1の間、および巻線F2と巻線A2間はスイッチA相と逆接続ダイオードの間に接続されている。つまり、第1系統および第2系統の各系統において互いに対応する巻線A1~巻線F1と巻線A2~巻線F2の各相は、それぞれスイッチインバータ部における同じ相に電気的に接続される。
 したがって、巻線A1,A2の両端には、スイッチA相のソース側電位Vaと、スイッチB相のドレイン側電位Vbが印加される。同様に、巻線B1,B2の両端には、スイッチB相のドレイン側電位Vbと、スイッチC相のソース側電位Vcとが印加される。同様に、巻線C1,C2の両端には、スイッチC相のソース側電位Vcと、スイッチD相のドレイン側電位Vdが印加される。同様に、巻線D1,D2の両端には、スイッチD相のドレイン側電位Vdと、スイッチE相のソース側電位Veが印加される。同様に、巻線E1,E2の両端には、スイッチE相のソース側電位Veと、スイッチF相のドレイン側電位Vfが印加される。同様に、巻線F1,F2の両端には、スイッチF相のドレイン側電位Vfと、スイッチA相のソース側電位Vaが印加される。
 図1および図2に示したように、本実施形態のモータ装置では、環状に直列接続された各相の巻線A1~F1,A2~F2の中間をスイッチインバータ部に接続する。これにより、各相の巻線A1~F1,A2~F2に電流を供給するための配線を固定子12の外部に引き回す必要がなくなり、結線作業を容易に行うことが可能となる。
 図3は、本実施形態に係るモータ装置におけるスイッチインバータ部の制御を示すタイミングチャートであり、図3(a)はスイッチインバータ部の各相スイッチに印加される信号を示し、図3(b)は各系統の各相コイルに流れる電流を示している。図3(a)の横軸は電気角(度)を示し、縦軸は各スイッチに印加されるオン信号とオフ信号を示している。図3(b)の横軸は電気角(度)を示し、縦軸は各巻線を流れる電流を示している。図3(b)においては、各系統の対応する巻線A1~巻線F1と巻線A2~巻線F2とをそれぞれA~Fとして代表して示している。
 図3(a)に示したように、A相~F相の各スイッチには、オン信号とオフ信号が180度(π)ずつ交互に印加される。また、A相~F相のオン信号とオフ信号は、それぞれ60度(π/3)ずつ位相がずれている。また、A相とD相、B相とE相、C相とF相は位相が180度(π)異なって互いに反転した信号が印加されている。換言すると、A相~F相の各スイッチには、A相、C相、E相と、B相、D相、F相の2つの三相交流信号が印加されている。したがって、巻線A1~巻線F1と巻線A2~巻線F2は、スイッチA相~F相で制御されることで、それぞれ2つの三相モータを備えた合計6相を有するモータとして機能する。
 図3(b)に示したように、巻線A1~巻線F1と巻線A2~巻線F2を流れる電流は、スイッチインバータ部のA相~F相のオン信号よりも30度(π/6)だけ位相が進んだものとなる。また、A相とD相、B相とE相、C相とF相は位相が180度(π)異なって互いに反転した電流が流れる。このとき、コイルである巻線A1~巻線F1と巻線A2~巻線F2は環状に直列に接続されており、各巻線の間がスイッチインバータ部の各スイッチに接続されているため、スイッチインバータ部の電源電位+Vからオン状態の各スイッチと巻線を経て、他のオン状態のスイッチを経て設置電位に電流が流れる。これにより、巻線A1~巻線F1と巻線A2~巻線F2には60度ずつ位相が異なる電流が順に流れてティース部13に磁界が発生し、回転子11を回転させることができる。
 上述したように本実施形態のモータ装置では、6個の相が隣接して直列接続された6相巻線を環状に2系統直列接続し、対応する各相はそれぞれスイッチインバータ部における同じ相に接続されている。これにより、各相の巻線A1~F1,A2~F2に電流を供給するための配線を固定子12の外部に引き回す必要がなくなり、結線作業を容易に行うことが可能となる。
 (第2実施形態)
 次に、本発明の第2実施形態について図4を用いて説明する。第1実施形態と重複する内容は説明を省略する。本実施形態ではスイッチインバータ部の構成を第1実施形態とは異ならせている。図4は、本実施形態に係るモータ装置のモータ部10とスイッチインバータ部の接続を示す等価回路図である。
 図4に示すように、本実施形態のスイッチインバータ部は、電源電圧(+V)と接地電圧(0V)の間に3つのスイッチ群(AD群、EB群、CF群)が並列に接続されている。各スイッチ群には、2つのスイッチとその間に逆接続されたダイオードが直列接続されており、合計6個のスイッチ(スイッチA相~スイッチF相)と3個の逆接続ダイオードによる改良型9スイッチインバータで、スイッチインバータ部が構成されている。各スイッチは、それぞれドレインが電源電圧側(上流側)に接続され、ソースが接地電圧側(下流側)に接続されている。また、各スイッチとしてMOSFETを用いる場合には、ソースとドレインの間に寄生ダイオードが並列に逆接続された等価回路となる。また、各スイッチはスイッチ制御部(図示省略)によって動作が制御される。
 本実施形態でも、モータ部10の巻線A1~巻線F1と巻線A2~巻線F2は、それぞれ隣接して環状に直列接続されている。また、第1系統および第2系統の各系統において互いに対応する巻線A1~巻線F1と巻線A2~巻線F2の各相は、それぞれスイッチインバータ部における同じ相に電気的に接続される。また、スイッチインバータ部の各スイッチA相~F相に印加される信号と、巻線A1~巻線F1と巻線A2~巻線F2に流れる電流の関係は、図3に示したものと同様になる。
 本実施形態のモータ装置でも、6個の相が隣接して直列接続された6相巻線を環状に2系統直列接続し、対応する各相はそれぞれスイッチインバータ部における同じ相に接続されている。これにより、各相の巻線A1~F1,A2~F2に電流を供給するための配線を固定子12の外部に引き回す必要がなくなり、結線作業を容易に行うことが可能となる。
 (第3実施形態)
 次に、本発明の第3実施形態について図5を用いて説明する。第1実施形態と重複する内容は説明を省略する。本実施形態では、モータ部10としての突極とスロットの数を第1実施形態とは異ならせている。図5は、本実施形態に係るモータ装置におけるモータ部10の構成を示す図であり、図5(a)は回路図であり、図5(b)はモータ部10の構造例を示す模式図である。図5に示した例では、モータ装置は15突極18スロットのスイッチトリラクタンスモータを構成している。
 図5(a)(b)に示すように本実施形態のモータ部10は、各ティース部13に巻線(コイル)14が、A1相巻線~F1相巻線、A2相巻線~F2相巻線、A3相巻線~F3相巻線として巻回されている。A1相巻線~F1相巻線は、それぞれ1/6周期の差で配置されており第1系統の6相巻線(2つの3相巻線)を構成している。同様に、A2相巻線~F2相巻線は、それぞれ1/6周期の差で配置されており第2系統の6相巻線(2つの3相巻線)を構成している。同様に、A3相巻線~F3相巻線は、それぞれ1/6周期の差で配置されており第3系統の6相巻線(2つの3相巻線)を構成している。
 第1系統の6相巻線A1~F1、第2系統の6相巻線A2~F2、および第3系統の6相巻線A3~F3は、それぞれ隣接したティース部13に順に巻回されて環状に直列接続されている。つまり、固定子12のティース部13には、6個の相(n=6)が隣接して直列接続された6相巻線が、3系統(m=3)環状に直列接続されている。また、第1系統から第3系統の対応するA1~F1、A2~F2、A3~F3の各相は、固定子12において120度異なるティース部13に巻回されている。
 本実施形態でも、モータ部10の巻線A1~巻線F1と巻線A2~巻線F2は、それぞれ隣接して環状に直列接続されている。また、第1系統から第3系統の各系統において互いに対応する巻線A1~巻線F1と巻線A2~巻線F2の各相は、それぞれスイッチインバータ部における同じ相に電気的に接続される。また、スイッチインバータ部の各スイッチA相~F相に印加される信号と、巻線A1~巻線F1、巻線A2~巻線F2、巻線A3~巻線F3に流れる電流の関係は、図3に示したものと同様になる。
 本実施形態のモータ装置でも、6個の相が隣接して直列接続された6相巻線を環状に3系統直列接続し、対応する各相はそれぞれスイッチインバータ部における同じ相に接続されている。これにより、各相の巻線A1~F1,A2~F2,A3~F3に電流を供給するための配線を固定子12の外部に引き回す必要がなくなり、結線作業を容易に行うことが可能となる。
 (第4実施形態)
 次に、本発明の第4実施形態について図6および図7を用いて説明する。第1実施形態と重複する内容は説明を省略する。本実施の形態では、固定子12の外部に設けたバスバーを用いる点が第1実施形態と異なっている。図6は、本実施形態に係るモータ装置の構造を示す模式図であり、図6(a)は模式斜視図であり、図6(b)は上面図である。図7は、本実施形態に係るモータ装置におけるモータ部10の等価回路を示す回路図である。
 図6(a)(b)に示すように本実施形態のモータ部10は、回転子11と、固定子12と、ティース部13と、巻線14と、バスバー21を備えている。また、各ティース部13に巻回された巻線14は、それぞれ1/6周期の差で配置されており、A2相巻線~F2相巻線が第1系統の6相巻線(2つの3相巻線)を構成し、A2相巻線~F2相巻線が第2系統の6相巻線(2つの3相巻線)を構成している。各巻線14の一端は、隣接する巻線14の他端と共に固定子12の外部に導出され、バスバー21と電気的に接続されている。
 ここで、隣接する巻線14の一端と他端を共に導出するとは、例えばA1巻線を構成する線材の一端(B1側)が延長され、B1巻線を構成する線材の他端(A1側)が延長され、同じ位置において外部に取り出されていることを示している。また、隣接する巻線14の一端と他端を共に導出する場合に、線材の強度向上と取り扱いを容易にするために、二つの線材を相互にツイストして撚り線とすることが好ましい。ティース部13に巻回された巻線14の一端と、隣接する巻線14の他端とを共に固定子12の外部に導出することで、2本の巻線14を一組としてスイッチインバータ部に接続する際の作業性が向上する。
 バスバー21は、モータ部10の固定子12外部に配置された導電性部材である。バスバー21は巻線14の相数と同じ本数が備えられており、半円状(円弧状)で巻線14の上方に配置されている。またバスバー21は、A1巻線~F1巻線とA2巻線~F2巻線のそれぞれ対応する相の間を電気的に接続すると共に、スイッチインバータ部に電気的に接続される。
 図6に示した例では、6本のバスバー21a~21fを有している。図7に示したようにバスバー21aは、A1巻線とB1巻線の間およびA2巻線とB2巻線の間から導出された巻線の端部が接続されると共に、スイッチインバータ部のスイッチA相に電気的に接続される。同様にバスバー21bは、B1巻線とC1巻線の間およびB2巻線とC2巻線の間から導出された巻線の端部が接続されると共に、スイッチインバータ部のスイッチB相に電気的に接続される。同様にバスバー21cは、C1巻線とD1巻線の間およびC2巻線とD2巻線の間から導出された巻線の端部が接続されると共に、スイッチインバータ部のスイッチC相に電気的に接続される。同様にバスバー21dは、D1巻線とE1巻線の間およびD2巻線とE2巻線の間から導出された巻線の端部が接続されると共に、スイッチインバータ部のスイッチD相に電気的に接続される。同様にバスバー21eは、E1巻線とF1巻線の間およびE2巻線とF2巻線の間から導出された巻線の端部が接続されると共に、スイッチインバータ部のスイッチE相に電気的に接続される。同様にバスバー21fは、F1巻線とA1巻線の間およびF2巻線とA2巻線の間から導出された巻線の端部が接続されると共に、スイッチインバータ部のスイッチF相に電気的に接続される。換言すると、複数の系統における対応する巻線が共通のバスバー21に接続され、スイッチインバータ部の対応する相に接続されている。
 ここでは、バスバー21の形状として円弧状のものを例示したが、複数の系統における対応する相の巻線間を電気的に接続することが出来れば、直線状や曲線状、平板状、立体形状などで構成してもよい。また、バスバー21を設ける位置は上面に限定されず、固定子12の外部であれば固定子12の側面、底面等に設けるとしてもよい。また、図6に示した例では6相巻線(2つの3相巻線)が2系統の場合を示したが、3系統以上を備える場合には、バスバー21の長さは全ての系統に対応するものとなる。一例として図5に示した3系統の場合には系統数m=3であるため、(m-1)/m=2/3周の長さが必要となる。
 本実施形態のモータ装置では、固定子12の外部に相数nに対応する本数nのバスバー21を有し、バスバー21は各々スイッチインバータ部の各相に電気的に接続され、各系統において互いに対応する各相が共通のバスバー21に電気的に接続されるため、巻線14を固定子12の外部で引き回す必要がない。これにより、結線作業をさらに容易に行うことが可能となる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
10…モータ部
11…回転子
12…固定子
13…ティース部
14…巻線
21,21a~21f…バスバー

 

Claims (4)

  1.  回転軸を中心に回転可能に配置された回転子と、内周に複数のティース部が形成された固定子を有するモータ部と、
     前記モータ部に電力を供給するスイッチインバータ部と、
     前記スイッチインバータ部に含まれる各スイッチを制御するスイッチ制御部とを備えるモータ装置であって、
     前記回転子が強磁性体で構成されたスイッチトリラクタンスモータであり、
     前記複数のティース部には、複数系統の6相巻線が巻回されており、
     前記複数系統の6相巻線は、前記固定子の周方向に沿って環状にA相、B相、C相、D相、E相およびF相が順に繰り返して接続されており、
     前記6相巻線の各系統において互いに対応する各相は、それぞれ前記スイッチインバータ部における同じ相に電気的に接続され、
     前記A相、前記B相、前記C相、前記D相、前記E相および前記F相には、位相が順に60度ずつ異なる信号が前記スイッチインバータ部から印加されることを特徴とするモータ装置。
  2.  請求項1に記載のモータ装置であって、
     前記固定子の外部にn本のバスバーを有し、前記バスバーは各々前記スイッチインバータ部の各相に電気的に接続され、
     前記各系統において互いに対応する前記各相は、共通の前記バスバーに電気的に接続されていることを特徴とするモータ装置。
  3.  請求項1または2に記載のモータ装置であって、
     前記ティース部に巻回された前記巻線の一端は、隣接する前記巻線の他端と共に前記固定子の外部に導出されていることを特徴とするモータ装置。
  4.  請求項1から3の何れか一つに記載のモータ装置であって、
     前記回転子の極数Pと、前記ティース部のスロット数Sの比は、P:S=5:6であることを特徴とするモータ装置。

     
PCT/JP2022/014844 2021-09-02 2022-03-28 モータ装置 WO2023032332A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-143422 2021-09-02
JP2021143422A JP7076688B1 (ja) 2021-09-02 2021-09-02 モータ装置

Publications (1)

Publication Number Publication Date
WO2023032332A1 true WO2023032332A1 (ja) 2023-03-09

Family

ID=81810972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014844 WO2023032332A1 (ja) 2021-09-02 2022-03-28 モータ装置

Country Status (2)

Country Link
JP (1) JP7076688B1 (ja)
WO (1) WO2023032332A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325164B1 (ja) * 2022-12-21 2023-08-14 正一 田中 スイッチドリラクタンスモータ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116651A (ja) * 1994-10-13 1996-05-07 Fujii Seimitsu Kaitenki Seisakusho:Kk 可変リラクタンス形モータ及びその制御方法
JPH11113229A (ja) * 1997-10-02 1999-04-23 Nissan Motor Co Ltd スイッチドリラクタンスモータおよびその駆動回路
JP2008067461A (ja) * 2006-09-06 2008-03-21 Nissan Motor Co Ltd モータの駆動方法
WO2014097432A1 (ja) * 2012-12-19 2014-06-26 株式会社安川電機 モータシステム、モータおよび駆動回路
WO2016161509A1 (en) * 2015-04-06 2016-10-13 Mcmaster University Switched reluctance machine with toroidal winding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116651A (ja) * 1994-10-13 1996-05-07 Fujii Seimitsu Kaitenki Seisakusho:Kk 可変リラクタンス形モータ及びその制御方法
JPH11113229A (ja) * 1997-10-02 1999-04-23 Nissan Motor Co Ltd スイッチドリラクタンスモータおよびその駆動回路
JP2008067461A (ja) * 2006-09-06 2008-03-21 Nissan Motor Co Ltd モータの駆動方法
WO2014097432A1 (ja) * 2012-12-19 2014-06-26 株式会社安川電機 モータシステム、モータおよび駆動回路
WO2016161509A1 (en) * 2015-04-06 2016-10-13 Mcmaster University Switched reluctance machine with toroidal winding

Also Published As

Publication number Publication date
JP7076688B1 (ja) 2022-05-30
JP2023036393A (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6623961B2 (ja) 回転電機の固定子
US6838791B2 (en) Mesh connected electrical rotating machine with span changing
JP4828666B2 (ja) 同期電動機及び同期電動機駆動システム
US8487499B2 (en) Electric rotating machine drivable with a single three-phase inverter
US9847685B2 (en) Coil
US20020130578A1 (en) Permanent magnet type three-phase AC rotary electric machine
JP2010531130A (ja) 12個のステータ歯と10個のロータ極とを有する同期モータ
WO2006002207A2 (en) High phase order ac machine with short pitch winding
JP2015154582A (ja) 三相回転電機のステータ
JP6941256B2 (ja) 駆動装置
US20100219788A1 (en) High phase order AC Machine with Short Pitch Winding
WO2023032332A1 (ja) モータ装置
CN115443597A (zh) 具有分布卷绕的线圈结构的定子及具备该定子的三相交流电动机
JP2004297881A (ja) 電動機駆動システム
JP2004328917A (ja) 同期電動機
JP7080409B1 (ja) 電動機
EP2733824A1 (en) Stator for an electrical machine
WO2023074017A1 (ja) モータ装置の製造方法
JP7492216B1 (ja) モータ装置
JP7339617B2 (ja) モータ装置
WO2018003424A1 (ja) 電動機の固定子およびその製造方法
JP7236117B1 (ja) モータ装置
JP6335523B2 (ja) 回転電機
WO2002089306A1 (en) Mesh connected electrical rotating machine with span changing
JP2024003667A (ja) ステータ及びモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE