WO2023032235A1 - 廃石膏ボードの処理方法、及びそれに用いる流動槽式か焼機 - Google Patents

廃石膏ボードの処理方法、及びそれに用いる流動槽式か焼機 Download PDF

Info

Publication number
WO2023032235A1
WO2023032235A1 PCT/JP2021/041843 JP2021041843W WO2023032235A1 WO 2023032235 A1 WO2023032235 A1 WO 2023032235A1 JP 2021041843 W JP2021041843 W JP 2021041843W WO 2023032235 A1 WO2023032235 A1 WO 2023032235A1
Authority
WO
WIPO (PCT)
Prior art keywords
gypsum
tank
granules
fluidized
calciner
Prior art date
Application number
PCT/JP2021/041843
Other languages
English (en)
French (fr)
Inventor
晋吾 平中
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP21920124.1A priority Critical patent/EP4166248A4/en
Publication of WO2023032235A1 publication Critical patent/WO2023032235A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another

Definitions

  • This invention relates to a method for treating waste gypsum board and a fluidized bed calciner used therefor.
  • the inventors proposed a method for recovering gypsum from waste gypsum board (for example, Patent Document 1: WO2012/176688).
  • the waste gypsum board is crushed by a crusher and then calcined by a calciner to convert gypsum dihydrate contained in the waste gypsum board into gypsum hemihydrate. Since gypsum hemihydrate has high hydration, gypsum particles can be precipitated in a crystallization tank when gypsum slurry is prepared. By separating the gypsum particles from the gypsum slurry with a solid-liquid separator, the gypsum can be recovered from the waste gypsum board.
  • Anhydrous type III gypsum may be used instead of gypsum hemihydrate, and by controlling the temperature of the crystallization tank, the form of the precipitated gypsum particles can be controlled to gypsum dihydrate, gypsum hemihydrate, or the like.
  • a fluidized bed calciner As a calciner with high heat transfer efficiency, there is a fluidized bed calciner.
  • the fluidized bed type calciner hot air is introduced from below the fluidized bed to heat the granules. Granules move from the inlet to the outlet while flowing.
  • An example of a fluidized bed type calciner is shown in FIG.
  • the powder is introduced from one longitudinal end of the fluidized bed, and the calcined powder is discharged from the other longitudinal end.
  • a dispersion plate 77 having a number of openings is provided in the lower part of the fluidizing tank, and hot air is blown in to heat and fluidize the powder, and the powder is exhausted from the upper part of the fluidizing tank.
  • a barrier plate 76 is provided on the outlet side, and the amount of powder in the fluidization tank is controlled by raising and lowering the barrier plate 76 .
  • Gypsum granules obtained by crushing waste gypsum boards have a wide particle size distribution. This is because the binder such as starch contained in the gypsum board gives the gypsum granules a sticking property. Also, when the waste gypsum board gets wet due to rain or the like, the adherence of the gypsum granules increases. For these reasons, it is difficult to classify gypsum granules into a narrow particle size range.
  • gypsum granules with a wide particle size distribution are calcined in a fluidized bed type calciner provided with a dam plate 76, if the particles with a large particle size are operated at a wind speed exceeding the dam plate 76, the particles with a small particle size , the gypsum granules scatter to the exhaust line 79 in a short period of time, and the amount of the gypsum granules scattered is 40 to 60% by mass. Since the particles are discharged from the calciner in a short period of time, some of them remain as gypsum dihydrate as input.
  • the form of gypsum suitable for crystallization is semi-aqueous or anhydrous type III.
  • Particles scattered into the exhaust line 79 are collected by a bag filter.
  • the particles collected by the bag filter are combined with the calcined gypsum discharged from the discharge port 80 .
  • the residual ratio of gypsum dihydrate in the gypsum after joining must be 5% by mass or less. If it exceeds this range, the average particle size of gypsum dihydrate produced in the crystallization process decreases. Since the amount of scattering is large under the above conditions, the residual rate of gypsum dihydrate is 10% by mass or more.
  • An object of the present invention is to provide a method for calcining gypsum granules obtained by crushing waste gypsum boards into hemihydrate and/or anhydrous type III gypsum, instead of anhydrous type II gypsum, and allowing the calciner to be used to operate steadily. to do.
  • Another object of the present invention is to provide a fluidized bed calciner suitable for these objects.
  • gypsum granules obtained by crushing waste gypsum boards are calcined and converted into hemihydrate gypsum and/or anhydrous type III gypsum.
  • gypsum granules are charged into the fluidized tank from the inlet of the calciner into the fluidized tank by the charging device, and the gypsum granules are discharged from the outlet of the fluidized tank by the discharger. It is characterized by discharging the gypsum granules after sintering and by controlling the feeding device and the discharging device to keep the amount of gypsum granules in the fluidized bath within a predetermined range.
  • the calciner of this invention is for calcining gypsum granules derived from waste gypsum board.
  • the calciner of the present invention controls a fluidized tank, an inlet equipped with a gypsum granules charging device, an outlet equipped with a gypsum granules discharging device, a charging device and a discharging device, and controls the gypsum grains in the fluidized tank. and a controller for keeping body mass within a predetermined range.
  • the description regarding the method of treating waste gypsum board, particularly the description regarding calcination also applies to the fluidized bed calciner.
  • the gypsum granules are moved from the outlet side end of the dispersion plate at the bottom of the fluidization tank to the outlet side without crossing a barrier such as a barrier plate.
  • the gypsum granules that have reached the end of the fluidizing tank on the discharge port side flow and move to the discharge port side, and are discharged by the discharging device.
  • the flow of particles with a large particle size can be achieved only by lateral movement on the dispersion plate. If the amount of air required for lateral movement is sufficient, the amount of small-sized gypsum particles leaving the fluidization tank as gypsum dihydrate can be reduced. For example, the residual gypsum dihydrate ratio in the calcined gypsum can be less than 5% by mass.
  • the fluidization tank has a distribution plate at the bottom for blowing hot air into the fluidization tank, and the discharge port side tip of the distribution plate is connected to the discharge port side without a barrier such as a barrier plate.
  • the amount of gypsum granules in the fluidization tank is adjusted by increasing or decreasing the amount of gypsum supplied to and discharged from the fluidization tank, rather than the height of the dam plate.
  • the input amount is increased or the discharge amount is decreased.
  • the amount of input and the amount of discharge are adjusted to be the same, and steady operation is carried out.
  • the amount of gypsum granules in the fluidization tank can be measured by measuring the pressure difference between the top and bottom of the dispersion plate. Controlling the input device and the discharge device also includes keeping the input amount of gypsum constant and increasing or decreasing the discharge amount.
  • hot air is blown into the fluidization tank from the dispersion plate at the bottom of the fluidization tank, and the hot air blown from the exhaust port at the top of the fluidization tank is exhausted. Then, the width of the fluidizing tank is made wider at the upper part of the fluidizing tank than at the lower part of the fluidizing tank.
  • the flow velocity of the hot air decreases in the upper part of the fluidizing tank, and mainly the gypsum of small particle size floating in the hot air settles, and the discharge of the gypsum of small particle size from the fluidizing tank in a short period of time can be restricted.
  • the distribution plate is inclined downward from the inlet side toward the outlet side. As a result, the entire gypsum in the fluidization tank moves toward the outlet side, so that it is possible to prevent gypsum of large particle size from remaining in the fluidization tank for a long time.
  • a cyclone is preferably installed in the exhaust line from the fluidization tank. Of the small-sized gypsum particles scattered in the exhaust line, relatively large ones are collected by the cyclone and returned to the fluidized tank. The repaired gypsum granules agglomerate and grow while circulating in the cyclone and the fluidizing tank, so that they do not scatter from the exhaust line.
  • FIG. 1 A diagram showing an outline of a method for recovering gypsum from waste gypsum board in an embodiment.
  • FIG. 1 shows the process from waste gypsum board to recovery of gypsum.
  • a waste gypsum board (not shown) is put into the crusher 10 through the inlet 11 and roughly crushed.
  • the crushed pieces are treated with a sieve 16, the crushed pieces on the sieve are fed to a sorting conveyor 18, and foreign substances such as metals, wood chips, mortar, etc. are visually removed.
  • the gypsum granules under the sieve are put into a fine crusher 30, which will be described later.
  • a fixed quantity conveying conveyor 20 conveys the crushed pieces from which foreign matter has been removed by a predetermined amount.
  • a magnetic separation device 25 is provided near the fixed-quantity conveying conveyor 20 to remove magnetic substances such as metal foreign matter by magnetic force.
  • the crushed pieces are then fed to a fine crusher 30, crushed into gypsum granules of suitable size for calcination and crystallization, and stocked in a silo 40 via a pipe 32 with a magnetic separator.
  • the gypsum granules are calcined by the fluidized bed calciner 50 to change the dihydrate gypsum to semi-water and/or anhydrous type III gypsum.
  • semi-water and/or anhydrous type III gypsum obtained by calcination is mixed with gypsum slurry or the like in a mixer, and gypsum particles such as gypsum dihydrate are precipitated in a crystallization tank.
  • the gypsum slurry is extracted from the crystallization tank, paper dust and the like are removed by a sieve, the remaining slurry is solid-liquid separated by a filter, and gypsum powder such as gypsum dihydrate is recovered.
  • Industrial water or the like is added to the liquid component after solid-liquid separation, and the mixture is circulated to the mixer.
  • a fluidized bed calciner 50 (hereinafter "calciner 50") used in the calcining process will be described with reference to FIGS.
  • the calciner 50 has a bottom plate 51 and a top plate 52, and hot air of about 300° C., for example, is supplied from an air supply port 53 provided in the bottom plate 51 by an air supply blower 53b.
  • a dispersing plate 54 is provided above the bottom plate 51 , and hot air is blown through the openings of the dispersing plate 54 .
  • the dispersion plate 54 is inclined downward at an inclination angle ⁇ from the inlet side to the outlet side.
  • the inclination angle ⁇ is, for example, 0.5° or more and 5° or less, preferably 1° or more and 3° or less.
  • a space between the dispersion plate 54 and the top plate 52 is a fluidized bath 68 .
  • the end of the distribution plate 54 on the discharge port 56 side is connected to the inclined plate 71 at the entrance of the discharge port 56 without a barrier such as a barrier plate.
  • the gypsum granules are put in from the inlet 55 and the gypsum granules are discharged from the outlet 56 .
  • a rotary valve 57 is provided at the inlet 55 and a rotary valve 58 is provided at the outlet 56, so that the material is introduced and discharged while being mechanically shut off from the outside air.
  • a device other than the rotary valves 57 and 58 may be used as long as it is a device capable of charging or discharging while shutting off the outside air and controlling the amount of charging (discharging), such as a double damper.
  • the amount of gypsum 70 in the calciner 50 is measured by the pressure difference determined by the pressure sensors 59a,b.
  • a pressure sensor 59 a measures the pressure of the hot air between the bottom plate 51 and the dispersion plate 54 .
  • a pressure sensor 59b measures the pressure of the hot air between the gypsum 70 and the top plate 52 . The difference between these pressures indicates the pressure that the hot air loses while passing through the gypsum 70 and represents the amount of gypsum 70 . Any sensor that can measure the amount of gypsum 70 can be used.
  • An exhaust line 61 is connected to the top plate 52 and its outlet is connected to the cyclone 60 .
  • the airflow to the upper part of the cyclone 60 is treated by the bag filter 63 and exhausted from the exhaust port 62 by the exhaust blower 62b.
  • a rotary valve (not shown) is connected to the bag filter 63 for discharging the collected gypsum particles, and the collected gypsum particles are discharged without being returned to the calciner, and are combined with the gypsum from the discharge port 56. .
  • the gypsum granules collected by the cyclone 60 are returned into the fluidization tank using a rotary valve 64.
  • the fluidized bath has three types of side walls 65, 66, 67, and the top of the fluidized bath is wider than the bottom. Therefore, the flow velocity of the hot air decreases in the upper part of the fluidized bath.
  • the inclined plate 71 in front of the discharge port 56 is connected to the tip of the dispersion plate 54 without a barrier such as a barrier plate.
  • the controller 72 estimates the amount of gypsum 70 in the fluidized bath from the signals S1 and S2 from the pressure sensors 59a and 59b, and controls the rotary valves 57 and 58 with the control signals P1 and P2.
  • the hot air is, for example, about 300° C. at the air supply port 53 and about 150° C. at the inlet of the exhaust line 61, and the flow velocity of the hot air in the fluidized tank is, for example, about 1 to 2 m/s.
  • the target heating temperature of the gypsum 70 is, for example, about 130.degree.
  • the dispersion plate 54 has a length of 5 m, a width of 1 m, a height from the dispersion plate 54 to the top plate 52 of 3 m, and a thickness of the deposited gypsum 70 of 200 mm to 400 mm. is, for example, 600 to 1200 kg, and the average residence time of gypsum in the fluidizing tank is about 20 to 40 minutes.
  • a controller 72 controls the rotary valves 57 and 58 so as to keep the amount of gypsum 70 in the fluidized bath constant. Since the discharge of the gypsum granules is controlled by the rotary valve 58 instead of the dam plate, the gypsum granules only need to flow from right to left in FIG. 2 and do not need to climb over the dam plate. Therefore, the difference in residence time between large gypsum particles and small gypsum particles can be reduced.
  • the amount of hot air supplied can be reduced. For this reason, the amount of scattering to the exhaust line 61 can be reduced. Further, along with this, it is possible to reduce the amount of gypsum granules having a small particle size reaching the bag filter 63 in the form of gypsum dihydrate.
  • the gypsum 70 moves toward the exit side. Since the fluidized bed becomes wider at the top, the flow velocity of the hot air decreases in the upper part of the fluidized bed, and the small floating gypsum particles also settle. Therefore, small gypsum particles can be prevented from reaching the discharge port 56 in a short period of time, and the amount of scattering to the discharge line 61 can be further reduced.
  • the gypsum is discharged by the rotary valve 58 without a barrier plate, the dispersing plate 54 is inclined, and the width of the upper part of the fluidizing tank is widened. It can be discharged from the fluidization tank in time. Of these three elements, the essential one is to discharge the gypsum by the rotary valve 58 without providing a barrier plate.
  • a cyclone 60 collects gypsum fines in the exhaust line.
  • the collected gypsum fines are agglomerated and grain-grown in, for example, a cyclone and a fluidized bed. Therefore, gypsum fine powder reaching the bag filter 63 can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

廃石膏ボードを破砕した石膏粒体をか焼し、半水石膏及び/又は無水III型石膏へ変化させる。か焼機の流動槽への投入口から、投入装置により石膏粒体を流動槽内に投入すると共に、流動槽からの排出口から、排出装置によりか焼後の石膏粒体を排出し、かつ投入装置と排出装置を制御することにより、流動槽内の石膏粒体の量を所定範囲内に保つ。無水II型石膏の生成量が少なく、かつか焼機を定常運転できる。

Description

廃石膏ボードの処理方法、及びそれに用いる流動槽式か焼機
 この発明は廃石膏ボードの処理方法と、それに用いる流動槽式か焼機に関する。
 発明者らは廃石膏ボードからの石膏の回収方法を提案した(例えば特許文献1:WO2012/176688)。最初に廃石膏ボードを破砕機により破砕し、次いでか焼機によりか焼し、廃石膏ボードに含まれていた二水石膏を半水石膏に変化させる。半水石膏は水和性が高いので、石膏スラリーにすると晶析槽で石膏粒子を析出させることができる。そして固液分離装置により石膏スラリーから石膏粒子を分離すると、廃石膏ボードから石膏を回収できる。半水石膏の代わりに無水III型石膏を用いても良く、晶析槽の温度を制御すると、析出する石膏粒子の形態を二水石膏、半水石膏等に制御できる。
WO2012/176688
 伝熱効率が高いか焼機として、流動槽式のか焼機がある。流動槽式のか焼機では、流動槽の下方から熱風を導入し、粒体を熱風により加熱する。粒体は投入口から排出口まで流動しながら移動する。流動槽式のか焼機の例を図4に示す。流動槽の長手方向の一端から粉体を投入し、他端からか焼した粉体を排出する。また流動槽の下部に多数の開口を備えた分散板77を設けて熱風を吹き込み、熱風により粉体を加熱すると共に流動させ、流動槽の上部から排気する。また出口側に堰板76を設け、堰板76の昇降により流動槽内の粉体の量を制御する。
 しかしながら流動槽式のか焼機を、廃石膏ボードを破砕した石膏粒体のか焼に用いると、問題が生じた。廃石膏ボードを破砕した石膏粒体は、粒度分布が広い。これは、石膏ボードに含まれる澱粉等のバインダにより、石膏粒体に固着性があるためである。また廃石膏ボードが雨等で濡れると、石膏粒体の固着性が高まる。これらのため、石膏粒体を狭い粒度範囲に分級することは難しい。
 粒度分布が広い石膏粒体を、堰板76を設けた流動槽式のか焼機でか焼する際、粒径の大きな粒子が堰板76を超える風速で運転した場合、粒径が小さな粒子は、短時間で排気ライン79へ飛散し、飛散量は投入した石膏粒体の40~60質量%となる。この粒子はか焼機内から短時間で排出されるため、一部が投入時の二水石膏のままである。なお晶析に適した石膏の形態は半水または無水III型である。排気ライン79へ飛散した粒子は、バグフィルターで捕集する。バグフィルターで捕集した粒子は、排出口80から排出されるか焼後の石膏と合流させる。合流後の石膏の二水石膏残存率は、5質量%以下とする必要がある。これ以上になると、晶析工程で生成する二水石膏の平均粒径が低下する。上記条件では飛散量が多いため、二水石膏の残存率は10質量%以上となる。
 一方で、粒径の小さな粒子の飛散量を少なくするため風速を小さくすると、粒径の大きな粒子が堰板を超えなくなり、か焼機内に滞留する。滞留量が増えるに従い、流動槽の運転は不安定となり、最終的には運転できなくなる。また、滞留した石膏は晶析に適さない無水II型となる。
 堰板76の下部に粒径の大きな石膏粒子を排出するための排出口を設けることも、検討した。しかし廃石膏ボードを破砕した石膏粒体は流動性が低いため、排出口を設けても、所望の排出量で石膏粒体を排出することはできなかった。このため、大きな石膏粒子が無水II型石膏まで変化することを充分には防止できず、またか焼機を定常運転することも困難であった。
 この発明の課題は、廃石膏ボードを破砕した石膏粒体を、無水II型石膏ではなく、半水及び/又は無水III型石膏へとか焼でき、かつ用いるか焼機を定常運転できる方法を提供することにある。またはこの発明の他の課題は、これらの課題に適した流動槽式か焼機を提供することにある。
 この発明の廃石膏ボードの処理方法では、廃石膏ボードを破砕した石膏粒体をか焼し、半水石膏及び/又は無水III型石膏へ変化させる。この発明の廃石膏ボードの処理方法は、か焼機の流動槽への投入口から、投入装置により石膏粒体を流動槽内に投入すると共に、流動槽からの排出口から、排出装置によりか焼後の石膏粒体を排出し、かつ、投入装置と排出装置を制御することにより、流動槽内の石膏粒体の量を所定範囲内に保つことを特徴とする。
 この発明のか焼機は、廃石膏ボード由来の石膏粒体をか焼するためのものである。この発明のか焼機は、流動槽と、石膏粒体の投入装置を備える投入口と、石膏粒体の排出装置を備える排出口と、投入装置と排出装置を制御し、流動槽内の石膏粒体の量を所定範囲内に保つコントローラ、とを備えていることを特徴とする。なおこの明細書において、廃石膏ボードの処理方法に関する記載、特にか焼に関する記載は、そのまま流動槽式か焼機にも当てはまる。
 好ましくは、流動槽の底部の分散板の排出口側の端部から、堰板などの障壁を越えること無しに、石膏粒体を排出口側へ移動させる。流動槽の排出口側端部に達した石膏粒体は、流動して排出口側へ移動し,排出装置により排出される。
 この発明では、堰板を設けないため、粒径の大きな粒子の流動は、分散板上での横移動だけで良い。横移動させるために必要な風量であれば、小さい粒径の石膏粒子が二水石膏のまま流動槽から出て行く量を減らすことができる。例えばか焼後の石膏での二水石膏残存率を5質量%未満にできる。
 好ましくは、流動槽は底部に熱風を流動槽内に吹き込むための分散板を備え、かつ分散板の排出口側先端が排出口側に堰板などの障壁無しにつながっている。
 この発明では堰板の高さではなく、流動槽への石膏の投入量と排出量を増減させることによって、流動槽内の石膏粒体の量を調整する。例えば、流動槽内の石膏粒体の量を増やす場合は、投入量を増やすか排出量を減らす。所定の石膏粒体の量になった後は、投入量と排出量が同じになるように調整し、定常運転を行う。なお、流動槽内の石膏粒体の量は、分散板の上下での圧力差等により測定できる。なお石膏の投入量を一定に保ち、排出量を増減することも、投入装置と排出装置を制御することに含まれる。
 好ましくは、流動槽の底部の分散板から熱風を流動槽内に吹き込むと共に、流動槽の頂部の排気口から吹き込んだ熱風を排気する。そして流動槽の幅を流動槽の下部よりも流動槽の上部で大きくする。熱風の流速は流動槽の上部で低下し、熱風中に浮遊している主として小粒径の石膏が沈降し、小粒径の石膏が短時間で流動槽から排出されることを制限できる。
 また好ましくは、分散板を投入口側から排出口側へ向けて下向きに傾斜させる。すると流動槽内の石膏全体が排出口側へ移動するので、大粒径の石膏が流動槽内に長時間留まることを防止できる。
 好ましくは流動槽からの排気ラインにサイクロンを設ける。排気ラインに飛散した小さな粒径の石膏粒子のうち、比較的大きいものをサイクロンで捕集し、流動槽内へ戻す。補修された石膏粒体はサイクロンおよび流動槽内を循環するうちに凝集して粒成長するので、排気ラインから飛散しなくなる。
実施例での、廃石膏ボードからの石膏の回収方法の概要を示す図 実施例で用い流動槽式か焼機の、送り方向鉛直面に沿った模式的断面図 図2の流動槽式か焼機の、幅方向鉛直面に沿った模式的断面図 比較例の流動槽式か焼機の模式的断面図
 以下に本発明を実施するための実施例を示す。この発明の範囲は、特許請求の範囲の記載に基づき、明細書の記載とこの分野での周知技術とを参酌し、当業者の理解に従って定められるべきである。この発明の範囲は実施例により限定されるものではない。
 図1~図3に実施例を示す。図1は廃石膏ボードから石膏の回収までを示す。前処理工程2では、図示しない廃石膏ボードを投入口11から破砕機10に投入し、粗く破砕する。破砕片を篩16で処理し、篩上の破砕片を選別コンベヤ18へ供給し、金属、木片、モルタル等の異物を目視で除去する。なお篩下の石膏粒体は後述の細破砕機30へ投入する。定量搬送コンベヤ20により、異物を除去した破砕片を所定量ずつ搬送する。定量搬送コンベヤ20の付近に磁選装置25を設け、磁力により金属異物などの磁着物を除去する。次いで破砕片を細破砕機30に供給し、か焼と晶析に適したサイズの石膏粒体へ破砕し、磁選機付きのパイプ32を介して、サイロ40にストックする。 
 次のか焼工程4では、流動槽式か焼機50により石膏粒体をか焼し、二水石膏から半水及び/又は無水III型石膏へ変化させる。
 晶析工程6では、か焼により得られた半水及び/又は無水III型石膏を混合器で石膏のスラリー等と混合し、晶析槽で二水石膏等の石膏粒子を析出させる。ろ過工程8では晶析槽から石膏スラリーを抽出し、篩により紙粉等を除去し、残りのスラリーをろ過器により固液分離し、二水石膏等の石膏粉体を回収する。固液分離後の液体成分は工水等を加え、混合器へ循環させる。
 か焼工程と用いる流動槽式か焼機50(以下「か焼機50」)を、図2,図3を参照して説明する。か焼機50は底板51と天板52を備え、底板51に設けた給気口53から給気ブロワ53bにより、例えば300℃程度の熱風を給気する。底板51の上部に分散板54があり、分散板54の開口から熱風が吹き込まれる。そして好ましくは、分散板54は投入口側から排出口側へ向け、傾斜角θで下向きに傾斜している。傾斜角θは例えば0.5°以上5°以下で、好ましくは1°以上3°以下とする。分散板54と天板52の間のスペースが流動槽68である。
 分散板54の排出口56側の先端は、堰板などの障壁無しに、排出口56の入口の傾斜板71とつながっている。
 投入口55から石膏粒体を投入し、排出口56から石膏粒体を排出する。流動槽内の圧力を一定に保つため、投入口55にロータリーバルブ57を設け、排出口56にもロータリーバルブ58を設け、外気と機械的に遮断しながら投入しかつ排出する。外気と遮断しながら投入あるいは排出でき、かつ投入量(排出量)を制御できる装置、例えばダブルダンパーなどであればロータリーバルブ57,58以外の装置でも良い。
 か焼機50内の石膏70の量を、圧力センサ59a,bで求めた圧力の差により測定する。圧力センサ59aにより、底板51と分散板54の間での熱風の圧力を測定する。圧力センサ59bにより、石膏70と天板52の間での熱風の圧力を測定する。これらの圧力の差は石膏70を通過する間に熱風が失う圧力を示し、石膏70の量を表している。なお石膏70の量を測定できるセンサであれば、任意のセンサを用いることができる。
 天板52に排気ライン61を接続し、その出口をサイクロン60に接続する。サイクロン60の上部への気流をバグフィルタ63により処理し、排気ブロワ62bにより排気口62から排気する。またバグフィルタ63には、捕集した石膏粒子の排出用に、図示しないロータリーバルブを接続し、捕集した石膏粒子をか焼機内へ戻さずに排出し、排出口56からの石膏と合流させる。サイクロン60で回収した石膏粒体を、ロータリーバルブ64を用いて流動槽内へ戻す。
 図3に示すように、流動槽は3種類の側壁65,66,67を備え、流動槽の上部は下部よりも幅が広い。このため熱風の流速は、流動槽の上部で低下する。
 排出口56の手前の傾斜板71は、堰板などの障壁無しに,分散板54の先端とつながっている。コントローラ72は、圧力センサ59a,bからの信号S1,S2により、流動槽内の石膏70の量を推定し、制御信号P1,P2によりロータリーバルブ57,58を制御する。
 か焼機50のサイズ等の例を示す。熱風は給気口53で例えば300℃程度、排気ライン61の入口で例えば150℃程度、流動槽内での熱風の流速は例えば1~2m/s程度である。なお石膏70の目標加熱温度は例えば130℃程度である。分散板54は例えば長さが5m、幅が1m、分散板54から天板52までの高さは例えば3m、堆積している石膏70の厚さは例えば200mm~400mmで、流動槽内の石膏の量は例えば600~1200kgで、流動槽内の石膏の平均滞留時間は20分~40分程度である。
 か焼機50の作用を説明する。コントローラ72により、流動槽内の石膏70の量を一定にするように、ロータリーバルブ57,58を制御する。堰板ではなく、ロータリーバルブ58により石膏粒体の排出を制御するので、石膏粒体は図2の右から左へ流動するだけで良く、堰板を乗り越える必要がない。このため、大きな石膏粒子と小さな石膏粒子との滞留時間の差を小さくできる。
 石膏粒体を横方向に移動させれば良いので、熱風の供給量を減らすことができる。このため、排気ライン61への飛散量を減らすことができる。またこれに伴い、小粒径の石膏粒体が二水石膏のままバグフィルタ63へ達する量を減らすことができる。
 分散板54が傾斜角θで出口側へ傾斜しているため、石膏70は出口側へ向けて移動する。流動槽は上部で幅が広くなるため、熱風の流速が流動槽の上部で低下し、浮遊している小さな石膏粒子も沈降する。このため小さな石膏粒子が短時間で排出口56に達することを防止でき、また排気ライン61への飛散量をさらに減らすことができる。堰板を設けず、ロータリーバルブ58により石膏を排出すること、分散板54を傾斜させること、流動槽の上部で幅を広くすることが合わさって、大きな石膏粒子と小さな石膏粒子も同程度の滞留時間で流動槽から排出できる。なおこれらの3要素の内で必須なのは、堰板を設けずロータリーバルブ58により石膏を排出することである。
 サイクロン60により排気ライン中の石膏微粉を捕集する。捕集した石膏の微粉は例えばサイクロンおよび流動槽内で凝集し、粒成長する。このためバグフィルタ63に達する石膏微粉を減らすことができる。
 
2     前処理工程
4     か焼工程
6     晶析工程
8     ろ過工程
10    破砕機
11    投入口
16    篩
18    選別コンベヤ
20    定量搬送コンベヤ
25    磁選装置
30    細破砕機
32    磁選パイプ
40    サイロ
50    流動槽式か焼機
51    底板
52    天板
53    給気口
53b   給気ブロワ
54   分散板
55    投入口
56    排出口
57,58,64 ロータリーバルブ
59a,b    圧力センサ
60       サイクロン
61       排気ライン
62       排気口
62b      排気ブロワ
63       バグフィルタ
65,66,67 側壁
68       流動槽
70       石膏
71       傾斜板
72       コントローラ
 
76       堰板
77       分散板
78       粉体
79       排気ライン
80       排出口
 
θ        傾斜角 
P1,P2    制御信号
S1,S2    センサ信号  

Claims (7)

  1.  廃石膏ボードを破砕した石膏粒体をか焼し、半水石膏及び/又は無水III型石膏へ変化させる、廃石膏ボードの処理方法において、
     か焼機の流動槽への投入口から、投入装置により石膏粒体を流動槽内に投入すると共に、
     流動槽からの排出口から、排出装置によりか焼後の石膏粒体を排出し、
     かつ、前記投入装置と排出装置を制御することにより、流動槽内の石膏粒体の量を所定範囲内に保つことを特徴とする、廃石膏ボードの処理方法。
  2.  前記流動槽の底部の分散板の排出口側の端部から、障壁を越えること無しに、石膏粒体を排出口側へ移動させることを特徴とする、請求項1の廃石膏ボードの処理方法。
  3.  前記流動槽の底部の分散板から熱風を流動槽内に吹き込むと共に、流動槽の頂部の排気口から吹き込んだ熱風を排気し、
     かつ、流動槽の幅を流動槽の下部よりも流動槽の上部で大きくすることにより、熱風の流速を流動槽の上部で低下させて、熱風中に浮遊している石膏を沈降させることを特徴とする、請求項1または2の廃石膏ボードの処理方法。
  4.  前記分散板を前記投入口側から前記排出口側へ向けて下向きに傾斜させることにより、石膏粒体が排出口側へ移動しやすくすることを特徴とする、請求項1~3のいずれかの廃石膏ボードの処理方法。
  5.  サイクロンを備える排気ラインを前記流動槽に接続し、排気ラインに飛散した石膏粒体の一部をサイクロンにより捕集し流動槽内に戻すことを特徴とする、請求項1~4のいずれかの廃石膏ボードの処理方法。
  6.  廃石膏ボード由来の石膏粒体を仮焼するための、か焼機において、
     流動槽と、
     石膏粒体の投入装置を備える投入口と、
     石膏粒体の排出装置を備える排出口と、
     前記投入装置と排出装置を制御し、流動槽内の石膏粒体の量を所定範囲内に保つコントローラ、
    とを備えていることを特徴とする、流動槽式か焼機。
  7.  前記流動槽は底部に熱風を流動槽内に吹き込むための分散板を備え、かつ分散板の排出口側先端が排出口側に障壁無しにつながっていることことを特徴とする、請求項6の流動槽式か焼機。   
PCT/JP2021/041843 2021-09-02 2021-11-15 廃石膏ボードの処理方法、及びそれに用いる流動槽式か焼機 WO2023032235A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21920124.1A EP4166248A4 (en) 2021-09-02 2021-11-15 METHOD FOR PROCESSING WASTE GYPSUM BOARDS AND A FLUIDIZED BED CALCINATION APPARATUS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-143114 2021-09-02
JP2021143114A JP2023036205A (ja) 2021-09-02 2021-09-02 廃石膏ボードの処理方法、及びそれに用いる流動槽式か焼機

Publications (1)

Publication Number Publication Date
WO2023032235A1 true WO2023032235A1 (ja) 2023-03-09

Family

ID=83508843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041843 WO2023032235A1 (ja) 2021-09-02 2021-11-15 廃石膏ボードの処理方法、及びそれに用いる流動槽式か焼機

Country Status (3)

Country Link
EP (1) EP4166248A4 (ja)
JP (1) JP2023036205A (ja)
WO (1) WO2023032235A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557599A (en) * 1978-06-22 1980-01-19 Combustion Eng Control system for running gypsum calcination vessel
JPH0238347A (ja) * 1988-07-28 1990-02-07 Mitsubishi Mining & Cement Co Ltd 石膏焼成装置の製御方法
US4974334A (en) * 1985-12-04 1990-12-04 Dieter Roddewig Procedure and device for drying and/or calcining of powdery materials
JP2006511419A (ja) * 2002-12-23 2006-04-06 オウトクンプ テクノロジー オサケ ユキチュア 微細粒状化固形物の熱処理方法およびプラント
WO2012176688A1 (ja) 2011-06-21 2012-12-27 株式会社トクヤマ 石膏ボード廃材から石膏を再生する方法
JP2016155725A (ja) * 2015-02-25 2016-09-01 吉野石膏株式会社 石膏焼成炉及び石膏焼成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557599A (en) * 1978-06-22 1980-01-19 Combustion Eng Control system for running gypsum calcination vessel
US4974334A (en) * 1985-12-04 1990-12-04 Dieter Roddewig Procedure and device for drying and/or calcining of powdery materials
JPH0238347A (ja) * 1988-07-28 1990-02-07 Mitsubishi Mining & Cement Co Ltd 石膏焼成装置の製御方法
JP2006511419A (ja) * 2002-12-23 2006-04-06 オウトクンプ テクノロジー オサケ ユキチュア 微細粒状化固形物の熱処理方法およびプラント
WO2012176688A1 (ja) 2011-06-21 2012-12-27 株式会社トクヤマ 石膏ボード廃材から石膏を再生する方法
JP2016155725A (ja) * 2015-02-25 2016-09-01 吉野石膏株式会社 石膏焼成炉及び石膏焼成方法

Also Published As

Publication number Publication date
EP4166248A4 (en) 2023-09-06
JP2023036205A (ja) 2023-03-14
EP4166248A1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
KR100376560B1 (ko) 유동층 건조·분급장치
US7621474B2 (en) Method and apparatus for calcining gypsum
CN102372450B (zh) 粉石灰煅烧工艺及系统
JP2579885B2 (ja) 粉粒体原料の粉砕方法と粉砕装置および分級機
AU732460B2 (en) Multi-chamber fluidized bed classifying apparatus
JP2548519B2 (ja) 流動層分級器
CN1910298A (zh) 悬浮熔炼炉的供给系统
US3043652A (en) Fluid bed process for granulating fine-grained materials
CA2510791A1 (en) Method and plant for the conveyance of fine-grained solids
WO2023032235A1 (ja) 廃石膏ボードの処理方法、及びそれに用いる流動槽式か焼機
JP3037680B1 (ja) 多室型流動層分級装置
EP1163192B1 (en) Method and apparatus for continuously calcining gypsum
CN105016092A (zh) 精确放料机构
Dando et al. Hard gray scale
US5122348A (en) Method of slurrying partially calcined alumina dust
JP2929537B1 (ja) セメントクリンカの製造方法及び製造装置
JP6912696B2 (ja) 水硬性石灰及びその製造方法
WO2019163033A1 (ja) コンベアシステム
JP3223467B2 (ja) セメントクリンカの製造方法及び製造装置
US11892236B2 (en) System for conditioning stucco in a dust collector
JP3370972B2 (ja) 流動層セメントクリンカ焼成装置における気密排出装置
JP3220077B2 (ja) セメントクリンカの製造方法及び製造装置
JPH0889898A (ja) 流動層式分級機
WO2018207399A1 (ja) 乾燥方法及び乾燥装置
RU2114945C1 (ru) Способ термической обработки известкового шлама и установка для его осуществления

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17790147

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021920124

Country of ref document: EP

Effective date: 20220728

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE