WO2023030454A1 - 热固树脂组合物、环氧树脂材料及其复合材料和制备方法 - Google Patents

热固树脂组合物、环氧树脂材料及其复合材料和制备方法 Download PDF

Info

Publication number
WO2023030454A1
WO2023030454A1 PCT/CN2022/116550 CN2022116550W WO2023030454A1 WO 2023030454 A1 WO2023030454 A1 WO 2023030454A1 CN 2022116550 W CN2022116550 W CN 2022116550W WO 2023030454 A1 WO2023030454 A1 WO 2023030454A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
epoxy
resin composition
thermosetting
thermosetting resin
Prior art date
Application number
PCT/CN2022/116550
Other languages
English (en)
French (fr)
Inventor
陈翠萍
季刚
姜磊
吉明磊
贾荣姝
Original Assignee
道生天合材料科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 道生天合材料科技(上海)股份有限公司 filed Critical 道生天合材料科技(上海)股份有限公司
Publication of WO2023030454A1 publication Critical patent/WO2023030454A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule

Definitions

  • the invention relates to the technical field of epoxy resin materials, in particular to a thermosetting resin composition, an epoxy resin material and its composite material and a preparation method.
  • thermosetting resins based on reaction molding are the most common option for making composites. Compared with thermoplastic resins, the amount of resin used in composite materials prepared by thermosetting resins can be lower, the mechanical properties, such as creep resistance, strength, and production efficiency are higher, and it is more suitable for the preparation of large and special-shaped composite products. Examples include blades, hulls, and aircraft. As a very typical thermosetting resin, epoxy resin has been widely used in the preparation of various composite materials and corresponding products.
  • epoxy resins still have their shortcomings.
  • the viscosity of epoxy resin is high when used, and it is brittle after curing. High viscosity will make the operation of epoxy resin inconvenient and cause many problems, such as making it difficult to fully add other components into epoxy resin and mix evenly, high viscosity resin is not easy to quickly and effectively infiltrate reinforcing materials such as glass fiber and powder,
  • the high-viscosity resin can effectively squeeze out the air between the glass fiber and powder only if it is fully in contact with and infiltrated with glass fiber and powder, so as to effectively reduce the defective rate of the cured product.
  • the epoxy industry generally uses reactive monofunctional epoxy diluents or non-reactive diluents to achieve the purpose of reducing viscosity, but the impact strength and heat resistance of epoxy resin diluted in this way after curing It will decrease, and the impact strength and heat resistance can be improved by adding a toughening agent.
  • a toughening agent improves the impact strength of the epoxy resin after curing, the tensile strength and bending strength of the epoxy resin after curing are reduced instead. .
  • thermosetting resin composition it is necessary to provide a novel thermosetting resin composition to solve the above-mentioned problems in the prior art.
  • the object of the present invention is to provide a kind of thermosetting resin composition, epoxy resin material and its composite material and preparation method, to solve the problem that the tensile strength and bending strength of the epoxy resin are reduced after adding a toughening agent.
  • thermosetting resin composition of the present invention comprises: an epoxy curing agent, an epoxy resin component, a free radical initiator, a reactive diluent, a toughening agent and a polyurethane compound;
  • the epoxy resin component contains epoxy groups for ring-opening addition reaction under the action of the epoxy curing agent, and each molecule of the reactive diluent contains at least one acrylate group for A radical polymerization reaction occurs under the action of the radical initiator;
  • the number of parts of the free radical initiator is 0.01-7
  • the number of parts of the reactive diluent is 3-60
  • the number of parts of the epoxy curing agent is 1-120
  • the number of parts of the toughening agent is 1-15
  • the number of parts of the polyurethane compound is 3-15.
  • thermosetting resin composition of the present invention is that: in the thermosetting resin composition, each molecule of the reactive diluent contains at least one acrylate group, so that The free radical polymerization reaction occurs under the action of the initiator, and the epoxy resin component contains epoxy groups to carry out the ring-opening addition reaction under the action of the epoxy curing agent, so that the free radical polymerization reaction and The ring-opening addition reaction can be carried out at the same time, thereby effectively reducing the viscosity of the prepared epoxy resin material during processing, by adding polyurethane compounds to improve the tensile strength and bending strength of the epoxy resin after curing, and then by adjusting each group The proportion of 10% makes the mechanical properties and heat distortion temperature of epoxy resin better improved.
  • the thermosetting resin composition of the present invention solves the problem that the tensile strength and bending strength of the epoxy resin are reduced after the addition of the toughening agent.
  • the polyurethane compound is obtained by reacting an organic polyol and a polyisocyanate, and the mass ratio of the organic polyol to the polyisocyanate is (0.5-5):1.
  • the beneficial effect is that the tensile strength and bending strength of the epoxy resin composite material prepared from the thermosetting resin composition are significantly improved.
  • the average functionality of the organic polyol is 2.0-4.0, and the hydroxyl value of the organic polyol is 10-500.
  • the average functionality of the polyisocyanate is 2.0-3.6.
  • the acrylate group is an acrylate group or an alkyl-substituted acrylate group.
  • the alkyl-substituted acrylate group is a methacrylate group.
  • said reactive diluent comprises at least one acrylate compound to provide said acrylate group.
  • the reactive diluent comprises at least one acrylate compound, and the molecular structure of the acrylate compound has at least one epoxy group, so as to participate in the Ring-opening addition reaction.
  • the viscosity of the reactive diluent at 25 degrees Celsius is 1-500 mPa.s.
  • the epoxy resin component comprises at least one bisphenol A type epoxy resin.
  • the epoxy equivalent of the epoxy resin component is 100-500 g/equivalent.
  • the epoxy curing agent is one or both of amine curing agents and acid anhydride curing agents.
  • the epoxy resin component further includes an auxiliary agent, and the weight percentage of the auxiliary agent in the thermosetting resin composition is greater than 0 and less than or equal to 25%.
  • the beneficial effect is that the physical and chemical properties of the epoxy resin prepared by the thermosetting resin composition can be regulated by adding auxiliary agents.
  • the epoxy resin material of the present invention comprises an epoxy resin matrix, and the epoxy resin matrix is prepared from the thermosetting resin composition to effectively reduce the viscosity of the prepared epoxy resin material during processing, and has a good Mechanical properties and high heat distortion temperature.
  • the preparation method of the epoxy resin material of the present invention comprises an epoxy resin matrix
  • the preparation method of the epoxy resin material comprises the following steps: preparing the epoxy resin from the thermosetting resin composition matrix.
  • preparing the epoxy resin from the thermosetting resin composition matrix Provide the thermosetting resin composition as described above, mix the components in the thermosetting resin composition uniformly and then heat and cure, during the curing process, the free radical polymerization reaction of the acrylate group and the ring-opening addition of the epoxy group
  • the forming reaction can be carried out simultaneously to obtain epoxy resin material.
  • thermosetting resin composition improves production efficiency by effectively reducing the viscosity of the thermosetting resin composition during processing, increase the tensile strength and bending strength of the epoxy resin after curing by adding a polyurethane compound, and then adjust the ratio of each component so that The mechanical properties and heat deflection temperature of the epoxy resin are all improved.
  • the epoxy resin composite material of the present invention comprises a reinforcing material and the epoxy resin material. Since the epoxy resin material is prepared from the thermosetting resin composition, the production efficiency can be improved by effectively reducing the viscosity of the epoxy resin material processing process to quickly and effectively compound the reinforcing material, and the resulting epoxy resin can be compounded
  • the material has good mechanical properties and high heat distortion temperature.
  • the reinforcing material accounts for 1-91% by weight of the epoxy resin composite material.
  • the preparation method of the epoxy resin composite material of the present invention comprises: using the reinforcing material and the epoxy resin material as raw materials, through a pultrusion molding process, a winding molding process, a resin transfer process, a hand lay-up process, and a vacuum introduction
  • the epoxy resin composite material is prepared by at least one of a molding process, a compression molding process and an injection molding process.
  • the beneficial effect is that the production efficiency can be improved by effectively reducing the viscosity of the epoxy resin material during processing to quickly and effectively compound the reinforcing material, and the obtained epoxy resin composite material has good mechanical properties and high heat distortion temperature.
  • thermosetting resin composition which includes an epoxy curing agent, an epoxy resin component, a free radical initiator, a reactive diluent, a toughening agent and a polyurethane compound.
  • the epoxy curing agent is an amine curing agent.
  • the epoxy curing agent is an acid anhydride curing agent.
  • the epoxy resin component includes epoxy groups for ring-opening addition reaction under the action of the epoxy curing agent.
  • each molecule of the reactive diluent contains at least one acrylate group for free radical polymerization under the action of the free radical initiator.
  • the acrylate group is an acrylate group.
  • the acrylate group is an alkyl-substituted acrylate group.
  • the alkyl-substituted acrylate group is a methacrylate group.
  • the reactive diluent includes at least one acrylate compound to provide the acrylate group.
  • the reactive diluent is composed of methyl methacrylate, isobornyl methacrylate, hydroxyethyl methacrylate, isooctyl acrylate, cyclohexane acrylate, allyl acrylate , Decyl Methacrylate, 2-Ethylhexyl Methacrylate, Dihydrocyclopentadiene Acrylate, Ethoxylated Phenoxyethyl Acrylate, Hydroxypropyl Methacrylate, Ethylene Glycol Diacrylate , Propylene Glycol Dimethacrylate, Neopentyl Glycol Dimethacrylate, 1.6-Hexanediol Diacrylate, Cyclohexane Dimethacrylate, Vinyl Acrylate, Diethylene Glycol Dimethacrylate, Tripropylene glycol diacrylate, hydroxybutyl acrylate, pentaerythritol tetraacrylate, glyce
  • the reactive diluent comprises at least one acrylate compound having at least one epoxy group in its molecular structure, so that the opening can also be carried out under the action of the epoxy curing agent. Cycloaddition reaction.
  • the reactive diluent is composed of at least one of glycidyl ether methacrylate, glycidyl ether acrylate and epoxy resin acrylate.
  • the reactive diluent has a viscosity of 1-500 mPa.s at 25 degrees Celsius.
  • the reactive diluent has a viscosity of 2-400 mPa.s at 25 degrees Celsius.
  • the viscosity of the reactive diluent at 25 degrees Celsius is 3-300 mPa. Seconds.
  • the reactive diluent has a viscosity of 3.5-200 mPa.s at 25 degrees Celsius.
  • the reactive diluent has a viscosity of 4-150 mPa.s at 25 degrees Celsius.
  • the reactive diluent has a viscosity of 4.5-110 mPa.s at 25 degrees Celsius.
  • the reactive diluent has a viscosity of 5-80 mPa.s at 25 degrees Celsius.
  • the epoxy equivalent of the epoxy resin component is 100-500 g/equivalent.
  • the epoxy equivalent of the epoxy resin component is 110-400 g/equivalent.
  • the epoxy equivalent of the epoxy resin component is 120-300 g/equivalent.
  • the epoxy resin component includes at least one compound having an epoxy group.
  • the compound with epoxy group is any one of glycidyl ether compound, glycidyl ester compound, glycidyl amine compound, alicyclic epoxy resin and epoxidized olefin compound.
  • the epoxy resin component includes bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, novolak type epoxy resin and At least one kind of aliphatic glycidyl ether resin.
  • the epoxy resin component includes at least one of hydantoin epoxy resin and imide epoxy resin.
  • the epoxy resin component comprises at least one bisphenol A type epoxy resin.
  • the epoxy curing agent is an amine curing agent or an acid anhydride curing agent.
  • the amine curing agent is at least one of aliphatic amine, alicyclic amine, aromatic amine, aliphatic aromatic amine, polyether amine, polyamide, imidazole, dicyandiamide and dihydrazide kind.
  • the amine curing agent is straight-chain aliphatic amine ethylenediamine, triethylenetetramine, diethylenetriamine, divinylpropylamine, N-aminoethylpiperazine, adipic acid di Hydrazide, Menthanediamine, Triethylenediamine, Isophoronediamine (IPDA), Cardanol-modified amine, Diaminodiphenylmethane, Diaminodiphenylsulfone, m-xylylenediamine and latent at least one of amines.
  • IPDA Isophoronediamine
  • the acid anhydride curing agent is phthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylcyclohexanetetracarboxylic dianhydride, trimellitic anhydride, At least one of 70 acid anhydride and tung oil anhydride.
  • the radical initiator is at least one of peroxide, persulfide, peroxycarbonate, peroxyboric acid and azo compound, so as to initiate the radical polymerization reaction of the double bond-containing compound.
  • the free radical initiator is added to at least one of the epoxy resin component, the reactive diluent and the epoxy curing agent. Under the reaction conditions, after the free radical initiator is decomposed to release active free radicals, it can initiate the active double bonds in the reactive diluent to carry out free radical polymerization.
  • the free radical initiator is at least one of ester peroxide, ketone peroxide, acyl peroxide, hydrogen peroxide, peroxycarbonate and alkyl peroxide.
  • the free radical initiator is tert-butyl peroxyisopropyl carbonate, tert-butyl peroxy-3,5,5-trimethylhexanoate, methyl ethyl ketone peroxide, cumene Hydrogen peroxide, persulfates, azobisisobutyronitrile, azobisisoheptanonitrile, dimethyl azobisisobutyrate, benzoyl peroxide, tert-butyl benzoyl peroxide, and hydrogen peroxide at least one of .
  • the number of parts of the free radical initiator in every 100 parts of the epoxy resin component, the number of parts of the free radical initiator is 0.01-7, the number of parts of the reactive diluent is 3-60, and the number of parts of the epoxy
  • the number of parts of the curing agent is 1-120, the number of parts of the toughening agent is 1-15, and the number of parts of the polyurethane compound is 3-15.
  • the toughening agent is a commonly used toughening agent in the field, which will not be described in detail here.
  • the toughening agent includes one or more of EP 2240A, BPA 328, Desmocap 11 and FORTEGRA 100.
  • the manufacturer of the EP 2240A is Evonik; the manufacturer of the BPA 328 is Japan Catalyst Co., Ltd.; the manufacturer of the Desmocap 11 is Bayer Material Science; the FORTEGRA 100 The manufacturer is Dow Corporation.
  • the polyurethane compound is obtained by reacting an organic polyol and a polyisocyanate, and the mass ratio of the organic polyol to the polyisocyanate is (0.5-5):1.
  • reaction between the organic polyol and the polyisocyanate is common knowledge and will not be described in detail here.
  • the average functionality of the organic polyol is 2.0-4.0, and the hydroxyl value of the organic polyol is 10-500. In some specific embodiments, the average functionality of the organic polyol is 2.0-3.3, and the hydroxyl value of the organic polyol is 10-350. In some more specific embodiments, the average functionality of the organic polyol is 2.0-2.5, and the hydroxyl value of the organic polyol is 10-250. In still some more specific embodiments, the average functionality of the organic polyol is 2.0-2.3, and the hydroxyl value of the organic polyol is 10-160.
  • the organic polyols include various long-chain polyols and combinations thereof, and the organic polyols are selected from one or both of polyalkylene glycols and polyalkylene triols. In other embodiments, the organic polyol is selected from one or more of polyether polyols, polyester polyols and polycarbonate polyols. In some other embodiments, the organic polyol is a modified vegetable oil polyol, and the organic polyol is selected from one or more of castor oil, cashew nut oil and linseed oil.
  • the polyether polyol includes one or more of NJ210, NJ207 and NJ307.
  • the manufacturers of NJ210, NJ207 and NJ307 are all Jurong Ningwu New Materials.
  • the polyisocyanate has an average functionality of 2.0-3.0. In some specific embodiments, the average functionality of the polyisocyanate is 2.0-2.7. In other specific embodiments, the average functionality of the polyisocyanate is 2.0-2.3.
  • the polyisocyanate is selected from any one or more than two of aromatic polyisocyanates, aliphatic polyisocyanates and alicyclic polyisocyanates.
  • the polyisocyanate is selected from toluene 2,4-/2,6-diisocyanate (TDI), methylene diphenyl diisocyanate (MDI), polymethylene diphenyl diisocyanate (pMDI), naphthyl diisocyanate (NDI), terexylylene diisocyanate (XDI), hydrogenated methylene diphenyl diisocyanate (HMDI), 4,4'-diisocyanatodicyclohexyl Methane, isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), 2-methylpentamethylene diisocyanate, carbodiimidized MDI, isocyanate trimer, etc. and mixtures thereof And one or more
  • the polyisocyanate includes any one of PM200 and T80.
  • the manufacturers of PM200 and T80 are both Wanhua Chemical.
  • the polyurethane compound is any one of PU-1 and PU-2.
  • the preparation method of the PU-1 is: under a nitrogen atmosphere, mix NJ210 (90 grams), NJ307 (10 grams) and PM200 (80 grams) at room temperature, stir evenly, and heat up to 80 degrees Celsius , reacted for two hours, then stopped heating, and cooled down to room temperature naturally.
  • PU-1 a grouping of components in various embodiments, involving the use of PU-1, various sequences of addition of the various components may be used.
  • PU-1 and hydroxyethyl methacrylate are mixed in advance, stirred at room temperature until transparent and each component is stable, and then other components are added in sequence, mixed evenly and then heated and cured.
  • the preparation method of PU-2 is: under nitrogen atmosphere, mix NJ207 (100 grams) and T80 (22 grams) at room temperature, stir evenly, heat up to 80 degrees Celsius, react for 2 hours, and then Raise the temperature to 90 degrees Celsius and continue the reaction for 1 hour, then stop heating, and naturally cool down to room temperature.
  • thermosetting resin composition further includes an auxiliary agent, and the weight percentage of the auxiliary agent in the thermosetting resin composition is greater than 0 and less than or equal to 25%.
  • the physical and chemical properties of the epoxy resin prepared by the thermosetting resin composition are regulated by adding auxiliary agents.
  • the auxiliary agent is included in at least one of the epoxy resin component, the reactive diluent, the epoxy curing agent and the free radical initiator.
  • the diluent is added after the auxiliary agent is included in any one of the epoxy resin component, the reactive diluent, the epoxy curing agent and the free radical initiator.
  • the weight percentage of the diluent in the thermosetting resin composition is greater than 0 and less than or equal to 25%.
  • the diluent is a non-reactive solvent, specifically alkyl phthalates, propylene carbonate, dioctyl terephthalate, mineral spirits, valerolactone and butyrolactone at least one of .
  • the diluent is a reactive solvent, specifically at least one of butyl allyl ether, 1,4-butyl diallyl ether and allyl glycidyl ether.
  • the auxiliary agent includes an accelerator to increase the reaction rate of the radical polymerization reaction and the ring-opening polymerization reaction.
  • the additives include fillers, internal release agents, flame retardants, smoke suppressants, dyes, pigments, antistatic agents, antioxidants, UV stabilizers, diluents, defoamers, At least one of coupling agent, surface wetting agent, leveling agent, water remover, catalyst, molecular sieve, thixotropic agent, plasticizer and free radical reaction inhibitor.
  • the internal release agent is a conventional release agent.
  • the conventional release agent includes at least one long-chain carboxylic acid. Specifically, it is at least one of fatty acids, long-chain carboxylic acids, amides, aliphatic esters, aliphatic phosphate esters, and metal salts of long-chain carboxylic acids.
  • the conventional release agent includes at least one of stearamide, fatty acid ester, zinc stearate, silicone and polysiloxane.
  • the flame retardant includes triaryl phosphate, trialkyl phosphate, triaryl phosphate or trialkyl phosphate with halogen, melamine, melamine resin, halogenated paraffin and red phosphorus at least one of .
  • the free radical reaction inhibitor includes a polymerization inhibitor and a polymerization retarder.
  • the free radical reaction inhibitor is hydroquinone, p-methoxyphenol, 2,6-tert-butyl-p-cresol, benzoquinone, phenothiazine, polymethylpiperidine At least one of derivatives and low-valent copper ions.
  • the water removal agent is specifically at least one of molecular sieves, ketimine, triethyl orthoformate and various alkyl-substituted oxazolidines.
  • the auxiliary antifoaming agent is specifically polydimethylsiloxane.
  • the coupling agent is used to improve the adhesion between the resin matrix and the fiber reinforced material.
  • the coupling agent includes at least one of monoethylene oxide and organic amine functionalized trialkoxysilane.
  • the thixotropic agent is at least one of clay and fumed silica.
  • the toughness of resins and related composite materials is a very important property, and impact performance is a representative indicator of toughness. If a toughening agent is further added to the thermosetting resin composition, the corresponding impact performance can be significantly improved.
  • a toughening agent is further added to the thermosetting resin composition, the corresponding impact performance can be significantly improved.
  • commercial toughening agents such as core-shell rubber particles, rubber elastomer modified resins, long-chain polyethers and their derivative polymers, etc., all of which can improve the above-mentioned thermosetting resin composition.
  • polyurethane compounds can also significantly improve their impact properties. If the polyurethane compound and the commercial toughening agent are used in combination, a synergistic effect can also be produced to further improve the impact performance of the above thermosetting resin composition.
  • the epoxy resin material of the embodiment of the present invention includes an epoxy resin matrix prepared from the thermosetting resin composition.
  • the preparation method of the epoxy resin material according to the embodiment of the present invention is characterized in that it comprises the following steps: providing the thermosetting resin composition, mixing the components in the thermosetting resin composition uniformly, and then heating and curing.
  • the order of adding the epoxy curing agent, the epoxy resin component, the free radical initiator, the reactive diluent, the toughening agent and the polyurethane compound is not limited. .
  • the polyurethane compound is pre-mixed with the reactive diluent, stirred at room temperature until transparent, and then the epoxy curing agent, the epoxy resin component, and the free radical initiator are added and the toughening agent, mixed evenly and then heated and solidified.
  • the epoxy resin composite material of the embodiment of the present invention includes a reinforcing material and the epoxy resin material.
  • the reinforcing material accounts for 1-91% by weight of the epoxy resin composite material.
  • the reinforcing material is glass fiber, carbon fiber, carbon nanotube, polyester fiber, aramid fiber, nylon fiber, natural fiber, basalt fiber, silicon carbide fiber, boron fiber, asbestos fiber, At least one of whiskers, hard particles and metal fibers.
  • the reinforcing material further includes fillers, and the fillers are aluminum hydroxide, bentonite, fly ash, wollastonite, perlite powder, floating beads, calcium carbonate, talcum powder, mica powder, china clay , fumed silica, expandable microspheres, diatomaceous earth, volcanic ash, barium sulfate, calcium sulfate, solid and/or hollow glass microspheres, stone powder, wood powder, wood chips, bamboo powder, bamboo chips, rice grains, straw At least one of crumbs, coffee grounds, sorghum stalk chips, graphite powder, metal powder, thermosetting composite recycled powder, and plastic granules or powder.
  • the fillers are aluminum hydroxide, bentonite, fly ash, wollastonite, perlite powder, floating beads, calcium carbonate, talcum powder, mica powder, china clay , fumed silica, expandable microspheres, diatomaceous earth, volcanic ash, barium sulfate, calcium sulfate, solid and
  • the preparation method of the epoxy resin composite material according to the embodiment of the present invention includes, using the reinforcing material and the epoxy resin material as raw materials, through pultrusion molding process, winding molding process, resin transfer process, hand lay-up molding process, molding
  • the epoxy resin composite material is prepared by at least one of a molding process and an injection molding process.
  • thermosetting resin composition is in contact with the reinforcing material and fully infiltrates the reinforcing material before the resin is cured; if there is a core material, the core material will also be completely or partially covered by the thermosetting resin composition infiltration.
  • the mold can be a mold commonly used in the field, and those skilled in the art can also select a suitable mold according to the required performance and size of the final product.
  • thermosetting epoxy resin composite material of the present invention can be prepared by a vacuum introduction process.
  • the vacuum introduction process can also be called the vacuum assisted resin infusion molding process (Vacuum assisted resin infusion molding: VARIM process), especially suitable for the preparation of large-scale products, such as large aviation components, large ships and superstructures, large composite wind turbine blades, etc.
  • one or more core materials may be placed in the mold, optionally fully or partially covered with reinforcing material. Then, with the help of negative pressure in the mold and/or equipment, the liquid thermosetting resin composition is introduced into the mold; before curing, the liquid resin composition will be in contact with the reinforcing material and fully absorb the reinforcing material before the resin is cured. Wetting; the core material, if any, is also fully or partially wetted by the thermosetting resin composition.
  • the mold can be a mold commonly used in the field, and those skilled in the art can also select a suitable mold according to the required performance and size of the final product.
  • thermosetting epoxy resin of the present invention can be used in many kinds of products, including but not limited to the preparation of wind turbine blades, fiber reinforced tendons or anchor rods instead of steel bars , wind turbine nacelle cover, window frame, ship blade, solar frame, ship shell, anti-glare board, vehicle interior and exterior trim and shell, bridge cable box, battery shell or tray, radome, ladder, pump Oil rods, structural materials for mechanical equipment, decorative and structural components for buildings and bridges, sports and leisure products, etc.
  • gel time means at room temperature
  • the epoxy composition is the total length of time between when the epoxy composition is in a liquid low-viscosity flow state after mixing and when the composition begins to assume a high-viscosity gel state.
  • the gel time is measured by a gel meter.
  • the core material can also be used, which is beneficial to the molding and weight reduction of composite materials.
  • the blade shell and web in the blade use a lot of core materials.
  • the core material can be used with epoxy resin matrix and reinforcement materials.
  • the epoxy composite material of the present invention can use the core material commonly used in this field, and its example includes but not limited to polystyrene foam, polyester PET foam, epoxy foam, polyimide PMI foam, PVC foam, PU foam, metal Foam, balsa wood (balsa wood), etc. or combinations thereof. There are also fiber reinforced plastic foams.
  • test methods not indicating specific conditions in the specific examples are according to conventional conditions, or according to the conditions suggested by the manufacturer. Viscosity is measured at 25 degrees Celsius using a Brookfield viscometer, and the model of the instrument is DV2T Brookfield. The gel time is tested with 100 grams of epoxy resin material in an environment of 25 degrees Celsius. All percentages and parts are by weight unless otherwise indicated.
  • the tensile properties of the epoxy resin materials of the specific examples were determined according to ISO 527-2.
  • the tensile properties of the epoxy resin composites of the specific examples were determined according to ISO 527-5.
  • the heat deflection temperature HDT of the specific examples was determined according to ISO 75-2.
  • Bisphenol A type epoxy resin epoxy equivalent 175-185 grams/equivalent
  • Polyetheramine activated hydrogen equivalent 60 g/equivalent, viscosity 6-13 mPa.s;
  • Initiator benzoyl peroxide (PERKADOX CH-50L) and tert-butyl peroxyneodecanoate (Trigonox 23), purchased from Nouryon;
  • BYK A560 Defoamer, available from BYK Chemie.
  • thermosetting resin composition has not only maintained the advantages of low viscosity and long gel time , and significantly improved the mechanical properties of the cured resin, such as heat-resistant temperature and tensile strength.
  • the introduction of the free radical initiator makes the free radical polymerization replace the original Michael addition reaction, fundamentally changes the crosslinking and curing reaction process, so the molecular crosslinking structure of the thermosetting resin composition is also fundamentally improved.
  • the epoxy resin is thermoset, its mechanical properties are further strengthened. This helps to improve the mechanical strength of composite materials based on this resin matrix, and increases the space for further lightweighting.
  • each component was divided into resin mixed liquid, and stirred and degassed under vacuum condition for 5 minutes. Take a sample for gel test, then put the remaining resin mixture liquid into the casting body mold that has been kept in a constant temperature oven at 35 degrees Celsius, the oven is quickly heated to 50 degrees Celsius and then kept at constant temperature for 2 hours, and then the oven is heated to 80 degrees Celsius and kept for 6 hours , and then turn off the heating. After cooling to room temperature, the solidified samples can be taken out to obtain the thermosetting epoxy resin matrixes of Comparative Examples 5-7 and Examples 4-6. The specific test results are shown in Table 2.
  • the GL certification standard requires that the HDT is not lower than 70°C, and the tensile modulus is not lower than 2.7GPa.
  • the reactive diluent is introduced to cause Michael addition reaction with the amine curing agent, although the purpose of viscosity reduction is achieved, the HDT and tensile properties are greatly reduced, far below the requirements of GL, and cannot become Qualified products are used to prepare perfusion blades in the wind power industry.
  • the present invention can simultaneously initiate the free radical polymerization reaction of active double bonds in the epoxy curing process by introducing a free radical initiator, thus changing the microscopic molecular structure after epoxy curing, thereby significantly improving its mechanical properties , so that these indicators fully meet the requirements of GL certification standards.
  • the acrylate active double bond in the molecular structure of the reactive diluent can only undergo Michael addition reaction with the primary and secondary amines in the amine curing agent; if the epoxy curing agent is not an amine, there are no such amines If the active hydrogen of the class is not present, the Michael addition reaction cannot occur.
  • the added acrylate-containing monomer or oligomer active diluent acts basically like a non-reactive type Common diluents or plasticizers, will significantly reduce the mechanical properties of the resin after curing, such as tensile and HDT.
  • the free radical polymerization reaction is introduced by adding a free radical initiator, this shortcoming can be effectively avoided, and the selection range of epoxy curing agents can be further expanded.
  • each component is divided into a resin mixed liquid, vacuumized and stirred for 8 minutes at a temperature of 50 degrees Celsius, so that the components are mixed evenly and the air bubbles are removed, and then the resin mixed liquid is put into the
  • the temperature of the pouring body mold in the oven at 100 degrees Celsius is followed by rapid heating of the oven to 100 degrees Celsius and then constant temperature for 3 hours, and then the oven continues to heat up to 130 degrees Celsius and keep it for 8 hours, and then turn off the heating. After cooling to room temperature, the solidified samples can be taken out to obtain the thermosetting epoxy resin matrixes of Comparative Examples 8-9 and Example 7.
  • the specific test results are shown in Table 3.
  • each component was added and mixed in sequence, and then various tests were performed in sequence.
  • the epoxy resin component and the reactive diluent are mixed and stirred uniformly to form an epoxy/diluent mixture; then the epoxy curing agent and/or free radical starter are added and mixed and stirred uniformly; then added
  • the toughening agent and/or polyurethane compound are mixed to obtain a resin mixed liquid, and the resin mixed liquid is stirred and degassed under vacuum for 5 minutes, and then the resin mixed liquid is put into a cast body that has been kept in a constant temperature oven at 35 degrees Celsius Mold, the oven is heated up to 50 degrees Celsius quickly and then kept at a constant temperature for 2 hours, then the oven is heated to 80 degrees Celsius and kept for 6 hours, then turn off the heating. After cooling to room temperature, the solidified samples can be taken out to obtain the thermosetting epoxy resin matrixes of Comparative Examples 10-13 and Examples 8-9. The specific test results are shown in Table 4.
  • thermosetting resin composition can significantly improve the impact strength of the thermosetting epoxy resin matrix, but it will make the thermosetting epoxy resin matrix stretch The strength and flexural strength are reduced, and the impact strength of the thermosetting epoxy resin matrix can be further improved by increasing the amount of toughening agent, but the tensile strength and flexural strength of the thermosetting epoxy resin matrix will also be further reduced, that is, by simply increasing the The means of the amount of toughening agent can't solve this problem.
  • thermosetting resin composition can slightly improve the impact strength of the thermosetting epoxy resin matrix, but the impact strength of the thermosetting epoxy resin matrix does not meet the requirements of industrial applications .
  • the impact strength, tensile strength and bending strength of the thermosetting epoxy resin matrix can be significantly improved by introducing toughening agent and polyurethane compound simultaneously. , showing that the toughening agent and the polyurethane compound have a good synergistic effect, and the comprehensive performance of the thermosetting epoxy resin matrix is superior to that of ordinary epoxy resins and those of epoxy resins disclosed in other patents.
  • thermosetting epoxy resin matrix improves the impact strength to a certain extent, and the addition of toughening agents or polyurethane compounds will continue to increase the impact strength.
  • the impact strength of the thermosetting epoxy resin matrix will be significantly improved, which shows that the joint introduction of toughener and polyurethane compound has a good effect.
  • each component was divided into resin mixed liquid, and stirred and degassed under vacuum condition for 5 minutes. Then put the resin mixed liquid into the pouring body mold that has been kept in a constant temperature oven at 35 degrees Celsius. The oven is quickly heated to 50 degrees Celsius and then kept at a constant temperature for 2 hours. Then the oven is heated to 80 degrees Celsius and kept for 6 hours, and then turn off the heating. After cooling to room temperature, the solidified samples can be taken out to obtain the thermosetting epoxy resin matrixes of Comparative Example 16 and Examples 17-22. The specific test results are shown in Table 6.
  • thermosetting epoxy resin matrix can be improved by tougheners or polyurethane compounds, but the tensile and flexural When the toughness agent is used, it will be significantly reduced, and the impact strength of the thermosetting epoxy resin matrix cannot meet the requirements of industrial use when only polyurethane compounds are added.
  • Adding a toughening agent and a polyurethane compound to the thermosetting resin composition at the same time makes the thermosetting epoxy resin matrix have good impact strength, tensile strength and bending strength, and at the same time enables the thermosetting epoxy resin matrix to meet the requirements of industrial use Require.
  • thermosetting resin compositions can be used to prepare composite products with excellent performance through various composite materials processes.
  • the example protocols used in Tables 4, 5 and 6 are for illustration only. Although the embodiments of the present invention have been described in detail above, it will be apparent to those skilled in the art that various modifications and changes can be made to the embodiments.
  • the reaction conditions such as curing temperature and time used in the curing methods in these embodiments can be adjusted according to actual use conditions and application scenarios.
  • the ratio of toughener and polyurethane compound can also be adjusted as needed.
  • Free radical polymerization can also use various low-temperature, medium-temperature and high-temperature initiators or combinations thereof, and even light curing conditions can be introduced.
  • accelerators, catalysts and inhibitors such as metal compounds such as cobalt salts, copper salts, zinc salts, and various amines, chelating agents such as EDTA, carboxylates, diketone compounds (such as ⁇ -diketone , ⁇ -diketone, etc.), as well as phenols, quinones, hindered amines and other substances, adjust the curing process, such as accelerating or delaying the gel time and curing process.
  • metal compounds such as cobalt salts, copper salts, zinc salts, and various amines
  • chelating agents such as EDTA
  • carboxylates such as ⁇ -diketone , ⁇ -diketone, etc.
  • diketone compounds such as ⁇ -diketone , ⁇ -diketone, etc.
  • phenols, quinones, hindered amines and other substances adjust the curing process, such as accelerating or delaying the gel time and curing process.
  • the epoxy composite material in this example is based on some of the thermosetting resin compositions in Table 4, the composite material is prepared by hand lay-up process in the laboratory, and the cured effect is observed.
  • glass fiber cloth (Saertex uniaxial cloth, UD, ⁇ 1250g/m 2 ) is respectively placed on the upper surfaces of three glass plates sprayed with release agent. According to the components and proportions in Table 4, after preparing the three types of resins, pour them slowly on the upper surface of the glass fiber cloth, so that the liquid resin naturally penetrates into the glass fiber cloth from top to bottom, and wait for a certain period of time to fully soak the glass fiber cloth. fiber.
  • the resins of Comparative Examples 18-21 and Example 23 have low viscosity and good fluidity, so the glass fiber is fully infiltrated within 4 minutes; but the resin of Comparative Example 17 has a relatively high viscosity, so even after waiting for 6 minutes, the resin still remains The glass fiber is not fully soaked, until the 10th minute, there is still a small part of the glass fiber that is not soaked. Then cover a layer of transparent plastic film on the surface of the glass fiber cloth, and then use a hand lay-up roller to squeeze out the air in the soaked glass fiber cloth. This operation also uses external force to help the resin infiltrate the glass fiber. Then put the whole into an oven at 80 degrees Celsius and cure for 8 hours.
  • G 1C is an index used to characterize the interlaminar fracture toughness of composite materials, which can be used to judge the fatigue resistance of composite materials and reflect the strength and toughness of composite materials. Table 7 uses the G 1C performance data to compare the fatigue performance of composites with different resin systems.
  • the epoxy composite material of this example is based on some of the thermosetting resin compositions in Table 5, and the composite product is prepared through a vacuum introduction process, and its performance is tested.
  • the operation is carried out on the glass plate: the glass fiber cloth (Saertex uniaxial cloth, UD, ⁇ 1250g/m 2 ) is stacked on the upper surface of the glass plate sprayed with the release agent, and then the release cloth, guide Drift net and vacuum bag.
  • the front position of this device is connected to the vacuum pump through the suction pipe, and the rear position is connected to the liquid resin through the guide tube. First bend and seal the guide tube, so that the whole device is in a vacuum state.
  • each component was correspondingly distributed into a resin mixed liquid, and stirred and degassed under vacuum for 10 minutes. Then the resin mixed liquid is introduced into the glass fiber cloth of the aforementioned device under vacuum condition. After the glass fiber cloth is fully soaked, bend and seal the guide tube and the tube connected to the vacuum, so that the whole system soaked by all the liquid resin is still kept in a vacuum state; then the temperature is raised to 100 degrees Celsius and then kept at a constant temperature for 3 Hours, then the oven is heated to 130 degrees Celsius and maintained for 8 hours, then turn off the heating to allow it to cool down naturally. After cooling to room temperature, the cured product is demolded to obtain a glass fiber cloth reinforced epoxy composite material. The performance parameters of the obtained epoxy composite materials are shown in Table 8.
  • Comparative Example 22 was not perfused because the viscosity was too high.
  • thermosetting epoxy matrix containing reactive components, free radical initiators, tougheners and polyurethane compounds was suitable for the composite process and prepared qualified composite products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种热固树脂组合物,包含环氧固化剂、环氧树脂组分、自由基起始剂、反应性稀释剂、增韧剂和聚氨酯化合物;所述环氧树脂组分包含环氧基团以在所述环氧固化剂的作用下进行开环加成反应,所述反应性稀释剂的每个分子包含至少一个丙烯酸酯类基团以在所述自由基起始剂的作用下发生自由基聚合反应;每100份所述环氧树脂组分中,所述自由基起始剂的份数为0.01-7,所述反应性稀释剂的份数为3-60,所述环氧固化剂的份数为1-120,所述增韧剂的份数为1-15,所述聚氨酯化合物的份数为3-15。本发明解决了加入增韧剂后导致环氧树脂固化以后的拉伸强度和弯曲强度降低的问题。本发明同时提供了一种环氧树脂材料及其复合材料和制备方法。

Description

热固树脂组合物、环氧树脂材料及其复合材料和制备方法
交叉引用
本申请要求2021年9月2号提交的申请号为202111027203.6的中国专利申请的优先权。上述申请的内容以引用方式被包含于此。
技术领域
本发明涉及环氧树脂材料技术领域,尤其涉及热固树脂组合物、环氧树脂材料及其复合材料和制备方法。
技术背景
基于反应成型的热固树脂是制备复合材料最常用的一种选择。与热塑树脂相比,热固树脂制备的复合材料的树脂用量可以更低、力学性能,例如抗蠕变性能、强度更优异、生产效率更高,更适合制备大型和异形的复合材料产品,例如叶片、船壳和航空器等。环氧树脂作为非常典型的热固树脂已经被广泛应用于制备各类复合材料和相应制品。
然而,环氧树脂仍然有其不足之处。例如环氧树脂使用时粘度偏高、固化后偏脆等。高粘度会使环氧树脂的操作不方便,产生很多问题,例如导致不易将其它组分充分加入环氧树脂并混合均匀,高粘度树脂不易快速和有效地浸润玻纤和粉料等增强材料,而高粘度树脂只有充分与玻纤、粉料等接触和浸润才能有效将玻纤、粉料间的空气挤出才能有效降低固化后产品的次品率。因此在环氧树脂真空导入工艺制备大部件例如风机叶片和航空部件时,以及在使用拉挤和手糊等工艺制备基于环氧树脂的复材时,为保证产品良率,树脂导入速度和浸润速度均缓慢以至于明显降低生产效率。
目前环氧行业普遍使用反应型的单官能团环氧基稀释剂或非反应型的稀释剂来达到降粘的目的,但经过这种方式稀释后的环氧树脂固化以后的冲击强度和耐热性能会下降,可以通过加入增韧剂来提高冲击强度和耐热性能, 加入增韧剂虽然提高了环氧树脂固化以后的冲击强度,但是环氧树脂固化以后的拉伸强度和弯曲强度反而降低了。
因此,需要提供新型的热固树脂组合物以解决现有技术存在的上述问题。
发明概要
本发明的目的在于提供一种热固树脂组合物、环氧树脂材料及其复合材料和制备方法,以解决加入增韧剂后导致环氧树脂固化以后的拉伸强度和弯曲强度降低的问题。
为实现上述目的,本发明的热固树脂组合物包含:环氧固化剂、环氧树脂组分、自由基起始剂、反应性稀释剂、增韧剂和聚氨酯化合物;
所述环氧树脂组分包含环氧基团以在所述环氧固化剂的作用下进行开环加成反应,所述反应性稀释剂的每个分子包含至少一个丙烯酸酯类基团以在所述自由基起始剂的作用下发生自由基聚合反应;
每100份所述环氧树脂组分中,所述自由基起始剂的份数为0.01-7,所述反应性稀释剂的份数为3-60,所述环氧固化剂的份数为1-120,所述增韧剂的份数为1-15,所述聚氨酯化合物的份数为3-15。
本发明的所述热固树脂组合物的有益效果在于:所述热固树脂组合物中,所述反应性稀释剂的每个分子包含至少一个丙烯酸酯类基团,以在所述自由基起始剂的作用下发生自由基聚合反应,所述环氧树脂组分包含环氧基团,以在所述环氧固化剂的作用下进行开环加成反应,使得所述自由基聚合反应和所述开环加成反应能够同时进行,从而有效降低制备得到的环氧树脂材料加工过程的粘度,通过加入聚氨酯化合物以提高环氧树脂固化以后的拉伸强度和弯曲强度,然后通过调整各组分的比例使得环氧树脂的力学性能和热变形温度均得到较好的提高。本发明的热固树脂组合物解决了加入增韧剂后导 致环氧树脂固化以后的拉伸强度和弯曲强度降低的问题。
优选的,所述聚氨酯化合物由有机多元醇和多异氰酸酯反应得到,所述有机多元醇与所述多异氰酸酯的质量比为(0.5-5):1。其有益效果在于:使得热固树脂组合物制备得到的环氧树脂复合材料的拉伸强度和弯曲强度得到显著提高。
优选的,所述有机多元醇的平均官能度为2.0-4.0,所述有机多元醇的羟值为10-500。
优选的,所述多异氰酸酯的平均官能度为2.0-3.6。
优选的,所述丙烯酸酯类基团为丙烯酸酯基团或烷基取代的丙烯酸酯基团。
进一步优选的,所述烷基取代的丙烯酸酯基团为甲基丙烯酸酯基团。
优选的,所述反应性稀释剂包括至少一种丙烯酸酯类化合物,以提供所述丙烯酸酯类基团。
优选的,所述反应性稀释剂包含至少一种丙烯酸酯类化合物,所述丙烯酸酯类化合物的分子结构中有至少一个环氧基团,以在所述环氧固化剂的作用下参与所述开环加成反应。
优选的,所述反应性稀释剂在25摄氏度下的粘度为1-500毫帕.秒。
优选的,所述环氧树脂组分包含至少一种双酚A型环氧树脂。
优选的,所述环氧树脂组分的环氧当量为100-500克/当量。
优选的,所述环氧固化剂为胺类固化剂和酸酐类固化剂中的一种或两种。
优选的,所述环氧树脂组分还包含助剂,所述助剂占所述热固树脂组合 物的重量百分比大于0小于等于25%。其有益效果在于:通过加入助剂以调控通过所述热固树脂组合物所制备的环氧树脂的理化性能。
本发明的环氧树脂材料包含环氧树脂基体,所述环氧树脂基体由所述热固树脂组合物制备而成,以有效降低制备得到的环氧树脂材料加工过程的粘度,并且具有良好的力学性能和较高的热变形温度。
本发明的环氧树脂材料的制备方法,所述环氧树脂材料包括环氧树脂基体,所述环氧树脂材料的制备方法包含以下步骤:由所述热固树脂组合物制备所述环氧树脂基体。提供如上所述热固树脂组合物,将所述热固树脂组合物中各成分混合均匀后加热固化,固化过程中使得所述丙烯酸酯类基团自由基聚合反应和环氧基团开环加成反应能够同时进行,得到环氧树脂材料。以通过有效降低所述热固树脂组合物在加工过程的粘度的方式提高生产效率,通过加入聚氨酯化合物以提高环氧树脂固化以后的拉伸强度和弯曲强度,然后通过调整各组分的比例使得环氧树脂的力学性能和热变形温度均得到较好的提高。
本发明的所述环氧树脂复合材料包含增强材料和所述环氧树脂材料。由于所述环氧树脂材料由所述热固树脂组合物制备而成,能够通过有效降低环氧树脂材料加工过程的粘度以快速有效复合增强材料来提高生产效率,并使得到的环氧树脂复合材料具有良好的力学性能和较高的热变形温度。
优选的,所述增强材料占所述环氧树脂复合材料的重量百分比为1-91%。
本发明的所述环氧树脂复合材料的制备方法包括:以增强材料和所述的环氧树脂材料为原料,通过拉挤成型工艺、缠绕成型工艺、树脂传递工艺、手糊成型工艺、真空导入工艺、模压成型工艺和喷射成型工艺的至少一种制备所述环氧树脂复合材料。其有益效果在于:能够通过有效降低环氧树脂材料加工过程的粘度以快速有效复合增强材料来提高生产效率,并使得到的环 氧树脂复合材料具有良好的力学性能和较高的热变形温度。
附图说明
发明内容
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本发明实施例提供了一种热固树脂组合物,包含环氧固化剂、环氧树脂组分、自由基起始剂、反应性稀释剂、增韧剂和聚氨酯化合物。
一些实施例中,所述环氧固化剂为胺类固化剂。
一些实施例中,所述环氧固化剂为酸酐类固化剂。
一些实施例中,所述环氧树脂组分包含环氧基团,以在所述环氧固化剂的作用下进行开环加成反应。
一些实施例中,所述反应性稀释剂的每个分子包含至少一个丙烯酸酯类基团,以在所述自由基起始剂的作用下发生自由基聚合反应。
一些实施例中,所述丙烯酸酯类基团为丙烯酸酯基团。
一些实施例中,所述丙烯酸酯类基团为烷基取代的丙烯酸酯基团。
一些具体的实施例中,所述烷基取代的丙烯酸酯基团为甲基丙烯酸酯基团。
一些实施例中,所述反应性稀释剂包括至少一种丙烯酸酯类化合物,以提供所述丙烯酸酯类基团。
一些具体的实施例中,所述反应性稀释剂由甲基丙烯酸甲酯、甲基丙烯酸异冰片酯、甲基丙烯酸羟乙酯、丙烯酸异辛酯、环己烷丙烯酸酯、丙烯酸烯丙基酯、甲基丙烯酸癸酯、甲基丙烯酸-2-乙基己酯、二氢环戊二烯丙烯酸酯、乙氧化苯氧基乙基丙烯酸酯、甲基丙烯酸羟丙酯、乙二醇二丙烯酸酯、丙二醇二甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯、1.6-己二醇二丙烯酸酯、环己烷二甲基丙烯酸酯、丙烯酸乙烯酯、二乙二醇二甲基丙烯酸酯、三丙二醇二丙烯酸酯、丙烯酸羟丁酯、季戊四醇四丙烯酸酯、甘油三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、乙氧化三羟甲基丙烷三甲基丙烯酸酯和甘油二丙烯酸酯的至少一种组成。
一些实施例中,所述反应性稀释剂包含至少一种在其分子结构中有至少一个环氧基团的丙烯酸酯类化合物,以在所述环氧固化剂的作用下也可以进行所述开环加成反应。
一些具体的实施例中,所述反应性稀释剂由缩水甘油醚甲基丙烯酸酯、缩水甘油醚丙烯酸酯和环氧树脂丙烯酸酯的至少一种组成。
一些实施例中,所述反应性稀释剂在25摄氏度下的粘度为1-500毫帕.秒。
一些实施例中,所述反应性稀释剂在25摄氏度下的粘度为2-400毫帕.秒。
一些实施例中,所述反应性稀释剂在25摄氏度下的粘度为3-300毫帕. 秒。
一些实施例中,所述反应性稀释剂在25摄氏度下的粘度为3.5-200毫帕.秒。
一些实施例中,所述反应性稀释剂在25摄氏度下的粘度为4-150毫帕.秒。
一些实施例中,所述反应性稀释剂在25摄氏度下的粘度为4.5-110毫帕.秒。
一些实施例中,所述反应性稀释剂在25摄氏度下的粘度为5-80毫帕.秒。
一些实施例中,所述环氧树脂组分的环氧当量为100-500克/当量。
一些实施例中,所述环氧树脂组分的环氧当量为110-400克/当量。
一些实施例中,所述环氧树脂组分的环氧当量为120-300克/当量。
一些实施例中,所述环氧树脂组分包含至少一种具有环氧基团的化合物。所述具有环氧基团的化合物为缩水甘油醚类化合物、缩水甘油酯类化合物、缩水甘油胺类化合物、脂环族环氧树脂和环氧化烯烃类化合物的任意一种。
具体的,所述环氧树脂组分包含双酚A型环氧树脂、氢化双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、酚醛型环氧树脂和脂肪族缩水甘油醚树脂的至少一种。
一些实施例中,所述环氧树脂组分包含海因环氧树脂和酰亚胺环氧树脂的至少一种。
一些实施例中,所述环氧树脂组分包含至少一种双酚A型环氧树脂。
一些实施例中,所述环氧固化剂为胺类固化剂或酸酐类固化剂。
一些具体的实施例中,所述胺类固化剂为脂肪族胺、脂环族胺、芳香胺、脂肪芳香族胺、聚醚胺、聚酰胺、咪唑、双氰胺和二酰肼的至少一种。
一些具体的实施例中,所述胺类固化剂为直链脂肪族胺乙二胺、三乙烯四胺,二乙烯三胺、二乙烯基丙胺、N-氨乙基哌嗪、己二酸二酰肼、薄荷烷二胺、三乙烯二胺、异佛尔酮二胺(IPDA)、腰果酚改性胺、二氨基二苯基甲烷、二氨基二苯基砜、间苯二甲胺和潜伏胺类的至少一种。
一些具体的实施例中,所述酸酐类固化剂为邻苯二甲酸酐、六氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、甲基环己烷四酸二酐、偏苯三酸酐、70酸酐和桐油酸酐的至少一种。
一些实施例中,所述自由基起始剂为过氧化物、过硫化物、过氧化碳酸酯、过氧化硼酸和偶氮化合物的至少一种,以引发含双键化合物进行自由基聚合反应。
一些实施例中,所述自由基起始剂添加到所述环氧树脂组分、所述反应性稀释剂和所述环氧固化剂的至少一个中。在反应条件下,所述自由基起始剂被分解而释放出活性自由基以后,能够引发所述反应性稀释剂中的活性双键进行自由基聚合反应。
一些具体的实施例中,所述自由基起始剂为过氧化酯、过氧化酮、过氧化酰、过氧化氢、过氧化碳酸酯和烷基过氧化物的至少一种。
一些具体的实施例中,所述自由基起始剂为过氧化异丙基碳酸叔丁酯、过氧化-3,5,5-三甲基己酸叔丁酯、过氧化甲乙酮、异丙苯过氧化氢、过硫酸盐、偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、过氧化苯甲酰、过氧化苯甲酰叔丁酯和过氧化氢的至少一种。
一些实施例中,每100份所述环氧树脂组分中,所述自由基起始剂的份 数为0.01-7,所述反应性稀释剂的份数为3-60,所述环氧固化剂的份数为1-120,所述增韧剂的份数为1-15,所述聚氨酯化合物的份数为3-15。
一些实施例中,所述增韧剂为本领域常用增韧剂,在此不再详细赘述。
一些具体实施例中,所述增韧剂包括EP 2240A、BPA 328、Desmocap 11和FORTEGRA 100中的一种或两种以上。
一些更具体的实施例中,所述EP 2240A的生产厂家为赢创公司;所述BPA 328的生产厂家为日本催化剂有限公司;所述Desmocap 11的生产厂家为Bayer Material Science;所述FORTEGRA 100的生产厂家为陶氏公司。
一些实施例中,所述聚氨酯化合物由有机多元醇和多异氰酸酯反应得到,所述有机多元醇与所述多异氰酸酯的质量比为(0.5-5):1。
一些具体实施例中,所述有机多元醇和所述多异氰酸酯的反应是公知常识,在此不再详细赘述。
一些实施例中,所述有机多元醇的平均官能度为2.0-4.0,所述有机多元醇的羟值为10-500。一些具体实施例中,所述有机多元醇的平均官能度为2.0-3.3,所述有机多元醇的羟值为10-350。一些更具体的实施例中,所述有机多元醇的平均官能度为2.0-2.5,所述有机多元醇的羟值为10-250。又一些更具体的实施例中,所述有机多元醇的平均官能度为2.0-2.3,所述有机多元醇的羟值为10-160。
一些实施例中,所述有机多元醇包括各种长链的多元醇及其组合,所述有机多元醇选自聚亚烷基二醇和聚亚烷基三醇中的一种或两种。另一些实施例中,所述有机多元醇选自聚醚多元醇、聚酯多元醇和聚碳酸酯多元醇中的一种或两种以上。又一些实施例中,所述有机多元醇为经过改性的植物油多元醇,所述有机多元醇选自蓖麻油、腰果油和亚麻油中的一种或两种以上。
一些具体实施例中,所述聚醚多元醇包括NJ210、NJ207和NJ307中的一种或两种以上。一些更具体的实施例中,所述NJ210、NJ207和NJ307的生产厂家均为句容宁武新材料。
一些实施例中,所述多异氰酸酯的平均官能度为2.0~3.0。一些具体实施例中,所述多异氰酸酯的平均官能度为2.0~2.7。另一些具体实施例中,所述多异氰酸酯的平均官能度为2.0~2.3。
一些实施例中,所述多异氰酸酯选自芳族多异氰酸酯、脂族多异氰酸酯和脂环族多异氰酸酯中的任意一种或两种以上。一些具体实施例中,所述多异氰酸酯选自甲苯2,4-/2,6-二异氰酸酯(TDI)、亚甲基二苯基二异氰酸酯(MDI)、多聚亚甲基二苯基二异氰酸酯(pMDI)、萘基二异氰酸酯(NDI)、对苯二亚甲基二异氰酸酯(XDI)、氢化亚甲基二苯基二异氰酸酯(HMDI)、4,4'-二异氰酸根合二环己基甲烷、异佛尔酮二异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)、2-甲基五亚甲基二异氰酸酯、碳化二亚胺化的MDI、异氰酸酯三聚体等以及它们的混合物和预聚体中的一种多两种以上。
一些实施例中,所述多异氰酸酯包括PM200和T80中的任意一种。
一些具体的实施例中,所述PM200和T80的生产厂家均为万华化学。
一些实施例中,所述聚氨酯化合物为PU-1和PU-2中的任意一种。
一些具体的实施例中,所述PU-1的制备方法为:氮气氛围下,室温下混合NJ210(90克)、NJ307(10克)和PM200(80克),搅拌均匀后,升温到80摄氏度,反应两小时,然后停止加热,自然降温到室温。
一些实施例中,涉及到使用PU-1的实施例,各类组份添加可以使用多种顺序。一些具体实施例中,先将PU-1和甲基丙烯酸羟乙酯预先混合,常 温下搅拌至透明且各组分均已稳定的状态,然后再依次添加其它组分,混合均匀后加热固化。
一些具体的实施例中,所述PU-2的制备方法为:氮气氛围下,室温下混合NJ207(100克)和T80(22克),搅拌均匀后,升温到80摄氏度,反应2小时,再升温到90摄氏度继续反应1小时,然后停止加热,自然降温到室温。
一些实施例中,所述热固树脂组合物还包含助剂,所述助剂占所述热固树脂组合物的重量百分比大于0小于等于25%。通过加入助剂以调控通过所述热固树脂组合物所制备的环氧树脂的理化性能。
一些实施例中,所述助剂包含于所述环氧树脂组分、所述反应性稀释剂、所述环氧固化剂和所述自由基起始剂的至少一种。
一些实施例中,所述助剂包含于所述环氧树脂组分、所述反应性稀释剂、所述环氧固化剂和所述自由基起始剂的任意一种后,再加入稀释剂。
一些具体的实施例中,所述稀释剂占所述热固树脂组合物的重量百分比大于0小于等于25%。
一些具体的实施例中,所述稀释剂为非反应性溶剂,具体为邻苯二甲酸烷基酯类、碳酸丙烯酯、对苯二甲酸二辛酯、溶剂油、戊内酯和丁内酯的至少一种。
一些具体的实施例中,所述稀释剂为反应性溶剂,具体为丁基烯丙基醚、1,4-丁基二烯丙基醚和烯丙基缩水甘油醚的至少一种。
一些实施例中,所述助剂包括加速剂,以提高所述自由基聚合反应和所述开环聚合反应的反应速率。
一些具体的实施例中,所述助剂包括填料、内脱模剂、阻燃剂、防烟剂、染料、颜料、抗静电剂、抗氧剂、UV稳定剂、稀释剂、消泡剂、偶联剂、表面润湿剂、流平剂、除水剂、催化剂、分子筛、触变剂、增塑剂和自由基反应抑制剂的至少一种。
一些具体的实施例中,所述内脱模剂为常规脱模剂。
更具体的,所述常规脱模剂包括至少一种长链羧酸。具体为脂肪酸、长链羧酸、酰胺、脂肪族酯类、脂肪族磷酸酯类和长链羧酸的金属盐的至少一种。
更具体的,常规脱模剂包括硬脂酰胺、脂肪酸酯,、硬脂酸锌、硅酮和聚硅氧烷的至少一种。
一些具体的实施例中,所述阻燃剂包括磷酸三芳基酯、磷酸三烷基酯、带有卤素的磷酸三芳基酯或磷酸三烷基酯、三聚氰胺、三聚氰胺树脂、卤化的石蜡和红磷的至少一种。
一些具体的实施例中,所述自由基反应抑制剂包括阻聚剂和缓聚剂。
一些具体的实施例中,所述自由基反应抑制剂为对苯二酚、对甲氧基苯酚、2,6-叔丁基对甲基苯酚、苯醌、酚噻嗪、多甲基呱啶类衍生物和低价铜离子的至少一种。
一些实施例中,所述除水剂具体为分子筛、酮亚胺、原甲酸三乙酯和各类烷基取代的噁唑烷的至少一种。
一些实施例中,所述助剂消泡剂具体为聚二甲基硅氧烷。
一些实施例中,所述偶联剂用于提高树脂基体与纤维增强材料的粘合力。
一些具体的实施例中,所述偶联剂包括单环氧乙烷和有机胺官能化三烷 氧基硅烷的至少一种。
一些具体的实施例中,所述触变剂为粘土和气相二氧化硅的至少一种。
在实际应用中,树脂及其相关复材的韧性是一个很重要的性能,冲击性能是韧性的一个代表性指标。若在所述热固性树脂组合物中进一步加入增韧剂,可以显著地提高相应冲击性能。商业化的增韧剂的种类很多,例如核壳橡胶粒子、橡胶弹性体改性树脂、长链聚醚及其衍生聚合物等,均可提高上述热固性树脂组合物。我们在实验中进一步发现,聚氨酯化合物也可以显著地提高其冲击性能。如果将聚氨酯化合物和商业化的增韧剂结合使用,还可以产生协同作用,更加提高上述热固性树脂组合物的冲击性能。
本发明实施例的环氧树脂材料包含环氧树脂基体,所述环氧树脂基体由所述热固树脂组合物制备而成。
本发明实施例的环氧树脂材料的制备方法,其特征在于,包含以下步骤:提供所述热固树脂组合物,将所述热固树脂组合物中各成分混合均匀后加热固化。
具体的,本领域技术人员公知的是,选择合适的反应条件使得环氧开环聚合反应与丙烯酸酯类基团的活性双键的自由基聚合反应先后进行,但如此制得的环氧基体与本发明实施例的通过环氧开环聚合反应与双键的自由基聚合反应同时进行所制备的环氧树脂基体结构不同,从而使得制备的聚氨酯复合材料的机械性能和工艺性有所不同。
一些实施例中,所述环氧固化剂、所述环氧树脂组分、所述自由基起始剂、所述反应性稀释剂、所述增韧剂和所述聚氨酯化合物的添加顺序不作限定。
一些具体实施例中,所述聚氨酯化合物与所述反应性稀释剂预先混合, 常温下搅拌至透明,然后加入所述环氧固化剂、所述环氧树脂组分、所述自由基起始剂和所述增韧剂,混合均匀后加热固化。
本发明实施例的环氧树脂复合材料包含增强材料和所述环氧树脂材料。
一些实施例中,所述增强材料占所述环氧树脂复合材料的重量百分比为1-91%。
一些具体的实施例中,所述增强材料为玻璃纤维、碳纤维、碳纳米管、聚酯纤维、芳香族聚酰胺纤维、尼龙纤维、天然纤维、玄武岩纤维、碳化硅纤维、硼纤维、石棉纤维、晶须、硬质颗粒和金属纤维的至少一种。
一些具体的实施例中,所述增强材料还包含填料,所述填料为氢氧化铝、膨润土、粉煤灰、硅灰石、珍珠岩粉、漂珠、碳酸钙、滑石粉、云母粉、瓷土、气相白炭黑、可膨胀微球、硅藻土、火山灰、硫酸钡、硫酸钙、实心和/或空心的玻璃微球、石粉、木粉、木屑、竹粉、竹屑、稻粒、秸秆碎屑、咖啡渣、高粱杆碎屑、石墨粉、金属粉末、热固性复合材料回收粉料以及塑料颗粒或粉末的至少一种。
本发明实施例的所述环氧树脂复合材料的制备方法包括,以增强材料和所述环氧树脂材料为原料,通过拉挤成型工艺、缠绕成型工艺、树脂传递工艺、手糊成型工艺、模压成型工艺和喷射成型工艺的至少一种制备所述环氧树脂复合材料。上述各工艺的详细说明,可以参见《复合材料工艺及设备》(刘雄亚、谢怀勤主编,1994年,武汉理工大学出版社)第1章的绪论和第2、4、6、7、8、9章的具体描述,将上述公开的全部内容以引用的方式合并入本文。
环氧拉挤成型工艺、缠绕成型工艺、树脂传递工艺、手糊成型工艺、模压成型工艺、喷射成型工艺或其组合的操作方法。在模具或设备辅助下,液 态热固树脂组合物和增强材料接触并在树脂固化前充分将此增强材料浸润;如有芯材的话,芯材也会全部或部分地被热固树脂组合物所浸润。然后采用合适的条件,使环氧树脂同时发生环氧加成聚合反应和丙烯酸酯类活性双键的自由基聚合反应,从而使此树脂组合物固化形成热固环氧树脂基体,并有效分散在增强材料里,生成基于此热固环氧树脂的复合材料。在上述各类成型工艺中,模具可以是本领域中常用的模具,本领域技术人员也可以根据最终产品所需的性能和尺寸选择合适的模具。
本发明的热固环氧树脂复合材料可以通过真空导入工艺制备。对于这些工艺的详细说明,也可以部分参见《复合材料成型技术及应用》(黄家康主编,2011年,化学工业出版社)第1章的绪论和第8章的具体描述,将上述公开的全部内容以引用的方式合并入本文。真空导入工艺又可以称做真空辅助树脂扩散成型工艺(Vacuum assisted resin infusion molding:VARIM工艺),尤其适用于制备大型制品,例如航空大型部件、大型舰艇及上层建筑、大型复合材料风电叶片等。
本领域技术人员熟知环氧真空导入成型工艺的操作方法。在真空导入工艺中,如有需要,可以在模具中放置一个或多个芯材,芯材上任选地全部或部分地被增强材料覆盖。然后,模具内负压和/或设备的辅助下,液态热固树脂组合物被导入到模具中;在固化之前,此液态树脂组合物会和增强材料接触并在树脂固化前充分将此增强材料浸润;如有芯材的话,芯材也会全部或部分地被热固树脂组合物所浸润。然后采用合适的条件,使环氧树脂同时发生环氧加成聚合反应和丙烯酸酯类活性双键的自由基聚合反应,从而使此树脂组合物固化形成热固环氧树脂基体,并有效分散在增强材料里,生成基于此热固环氧树脂的复合材料。在上述各类成型工艺中,模具可以是本领域中常用的模具,本领域技术人员也可以根据最终产品所需的性能和尺寸选择合适的模具。
基于本发明的热固环氧树脂和上述各类工艺制备的这些环氧复合材料,可以用于很多种类的产品,例如包括但不限于制备风力发电机叶片、代替钢筋的纤维增强筋或锚杆、风力发电机机舱罩、窗框、船舶桨叶、太阳能边框、船舶壳体、防眩板、车辆内外饰件及壳体、桥架线缆盒、电池壳体或托盘、雷达罩、梯子、抽油杆、机械设备的结构件材料、建筑和桥梁的装饰件及结构部件、体育休闲用品等。
使用真空导入工艺制备大型制品,为了保证液态树脂能够保持好的流动性,从而有足够长的操作时间,需要此液态树脂初始粘度较低且在导入过程中粘度上升足够缓慢,使之能够保持足够长时间的液体低粘度状态。
当用于本发明时,凝胶时间是指在室温
Figure PCTCN2022116550-appb-000001
条件下,环氧组合物从混合后呈液体低粘度流动态至组合物开始呈现高粘度凝胶态之间的总时间长度。在本发明中,凝胶时间通过凝胶仪测定。
制备复合材料时,芯材也是可以使用的,这有利于复合材料的成型和减重。例如叶片中的叶壳和腹板就使用了很多芯材。芯材可以和环氧树脂基体以及增强材料一起使用。本发明的环氧复合材料可以使用本领域常用的芯材,其实例包括但不限于聚苯乙烯泡沫、聚酯PET泡沫、环氧泡沫、聚酰亚胺PMI泡沫、PVC泡沫、PU泡沫、金属泡沫、巴沙木(轻木)等或其组合。也有使用纤维增强的塑料泡沫。
以下通过具体的实施例对本发明实施例技术方案进行详细阐述。
具体实施例中未注明具体条件的试验方法为按照常规条件,或按照制造厂商所建议的条件。粘度是使用博勒飞公司的粘度仪,在25摄氏度条件下的测定值,仪器型号是DV2T Brookfield。凝胶时间是在25摄氏度的环境下,用100克环氧树脂材料进行测试。除非另有说明,所有的百分比和份数按重量计。
具体实施例的环氧树脂材料拉伸性能根据ISO 527-2测定。
具体实施例的环氧树脂复合材料拉伸性能根据ISO 527-5测定。
具体实施例的热变形温度HDT根据ISO 75-2测定。
具体实施例所用原材料如下:
双酚A型环氧树脂:环氧当量175-185克/当量;
聚醚胺:活化氢当量60克/当量,粘度6-13毫帕.秒;
引发剂:过氧化苯甲酰(PERKADOX CH-50L)和过氧化新癸酸叔丁酯(Trigonox 23),购自诺力昂;
BYK A560:消泡剂,购自毕克化学。
Techstorm 180和185(环氧树脂和固化剂):购自道生天合公司。
实施例1-3以及对比例1-4
按照表1的配比,将各组分依次添加混合,然后依次做各种测试。
具体的,先将环氧树脂组分和反应性稀释剂混合并搅拌均匀形成环氧/稀释剂混合物,然后测试环氧/稀释剂混合物的粘度;接着再加入环氧固化剂和/或自由基起始剂后混合并搅拌均匀,然后测试此液体树脂组合物的初始粘度,同时也取出100克开始测试其凝胶时间;剩余的树脂组合物继续真空搅拌脱气6分钟后,倒入厚度为4毫米的夹层模具,室温静置16小时后,再将整个模具放入
Figure PCTCN2022116550-appb-000002
的烘箱中后固化8小时。然后停止烘箱的加热使之慢慢降温,等冷却到室温后就可以取出固化的样品,得到对比例1-4和实施例1-3的热固环氧树脂基体。具体测试结果见表1。
表1
Figure PCTCN2022116550-appb-000003
从表1的对比例1-4和实施例1-3各项数据分析可以看到,引入了自由基起始剂以后,此热固树脂组合物既保持了低粘度和长凝胶时间的优势,又显著提高了固化树脂的力学性能,例如耐热温度和拉伸强度。这说明自由基起始剂的引入,使自由基聚合反应取代了原有的迈克尔加成反应,从根本上改变了交联固化反应过程,所以热固树脂组合物的分子交联结构也得到根本性的改变,使环氧树脂热固以后,其力学性能得到了进一步的加强。这有助于提高基于此树脂基体的复材力学强度,增加了进一步轻量化的空间。
实施例4-6以及对比例5-7
按照表2的配比,将各组分配成树脂混合液体,在真空条件下搅拌脱气5分钟。取样做凝胶测试,再将剩余的树脂混合液体放入已在35摄氏度烘箱中恒温的浇注体模具,烘箱快速升温到50摄氏度后再恒温保持2小时,然后烘箱升温到80摄氏度并保持6小时,再关掉加热。等冷却到室温后就可以取出固化的样品,得到对比例5-7和实施例4-6的热固环氧树脂基体。具体测试结果见表2。
表2
Figure PCTCN2022116550-appb-000004
从上表2所列对比例5-7和实施例4-6的数据比较,说明引入反应性稀释剂的同时也引入自由基起始剂,可以同时实现降低树脂粘度、延长树脂凝胶时间和提高力学性能等目标。通过比较对比例5-7和实施例4-6,说明自由基起始剂的引入,使自由基反应取代了迈克尔加成反应,从而使这个热固环氧树脂基体,其综合性能已经优于普通环氧树脂和其它专利已经公开的方法。
对比例中的灌注(真空导入工艺)环氧体系Techstorm 180和185,各项性能均符合GL要求,已经获得GL认证并在风电行业大规模应用。而GL认证标准对HDT的要求是不低于70℃,且拉伸模量不低于2.7GPa。然而,如果仅仅是引入反应性稀释剂,使之与胺类固化剂发生迈克尔加成反应,虽然达到了降粘目的,但HDT和拉伸性能大幅度下降,远远低于GL要求,无法成为合格产品用于风电行业制备灌注叶片。而本发明通过引入自由基起始剂的方式,能够在环氧固化过程中同时引发活性双键的自由基聚合反应,因此改变了环氧固化后的微观分子结构,从而显著改善了其力学性能,使这些指标完全符合GL认证标准的要求。
反应性稀释剂分子结构中的丙烯酸酯类活性双键只能和胺类固化剂中的 一级和二级胺发生迈克尔加成反应;而如果环氧的固化剂不是胺类,则没有这些胺类的活性氢,就无法发生迈克尔加成反应。例如,如果是酸酐类固化剂,丙烯酸酯类活性双键就无法发生迈克尔加成反应,那么加入的含丙烯酸酯类的单体或寡聚物活性稀释剂,其作用就基本类似于非反应型的普通稀释剂或增塑剂,会显著降低树脂固化以后的力学性能,例如拉伸和HDT。但如果通过额外加入自由基起始剂的方式,引入自由基聚合反应的话,就可以有效规避这个缺点,还可以进一步扩大环氧固化剂的选择范围。
实施例7以及对比例8-9
按照表3的配比,将各组分配成树脂混合液体,50摄氏度温度下抽真空搅拌脱气8分钟,使各组分混合均匀并脱除气泡,再将此树脂混合液体放入已在50摄氏度烘箱中恒温的浇注体模具,紧接着将烘箱快速升温到100摄氏度后再恒温保持3小时,然后烘箱继续升温到130摄氏度并保持8小时,再关掉加热。等冷却到室温后就可以取出固化的样品,得到对比例8-9和实施例7的热固环氧树脂基体。具体测试结果见表3。
表3
组分及测试项目 对比例8 对比例9 实施例7
双酚A环氧树脂 100 100 100
甲基丙烯酸异冰片酯 0 30 30
1.6-己二醇二丙烯酸酯 0 1.5 1.5
缩水甘油醚甲基丙烯酸酯 0 3 3
CH-50L 0 0 2
甲基四氢邻苯二甲酸酐 65 65 65
邻苯二甲酸酐 14 14 14
DMP-30 0.1 0.1 0.1
HDT(℃) 87 71 96
拉伸强度(MPa) 72 58 85
从上表3所列对比例8-9和实施例7的数据比较,说明引入反应性稀释剂组分并引入自由基起始剂,可以显著提高树脂的性能。通过比较对比例8-9 和实施例7,说明自由基起始剂组分的引入,使自由基反应取代了迈克尔加成反应,同样适合于酸酐固化的热固环氧树脂体系,其综合性能已经优于普通环氧树脂和其它专利已经公开的方法。
实施例8-9以及对比例10-13
按照表4的配比,将各组分依次添加混合,然后依次做各种测试。
具体的,先将环氧树脂组分和反应性稀释剂混合并搅拌均匀形成环氧/稀释剂混合物;接着再加入环氧固化剂和/或自由基起始剂后混合并搅拌均匀;然后加入增韧剂和/或聚氨酯化合物混合以得到树脂混合液体,将所述树脂混合液体在真空条件下搅拌脱气5分钟,再将所述树脂混合液体放入已在35摄氏度烘箱中恒温的浇注体模具,烘箱快速升温到50摄氏度后再恒温保持2小时,然后烘箱升温到80摄氏度并保持6小时,再关掉加热。等冷却到室温后就可以取出固化的样品,得到对比例10-13以及实施例8-9的热固环氧树脂基体。具体测试结果见表4。
表4
组分及测试项目 对比例10 对比例11 对比例12 对比例13 实施例8 实施例9
双酚A环氧树脂 100 100 100 100 100 100
甲基丙烯酸环己酯 30 30 30 30 30 30
甲基丙烯酸异冰片酯 9 9 9 9 9 9
1,6-己二醇二丙烯酸酯 2 2 2 2 2 2
Trigonox 23 2 2 2 2 2 2
IPDA 21 21 21 21 21 21
聚醚胺 7.6 7.6 7.6 7.6 7.6 7.6
EP 2240A 0 5 10   5 1
PU-1 0     5 5 9
冲击强度(kJ/m 2) 35 39 43 41 54 53
拉伸强度(MPa) 74 65 53 77 72 75
弯曲强度(MPa) 125 113 95 130 126 129
通过表4中的对比例10-12的数据比较可知,热固树脂组合物中引入增韧剂可以显著提高热固环氧树脂基体的冲击强度,但是会使得热固环氧树脂 基体的拉伸强度和弯曲强度降低,通过增加增韧剂的用量可以进一步提高热固环氧树脂基体的冲击强度,但是热固环氧树脂基体的拉伸强度和弯曲强度也将进一步降低,即通过简单增加增韧剂的用量的手段是无法解决该问题的。通过表4中的对比例13的数据可知,热固树脂组合物中引入聚氨酯化合物可以稍微提高热固环氧树脂基体的冲击强度,但是热固环氧树脂基体的冲击强度不满足工业应用的要求。通过表4中的对比例10-13和实施例8-9的数据可知,同时引入增韧剂和聚氨酯化合物,热固环氧树脂基体的冲击强度、拉伸强度和弯曲强度均会得到显著提高,显示了增韧剂和聚氨酯化合物具有良好的协同增效的效果,热固环氧树脂基体的综合性能已经优于普通环氧树脂的综合性能和其它专利已经公开的环氧树脂的综合性能。
实施例10-16以及对比例14-15
按照表5的配比,将各组分配成树脂混合液体,50摄氏度下抽真空搅拌脱气8分钟,使各组分混合均匀并脱除气泡,再将此树脂混合液体放入已在50摄氏度烘箱中恒温的浇注体模具,紧接着将烘箱快速升温到100摄氏度后再恒温保持3小时,然后烘箱继续升温到130摄氏度并保持8小时,再关掉加热。等冷却到室温后就可以取出固化的样品,得到对比例14-15以及实施例10-16的热固环氧树脂基体。具体测试结果见表5。
表5
Figure PCTCN2022116550-appb-000005
Figure PCTCN2022116550-appb-000006
通过表5的对比例14-15和实施例10-16的数据比较,说明引入增韧剂或聚氨酯化合物,可以显著提高热固环氧树脂基体的冲击强度;可自由基聚合的丙烯酸酯组份的引入,使热固环氧树脂基体的冲击强度有一定提高,而加入增韧剂或者聚氨酯化合物,会使冲击强度继续提高。增韧剂和聚氨酯化合物同时添加的情况下,热固环氧树脂基体的冲击强度会显著提高,显示了增韧剂和聚氨酯化合物共同引入具有良好的效果。
实施例17-22以及对比例16
按照表6的配比,将各组分配成树脂混合液体,在真空条件下搅拌脱气5分钟。再将树脂混合液体放入已在35摄氏度烘箱中恒温的浇注体模具,烘箱快速升温到50摄氏度后再恒温保持2小时,然后烘箱升温到80摄氏度并保持6小时,再关掉加热。等冷却到室温后就可以取出固化的样品,得到对比例16和实施例17-22的热固环氧树脂基体。具体测试结果见表6。
表6
Figure PCTCN2022116550-appb-000007
通过表6的对比例16和实施例17-22的数据比较,也说明引入增韧剂或 聚氨酯组分,可以显著提高热固环氧树脂基体的冲击强度。且增韧剂和聚氨酯组分同时添加的情况下,热固环氧树脂基体的冲击强度会显著提高。
通过表4、5和6的示例显示,所述热固环氧树脂基体的冲击强度可被增韧剂或聚氨酯化合物提高,但是热固环氧树脂基体的拉伸强度和弯曲强度在仅仅添加增韧剂时会显著降低,且在仅仅添加聚氨酯化合物时热固环氧树脂基体的冲击强度不能够满足工业使用的要求,为了使得热固环氧树脂基体的性能得到提高同时满足工业使用的要求,在热固树脂组合物中同时添加增韧剂和聚氨酯化合物,从而使得热固环氧树脂基体具有良好的冲击强度、拉伸强度和弯曲强度,同时使得热固环氧树脂基体能够满足工业使用的要求。这些被提高性能的热固性树脂组合物,可以通过各种复材工艺,用于制备性能优良的复材产品。表4、5和6中使用的实施例方案,仅仅用于示例。虽然在上文中详细说明了本发明的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。例如,这些实施例方案中的固化方式所用的固化温度和时间等反应条件,可以根据实际使用条件和应用场景进行调整。增韧剂和聚氨酯化合物的比例也可以根据需要进行调整。自由基聚合也可以使用各类低温、中温和高温引发剂或其组合,甚至可以引入光固化条件。也可以加入各类促进剂、催化剂和抑制剂等,例如钴盐、铜盐、锌盐等金属化合物和各种胺类,螯合剂例如EDTA、羧酸盐、二酮化合物(例如β-二酮、γ-二酮等)等,以及苯酚类、醌类、阻胺类等物质,对固化过程进行调节,例如加速或延迟凝胶时间以及固化过程。但是,应理解,这种修改和变化都属于权利要求书中所述的本发明的范围和精神之内。而且,在此说明的本发明可有其它的实施方式,并且可通过多种方式实施或实现。
实施例23以及对比例17-21
本实施例中的环氧复合材料,树脂基于表4中部分的热固树脂组合物,通过实验室的手糊工艺制备复材,并观察其固化后的效果。
操作在玻璃平板上进行:将玻纤布(Saertex单轴布,UD,~1250g/m 2)分别放置在三片喷过脱模剂的玻璃平板上表面。依照表4的组分和比例,将三类树脂各自配制好后,分别缓慢倒在玻纤布上表面,使液态树脂从上向下自然渗入玻纤布,并等待一定时间使其充分浸润玻纤。对比例18-21和实施例23的树脂粘度低、流动性好,所以4分钟内就都已经充分浸润玻纤了;但对比例17的树脂粘度偏高,所以即使等待了6分钟,也仍然没有充分浸润玻纤,直到第10分钟,仍然有一小部分玻纤没有被浸润。然后在玻纤布上表面覆盖一层透明塑料膜,再使用手糊滚筒将浸润后的玻纤布里面的空气都挤出,这个操作也同时是借用外力帮助树脂浸润玻纤。然后将其整体都放入80摄氏度的烘箱,固化8小时。停止烘箱加热,使温度慢慢降至室温,分别取出已经固化好的树脂玻纤布片材。实验结果列于表7。G 1C是用来表征复材层间断裂韧性的指标,可以被用来判断复材的耐疲劳性能,反映复材的强度和韧性。表7使用G 1C性能数据来比较不同树脂体系复材的耐疲劳性能。
表7
Figure PCTCN2022116550-appb-000008
通过表7的对比例17-21和实施例23的数据比较,说明反应性稀释剂的引入,可以使树脂的粘度显著降低,可迅速浸润玻纤织物,有助于提高生产 效率。尤其是在实际生产中,使用厚铺层纤维织物制备复材,合适的低粘度有助于优化生产工艺和提高生产效率;而同时引入自由基起始剂,可以确保降粘的同时,还能够保持甚至进一步提高产品固化后的力学性能。同时引入增韧剂和聚氨酯化合物,可以确保产品固化后的强度和韧性。
实施例24以及对比例22-26
本实施例的环氧复合材料,树脂基于表5中部分的热固树脂组合物,通过真空导入工艺制备复材产品,并测试其性能。
操作在玻璃平板上进行:将玻纤布(Saertex单轴布,UD,~1250g/m 2)叠放在喷过脱模剂的玻璃平板上表面,再在上面依次放上脱模布、导流网和真空袋。这个装置的前部位置通过抽气管与真空泵相连,后部位置通过导流管接入液体树脂中。先将导流管弯折密封,使整个装置处于抽真空的状态下。
按照表8的配比,相应地将各组分配成树脂混合液体,在真空条件下搅拌脱气10分钟。再将此树脂混合液体在真空条件下将其导入前述装置的玻纤布中。待玻纤布被全部浸润后,将导流管和连接真空的管子均弯折密封,使整个被全部液态树脂浸润的体系仍继续保持在真空状态下;接着升温到100摄氏度后再恒温保持3小时,然后烘箱升温到130摄氏度并保持8小时,再关掉加热,使之自然降温。冷却到室温后,将已固化产品脱模,得到玻纤布增强的环氧复合材料。所得环氧复合材料的性能参数见表8。
表8
Figure PCTCN2022116550-appb-000009
Figure PCTCN2022116550-appb-000010
注:对比例22由于粘度太高,未灌注。
通过表8的对比例22-26和实施例24的数据比较,说明反应性组分的引入,可以使树脂的粘度显著降低,可迅速浸润玻纤织物,缩短树脂被真空导入的时间,有助于提高生产效率。尤其是在实际生产中,使用厚铺层纤维织物制备复材,合适的低粘度有助于优化生产工艺和提高生产效率;而同时引入自由基起始剂,可以确保降粘的同时,还能够保持甚至进一步提高产品固化后的力学性能。同时引入增韧剂和聚氨酯化合物,可以确保产品固化后的强度和韧性。由此真空导入工艺制备的复材产品,整体优于对比例23-26。通过比较对比例23-26和实施例24,说明引入反应性组分、自由基起始剂、增韧剂和聚氨酯化合物的热固环氧树脂基体,其工艺可操作性和复材力学性能,总体上已经显著优于普通环氧树脂和其它专利已经公开的方法。
上述结果表明,这种含有反应性组分、自由基起始剂、增韧剂和聚氨酯化合物的热固环氧树脂基体适用于复材工艺,制备合格的复材产品。
虽然在上文中详细说明了本发明的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本发明的范围和精神之内。而且,在此说明的本发明可有其它的实施方式,并且可通过多种方式实施或实现。

Claims (13)

  1. 一种热固树脂组合物,其特征在于,包含:环氧固化剂、环氧树脂组分、自由基起始剂、反应性稀释剂、增韧剂和聚氨酯化合物;
    所述环氧树脂组分包含环氧基团以在所述环氧固化剂的作用下进行开环加成反应,所述反应性稀释剂的每个分子包含至少一个丙烯酸酯类基团以在所述自由基起始剂的作用下发生自由基聚合反应;
    每100份所述环氧树脂组分中,所述自由基起始剂的份数为0.01-7,所述反应性稀释剂的份数为3-60,所述环氧固化剂的份数为1-120,所述增韧剂的份数为1-15,所述聚氨酯化合物的份数为3-15。
  2. 根据权利要求1所述的热固树脂组合物,其特征在于,所述聚氨酯化合物由有机多元醇和多异氰酸酯反应得到,所述有机多元醇与所述多异氰酸酯的质量比为(0.5-5):1。
  3. 根据权利要求1所述的热固树脂组合物,其特征在于,所述反应性稀释剂包含至少一种丙烯酸酯类化合物,所述丙烯酸酯类化合物的分子结构中有至少一个环氧基团。
  4. 根据权利要求1所述的热固树脂组合物,其特征在于,所述反应性稀释剂在25摄氏度下的粘度为1-500毫帕.秒。
  5. 根据权利要求1所述的热固树脂组合物,其特征在于,所述环氧树脂组分包含至少一种双酚A型环氧树脂。
  6. 根据权利要求1所述的热固树脂组合物,其特征在于,所述环氧树脂组分的环氧当量为100-500克/当量。
  7. 根据权利要求1所述的热固树脂组合物,其特征在于,所述环氧固化剂为 胺类固化剂和酸酐类固化剂中的一种或两种。
  8. 根据权利要求1所述的热固树脂组合物,其特征在于,所述环氧树脂组分还包含助剂,所述助剂占所述热固树脂组合物的重量百分比大于0小于等于25%。
  9. 一种环氧树脂材料,其特征在于,包含环氧树脂基体,所述环氧树脂基体由权利要求1-8任一项所述的热固树脂组合物制备而成。
  10. 一种环氧树脂材料的制备方法,其特征在于,所述环氧树脂材料包括环氧树脂基体,所述环氧树脂材料的制备方法包含以下步骤:
    由权利要求1-8任一项所述的热固树脂组合物制备所述环氧树脂基体。
  11. 一种环氧树脂复合材料,其特征在于,包含增强材料和权利要求9所述的环氧树脂材料。
  12. 根据权利要求11所述的环氧树脂复合材料,其特征在于,所述增强材料占所述环氧树脂复合材料的重量百分比为1-91%。
  13. 根据权利要求11-12任一项所述的环氧树脂复合材料的制备方法,其特征在于,以增强材料和权利要求9所述的环氧树脂材料为原料,通过拉挤成型工艺、缠绕成型工艺、树脂传递工艺、手糊成型工艺、真空导入工艺、模压成型工艺和喷射成型工艺的至少一种制备所述环氧树脂复合材料。
PCT/CN2022/116550 2021-09-02 2022-09-01 热固树脂组合物、环氧树脂材料及其复合材料和制备方法 WO2023030454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111027203.6A CN114213607A (zh) 2021-09-02 2021-09-02 热固树脂组合物、环氧树脂材料及其复合材料和制备方法
CN202111027203.6 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023030454A1 true WO2023030454A1 (zh) 2023-03-09

Family

ID=80695943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116550 WO2023030454A1 (zh) 2021-09-02 2022-09-01 热固树脂组合物、环氧树脂材料及其复合材料和制备方法

Country Status (2)

Country Link
CN (2) CN114213607A (zh)
WO (1) WO2023030454A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117417717A (zh) * 2023-12-18 2024-01-19 烟台隆达树脂有限公司 改性聚氨酯增韧环氧树脂电子胶的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213607A (zh) * 2021-09-02 2022-03-22 道生天合材料科技(上海)股份有限公司 热固树脂组合物、环氧树脂材料及其复合材料和制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432923A1 (en) * 1989-11-30 1991-06-19 Lord Corporation Epoxy-rubber alloy compositions
CN104559808A (zh) * 2014-12-26 2015-04-29 东莞市腾威电子材料技术有限公司 一种底部填充胶及其制备方法和应用
JP2016199673A (ja) * 2015-04-09 2016-12-01 株式会社カネカ 接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
CN107428913A (zh) * 2015-04-09 2017-12-01 株式会社钟化 改善了耐冲击剥离粘接性的含聚合物微粒固化性树脂组合物
CN109843968A (zh) * 2016-10-14 2019-06-04 日铁化学材料株式会社 纤维强化复合材料用树脂组合物和使用它的纤维强化复合材料
JP2021147551A (ja) * 2020-03-23 2021-09-27 セメダイン株式会社 硬化性樹脂組成物、硬化物および構造接着剤
CN114213607A (zh) * 2021-09-02 2022-03-22 道生天合材料科技(上海)股份有限公司 热固树脂组合物、环氧树脂材料及其复合材料和制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432923A1 (en) * 1989-11-30 1991-06-19 Lord Corporation Epoxy-rubber alloy compositions
CN104559808A (zh) * 2014-12-26 2015-04-29 东莞市腾威电子材料技术有限公司 一种底部填充胶及其制备方法和应用
JP2016199673A (ja) * 2015-04-09 2016-12-01 株式会社カネカ 接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
CN107428913A (zh) * 2015-04-09 2017-12-01 株式会社钟化 改善了耐冲击剥离粘接性的含聚合物微粒固化性树脂组合物
CN109843968A (zh) * 2016-10-14 2019-06-04 日铁化学材料株式会社 纤维强化复合材料用树脂组合物和使用它的纤维强化复合材料
JP2021147551A (ja) * 2020-03-23 2021-09-27 セメダイン株式会社 硬化性樹脂組成物、硬化物および構造接着剤
CN114213607A (zh) * 2021-09-02 2022-03-22 道生天合材料科技(上海)股份有限公司 热固树脂组合物、环氧树脂材料及其复合材料和制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117417717A (zh) * 2023-12-18 2024-01-19 烟台隆达树脂有限公司 改性聚氨酯增韧环氧树脂电子胶的制备方法
CN117417717B (zh) * 2023-12-18 2024-02-20 烟台隆达树脂有限公司 改性聚氨酯增韧环氧树脂电子胶的制备方法

Also Published As

Publication number Publication date
CN114213607A (zh) 2022-03-22
CN115746223A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2023030454A1 (zh) 热固树脂组合物、环氧树脂材料及其复合材料和制备方法
CN105713543B (zh) 一种耐冲击性好的丙烯酸酯结构胶
US11667824B2 (en) Adhesive and its preparation and application
CN105778005B (zh) 可自由基聚合的聚氨酯组合物
EP1621562B1 (en) Curing resin composition
KR20140024313A (ko) 섬유 복합 재료용 하이브리드 매트릭스
JP2005247879A (ja) 繊維強化複合材料用組成物及びその成形材料
JP5193517B2 (ja) 繊維強化複合材料用樹脂組成物、それを用いた成形材料及び繊維強化複合材料
JP5336730B2 (ja) 繊維強化プラスチック用ラジカル重合性接着剤を用いて接着された接着構造体及びその製造方法
CN105713173B (zh) 一种乙烯基酯树脂基体的增稠配方及其增稠方法
CN113527628B (zh) 一种热固化聚氨酯丙烯酸树脂和应用
EP2316883B1 (en) Unsaturated ester resin composition, unsaturated ester-cured product, and manufacturing method therefor
CN110003421B (zh) 一种超低温增韧材料和改性氰酸酯树脂及其制备方法和应用
JP2019137774A (ja) 成形材料及びその成形品
CN110315834B (zh) 一种结构/阻尼复合材料及其制备方法
CN111454412A (zh) 一种风电叶片轻质高强芯材的制备方法
KR20120021719A (ko) 저비중 접착제 조성물 및 그의 제조방법
CN117362559A (zh) 一种复合材料用聚氨酯树脂基体材料及其用途、液体成型复合材料
CN113930052B (zh) 一种碳纤维用高粘性环氧树脂组合物的拉挤成型方法
EP4223826A1 (en) Isocyanate composition and use thereof
CN111925637B (zh) 一种用于真空导入的快速固化不饱和聚酯树脂
KR102647123B1 (ko) 우레탄 변성 아크릴수지 조성물 및 그의 제조방법
CN115746781A (zh) 一种改性双马来酰亚胺/氰酸酯胶膜及其制备方法
WO2023284618A1 (zh) 树脂组合物、聚氨酯材料和聚氨酯复合材料以及制备方法
CN113773451A (zh) 环氧树脂组合物及其复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE