WO2023030448A1 - 服务质量特征参数确定、数据发送方法、装置及设备 - Google Patents

服务质量特征参数确定、数据发送方法、装置及设备 Download PDF

Info

Publication number
WO2023030448A1
WO2023030448A1 PCT/CN2022/116518 CN2022116518W WO2023030448A1 WO 2023030448 A1 WO2023030448 A1 WO 2023030448A1 CN 2022116518 W CN2022116518 W CN 2022116518W WO 2023030448 A1 WO2023030448 A1 WO 2023030448A1
Authority
WO
WIPO (PCT)
Prior art keywords
perception
sensing
perceptual
qos
sending
Prior art date
Application number
PCT/CN2022/116518
Other languages
English (en)
French (fr)
Inventor
李健之
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023030448A1 publication Critical patent/WO2023030448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present application belongs to the communication field, and in particular relates to a method, device and equipment for determining quality of service characteristic parameters and sending data.
  • Future mobile communication systems such as the Beyond 5th Generation (B5G) system or the 6th Generation (6G) communication system will not only have communication capabilities, but will also have perception capabilities.
  • One or more devices with perception capabilities can perceive the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect, track, identify, and image the target object, event or environment, etc. .
  • the resolution of perception will be significantly improved compared with centimeter waves, so that 6G networks can provide more refined perception services.
  • the purposes of perception fall into two main categories.
  • the first type of purpose is perception to assist communication or enhance communication performance, for example, the base station provides more accurate beamforming alignment equipment by tracking the movement trajectory of the device; the other type of purpose is perception that is not directly related to communication , For example, base stations monitor weather conditions through wireless signals, and mobile phones recognize user gestures through millimeter wave wireless perception.
  • the embodiment of the present application provides a quality of service characteristic parameter determination and data transmission method, device and equipment, which can solve the problem that the accuracy of perception cannot be guaranteed and the perception efficiency can be ensured at the same time because there is no definition of perceptual QoS characteristic parameters in the prior art.
  • a method for determining characteristic parameters of service quality including:
  • the sending device determines the QoS characteristic parameters of perceived service quality
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a device for determining characteristic parameters of quality of service including:
  • the first determining module is used to determine the QoS characteristic parameter of perceived service quality
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a method for determining characteristic parameters of service quality including:
  • the receiving device obtains the perceptual QoS characteristic parameters
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a device for determining characteristic parameters of quality of service including:
  • a first acquisition module configured to acquire perceptual QoS characteristic parameters
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a method for sending data including:
  • the core network device acquires target data, where the target data includes: perceptual QoS characteristic parameters or perceptual quality index SQI;
  • the core network device sends the target data to the sending device or the receiving device, and the perceived QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a data sending device including:
  • the second obtaining module is used to obtain target data, and the target data includes: perceptual QoS characteristic parameters or perceptual quality index SQI;
  • a first sending module configured to send the target data to a sending device or a receiving device, and the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a sending device in a seventh aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction is executed by the processor When executed, the steps of the method described in the first aspect are realized.
  • a sending device including a processor and a communication interface, wherein the processor is configured to determine a perceived quality of service (QoS) characteristic parameter;
  • QoS perceived quality of service
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a receiving device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction is executed by the processor When executed, the steps of the method described in the third aspect are realized.
  • a receiving device including a processor and a communication interface, wherein the processor is configured to obtain perceptual QoS characteristic parameters;
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a core network device in an eleventh aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction being executed by the The steps of the method according to the fifth aspect are implemented when the processor executes.
  • a core network device including a processor and a communication interface, wherein the processor is used to obtain target data, and the target data includes: perceptual QoS characteristic parameters or perceptual quality index SQI, the communication The interface is used to send the target data to the sending device or the receiving device, and the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the implementation as described in the first aspect, the third aspect, or the fifth aspect is achieved. steps of the method described above.
  • a chip in a fourteenth aspect, there is provided a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the first aspect and the third Aspect or the step of the method described in the fifth aspect.
  • a computer program product is provided, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the first aspect and the third aspect Or the steps of the method described in the fifth aspect.
  • a communication device configured to perform the steps of the method described in the first aspect, the third aspect or the fifth aspect.
  • FIG. 1 is a schematic flow diagram of a method for determining a quality of service characteristic parameter according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of network nodes involved in application situation 1;
  • Figure 3 is a schematic diagram of a V2X sensing scenario
  • FIG. 4 is a schematic diagram of a concurrent perception scenario
  • Figure 5 is a schematic diagram of data-to-DRB mapping in a concurrent perception scenario
  • FIG. 6 is a block diagram of a device for determining quality of service characteristic parameters according to an embodiment of the present application.
  • FIG. 7 is one of the structural block diagrams of the sending device according to the embodiment of the present application.
  • FIG. 8 is the second structural block diagram of the sending device according to the embodiment of the present application.
  • FIG. 9 is the second schematic flow diagram of the method for determining the quality of service characteristic parameters according to the embodiment of the present application.
  • Fig. 10 is the second block diagram of the device for determining the quality of service characteristic parameters according to the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a data sending method according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a data sending device according to an embodiment of the present application.
  • Fig. 13 is a structural block diagram of a communication device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th Generation (6th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • radar and communication systems may be co-located, or even physically integrated, they transmit two different signals in the time/frequency domain. They cooperate to share the same resources to minimize the interference between each other while working simultaneously.
  • Corresponding measures include beamforming, cooperative spectrum sharing, primary and secondary spectrum sharing, and dynamic coexistence.
  • effective interference cancellation usually has strict requirements on node mobility and information exchange between nodes, so the improvement of spectrum efficiency is actually relatively limited. Since interference in a coexistence system is caused by transmitting two separate signals, it is natural to ask whether we can simultaneously use one transmitted signal for both communication and radar sensing.
  • Radar systems often use specially designed waveforms, such as short pulses and chirps, that enable high power radiation and simplify receiver processing.
  • waveforms are not necessary for radar detection, a good example is passive radar or passive sensing where different radio signals are used as sensing signals.
  • Wireless sensing can broadly refer to retrieving information from received radio signals, rather than communication data modulated onto the signal at the transmitter.
  • the target signal reflection delay, angle of arrival (AoA), angle of departure (Angle of departure, AoD), Doppler and other dynamics can be analyzed by common signal processing methods. Parameters are estimated; for the perception of the physical characteristics of the target, it can be achieved by measuring equipment, objects, and living eigenmode signals. The two perception methods can be called perception parameter estimation and pattern recognition respectively.
  • wireless sensing refers to more general sensing techniques and applications that use radio signals.
  • Integrated Sensing and Communication has the potential to integrate wireless perception into large-scale mobile networks, where it becomes Perceptive Mobile Networks (PMNs).
  • PMN can evolve from the current 5G mobile network and is expected to become a ubiquitous wireless sensor network while providing stable and high-quality mobile communication services. It can be built on the existing mobile network infrastructure without major changes to the network structure and equipment. It will unleash the maximum capacity of the mobile network and avoid the high cost of infrastructure to build a new wide-area wireless sensor network separately. With increased coverage, integrated communication and sensing capabilities are expected to enable many new applications.
  • the perceived mobile network is capable of providing both communication and wireless sensing services, and has the potential to become a ubiquitous wireless sensing solution due to its large broadband coverage and robust infrastructure.
  • Perceived mobility networks can be widely used in communications and sensing in transportation, communications, energy, precision agriculture, and security, where existing solutions are either not feasible or inefficient. It can also provide complementary sensing capabilities to existing sensor networks, with unique day and night operation and the ability to see through fog, foliage and even solid objects.
  • Radar has evolved over the decades since its inception in the first half of the 20th century. Modern radar systems are deployed around the world in a variety of applications including air traffic control (ATC), geophysical monitoring, weather observation, and defense and security surveillance. Below 10GHz, most of the spectrum resources are mainly allocated to radar, while existing wireless communication systems such as 5G NR, LTE and Wi-Fi also exist in this spectrum range. At higher frequencies, such as mmWave, communication and radar platforms are also expected to coexist harmoniously. However, with the further development of wireless communication technology, more and more radar frequency bands will be interfered. From the perspective of historical development, radar and communication systems are constantly evolving towards miniaturization and higher frequency bands.
  • RCSS technology includes two research paths: (1) Radar-Communication Coexistence (RCC) and (2) Dual-Functional Radar-Communication system (DFRC).
  • RCC Radar-Communication Coexistence
  • DFRC Dual-Functional Radar-Communication system
  • the former considers that separate radar and communication systems share the same frequency spectrum, and how to design effective interference elimination and management technologies to achieve mutual non-interference between the two.
  • the latter considers how radar and communication systems share the same hardware platform in addition to sharing the same frequency spectrum, and how to design an integrated signal processing solution to simultaneously realize communication and radar perception functions.
  • RCC technology often requires radar and communication system to periodically exchange some information to achieve cooperation and mutual benefit, such as radar transmission waveform, beam pattern, communication modulation method, frame format, and channel state information between radar and communication system, etc.
  • DFRC technology realizes spectrum sharing directly through a shared hardware platform, without additional information exchange.
  • DFRC technology can also improve the performance of both through the collaborative work of both parties.
  • connotation and application of DFRC technology are far beyond the improvement of spectrum utilization, but have been further expanded to a variety of emerging civilian and military applications including Internet of Vehicles, indoor positioning and covert communication. Scenes
  • QoS refers to the use of various underlying technologies by the network to provide better service capabilities for designated network communications to solve problems such as network delay and congestion, thereby realizing the transmission capacity guarantee mechanism required by specific services.
  • the network When the network is congested, all data streams are likely to be dropped.
  • the network In order to meet the requirements of users for different applications and different quality of service, the network needs to be able to allocate and schedule resources according to user requirements, and provide different quality of service for different data streams: give priority to real-time and important data packets; Ordinary data packets that are not strong in nature are provided with a lower processing priority, and are even discarded when the network is congested.
  • QoS Quality of Service
  • the International Telecommunication Union (ITU) has given the definition of Quality of Service (QoS) in the x.902 standard, the "Open Processing Reference Model for Information Technology”: in one or A set of quality requirements on the collective behavior of multiple objects.
  • QoS Quality of Service
  • Some quality of service parameters such as throughput, transmission delay, and error rate describe the speed and reliability of data transmission, etc.
  • the LTE is based on Bearer's QoS policy design.
  • the radio bearer is divided into a signaling radio bearer (Signalling Radio Bearer, SRB) and a data radio bearer (Data Radio Bearer, DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the SRB is used for signaling transmission
  • the DRB is used for data transmission
  • the scheduling priority of all SRBs is higher than that of all DRBs.
  • QCI Quality of service scale value
  • the protocol TS 23.203 defines the QCI values corresponding to different bearer services.
  • bearers can be divided into two categories: guaranteed bit rate (Guaranteed Bit Rate, GBR) bearers and non-GBR (Non-GBR) bearers.
  • GBR Guarantee Bit Rate
  • Non-GBR Non-GBR
  • the GBR type of bearer is used for services that require high real-time performance.
  • the scheduler needs to guarantee the lowest bit rate for this type of bearer.
  • the range of its QCI is 1-4.
  • a maximum rate is required for limitation.
  • the MBR is used to limit the maximum rate of the bearer.
  • the Maximum Bit Rate (MBR) parameter defines the upper limit of the rate that the GBR bearer can achieve under the condition of sufficient RB resources.
  • the value of MBR is greater than or equal to the value of GBR.
  • Non-GBR type bearers are used for services that do not require high real-time performance.
  • the scheduler does not need to guarantee the lowest bit rate for this type of bearers.
  • the range of its QCI is 5-9.
  • the business needs to bear the requirement of reducing the rate.
  • For Non-GBR use terminal aggregation maximum bit rate (Aggregate Maximum Bit Rate, AMBR) to limit the maximum rate of all Non-GBR bearers
  • 5G QoS Characteristics The characteristic parameter set of each network node (UE, gNB, UPF) when processing each QoS flow.
  • the 5G feature parameter set is divided into standardized QoS features and operator-specific (Operator-Specific) QoS features.
  • the former predefines the value of each parameter by standardization and is associated with a fixed 5QI value (an index that marks a series of parameters), and the latter is configured by the operator.
  • 5G adopts the data flow In-band QoS marking mechanism.
  • the gateway or APP Server marks the corresponding QoS processing label on the data flow, and the network side performs data packet forwarding based on the QoS label; the QoS label can be based on the service data flow.
  • Demand changes in real time to meet business needs in real time.
  • the NAS of the GW maps multiple IP flows with the same QoS requirements to the same QoS flow; the gNB maps the QoS flows to the DRB so that the wireless side can adapt to the QoS requirements; the RAN side has a certain degree of freedom, for example, the gNB can convert the QoS flow into DRB; downlink mapping belongs to network implementation; uplink mapping is based on reflective QoS or RRC configuration.
  • the 5G QoS model also supports QoS flows with guaranteed bit rate (GBR QoS) and QoS flows with non-guaranteed bit rate (Non-GBR). AMBR is also used to clamp the total bandwidth of Non-GBR.
  • the 5G QoS model also supports reflective QoS.
  • the embodiment of the present application provides a method for determining characteristic parameters of quality of service, including:
  • Step 101 the sending device determines the QoS characteristic parameters of perceived service quality
  • the perceptual QoS characteristic parameter is used to determine the perceptual parameter configuration information, and then enables the sending device to realize the transmission of the perceptual signal according to the perceptual parameter configuration information, that is, the purpose of the perceptual QoS characteristic parameter is to ensure the perceptual Accurate transmission of signals.
  • the sensing service type (Sensing Service Type) is divided according to the two main requirements of the physical scope of the sensing service and the real-time requirement of the sensing.
  • the sensing service equal to the preset value, that is, the large-scale sensing service (Large-scale Sensing, LSS), the corresponding sensing physical range is on the order of ten meters, hundreds of meters, and kilometers; the other is that the sensing physical range is smaller than the preset Sensing services with high value, that is, small-scale sensing services (Small-scale Sensing, SSS), corresponding to the sensing physical range of centimeters, decimeters, and meters; according to the real-time perception requirements, analogous to the 5G QoS definition, adding a delay-sensitive (Delay Critical) type.
  • the types of sensing services can be divided into: Delay Critical LSS (corresponding to delay-sensitive sensing services whose sensing physical range is greater than or equal to the preset value), LSS (corresponding to sensing services whose sensing physical range is greater than or equal to the preset value) Sensing service), Delay Critical SSS (corresponding to the delay-sensitive sensing service whose sensing physical range is smaller than the preset value), SSS (corresponding to the sensing service whose sensing physical range is smaller than the preset value), respectively represented by Sensing Service Type I-IV . That is to say, the perceived service type mentioned in the embodiment of this application includes at least one of the above four items.
  • 5G defines three service types, guaranteed bit rate (GBR), non-guaranteed bit rate (Non-GBR), and delay-critical GBR (Delay Critical GBD), to implement data services with different real-time requirements. divided.
  • the sensing service covers a wide range, and one or more devices with sensing capabilities can sense the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect the target object, event or environment, etc. Tracking, recognition, imaging, etc.
  • the resolution of perception will be significantly improved compared with centimeter waves, so that 6G networks can provide more refined perception services.
  • Sensing Priority Level Sensing Priority Level
  • perception priority level is used to determine the resource scheduling priority of the perception signal.
  • the perceived delay budget is used to define the maximum perceived delay of the perceived service, and is used to quantitatively describe the real-time requirement of the perceived service.
  • Sensing Resolution Sensing Resolution
  • the perception resolution is used to define the fineness of perception services, which is related to network hardware devices and specific resource configurations, and this factor involves different configuration resources for different perception services.
  • the distance resolution is related to the configured sensing signal bandwidth
  • the angular resolution is related to the base station or terminal antenna aperture.
  • MSR Maximum Sensing Range
  • the maximum sensing range is used to define the maximum measurement range of the sensing measurement quantities supported by the sensing service.
  • perception error Sensing Error, SE
  • the perception error is used to define the perception performance of the perception service, that is, the perception accuracy, which is related to network hardware equipment, specific resource configuration, and signal-to-noise ratio (SNR); the perception error can be defined from one of the following three aspects : 1), maximum error; 2), maximum error and true value percentage (relative maximum error); 3), relative error distribution.
  • the continuous sensing capability is used to define the support capability of the sensing service for continuous sensing, which is mainly divided into single sensing and continuous sensing (such as target tracking, scanning imaging).
  • sensing update frequency is used to define the update frequency of the sensing processing results requiring continuous sensing services.
  • the perceived signal quality is used to define the perceived signal quality required by the sensing service, and different sensing services have different requirements.
  • Sensing Security Sensing Security
  • the perceived security defines the security requirements of different perceived services and is divided into three levels.
  • the perceived privacy defines the privacy requirements of different perceived services and is divided into three levels
  • the detection probability is defined as the ability to judge the presence or absence of a perceived target, and the probability that it is judged to be present under the assumption that the target exists.
  • the false alarm probability is defined as the ability to judge the presence or absence of a target, assuming that the target does not exist, it is judged as the probability of being present.
  • Table 2 provides a specific definition manner of the perceptual QoS characteristic parameters, where the perceptual QoS characteristic parameters include at least one item of the parameters in Table 2.
  • perceptual QoS characteristic parameters in this embodiment of the present application may be determined by the sending device itself, or may be determined according to perceptual QoS characteristic parameters received from other devices. The methods for obtaining the two perceptual QoS characteristic parameters will be described in detail below respectively.
  • Method 1 The sending device determines the perceived QoS characteristic parameters by itself
  • step 101 in the embodiment of the present application include:
  • Step 1011 the sending device acquires a QoS parameter set
  • the QoS parameter set is a corresponding relationship between a Sensing Quality Identity (SQI) and a value of a sensing QoS characteristic parameter;
  • SQL Sensing Quality Identity
  • the QoS parameter set may be stipulated in a protocol or notified by a core network device.
  • Step 1012 the sending device receives the SQI notified by the core network device or the receiving device;
  • Step 1013 determine perceptual QoS characteristic parameters according to the SQI and the QoS parameter set.
  • a QoS parameter set is pre-set, and the QoS parameter set can be represented in the form of a corresponding relationship table.
  • the sensing service requester can know which SQI in the QoS parameter set corresponds to the requested service, By searching the QoS parameter set through the SQI, the perceptual QoS characteristic parameter corresponding to the SQI can be determined.
  • 5G defines 5G Quality Identity (5QI), which is used to index a 5G QoS characteristic.
  • 5QI 5G Quality Identity
  • Standardized 5G QoS features have standardized pre-defined values of each parameter and are associated with fixed 5QI values (an index that marks a series of parameters).
  • the standardized 5QI is defined in 3GPP TS 23.501.
  • the Sensing Quality Identity (SQI) values corresponding to different QoS are given here, as shown in Table 3.
  • the SQI shall include at least one of the parameters in Table 3, and the corresponding value of the parameter.
  • the perceptual error can be the maximum absolute error (as shown in Table 3), or the maximum relative error (the percentage of the error and the true value), or even the error to describe the probability distribution.
  • Table 4 gives an example of another definition method of SQI.
  • Table 4 has the same function as Table 3, but the definition method is slightly different.
  • the sensing service type (Sensing Service Type) includes two types, one is Large-scale Sensing (LSS), and the corresponding sensing physical range is Ten meters, hundreds of meters, and kilometers; the other type is Small-scale Sensing (SSS), which corresponds to the perception of physical ranges of centimeters, decimeters, and meters.
  • LSS Large-scale Sensing
  • SSS Small-scale Sensing
  • step 101 in the embodiment of the present application includes:
  • the sending device receives the first information sent by the core network device or the receiving device;
  • the first information is used to indicate the perceptual QoS characteristic parameter.
  • the perceptual QoS characteristic parameter does not need to be determined by the sending device itself, but can be obtained directly from other devices.
  • the perceptual QoS characteristic parameter can be It is the core network equipment that notifies the base station directly; when the sending device is a terminal, the perceptual QoS characteristic parameter is usually notified by the base station to the terminal.
  • the base station can be used as a receiving device for the perceptual signal.
  • the perceived QoS characteristic parameters of the base station may be notified by the core network equipment, or determined by the base station through the SQI and QoS parameter set according to the above method.
  • the first information is that it carries the perceptual QoS characteristic parameter, which can also be simply understood as that the first information is the perceptual QoS characteristic parameter.
  • the sending device may determine the perceptual parameter configuration information according to the perceptual QoS characteristic parameters; then send a perceptual signal to the receiving device according to the perceptual parameter configuration information; correspondingly , after the receiving device obtains the perceptual QoS characteristic parameters, it also determines the perceptual parameter configuration information according to the perceptual QoS characteristic parameters, and then uses the perceptual parameter configuration information to receive the perceptual signal; it should be noted that, in this way, the perceptual signal The transmission and reception of the sensor can ensure the accuracy of the transmission of the perceived signal.
  • the perceptual parameter configuration information mentioned in the embodiments of this application includes but is not limited to at least one of the following:
  • the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal is the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal.
  • this embodiment of the present application further includes:
  • the sending device determines the measurement quantity of the perceived signal according to the perceived QoS characteristic parameter
  • the sending device sends the measurements to the receiving device.
  • the receiving device acquires the measurement quantity of the sensing signal, it measures the sensing signal according to the measurement quantity, and determines the measurement value corresponding to the measurement quantity; it should be noted that the receiving device may be a direct receiving and sending device
  • the measurement quantity to be sent may also be the measurement quantity of the sensing signal determined by itself according to the characteristic parameters of the sensing QoS.
  • the sending device in order to successfully send the sensing signal, the sending device should also know which devices are involved in the sensing. Specifically, this embodiment of the present application also includes the following item:
  • the sending device receives the sending device and receiving device that participate in the perception sent by the core network device or the receiving device;
  • the core network device can determine the sending device and receiving device participating in sensing through the sensing QoS characteristic parameters. If the sending device is a base station, the core network device can directly send the sending device and receiving device participating in sensing To the base station; when the sending device is a terminal and the receiving device is a base station, the core network device needs to send the sending device and receiving device participating in perception to the receiving device first, and then the receiving device will send the sending device and receiving device participating in sensing Then send it to the sending device.
  • the sending device determines the sending device and the receiving device participating in the sensing according to the perceived QoS characteristic parameters
  • the sending device and receiving device participating in sensing may refer to the number of sending devices and receiving devices participating in sensing.
  • the sending device should also obtain the sensing mode of the sensing service.
  • the sensing method can be obtained by the core network device according to the perceived QoS characteristic parameters and sent to the sending device, or it can be obtained by the core network device based on the perceived QoS characteristic parameters and sent to the receiving device and then sent by the receiving device For the sending device; or, the sensing mode may also be a sensing mode in which the sending device determines the perceived service according to the perceived QoS characteristic parameter.
  • sensing methods indicate different receiving and sending ends of sensing signals; that is to say, the sensing methods are associated with entities that receive and send sensing signals, specifically, the entities corresponding to the sensing methods are associated with sending and receiving signals. Relationships include at least one of the following:
  • the first network node sends the sensing signal, and the second network node receives the sensing signal;
  • This situation refers to that the base station A sends the sensing signal, and the base station B receives the sensing signal.
  • the first network node sends and receives a sensing signal
  • This situation refers to that the base station A sends the sensing signal, and the base station A receives the sensing signal.
  • the first network node sends a sensing signal, and a terminal device associated with the first network node receives the sensing signal;
  • This situation refers to that the base station A sends the sensing signal, and the terminal receives the sensing signal.
  • the first terminal device sends the sensing signal, and the second terminal device receives the sensing signal
  • This situation refers to that terminal A sends a sensing signal, and terminal B receives the sensing signal;
  • the first terminal device sends and receives the sensing signal
  • This situation refers to that terminal A sends a sensing signal, and terminal A receives the sensing signal;
  • the first terminal device sends the sensing signal, and the first network node receives the sensing signal;
  • This situation refers to that the terminal A sends the sensing signal, and the base station A receives the sensing signal.
  • the embodiment of the present application can use the method of establishing the sensing QoS characteristic parameters and sensing parameters Configuration information, measurement quantities, sensing methods, and corresponding relationship tables between sending devices and receiving devices participating in sensing are realized. When one of them needs to be obtained, it is only necessary to look up the table to obtain the corresponding data.
  • the perceptual QoS characteristic parameters may include value combinations of various parameters in Table 2, and each value combination corresponds to an SQI in Table 3, that is, the perceptual QoS characteristic parameters correspond to the SQI.
  • the corresponding relationship table between SQI and sensing parameter configuration information, measurement quantity, sensing mode, sending device and receiving device participating in sensing is established, and the corresponding sensing parameter configuration information is obtained by looking up the table based on the SQI corresponding to the sensing QoS characteristic parameters , measurement quantity, sensing method, sending device and receiving device participating in sensing.
  • Table 5 provides corresponding parameter configuration and sensing mode suggestions (based on Table 3 as an example).
  • step 103 in the embodiment of the present application may be as follows:
  • the sending device maps the sensing signal to a radio bearer (Radio Bearer, RB) through a target mapping rule;
  • a radio bearer Radio Bearer, RB
  • the target mapping rule includes at least one of the following:
  • One perception signal is mapped to one RB.
  • the receiving device also uses the same method to receive the sensing signal.
  • the RB includes at least one of a signaling radio bearer (SRB) and a data radio bearer (DRB).
  • SRB signaling radio bearer
  • DRB data radio bearer
  • the definition of QoS parameters can be used as the basis for the core network to divide QoS Flow for data services, and realize the mapping control of QoS Flow.
  • the QoS control parameter QoS Profile used by gNB is allocated by the Session Management Function (SMF), and the 5QI value in 5G is included in the parameter set QoS configuration (QoS Profile) of the core network.
  • the sensing QoS parameters are allocated to the gNB by the sensing network function unit/sensing network element (Sensing Network Function, SNF). Since LTE/5G QoS is designed for data service transmission, its QoS usage and control process may be quite different from perceived QoS.
  • Sensing signals can be pseudo-random sequences, such as m-sequences, Gold sequences, etc., which are generally stored directly in each sensing node (such as outdoor macro base stations, indoor small base stations, dedicated sensing terminals, and mobile terminals, etc.).
  • the function is directly called, or directly calculated and used according to the local perception signal sequence generation algorithm.
  • Sensing signal data may be sent together with regular data, and sensed in a time-division/frequency-division multiplexing manner, or it may be sent separately (not together with data services) to complete sensing. Since the sensing signal needs to pass through the wireless air interface, it is also necessary to define the mapping relationship between the SQI and the air interface Radio Bearer (RB). At the same time, since the sensing service involves air interface signaling interaction and sensing data sending and receiving, it needs the support of SRB and DRB at the same time. The sensing signaling is carried by the SRB, and the sensing signal data is carried by the DRB.
  • the mapping between SQI and RB can be many-to-one or one-to-one.
  • perception QoS Flow can use SRB and DRB alone.
  • the mapping rule from perceived QoS Flow to DRB can be determined by the Service Data Adaptation Protocol (Service Data Adaptation Protocol, SDAP) layer according to the SQI.
  • SDAP Service Data Adaptation Protocol
  • Table 6 gives a possible mapping relationship between SQI and DRB based on several typical sensing services summarized in Table 1 above and the SQI values defined in Table 3.
  • the sending device mentioned in the embodiment of the present application may be a base station or a terminal.
  • the receiving device may be a base station or a terminal; when the sending device is a terminal
  • the receiving device can be a base station or a terminal; at the same time, it should be noted that, for the same sensing service, the sending device can be one or more (that is, two or more), and the receiving device can also have one or more.
  • Sensing network elements send sensing QoS parameters for 3D map sensing
  • a third party referring to the network (including the access network and the core network) and a third party other than the user) perceives the application and requests the network to use the outdoor macro base station to perform three-dimensional map perception of a certain area, such as the perception of the third-party application server to the core network
  • the network function unit/sensing network element (Sensing Network Function, SNF) or other network function unit/network element initiates a sensing request, and the sensing network element notifies multiple base stations near the sensing map to perform sensing operations.
  • the sensing method can be that the base station sends and receives sensing signals and performs sensing calculation processing, or base station A transmits sensing signals, and base station B receives sensing signals and performs sensing calculation processing, or the mobile terminal can send sensing signals uplink, and the base station receives sensing operations. signal and perform perceptual arithmetic processing.
  • the main implementation includes:
  • the third-party perception application server may send the perception QoS characteristic parameter or the perception service request (the perception service request carries the SQI) to the perception network element.
  • the third-party perceptual application server can directly send the SQI value (or the perceptual QoS characteristic parameter including the SQI) to the perception node base station, and the base station according to the SQI value (or characteristic QoS parameters including SQI) can directly determine the sensing service type and sensing parameter configuration information of sensing nodes, which facilitates sensing nodes to schedule sensing resources and computing resources for sensing processing, improves flexibility and reduces signaling overhead. If it is an operator-specific perceptual QoS characteristic parameter, a specific QoS parameter set needs to be transmitted between network nodes.
  • the SQI/sensing QoS parameter set is forwarded by the sensing network element to the corresponding sensing node.
  • the sensing network element is a base station that satisfies the sensing conditions (including sensing capabilities, and can provide parameter configurations that meet sensing requirements, etc.) in the three-dimensional map area, including
  • the two nodes can be a single base station or multiple base stations; if only the third-party sensing application server only sends sensing requests to the sensing network element, the sensing network element should also be able to Request to determine the perceptual QoS characteristic parameters corresponding to the perceptual service, and send the SQI/perceived QoS parameter set to the corresponding perceptual node.
  • Awareness network function/awareness network element can be a separate function/physical entity, or deployed in a general server of the core network as one of the functions of the core network, or deployed in the base station side as one of the functions of the base station.
  • the third-party perception application server can directly send the perception request/perception QoS characteristic parameters to the base station, for example, SQI or operator-defined QoS characteristic parameter list.
  • the base station/mobile terminal can send the SQI/sensing QoS parameter set to the sensing network element, and forward it to the corresponding sensing node through the sensing network element.
  • the base station/mobile terminal can also directly send a sensing request, and the sensing network element then determines the QoS parameters corresponding to the sensing service according to the sensing request, and sends the SQI/sensing QoS parameter set to the corresponding sensing node.
  • the sensing network element needs to send the SQI/sensing network element to the mobile terminal through the RAN side.
  • the QoS parameter set (or the perceptual QoS characteristic parameters including the above parameters), and the mobile terminal that cooperates with the sensing service determines the corresponding perceptual parameter configuration information according to the SOI/perceived QoS parameter set (or the perceptual QoS characteristic parameters including the above parameters).
  • the mobile terminal maps the sensing data to wireless air interface resources at the SDAP layer based on the RRC reconfiguration (Reconfiguration) message of the base station.
  • the sensing network element sends sensing QoS parameters for V2X sensing
  • V2X vehicle user pedestrian and driving perception
  • Vehicle users need to sense the location and speed of pedestrians and vehicles on the road near the vehicle user through their own synaesthesia system or the Road Side Unit (RSU).
  • RSU Road Side Unit
  • This scenario needs to meet the requirements of low latency and high reliability, so the latency tolerance is lower than that of 3D map generation and weather detection, and its priority is higher than most perception services.
  • Vehicle users may be ordinary users who do not have a perception system and rely entirely on the RSU for perception; they may also be equipped with a synaesthesia integration system or a perception system that can interact with the RSU for information.
  • RSU is a roadside micro base station/small base station with sensing capabilities and sensing resources.
  • the vehicle user When a vehicle user needs an RSU to sense pedestrians, the vehicle user sends a perceived QoS characteristic parameter or a sensing service request (the sensing service request carries an SQI) to a nearby RSU. If the perceptual QoS characteristic parameters are sent directly, if it is a standardized perceptual QoS characteristic parameter and perceptual service, the vehicle user can directly send the SQI value to the nearest perceptual node RSU, and the nearest RSU forwards the SQI to the perceptual network element, and the perceptual network element according to the SQI value It can directly determine the type of sensing service, determine which RSUs on the roadside participate in sensing, the number of RSUs participating in sensing processing, and the parameter configuration of each sensing node, which facilitates sensing nodes to schedule sensing resources and computing resources for sensing processing, which improves flexibility and reduces Signaling overhead.
  • the sensing network element sends the SQI or sensing QoS parameter set to the RSU that meets the sensing conditions (mainly RSUs within a certain range of vehicle users). Required time-frequency resources, computing resources, etc. After completing the sensing calculation, the RSU reports the sensing result to the sensing network element in real time, and the sensing network element sends it to the vehicle user to provide the real-time sensing result.
  • the sensing network element sends the SQI or sensing QoS parameter set to the RSU that meets the sensing conditions (mainly RSUs within a certain range of vehicle users). Required time-frequency resources, computing resources, etc.
  • the sensing network element should also be able to determine the sensing QoS characteristic parameters corresponding to the sensing service according to the sensing service request, and send the SQI or sensing QoS parameter set to the corresponding sensing node RSU.
  • the above usage of the SQI value or the perceptual QoS parameter set is also applicable to the situation that the vehicle user itself has the perceptual capability.
  • the vehicle user After the sensing request is initiated, the vehicle user performs sensing parameter configuration and sensing processing by himself, and finally combines the sensing results of the RSU to obtain a comprehensive sensing result.
  • the initiator of the aforementioned sensing request may also be a third-party application server, and the third-party sensing application server may send a sensing QoS characteristic parameter or a sensing service request to the sensing network element.
  • RSUs can directly determine the sensing service type and the sensing parameter configuration information of sensing nodes, which facilitates sensing nodes to schedule sensing resources and computing resources for sensing processing, which improves flexibility and reduces signaling overhead.
  • sensing signals need to be sent and received to complete sensing.
  • other sensing services may also be sent concurrently, such as precise positioning of a mobile user's position in a certain area, and real-time positioning of vehicles (trajectory sensing).
  • the entire sensing scene is shown in Figure 4 .
  • the two sensing services may adopt the same sensing method. For example, a large number of mobile terminals in the sensing area cooperate with the base station to send sensing signals uplink, and the base station performs sensing calculations to obtain environmental information. At this time, the base station can configure appropriate radio bearer parameters and transmission resource configuration parameters for the service according to the two similar perception QoS, and transmit the sensing signal data of the two services on the same logical channel, that is, realize the sensing signal data to Radio Bearer's many-to-one mapping. In addition, for some base stations in the area, other sensing services may be concurrently concurrently. For example, base station C in Fig.
  • this application determines the specific mapping relationship between sensing needs and sensing processing, and ensures the sensing processing of each sensing node (including sending end configuration sensing The signal format and parameters, as well as the receiving end to determine the processing accuracy, perception computing resources, etc.) can meet the perception QoS requirements, and ultimately make the network perception function more efficient and flexible.
  • the executing subject may be the device for determining the quality of service characteristic parameter, or, the device used to execute the quality of service characteristic parameter determination method in the quality of service characteristic parameter determination device control module.
  • the method for determining the quality of service characteristic parameter performed by the device for determining the characteristic parameter of service quality is taken as an example to illustrate the device for determining the characteristic parameter of service quality provided in the embodiment of the present application.
  • the embodiment of the present application provides a quality of service characteristic parameter determination apparatus 600, which is applied to a sending device, including:
  • the first determining module 601 is configured to determine the QoS characteristic parameter of perceived service quality
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • the first determining module 601 includes:
  • a first acquiring unit configured to acquire a QoS parameter set, where the QoS parameter set is a corresponding relationship between a perceptual quality index SQI and a value of a perceptual QoS characteristic parameter;
  • the first receiving unit is configured to receive the perceived quality index SQI notified by the core network device or the receiving device;
  • a first determining unit configured to determine perceptual QoS characteristic parameters according to the SQI and the QoS parameter set.
  • the QoS parameter set is stipulated in a protocol or notified by a core network device.
  • the first determining module 601 includes:
  • the second receiving unit is configured to receive the first information sent by the core network device or the receiving device;
  • the first information is used to indicate the perceptual QoS characteristic parameter.
  • the first determination module 601 determines the QoS characteristic parameter of perceived service quality, it further includes:
  • a second determining module configured to determine perceptual parameter configuration information according to the perceptual QoS characteristic parameters
  • a second sending module configured to send a sensing signal to a receiving device according to the sensing parameter configuration information
  • the perception parameter configuration information includes at least one of the following:
  • the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal is the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal.
  • the second sending module includes:
  • a first mapping unit configured to map the sensing signal to a radio bearer RB through a target mapping rule
  • the first sending unit is configured to send the sensing signal to the receiving device through the RB;
  • the target mapping rule includes at least one of the following:
  • One perception signal is mapped to one RB.
  • the first determination module 601 determines the QoS characteristic parameter of perceived service quality, it further includes:
  • a third determination module configured to determine the measurement quantity of the perceptual signal according to the perceptual QoS characteristic parameter
  • a third sending module configured to send the measured quantity to a receiving device.
  • the device also includes the following:
  • the first receiving module is configured to receive the sensing mode of the sensing service sent by the core network device or the receiving device;
  • a fourth determining module configured to determine the sensing mode of the sensing service according to the sensing QoS characteristic parameters
  • the different sensing modes indicate different sending and receiving ends of sensing signals.
  • the device also includes the following:
  • the second receiving module is used to receive the sending device and the receiving device participating in the perception sent by the core network device or the receiving device;
  • the fifth determining module is configured to determine the sending device and the receiving device participating in the sensing according to the perceived QoS characteristic parameters.
  • the perceived priority level is used to determine the resource scheduling priority of the perceived signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the preset value
  • Sensing business whose sensing physical range is greater than or equal to the preset value
  • Sensing services whose physical range is smaller than the preset value.
  • this device embodiment is a device corresponding to the above-mentioned method, and all the implementation modes in the above-mentioned method embodiment are applicable to this device embodiment, and can also achieve the same technical effect, so details are not repeated here.
  • the apparatus for determining characteristic parameters of quality of service provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 1 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a sending device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • a sending device including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the application
  • the various processes of the embodiments of the method for determining the quality of service characteristic parameters on the sending device side can achieve the same technical effect, and are not repeated here to avoid repetition.
  • the embodiment of the present application also provides a readable storage medium.
  • the computer-readable storage medium stores a program or an instruction.
  • the embodiment of the quality of service characteristic parameter determination method applied to the sending device side is implemented.
  • Each process can achieve the same technical effect, so in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the embodiment of the present application also provides a sending device, including a processor and a communication interface, and the processor is used to determine the QoS characteristic parameter of the perceived service quality;
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • This device embodiment corresponds to the above-mentioned embodiment of the method for determining service quality characteristic parameters.
  • the various implementation processes and implementation methods of the above-mentioned method embodiments can be applied to this device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a sending device.
  • the sending device is a base station
  • the base station 700 includes: an antenna 701 , a radio frequency device 702 , and a baseband device 703 .
  • the antenna 701 is connected to the radio frequency device 702 .
  • the radio frequency device 702 receives information through the antenna 701, and sends the received information to the baseband device 703 for processing.
  • the baseband device 703 processes the information to be sent and sends it to the radio frequency device 702
  • the radio frequency device 702 processes the received information and sends it out through the antenna 701 .
  • the foregoing frequency band processing apparatus may be located in the baseband apparatus 703 , and the methods performed by the base station in the above embodiments may be implemented in the baseband apparatus 703 , and the baseband apparatus 703 includes a processor 704 and a memory 705 .
  • the baseband device 703, for example, may include at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 703 may also include a network interface 706 for exchanging information with the radio frequency device 702, such as a common public radio interface (CPRI for short).
  • a network interface 706 for exchanging information with the radio frequency device 702, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the base station in the embodiment of the present invention also includes: instructions or programs stored in the memory 705 and operable on the processor 704, and the processor 704 calls the instructions or programs in the memory 705 to execute the functions executed by the modules shown in FIG. method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • FIG. 8 is a schematic diagram of a hardware structure for implementing a terminal.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, and a processor 810, etc. at least some of the components.
  • the terminal 800 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 810 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042, and the graphics processor 8041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 801 receives the downlink data from the network side device, and processes it to the processor 810; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 809 can be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 809 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 810 .
  • the processor 810 is used to implement:
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • processor 810 is configured to implement:
  • the QoS parameter set is the corresponding relationship between the value of the perceptual quality index SQI and the perceptual QoS characteristic parameter;
  • the radio frequency unit 801 is configured to: receive a core network device or a perceived quality index SQI notified by the receiving device;
  • the processor 810 is configured to: determine a perceptual QoS characteristic parameter according to the SQI and the QoS parameter set.
  • the QoS parameter set is stipulated in a protocol or notified by a core network device.
  • the radio frequency unit 801 is configured to implement:
  • the first information is used to indicate the perceptual QoS characteristic parameter.
  • processor 810 is also used to implement:
  • the sending device determines perceptual parameter configuration information according to the perceptual QoS characteristic parameter
  • the radio frequency unit 801 is configured to: send a sensing signal to a receiving device according to the sensing parameter configuration information;
  • the perception parameter configuration information includes at least one of the following:
  • the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal is the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal.
  • the processor 810 is further configured to: map the sensing signal to a radio bearer RB through a target mapping rule;
  • the radio frequency unit 801 is configured to: send a sensing signal to a receiving device through an RB;
  • the target mapping rule includes at least one of the following:
  • One perception signal is mapped to one RB.
  • the processor 810 is further configured to: determine the measurement quantity of the perceptual signal according to the perceptual QoS characteristic parameter;
  • the radio frequency unit 801 is configured to: send the measured quantity to a receiving device.
  • the radio frequency unit 801 is also configured to: receive a sensing mode of sensing services sent by core network devices or receiving devices; or
  • the processor 810 is further configured to: determine the sensing mode of the sensing service according to the sensing QoS characteristic parameters;
  • the different sensing modes indicate different sending and receiving ends of sensing signals.
  • the radio frequency unit 801 is also used to implement:
  • the processor 810 is further configured to: determine the sending device and the receiving device participating in the sensing according to the sensing QoS characteristic parameters.
  • the perceived priority level is used to determine the resource scheduling priority of the perceived signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the preset value
  • Sensing business whose sensing physical range is greater than or equal to the preset value
  • Sensing services whose physical range is smaller than the preset value.
  • the embodiment of the present application also provides a method for determining quality of service characteristic parameters, including:
  • Step 901 the receiving device obtains the perceptual QoS characteristic parameters
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • the receiving device obtains the perceptual QoS characteristic parameters, including:
  • the QoS parameter set is the corresponding relationship between the value of the perceptual quality index SQI and the perceptual QoS characteristic parameter;
  • the receiving device receives the perceived quality index SQI notified by the core network device or the sending device;
  • the QoS parameter set is stipulated in a protocol, notified by a core network device, or notified by a sending device.
  • the receiving device obtains the perceptual QoS characteristic parameters, including:
  • the second information indicates a perceptual QoS characteristic parameter.
  • the method also includes:
  • the receiving device obtains the sensing parameter configuration information
  • the receiving device receives the sensing signal sent by the sending device according to the sensing parameter configuration information
  • the perception parameter configuration information includes at least one of the following:
  • the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal is the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal.
  • the receiving device acquires perception parameter configuration information, including:
  • the receiving device receives the sensing parameter configuration information sent by the sending device or the core network device.
  • the receiving device acquires perception parameter configuration information, including:
  • the receiving device determines perceptual parameter configuration information according to the perceptual QoS characteristic parameter.
  • the sensing signal sent by the receiving and sending device includes:
  • the target mapping rule includes at least one of the following:
  • One perception signal is mapped to one RB.
  • the method also includes:
  • the receiving device acquires the measurement quantity of the sensing signal
  • the receiving device measures the sensing signal according to the measurement amount of the sensing signal, and determines a measurement value corresponding to the measurement amount.
  • the receiving device acquires the measurement amount of the sensing signal, including one of the following:
  • the receiving device receives the measurement amount of the sensing signal sent by the sending device
  • the receiving device determines the measurement quantity of the perceived signal according to the perceived QoS characteristic parameter.
  • the perceived priority level is used to determine the resource scheduling priority of the perceived signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the preset value
  • Sensing business whose sensing physical range is greater than or equal to the preset value
  • Sensing services whose physical range is smaller than the preset value.
  • the embodiment of the present application also provides an apparatus 1000 for determining characteristic parameters of quality of service, which is applied to a receiving device, including:
  • the first acquiring module 1001 is configured to acquire perceptual QoS characteristic parameters
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • the first obtaining module 1001 includes:
  • the second acquiring unit is configured to acquire a QoS parameter set, where the QoS parameter set is a corresponding relationship between a perceptual quality index SQI and a value of a perceptual QoS characteristic parameter;
  • the third receiving unit is configured to receive the perceived quality index SQI notified by the core network device or the sending device;
  • the second determining unit is configured to determine perceptual QoS characteristic parameters according to the SQI and the QoS parameter set.
  • the QoS parameter set is stipulated in a protocol, notified by a core network device, or notified by a sending device.
  • the first obtaining module 1001 includes:
  • the fourth receiving unit is configured to receive the second information sent by the core network device or the sending device;
  • the second information indicates a perceptual QoS characteristic parameter.
  • the method also includes:
  • a third acquisition module configured to acquire perception parameter configuration information
  • a third receiving module configured to receive the sensing signal sent by the sending device according to the sensing parameter configuration information
  • the perception parameter configuration information includes at least one of the following:
  • the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal is the bandwidth of the sensing signal, the number of transmitting antennas for the sensing signal, the transmitting power of the sensing signal, the period of the sensing signal, and the number of pulses of the sensing signal.
  • the third acquisition module includes:
  • the fifth receiving unit is configured to receive the sensing parameter configuration information sent by the sending device or the core network device.
  • the third acquisition module includes:
  • the third determining unit is configured to determine perceptual parameter configuration information according to the perceptual QoS characteristic parameters.
  • the third receiving module includes:
  • a fourth determining unit configured to determine a target mapping rule between the sensing signal and the radio bearer RB
  • the sixth receiving unit is configured to receive the sensing signal sent by the sending device through the RB according to the target mapping rule
  • the target mapping rule includes at least one of the following:
  • One perception signal is mapped to one RB.
  • the method also includes:
  • a fourth acquiring module configured to acquire the measurement quantity of the sensing signal
  • the sixth determining module is configured to measure the sensing signal according to the measurement amount of the sensing signal, and determine a measurement value corresponding to the measurement amount.
  • the fourth acquisition module includes the following item:
  • a seventh receiving unit configured to receive the measurement amount of the sensing signal sent by the sending device
  • the fifth determining unit is configured to determine the measurement quantity of the perceptual signal according to the perceptual QoS characteristic parameter.
  • the perceived priority level is used to determine the resource scheduling priority of the perceived signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the preset value
  • Sensing business whose sensing physical range is greater than or equal to the preset value
  • Sensing services whose physical range is smaller than the preset value.
  • the embodiment of the present application also provides a receiving device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • a receiving device including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the application
  • Each process of the embodiment of the method for determining the quality of service characteristic parameter on the receiving device side can achieve the same technical effect, so in order to avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, where a program or instruction is stored on the computer-readable storage medium, and when the program or instruction is executed by a processor, the embodiment of the quality of service characteristic parameter determination method applied to the receiving device side is realized.
  • a program or instruction is stored on the computer-readable storage medium, and when the program or instruction is executed by a processor, the embodiment of the quality of service characteristic parameter determination method applied to the receiving device side is realized.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the embodiment of the present application also provides a receiving device, including a processor and a communication interface, and the processor is used to acquire perceptual QoS characteristic parameters;
  • the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • This device embodiment corresponds to the above-mentioned method embodiment applied to the receiving device side, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a receiving device.
  • a receiving device Specifically, for the structure of the receiving device, refer to the structure in FIG. 7 or FIG. 8 , which will not be repeated here.
  • the processor invokes instructions or programs in the memory to execute the methods executed by the modules shown in FIG. 10 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a data sending method, including:
  • Step 1101 the core network device acquires target data, the target data includes: perceptual QoS characteristic parameters or perceptual quality index SQI;
  • Step 1102 the core network device sends the target data to the sending device or the receiving device, and the perceived QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • the method also includes:
  • the third information includes at least one of the following:
  • Sensing modes of sensing services where different sensing modes indicate different sending and receiving ends of sensing signals
  • the method further includes:
  • the core network device sends the sensing mode of the perceived service to the sending device or the receiving device and/or the sending device and the receiving device participating in the sensing.
  • the perceived priority level is used to determine the resource scheduling priority of the perceived signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the preset value
  • Sensing business whose sensing physical range is greater than or equal to the preset value
  • Sensing services whose physical range is smaller than the preset value.
  • the embodiment of the present application also provides a data sending device 1200, which is applied to core network equipment, including:
  • the second acquiring module 1201 is configured to acquire target data, where the target data includes: perceptual QoS characteristic parameters or perceptual quality index SQI;
  • the first sending module 1202 is configured to send the target data to a sending device or a receiving device, and the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • the device also includes:
  • a seventh determining module configured to determine third information according to the target data
  • the third information includes at least one of the following:
  • Sensing modes of sensing services where different sensing modes indicate different sending and receiving ends of sensing signals
  • the seventh determination module determines the third information according to the target data, it further includes:
  • the fourth sending module is configured to send the sensing mode of the perceived service and/or the sending device and the receiving device participating in the sensing to the sending device or the receiving device.
  • the perceived priority level is used to determine the resource scheduling priority of the perceived signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the preset value
  • Sensing business whose sensing physical range is greater than or equal to the preset value
  • Sensing services whose physical range is smaller than the preset value.
  • the embodiment of the present application also provides a core network device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • a core network device including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the application
  • the various processes of the embodiments of the data sending method on the core network device side can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the embodiment of the present application also provides a readable storage medium, on which a computer-readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the embodiment of the data transmission method applied to the core network device side is realized , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the embodiment of the present application also provides a core network device, including a processor and a communication interface, and the processor is used to acquire target data, and the target data includes: perceptual QoS characteristic parameters or perceptual quality index SQI; the communication interface is used to send data to the sending device or The receiving device sends the target data, and the perceptual QoS characteristic parameters include at least one of the following:
  • Perception service type perception priority level, perception delay budget, perception resolution, maximum perception range, perception error, continuous perception capability, perception update frequency, perception signal quality, perception security, perception privacy, detection probability, false alarm probability.
  • This device embodiment corresponds to the above-mentioned embodiment of the method applied to the core network device side.
  • the various implementation processes and implementation methods of the above method embodiments can be applied to this core network device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a core network device.
  • a core network device Specifically, for the structure of the first core network device, refer to the structure of the base station in FIG. 7 , which will not be repeated here.
  • the processor invokes instructions or programs in the memory to execute the methods executed by the modules shown in FIG. 12 to achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 1300, including a processor 1301, a memory 1302, and programs or instructions stored in the memory 1302 and operable on the processor 1301,
  • a communication device 1300 including a processor 1301, a memory 1302, and programs or instructions stored in the memory 1302 and operable on the processor 1301,
  • the communication device 1300 is a sending device
  • the program or instruction is executed by the processor 1301
  • each process of the above embodiment of the method for determining a quality of service characteristic parameter can be implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a receiving device, when the program or instruction is executed by the processor 1301, each process of the above embodiment of the method for determining a quality of service characteristic parameter can be realized, and the same technical effect can be achieved.
  • the communication device 1300 is a core network device
  • each process of the above-mentioned data sending method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the sending device and the receiving device involved in the embodiment of the present application may be terminals, devices that provide voice and/or data connectivity to users, handheld devices with wireless connection functions, or other processing devices connected to wireless modems.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in this embodiment of the application.
  • the sending device and receiving device involved in the embodiment of the present application may be a base station (Base Transceiver Station, BTS) in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA), or It can be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or base stations in the future 5G network, etc., are not limited here.
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • NodeB, NB Wideband Code Division Multiple Access
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • relay station or access point or base stations in the future 5G network, etc.
  • MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi user MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (2 Dimension MIMO, 2D-MIMO), three-dimensional MIMO (3 Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) Or massive MIMO (massive-MIMO), or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned quality of service characteristic parameter determination method or each process of the embodiment of the data sending method, and can achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种服务质量特征参数确定、数据发送方法、装置及设备,属于通信技术领域,本申请实施例的服务质量特征参数确定方法包括:发送设备确定感知服务质量QoS特征参数;其中,所述感知QoS特征参数包括以下至少一项:感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。

Description

服务质量特征参数确定、数据发送方法、装置及设备
相关申请的交叉引用
本申请主张在2021年9月6日在中国提交的中国专利申请No.202111039127.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信领域,特别涉及一种服务质量特征参数确定、数据发送方法、装置及设备。
背景技术
未来移动通信系统例如超5代移动通信系统(Beyond 5th Generation,B5G)系统或第6代(6th Generation,6G)通信系统除了具备通信能力外,还将具备感知能力。具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。
感知的目的主要分为两大类。第一类目的是感知用于辅助通信或者增强通信性能,例如,基站通过跟踪设备的移动轨迹以提供更精准的波束赋型对准设备;另一类目的是与通信没有直接关系的感知,例如基站通过无线信号对天气情况进行监测,手机通过毫米波无线感知识别用户的手势等。
但是由于感知业务种类较多,而目前又没有感知服务质量(Quality of Service,QoS)特征参数的明确定义,无法保证感知的准确性,同时保证感知效率的问题。
发明内容
本申请实施例提供一种服务质量特征参数确定、数据发送方法、装置及 设备,能够解决因现有技术中没有感知QoS特征参数的定义,无法保证感知的准确性,同时保证感知效率的问题。
第一方面,提供了一种服务质量特征参数确定方法,包括:
发送设备确定感知服务质量QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第二方面,提供了一种服务质量特征参数确定装置,包括:
第一确定模块,用于确定感知服务质量QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第三方面,提供了一种服务质量特征参数确定方法,包括:
接收设备获取感知QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第四方面,提供了一种服务质量特征参数确定装置,包括:
第一获取模块,用于获取感知QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第五方面,提供了一种数据发送方法,包括:
核心网设备获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI;
核心网设备向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第六方面,提供了一种数据发送装置,包括:
第二获取模块,用于获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI;
第一发送模块,用于向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第七方面,提供了一种发送设备,该发送设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种发送设备,包括处理器及通信接口,其中,所述处理器用于确定感知服务质量QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第九方面,提供了一种接收设备,该接收设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第十方面,提供了一种接收设备,包括处理器及通信接口,其中,所述处理器用于获取感知QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感 知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第十一方面,提供了一种核心网设备,该核心网设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第五方面所述的方法的步骤。
第十二方面,提供了一种核心网设备,包括处理器及通信接口,其中,所述处理器用于获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI,所述通信接口用于向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
第十三方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十四方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十六方面,提供了一种通信设备,被配置为执行如第一方面、第三方面或第五方面所述的方法的步骤。
在本申请实施例中,通过确定感知QoS特征参数,进而能够实现准确的进行感知信号的发送,提升了感知的准确性以及感知的效率。
附图说明
图1是本申请实施例的服务质量特征参数确定方法的流程示意图;
图2是应用情况一所涉及的网络节点的示意图;
图3是V2X感知情景示意图;
图4是并发感知场景的示意图;
图5是并发感知场景下的数据到DRB映射示意图;
图6是本申请实施例的服务质量特征参数确定装置的模块示意图;
图7是本申请实施例的发送设备的结构框图之一;
图8是本申请实施例的发送设备的结构框图之二;
图9是本申请实施例的服务质量特征参数确定方法的流程示意图之二;
图10是本申请实施例的服务质量特征参数确定装置的模块示意图之二;
图11是本申请实施例的数据发送方法的流程示意图;
图12是本申请实施例的数据发送装置的模块示意图;
图13是本申请实施例的通信设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency  Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
下面先对本申请所涉及的相关技术进行描述如下:
一、通信感知一体化/通感一体化
近几十年来,无线通信和雷达传感(Communication&Sensing,C&S)一直在并行发展,但交集有限。它们在信号处理算法、设备以及一定程度上的系统架构方面都有很多共性。近年来,这两个系统在共存、合作和联合设计上受到了越来越多研究人员的关注。
早期人们对通信系统和雷达系统共存的问题进行了广泛的研究,研究侧重是开发有效的干扰管理技术,使两个单独部署的系统能够在相互不干扰的情况下平稳运行。虽然雷达和通信系统可能在同一位置,甚至物理上集成,但它们在时间/频率域传输的是不同的两种信号。它们通过合作共享相同的资源,以最大限度地减少同时工作是对彼此之间的干扰。相应的措施包括波束赋形、合作频谱共享、主次频谱共享、动态共存等。然而有效的干扰消除通常对节点的移动性和节点之间的信息交换有着严格的要求,因此频谱效率的提高实际比较有限。由于共存系统中的干扰是由发射两个独立的信号引起的,因此很自然地会问,我们是否可以同时使用一个发射信号同时进行通信和雷达传感。雷达系统通常使用特别设计的波形,如短脉冲和啁啾,能够实现高功率辐射和简化接收机处理。然而这些波形对雷达探测来说不是必需的,无源雷达或无源传感以不同的无线电信号作为感知信号就是一个很好的例子。
机器学习,特别是深度学习技术进一步促进了非专用无线电信号用于雷达传感的潜力。有了这些技术,传统雷达正朝着更通用的无线感知方向发展。这里的无线感知可以广泛地指从接收到的无线电信号中检索信息,而不是在发射机上调制到信号的通信数据。对于感知目标位置相关的无线感知,可以 通过常用的信号处理方法,对目标信号反射时延、到达角(Angle of Arrival,AoA)、离开角(Angle of Departure,AoD)、多普勒等动力学参数进行估计;对于感知目标物理特征,可以通过测量设备、对象、活的固有模式信号来实现。两种感知方式可以分别称为感知参数估计以及模式识别。在这个意义上,无线感知是指使用无线电信号的更通用的传感技术和应用。
通信感知一体化(Integrated Sensing and Communication,ISAC)有潜力将无线感知集成到大规模移动网络中,在这里成为感知移动网络(Perceptive Mobile Networks,PMNs)。PMN可以从目前的5G移动网络演变而来,有望成为一个无处不在的无线传感网络,同时提供稳定高质量的移动通信服务。它可以建立在现有移动网络基础设施之上,而不需要对网络结构和设备进行重大改变。它将释放移动网络的最大能力,并避免花费高昂基础设施成本去额外单独建设新的广域无线传感网络。随着覆盖范围的扩大,综合通信和传感能力有望实现许多新的应用。感知移动网络能够同时提供通信和无线感知服务,并且由于其较大的宽带覆盖范围和强大的基础设施,有可能成为一种无处不在的无线传感解决方案。其联合协调的通信和传感能力将提高我们社会的生产力,并有助于催生出大量现有传感器网络无法有效实现的新应用。利用移动信号进行被动传感的一些早期工作已经证明了它的潜力。例如,基于GSM的无线电信号的交通监控、天气预报和降雨遥感。感知移动网络可以广泛应用于交通、通信、能源、精准农业和安全领域的通信和传感,而现有的解决方案要么不可行,要么效率低下。它还可以为现有的传感器网络提供互补的传感能力,具有独特的昼夜操作功能,能够穿透雾、树叶甚至固体物体。
二、雷达技术
雷达自20世纪上半叶诞生以来已经发展了几十年。现代雷达系统部署在世界各地,有多种应用,包括空中交通管制(Air Traffic Control,ATC)、地球物理监测、天气观测以及国防和安全监视等。在10GHz以下,大部分频谱资源主要分配给雷达,同时现有的无线通信系统,如5G NR、LTE和Wi-Fi也存在于这个频谱范围内。在毫米波等更高频率,通信和雷达平台也有望实现和谐共存。然而,随着无线通信技术的进一步发展,将有越来越多的雷达 频段受到干扰。从历史发展来看,雷达与通信系统向小型化以及更高频段不断演进。目前,在毫米波频段,现有雷达与通信系统的硬件架构、信道特性以及信号处理方法已经十分接近。从民用角度看,有相当一部分5G/B5G新兴应用需要进行感知与通信联合设计,例如智慧城市、智慧家庭等物联网应用,以及车联网、自动驾驶等智能交通应用。从军用角度看,雷达、通信、电子战等无线射频系统的发展长期以来呈现相互割裂、各自为政的状态,消耗了大量频谱与硬件资源,降低了作战平台的效能。为高效利用频谱资源,并服务于多种民用与军用新兴应用场景,雷达与通信的频谱共享(Radar and Communication Spectrum Sharing,RCSS)近期引起了学界和工业界的高度关注。
总体而言,RCSS技术包含两条研究路径:(1)雷达与通信频谱共存(Radar-Communication Coexistence,RCC);(2)雷达通信一体化(Dual-Functional Radar-Communication system,DFRC)。其中,前者考虑的是分立的雷达与通信系统共用同一频谱,如何设计行之有效的干扰消除与管理技术来实现两者的互不干扰。后者则考虑的是雷达与通信系统除了共享同一频谱外,还共用同一硬件平台,如何设计一体化信号处理方案来同时实现通信与雷达感知功能。RCC技术往往要求雷达和通信系统周期性地交换一些信息以实现合作互利,例如雷达的发射波形、波束图样,通信的调制方式、帧格式以及雷达与通信系统之间的信道状态信息等等。在实际系统中,这一信息交换过程具有较高的复杂度。DFRC技术则直接通过共享硬件平台实现了频谱共享,并不需要额外的信息交换。此外,DFRC技术还能够通过双方的协同工作来同时提升二者的性能。如上文所述,当前,DFRC技术的内涵及应用已远远不止于对频谱利用率的提升,而是被进一步拓展至包括车联网、室内定位和隐蔽通信在内的多种新兴的民用及军用场景
三、LTE/5G服务质量(Quality of Service,QoS)
QoS是指网络利用各种底层技术,为指定的网络通信提供更好的服务能力,用来解决网络延迟和阻塞等问题,从而实现特定业务需要的传输能力保障机制。当网络发送拥塞时,所有的数据流都有可能被丢弃。为满足用户不同应用、不同服务质量的要求,需要网络能根据用户的要求分配和调度资源,为不同的数据流提供不同的服务质量:对实时性强且重要的数据报文优先处 理;对实时性不强的普通数据报文,提供较低的处理优先级,网络拥塞时甚至丢弃。
QoS是从互联网中借鉴而来的技术概念,国际电信联盟(ITU)在x.902标准,即“信息技术开放式处理参考模型”中给出了对服务质量(QoS)的定义:在一个或多个对象的集体行为上的一套质量需求集合。吞吐量、传输延迟和错误率等一些服务质量参数描述了数据传输的速度和可靠性等。
LTE是基于承载Bearer的QoS策略设计。无线承载分为信令无线承载(Signalling Radio Bearer,SRB)和数据无线承载(Data Radio Bearer,DRB)。SRB用于信令的传输,DRB用于数据的传输,所有SRB的调度优先级要高于所有的DRB。服务质量标度值(QoS Class Identifier,QCI),是系统用于标识业务数据包传输特性的参数,协议TS 23.203定义了不同的承载业务对应的QCI值。根据QCI的不同,承载(Bearer)可以划分为两大类:保证比特速率(Guaranteed Bit Rate,GBR)类承载和非GBR(Non-GBR)类承载。GBR类承载,用于对实时性要求较高的业务,需要调度器对该类承载保证最低的比特速率,其QCI的范围是1-4。有了这个最低速率外,还需要一个最高速率进行限制。对于GBR承载来说,使用MBR来限制该承载的最大速率。最大比特速率(Maximum Bit Rate,MBR)参数定义了GBR承载在RB资源充足的条件下,能够达到的速率上限。MBR的值大于或等于GBR的值。Non-GBR类承载,用于对实时性要求不高的业务,不需要调度器对该类承载保证最低的比特速率,其QCI的范围是5-9。在网络拥挤的情况下,业务需要承受降低速率的要求。对于Non-GBR,使用终端聚合最大比特速率(Aggregate Maximum Bit Rate,AMBR)来限制所有Non-GBR承载的最大速率
5G QoS特征(5G QoS Characteristics)各网络节点(UE、gNB、UPF)处理每个QoS流时的特征参数集。5G特征参数集被分为标准化的QoS特征和运营商专用的(Operator-Specific)QoS特征。前者由标准化预先定义各参数的取值并与固定5QI取值(一种标记一系列参数的索引)关联,后者由运营商配置参数取值。5G采用数据流In-band QoS标记机制,基于业务的QoS需求,网关或APP Server对数据流标记相应的QoS处理标签,网络侧基于 QoS标签,执行数据包转发;QoS标签可基于业务数据流的需求实时变化,实时满足业务需求。GW的NAS将多个有相同QoS需求的IP flow映射到同一个QoS flow;gNB将QoS flow映射到DRB,使无线侧适配QoS需求;RAN侧有一定自由度,如gNB可将QoS流转换成DRB;下行映射属于网络实现;上行映射基于reflective QoS或RRC配置。5G QoS模型同样支持保障流比特速率(GBR QoS)的QoS流和非保障流比特速率(Non-GBR)的QoS流,也同样用AMBR来钳制Non GBR总带宽,5G QoS模型还支持反射QoS。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的服务质量特征参数确定、数据发送方法、装置及设备进行详细地说明。
如图1所示,本申请实施例提供一种服务质量特征参数确定方法,包括:
步骤101,发送设备确定感知服务质量QoS特征参数;
需要说明的是,该感知QoS特征参数用于进行感知参数配置信息的确定,进而使得发送设备依据该感知参数配置信息实现感知信号的发送,也就是说,该感知QoS特征参数的目的是保证感知信号的准确发送。
进一步需要说明的是,所述感知QoS特征参数包括以下至少一项:
A101、感知业务类型;
这里需要说明的是,本申请中根据感知业务的物理作用范围、感知实时性要求两大主要要求对感知业务类型(Sensing Service Type)进行划分,感知范围包括两类,一类是感知物理范围大于或等于预设值的感知业务,即大尺度范围感知业务(Large-scale Sensing,LSS),对应感知物理范围为十米、百米、千米量级;另一类是感知物理范围小于预设值的感知业务,即小尺度范围感知业务(Small-scale Sensing,SSS),对应感知物理范围为厘米、分米、米量级;根据感知实时性要求,类比5G QoS定义,增加一种延迟敏感(Delay Critical)类型。因此,本申请实施例中可以将感知业务类型分为:Delay Critical LSS(对应感知物理范围大于或等于预设值的延迟敏感的感知业务)、LSS(对应感知物理范围大于或等于预设值的感知业务)、Delay Critical SSS(对应感知物理范围小于预设值的延迟敏感的感知业务)、SSS(对应感知物理范围小于预设值的感知业务)四类,分别用Sensing Service Type I-IV表示。也就是 说,本申请实施例中所提到的感知业务类型包括以上四项中的至少一项。
这里需要说明的是,5G中定义了保证比特速率(GBR)、非保证比特速率(Non-GBR),以及延迟关键GBR(Delay Critical GBD)三种业务类型,对不同实时性要求的数据业务进行了划分。感知业务覆盖范围广,具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。一些常见的感知业务如下表1所示。
表1常见感知业务分类
Figure PCTCN2022116518-appb-000001
A102、感知优先级水平(Sensing Priority Level);
需要说明的是,该感知优先级水平用于确定感知信号的资源调度优先级。
A103、感知延时预算(Sensing Delay Budget,SDB);
需要说明的是,该感知延时预算用于定义感知业务的最大感知延迟,用于定量地描述感知业务的实时性要求。
A104、感知分辨率(Sensing Resolution,SR);
需要说明的是,该感知分辨率用于定义感知业务的精细度,与网络硬件设备以及具体资源配置有关,且该因素因为不同感知业务,涉及到的配置资 源也不同。例如距离分辨率与配置的感知信号带宽有关,角度分辨率与基站或者终端天线孔径有关。
A105、最大感知范围(Maximum Sensing Range,MSR);
需要说明的是,该最大感知范围用于定义感知业务所支持的感知测量量的最大测量范围。
A106、感知误差(Sensing Error,SE);
需要说明的是,该感知误差用于定义感知业务感知性能,即感知精确度,与网络硬件设备以及具体资源配置、信噪比(SNR)有关;感知误差可从下述三方面之一进行定义:1)、最大误差;2)、最大误差与真实值百分比(相对最大误差);3)、相对误差分布。
A107、连续感知能力(Continuous Sensing Capacity,CSC);
需要说明的是,该连续感知能力用于定义感知业务对连续感知的支持能力,主要分成单次感知、连续感知(例如目标追踪、扫描成像)。
A108、感知更新频率(Sensing Update Rate);
需要说明的是,该感知更新频率用于定义了要求连续感知业务的感知处理的结果更新频率。
A109、感知信号质量(Sensing Signal Quality);
需要说明的是,该感知信号质量用于定义感知业务所需要的感知信号质量,不同感知业务有不同要求。
A110、感知安全性(Sensing Security);
需要说明的是,该感知安全性定义了不同感知业务对安全性的要求,划分为3个等级。
A111、感知隐私性(Sensing Privacy);
需要说明的是,该感知隐私性定义了不同感知业务对隐私性的要求,划分为3个等级
A112、检测概率;
需要说明的是,该检测概率定义为判感知目标有无的能力,假设目标存 在的情况下判决为有的概率。
A113、虚警概率;
需要说明的是,该虚警概率定义为判感知目标有无的能力,假设目标不存在的情况下判决为有的概率。
可选地,表2给出了一种感知QoS特征参数的具体定义方式,其中感知QoS特征参数包括表2参数的至少一项。
表2感知QoS特征参数定义
Figure PCTCN2022116518-appb-000002
Figure PCTCN2022116518-appb-000003
Figure PCTCN2022116518-appb-000004
进一步需要说明的是,本申请实施例中的感知QoS特征参数可以是发送设备自己确定的,也可以是根据从其他设备接收的感知QoS特征参数确定。下面分别对这两种感知QoS特征参数的获取方式进行详细说明。
方式一、发送设备自己确定感知QoS特征参数
可选地,在此种情况下,本申请实施例的步骤101的可以采用的实现方式包括:
步骤1011,发送设备获取QoS参数集;
需要说明的是,所述QoS参数集为感知质量索引(Sensing Quality Identity,SQI)与感知QoS特征参数的取值的对应关系;
这里还需要说明的是,该QoS参数集可以由协议约定或核心网设备通知。
步骤1012,发送设备接收核心网设备或者接收设备通知的SQI;
步骤1013,根据所述SQI和所述QoS参数集,确定感知QoS特征参数。
也就是说,此种情况下预先设置一个QoS参数集,该QoS参数集可以以对应关系表的形式体现,感知业务请求方能够知道自己请求的业务对应到QoS参数集中的哪一个SQI,发送设备通过该SQI查找述QoS参数集便能确定该SQI对应的感知QoS特征参数。
也就是说,类似于LTE的QCI,为了对不同数据业务类型QoS进行划分,5G定义了5G Quality Identity(5QI),用于索引一个5G QoS特性。标准化的5G QoS特征有标准化预先定义各参数的取值并与固定5QI取值(一种标记一系列参数的索引)关联。标准化的5QI在3GPP TS 23.501中定义。
为了定义不同感知业务的QoS特性,这里给出不同QoS对应的感知质量索引(Sensing Quality Identity,SQI)值,如表3。实际使用时SQI应包括表3参数中的至少一项,以及该参数的对应取值。对于某些感知QoS特征参数,可能包含多种描述形式,例如感知误差可以是最大绝对误差(如表3中所示),也可以是最大相对误差(误差与真实值百分比),甚至可以用误差概率分布来描述。
表3感知质量索引SQI定义方式1
Figure PCTCN2022116518-appb-000005
Figure PCTCN2022116518-appb-000006
Figure PCTCN2022116518-appb-000007
表4给出SQI的另一种定义方法示例。表4与表3功能相同,只是定义方法略有不同。在表4中,我们仅根据感知业务的物理作用范围对感知业务类型进行划分,这样感知业务类型(Sensing Service Type)包括两类,一类是Large-scale Sensing(LSS),对应感知物理范围为十米、百米、千米量级;另一类是Small-scale Sensing(SSS),对应感知物理范围为厘米、分米、米量级。
表4感知质量索引SQI定义方式2
Figure PCTCN2022116518-appb-000008
Figure PCTCN2022116518-appb-000009
需要说明的是,上述SQI取值只是示例,并不一定是最终标准化或运营商真实采用的序号值,实际用例以及感知QoS特征参数也不局限于表2中所 列的。本申请定义表2和表3或者表4主要目的在于给出一种感知QoS定义的框架,供后续标准化和通信运营商参考。
二、其他设备通知感知QoS特征参数
可选地,在此种情况下,本申请实施例的步骤101的实现方式包括:
发送设备接收核心网设备或者接收设备发送的第一信息;
其中,所述第一信息用于指示感知QoS特征参数。
也就是说,在此种情况下,感知QoS特征参数无需发送设备自己确定,而是可以直接从其他设备处获取得到,可选地,在发送设备为基站的情况下,该感知QoS特征参数可以是核心网设备直接通知基站的;在发送设备为终端的情况下,该感知QoS特征参数通常是由基站通知给终端的,可选地,该基站可以作为感知信号的接收设备,在此种情况下,基站的感知QoS特征参数可以是核心网设备通知的,也可以是基站依据上述的方式通过SQI和QoS参数集确定得到的。
需要说明的是,该第一信息的一种实现方式为其携带感知QoS特征参数,也可以简单的理解为,该第一信息就为感知QoS特征参数。
可选地,在发送设备确定得到感知QoS特征参数后,便可以根据所述感知QoS特征参数,确定感知参数配置信息;然后根据所述感知参数配置信息,向接收设备发送感知信号;相对应地,接收设备在获取到感知QoS特征参数后,也根据该感知QoS特征参数确定感知参数配置信息,进而利用该感知参数配置信息进行感知信号的接收;需要说明的是,通过此种方式实现感知信号的发送和接收,可以保证感知信号的传输的准确性。
可选地,本申请实施例中所提到的感知参数配置信息包括但不限于以下至少一项:
感知信号的带宽、感知信号的发送天线数、感知信号发射功率、感知信号周期、感知信号脉冲数。
可选地,为了实现对感知信号的准确测量,本申请实施例还包括:
发送设备根据所述感知QoS特征参数,确定感知信号的测量量;
发送设备将所述测量量发送给接收设备。
相应地,接收设备在获取到感知信号的测量量后,依据该测量量对所述感知信号进行测量,确定所述测量量对应的测量值;需要说明的是,接收设备可以是直接接收发送设备发送的测量量,也可以是自己依据感知QoS特征参数,确定得到感知信号的测量量。
还需要说明的是,为了能顺利进行感知信号的发送,发送设备还应当了解都有哪些设备参与了此次感知,具体地,本申请实施例还包括以下一项:
B11、发送设备接收核心网设备或者接收设备发送的参与感知的发送设备和接收设备;
需要说明的是,核心网设备可以通过感知QoS特征参数确定得到参与感知的发送设备和接收设备,在发送设备为基站的情况下,核心网设备可以直接将该参与感知的发送设备和接收设备发送给基站;在发送设备为终端,接收设备为基站的情况下,核心网设备需要先将参与感知的发送设备和接收设备发送给接收设备,然后由接收设备将该参与感知的发送设备和接收设备再发送给发送设备。
B12、发送设备根据所述感知QoS特征参数,确定参与感知的发送设备和接收设备;
可选地,一种情况下,该参与感知的发送设备和接收设备可以指的是参与感知的发送设备和接收设备的数量。
还需要说明的是,为了保证发送设备能够准确的进行感知信号的发送,发送设备还应当获取感知业务的感知方式,所述感知方式用于指示感知信号的收发端,依据该感知方式进行感知信号的发送,可选地,该感知方式可以是核心网设备依据感知QoS特征参数得到并发送给发送设备的,也可以是核心网设备依据感知QoS特征参数得到发送给接收设备然后又接收设备再发送给发送设备的;或者,该感知方式也可以是发送设备根据所述感知QoS特征参数,确定感知业务的感知方式。
需要说明的是,不同的所述感知方式指示不同的感知信号的收发端;也 就是说感知方式与接收和发送感知信号的实体相关联,具体地,所述感知方式所对应的实体与收发信号的关系包括以下至少一项:
C11、第一网络节点发送感知信号,第二网络节点接收感知信号;
此种情况指的是,基站A发送感知信号,基站B接收感知信号。
C12、第一网络节点发送并接收感知信号;
此种情况指的是,基站A发送感知信号,基站A接收感知信号。
C13、第一网络节点发送感知信号,第一网络节点关联的终端设备接收感知信号;
此种情况指的是,基站A发送感知信号,终端接收感知信号。
C14、第一终端设备发送感知信号,第二终端设备接收感知信号;
此种情况指的是,终端A发送感知信号,终端B接收感知信号;
C15、第一终端设备发送并接收感知信号;
此种情况指的是,终端A发送感知信号,终端A接收感知信号;
C16、第一终端设备发送感知信号,第一网络节点接收感知信号;
此种情况指的是,终端A发送感知信号,基站A接收感知信号。
通常情况下,为了能快速的依据感知QoS特征参数确定得到感知参数配置信息、测量量、感知方式、参与感知的发送设备和接收设备,本申请实施例中可以采用建立感知QoS特征参数与感知参数配置信息、测量量、感知方式、参与感知的发送设备和接收设备对应关系表的方式实现,在需要获取其中一项时,只需要查表得到相应的数据即可。通常因感知QoS特征参数可能包括表2中的多种参数的取值组合,而每一种取值组合对应表3中的一个SQI,也就是说,感知QoS特征参数是与SQI对应的,本申请中采用建立SQI与感知参数配置信息、测量量、感知方式、参与感知的发送设备和接收设备的对应关系表,通过依据与感知QoS特征参数对应的SQI进行查表得到相应的感知参数配置信息、测量量、感知方式、参与感知的发送设备和接收设备。
需要说明的是,根据表3或者表4定义的几种SQI值和感知业务类型,表5给出相应的参数配置和感知方式建议(以基于表3为例)。
表5几种典型的SQI值、感知业务类型相应的感知参数配置、感知方式
Figure PCTCN2022116518-appb-000010
Figure PCTCN2022116518-appb-000011
进一步还需要说明的是,本申请实施例的步骤103的实现方式可以为:
发送设备通过目标映射规则,将所述感知信号映射至无线承载(Radio Bearer,RB);
通过RB,向接收设备发送感知信号;
其中,所述目标映射规则包括以下至少一项:
多个感知信号映射到同一个RB;
一个感知信号映射到一个RB。
相应的,接收设备也采用相同的方式进行感知信号的接收。
需要说明的是,该RB包括信令无线承载(SRB)和数据无线承载(DRB) 中的至少一项。
需要说明的是,在5G系统中,QoS参数的定义可以作为核心网对数据业务划分QoS Flow的依据,实现QoS Flow的映射控制。gNB使用的QoS控制参数QoS Profile由会话管理功能(Session Management Function,SMF)分配,5G中的5QI值包含在核心网的参数集QoS配置(QoS Profile)中。在本申请中感知QoS参数由感知网络功能单元/感知网元(Sensing Network Function,SNF)分配给gNB。由于LTE/5G QoS为数据业务传输而设计,其QoS的用法和控制流程可能与感知QoS存在较大不同。
在本申请中,暂时仅考虑感知使用专用感知信号进行感知的情况,即RAN侧感知信号与数据信号是时分复用或者频分复用。感知信号(序列/波形)可以是伪随机序列,例如m序列、Gold序列等,一般直接保存在各个感知节点(例如室外宏基站、室内小基站、专用感知终端以及移动终端等),在触发感知功能时直接调用,或者根据本地感知信号序列生成算法直接计算生成并使用。感知信号数据可能随着常规数据一起发送,按照时分/频分复用的方式进行感知,也可能单独发送(不与数据业务一起)完成感知。由于感知信号需要经过无线空口,因此还需要对SQI与空口Radio Bearer(RB)的映射关系进行定义。同时由于感知业务涉及到空口信令交互以及感知数据收发,因此同时需要SRB以及DRB支撑,感知信令通过SRB承载,感知信号数据通过DRB承载。SQI的与RB映射可以是多对一,也可以是一对一。当只存在感知业务时,感知QoS Flow可单独使用SRB和DRB。感知QoS Flow到DRB映射规则可以由服务数据适配协议(Service Data Adaptation Protocol,SDAP)层根据SQI确定。表6基于上文表1总结的几种典型感知业务以及表3定义的SQI值,给出一种可能的SQI与DRB的映射关系。
表6一种可能的感知QoS Flow与DRB映射方式
DRB ID SQI 感知业务类型
1 {1,2}或者其子集 II
2 {3,4,5,6}或者其子集 I/II
3 {7} I
4 {8,9}或者其子集 III
5 {10} IV
6 {11} IV
可选地,本申请实施例中所说的发送设备可以为基站,也可以为终端,当发送设备为基站的情况下,接收设备可以为基站,也可以为终端;当发送设备为终端的情况下,接收设备可以为基站,也可以为终端;同时还需要说明的是,发送对于同一个感知业务,发送设备可以为一个或多个(即两个或两个以上),接收设备也可以有一个或多个。
下面对实际应用的具体应用情况进行举例说明如下。
具体应用情况一、感知网元发送感知QoS参数进行三维地图感知
假设第三方(指网络(包含接入网和核心网)、用户以外的第三方)感知应用请求网络利用室外宏基站对某个区域进行三维地图感知,例如第三方应用服务器向核心网中的感知网络功能单元/感知网元(Sensing Network Function,SNF)或者其他网络功能单元/网元发起感知请求,感知网元通知感知地图附近的多个基站进行感知操作。感知方式可以为基站自发自收感知信号并执行感知运算处理进行,也可以通过基站A发射感知信号,基站B接收感知信号执行感知运算处理进行,还可以通过手机终端上行发送感知信号,基站接收感知信号并执行感知运算处理进行。
当采用基站自发自收感知或者基站A发基站B收的方式,此种情况所涉及的网络设备如图2所示,此种情况下主要实现包括:
(1)第三方感知应用服务器可以向感知网元发送感知QoS特征参数或者感知业务请求(该感知业务请求中携带SQI)。
若直接发送感知QoS特征参数,如果是标准化的感知QoS特征参数和感知业务,则第三方感知应用服务器可以直接向感知节点基站发送SQI值(或 者包含SQI的感知QoS特征参数),基站根据SQI值(或者包含SQI的特征QoS参数)可以直接确定感知业务类型、感知节点的感知参数配置信息,方便感知节点调度感知资源与运算资源进行感知处理,提高了灵活性同时减少了信令开销。如果是运营商特定的感知QoS特征参数,则需要在网络节点间传输具体的QoS参数集。SQI/感知QoS参数集由感知网元转发至相应的感知节点,在这个例子中则是三维地图区域内满足进行感知条件(包括具备感知能力、能够提供满足感知需求参数配置等)的基站,包含基站A和基站B两种节点,且两种节点可以是单个基站也可以是多个基站;若仅是第三方感知应用服务器仅向感知网元发送感知请求,则感知网元也应可根据感知请求确定感知业务对应的感知QoS特征参数,并将SQI/感知QoS参数集下发至相应感知节点。
(2)感知网络功能/感知网元可以是单独的功能/物理实体,或者部署在核心网的通用服务器中作为核心网功能之一,或者部署在基站侧作为基站的功能之一。在最后这种情况下,第三方感知应用服务器可以直接向基站发送感知请求/感知QoS特征参数,例如,SQI或者运营商自定义QoS特征参数列表。
(3)当感知请求发起方是核心网时,感知QoS的用法与上述一致,只是第三方感知应用服务器变成了核心网。
(4)当感知业务发起方是基站或者移动终端时,基站/移动终端可发送SQI/感知QoS参数集至感知网元,经感知网元转发至相应感知节点。基站/移动终端也可直接发送感知请求,感知网元再根据感知请求确定感知业务对应的QoS参数,并将SQI/感知QoS参数集下发至相应感知节点。
当采用基站与移动终端之间发送/接收感知信号,实现感知环境信息并进行三维地图生成时,亦或者感知过程需要移动终端配合时,感知网元需要通过RAN侧向移动终端下发SQI/感知QoS参数集(或者包含上述参数的感知QoS特征参数),配合进行感知业务的移动终端根据SOI/感知QoS参数集(或者包含上述参数的感知QoS特征参数)确定相应感知参数配置信息。移动 终端基于基站的RRC重配置(Reconfiguration)消息在SDAP层把感知数据映射到无线空口资源。
具体应用情况二、感知网元发送感知QoS参数进行V2X感知
如图3所示,考虑V2X的一种感知情景——车辆用户行人、行车感知。车辆用户需要通过自身通感系统,或者路边基站单元(Road Side Unit,RSU)感知车辆用户附近的路上、路边行人和行车位置、速度。该场景需要满足低时延高可靠要求,因此时延容忍度要比三维地图生成、天气检测等要低,优先级要比大多数感知业务高。车辆用户可能为普通用户,没有感知系统,完全依靠RSU帮助感知;也可能自身装备有通感一体化系统或者感知系统,能够与RSU进行信息交互。RSU为路边微基站/小基站,具备感知能力和感知资源。
当车辆用户需要RSU进行行人行车感知时,车辆用户向附近RSU发送感知QoS特征参数或者感知业务请求(该感知业务请求中携带SQI)。若直接发送感知QoS特征参数,如果是标准化的感知QoS特征参数和感知业务,则车辆用户可以直接向最近感知节点RSU发送SQI值,最近RSU将SQI转发至感知网元,感知网元根据SQI值可以直接确定感知业务类型、确定路边哪些RSU参与感知、参与感知处理的RSU个数、各感知节点的参数配置,方便感知节点调度感知资源与运算资源进行感知处理,提高了灵活性同时减少了信令开销。如果是运营商特定的感知QoS特征参数,则需要在网络节点间传输具体的QoS参数集。感知网元将SQI或者感知QoS参数集下发至满足感知条件的RSU(主要为车辆用户一定范围内的RSU),RSU根据SQI或者感知QoS参数集确定感知方式,进行感知参数配置,调动满足感知需求的时频资源、计算资源等。完成感知计算后,RSU将感知结果实时上报至感知网元,感知网元再下发至车辆用户,提供实时感知结果。若仅是车辆用户仅向感知网元发送感知业务请求,则感知网元也应可根据感知业务请求确定感知业务对应的感知QoS特征参数,并将SQI或者感知QoS参数集下发至相应感知节点RSU。
上述SQI值或者感知QoS参数集的用法也适用于车辆用户本身具备感知能力的情况。感知请求发起后,车辆用户自行进行感知参数配置和感知处理, 最终结合RSU感知结果获得综合感知结果。
上述感知请求发起方也可以为第三方应用服务器,第三方感知应用服务器可以向感知网元发送感知QoS特征参数或者感知业务请求。RSUs根据SQI可以直接确定感知业务类型、感知节点的感知参数配置信息,方便感知节点调度感知资源与运算资源进行感知处理,提高了灵活性同时减少了信令开销。
具体应用情况三、并发感知业务下感知数据到DRB的映射
考虑在某个区域内,三维地图重构与天气检测两种感知业务并发。基站与移动终端之间,需要收发感知信号完成感知。同时对于感知区域内某个基站,还可能并发其他感知业务,例如对某个区域内的某个移动用户位置进行精确定位,对车辆进行实时定位(轨迹感知),整个感知场景如图4所示。
对于三维地图重构以及天气检测,一般实时性要求不高,而且感知业务的持续时间较长。两种感知业务可能会采取相同的感知方式,例如所在感知区域内大量移动终端配合基站,上行发送感知信号,基站进行感知运算,得到环境信息。此时基站可根据这两种相似的感知QoS,为业务配置合适的无线承载参数、传输资源配置参数,将两种业务的感知信号数据放在相同的逻辑通道传输,即实现感信号数据到Radio Bearer的多对一映射。此外,对于区域内的某些基站,可能同时还会并发其他感知业务,如图4中基站C还需要进行对移动终端4(行人)的定位感知,以及对移动终端5(路上行车)进行实时轨迹感知,由于这两种业务的实时性要求、感知作用距离等均与前面的三维地图重构和天气感知业务有较大不同,因此需要基站分别调用不同等级的传输资源对这两种业务进行承载。如图5所示,对于基站A和基站B,三维地图重构(SQI=1)与天气感知(SQI=2)两种感知数据到DRB的映射是多对一(映射到DRB ID=1),而行人定位感知(SQI=5)以及行车实时轨迹感知(SQI=7)感知数据到DRB的映射是一对一(分别映射到DRB ID=2和DRB ID=3)。
需要说明的是,目前由于感知业务种类较多,感知方式和感知测量量根据不同感知业务类型也各不相同,容易造成网络感知效率低下,感知有关的信令开销巨大的情况。本申请通过对感知需求、感知业务进行归类和量化、对不同感知业务的QoS进行定义,确定了感知需求与感知处理的具体映射关 系,确保了各个感知节点的感知处理(包括发送端配置感知信号格式和参数,以及接收端确定处理精度、感知计算资源等)都能满足感知QoS需求,最终使得网络感知功能更加高效、更加灵活。
需要说明的是,本申请实施例提供的服务质量特征参数确定方法,执行主体可以为服务质量特征参数确定装置,或者,该服务质量特征参数确定装置中的用于执行服务质量特征参数确定方法的控制模块。本申请实施例中以服务质量特征参数确定装置执行服务质量特征参数确定方法为例,说明本申请实施例提供的服务质量特征参数确定装置。
如图6所示,本申请实施例提供一种服务质量特征参数确定装置600,应用于发送设备,包括:
第一确定模块601,用于确定感知服务质量QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
可选地,所述第一确定模块601,包括:
第一获取单元,用于获取QoS参数集,所述QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系;
第一接收单元,用于接收核心网设备或者接收设备通知的感知质量索引SQI;
第一确定单元,用于根据所述SQI和所述QoS参数集,确定感知QoS特征参数。
可选地,所述QoS参数集由协议约定或核心网设备通知。
可选地,所述第一确定模块601,包括:
第二接收单元,用于接收核心网设备或者接收设备发送的第一信息;
其中,所述第一信息用于指示感知QoS特征参数。
可选地,在所述第一确定模块601确定感知服务质量QoS特征参数之后,还包括:
第二确定模块,用于根据所述感知QoS特征参数,确定感知参数配置信息;
第二发送模块,用于根据所述感知参数配置信息,向接收设备发送感知信号;
其中,所述感知参数配置信息包括以下至少一项:
感知信号的带宽、感知信号的发送天线数、感知信号发射功率、感知信号周期、感知信号脉冲数。
可选地,所述第二发送模块,包括:
第一映射单元,用于通过目标映射规则,将所述感知信号映射至无线承载RB;
第一发送单元,用于通过RB,向接收设备发送感知信号;
其中,所述目标映射规则包括以下至少一项:
多个感知信号映射到同一个RB;
一个感知信号映射到一个RB。
可选地,在所述第一确定模块601确定感知服务质量QoS特征参数之后,还包括:
第三确定模块,用于根据所述感知QoS特征参数,确定感知信号的测量量;
第三发送模块,用于将所述测量量发送给接收设备。
可选地,所述装置,还包括以下一项:
第一接收模块,用于接收核心网设备或接收设备发送的感知业务的感知方式;
第四确定模块,用于根据所述感知QoS特征参数,确定感知业务的感知方式;
其中,不同的所述感知方式指示不同的感知信号的收发端。
可选地,所述装置,还包括以下一项:
第二接收模块,用于接收核心网设备或者接收设备发送的参与感知的发 送设备和接收设备;
第五确定模块,用于根据所述感知QoS特征参数,确定参与感知的发送设备和接收设备。
可选地,所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于预设值的延迟敏感的感知业务;
感知物理范围大于或等于预设值的感知业务;
感知物理范围小于预设值的延迟敏感的感知业务;
感知物理范围小于预设值的感知业务。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
本申请实施例提供的服务质量特征参数确定装置能够实现图1的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
优选的,本申请实施例还提供一种发送设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于发送设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于发送设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本申请实施例还提供一种发送设备,包括处理器和通信接口,处理器用于确定感知服务质量QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
该设备实施例是与上述服务质量特征参数确定方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种发送设备。当该发送设备为基站时,如图7所示,该基站700包括:天线701、射频装置702、基带装置703。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收信息,将接收的信息发送给基带装置703进行处理。在下行方向上,基带装置703对要发送的信息进行处理,并发送给射频装置702,射频装置702对收到的信息进行处理后经过天线701发送出去。
上述频带处理装置可以位于基带装置703中,以上实施例中基站执行的方法可以在基带装置703中实现,该基带装置703包括处理器704和存储器705。
基带装置703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器704,与存储器705连接,以调用存储器705中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置703还可以包括网络接口706,用于与射频装置702交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的基站还包括:存储在存储器705上并可在处理器704上运行的指令或程序,处理器704调用存储器705中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
当该发送设备为终端时,图8为实现一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等中的至少部分部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801将来自网络侧设备的下行数据接收后,给处理器810处理;另外,将上行的数据发送给网络侧设备。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界 面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,处理器810用于实现:
确定感知服务质量QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
可选地,所述处理器810用于实现:
获取QoS参数集,所述QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系;
所述射频单元801,用于实现:接收核心网设备或者接收设备通知的感知质量索引SQI;
所述处理器810用于实现:根据所述SQI和所述QoS参数集,确定感知QoS特征参数。
可选地,所述QoS参数集由协议约定或核心网设备通知。
可选地,所述射频单元801,用于实现:
接收核心网设备或者接收设备发送的第一信息;
其中,所述第一信息用于指示感知QoS特征参数。
可选地,处理器810还用于实现:
发送设备根据所述感知QoS特征参数,确定感知参数配置信息;
所述射频单元801,用于实现:根据所述感知参数配置信息,向接收设备发送感知信号;
其中,所述感知参数配置信息包括以下至少一项:
感知信号的带宽、感知信号的发送天线数、感知信号发射功率、感知信号周期、感知信号脉冲数。
可选地,处理器810还用于实现:通过目标映射规则,将所述感知信号 映射至无线承载RB;
所述射频单元801,用于实现:通过RB,向接收设备发送感知信号;
其中,所述目标映射规则包括以下至少一项:
多个感知信号映射到同一个RB;
一个感知信号映射到一个RB。
可选地,所述处理器810还用于实现:根据所述感知QoS特征参数,确定感知信号的测量量;
所述射频单元801,用于实现:将所述测量量发送给接收设备。
可选地,所述射频单元801,还用于实现:接收核心网设备或接收设备发送的感知业务的感知方式;或者
所述处理器810还用于实现:根据所述感知QoS特征参数,确定感知业务的感知方式;
其中,不同的所述感知方式指示不同的感知信号的收发端。
可选地,所述射频单元801,还用于实现:
接收核心网设备或者接收设备发送的参与感知的发送设备和接收设备;或者
所述处理器810还用于实现:根据所述感知QoS特征参数,确定参与感知的发送设备和接收设备。
可选地,所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于预设值的延迟敏感的感知业务;
感知物理范围大于或等于预设值的感知业务;
感知物理范围小于预设值的延迟敏感的感知业务;
感知物理范围小于预设值的感知业务。
需要说明的是,本申请实施例通过确定服务质量QoS参数,进而能够实现准确的进行感知信号的发送,提升了感知的准确性以及感知的效率。
如图9所示,本申请实施例还提供一种服务质量特征参数确定方法,包 括:
步骤901,接收设备获取感知QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
可选地,所述接收设备获取感知QoS特征参数,包括:
获取QoS参数集,所述QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系;
接收设备接收核心网设备或发送设备通知的感知质量索引SQI;
根据所述SQI和所述QoS参数集,确定感知QoS特征参数。
可选地,所述QoS参数集由协议约定、核心网设备通知或发送设备通知。
可选地,所述接收设备获取感知QoS特征参数,包括:
接收核心网设备或者发送设备发送的第二信息;
其中,所述第二信息指示感知QoS特征参数。
可选地,所述方法,还包括:
接收设备获取感知参数配置信息;
接收设备根据所述感知参数配置信息,接收发送设备发送的感知信号;
其中,所述感知参数配置信息包括以下至少一项:
感知信号的带宽、感知信号的发送天线数、感知信号发射功率、感知信号周期、感知信号脉冲数。
可选地,所述接收设备获取感知参数配置信息,包括:
所述接收设备接收发送设备或者核心网设备发送的感知参数配置信息。
可选地,所述接收设备获取感知参数配置信息,包括:
接收设备根据所述感知QoS特征参数,确定感知参数配置信息。
可选地,所述接收发送设备发送的感知信号,包括:
确定感知信号与无线承载RB的目标映射规则;
根据所述目标映射规则,通过RB接收发送设备发送的感知信号;
其中,所述目标映射规则包括以下至少一项:
多个感知信号映射到同一个RB;
一个感知信号映射到一个RB。
可选地,所述方法,还包括:
接收设备获取所述感知信号的测量量;
接收设备根据所述感知信号的测量量,对所述感知信号进行测量,确定所述测量量对应的测量值。
可选地,所述接收设备获取所述感知信号的测量量,包括以下一项:
接收设备接收所述发送设备发送的感知信号的测量量;
接收设备根据所述感知QoS特征参数,确定感知信号的测量量。
可选地,所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于预设值的延迟敏感的感知业务;
感知物理范围大于或等于预设值的感知业务;
感知物理范围小于预设值的延迟敏感的感知业务;
感知物理范围小于预设值的感知业务。
需要说明的是,上述实施例中所有关于接收设备的描述均适用于该服务质量特征参数确定方法的实施例中,也能达到相同的技术效果,在此不再赘述。
如图10所示,本申请实施例还提供一种服务质量特征参数确定装置1000,应用于接收设备,包括:
第一获取模块1001,用于获取感知QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
可选地,所述第一获取模块1001,包括:
第二获取单元,用于获取QoS参数集,所述QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系;
第三接收单元,用于接收核心网设备或发送设备通知的感知质量索引SQI;
第二确定单元,用于根据所述SQI和所述QoS参数集,确定感知QoS特征参数。
可选地,所述QoS参数集由协议约定、核心网设备通知或发送设备通知。
可选地,所述第一获取模块1001,包括:
第四接收单元,用于接收核心网设备或者发送设备发送的第二信息;
其中,所述第二信息指示感知QoS特征参数。
可选地,所述方法,还包括:
第三获取模块,用于获取感知参数配置信息;
第三接收模块,用于根据所述感知参数配置信息,接收发送设备发送的感知信号;
其中,所述感知参数配置信息包括以下至少一项:
感知信号的带宽、感知信号的发送天线数、感知信号发射功率、感知信号周期、感知信号脉冲数。
可选地,所述第三获取模块,包括:
第五接收单元,用于接收发送设备或者核心网设备发送的感知参数配置信息。
可选地,所述第三获取模块,包括:
第三确定单元,用于根据所述感知QoS特征参数,确定感知参数配置信息。
可选地,所述第三接收模块,包括:
第四确定单元,用于确定感知信号与无线承载RB的目标映射规则;
第六接收单元,用于根据所述目标映射规则,通过RB接收发送设备发送的感知信号;
其中,所述目标映射规则包括以下至少一项:
多个感知信号映射到同一个RB;
一个感知信号映射到一个RB。
可选地,所述方法,还包括:
第四获取模块,用于获取所述感知信号的测量量;
第六确定模块,用于根据所述感知信号的测量量,对所述感知信号进行测量,确定所述测量量对应的测量值。
可选地,所述第四获取模块,包括以下一项:
第七接收单元,用于接收所述发送设备发送的感知信号的测量量;
第五确定单元,用于根据所述感知QoS特征参数,确定感知信号的测量量。
可选地,所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于预设值的延迟敏感的感知业务;
感知物理范围大于或等于预设值的感知业务;
感知物理范围小于预设值的延迟敏感的感知业务;
感知物理范围小于预设值的感知业务。
优选的,本申请实施例还提供一种接收设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于接收设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于接收设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本申请实施例还提供一种接收设备,包括处理器和通信接口,处理器用于获取感知QoS特征参数;
其中,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
该设备实施例是与上述应用于接收设备侧的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种接收设备,具体地,接收设备的结构可参见图7或图8的结构,在此不再赘述。
具体地,处理器调用存储器中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
如图11所示,本申请实施例还提供一种数据发送方法,包括:
步骤1101,核心网设备获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI;
步骤1102,核心网设备向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
可选地,所述方法,还包括:
根据所述目标数据,确定第三信息;
其中,所述第三信息包括以下至少一项:
感知业务的感知方式,不同的所述感知方式指示不同的感知信号的收发端;
参与感知的发送设备和接收设备。
可选地,在所述根据所述目标数据,确定第三信息之后,还包括:
核心网设备向发送设备或接收设备发送所述感知业务的感知方式和/或 参与感知的发送设备和接收设备。
可选地,所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于预设值的延迟敏感的感知业务;
感知物理范围大于或等于预设值的感知业务;
感知物理范围小于预设值的延迟敏感的感知业务;
感知物理范围小于预设值的感知业务。
需要说明的是,上述实施例中所有关于核心网设备的描述均适用于该数据发送方法的实施例中,也能达到相同的技术效果,在此不再赘述。
如图12所示,本申请实施例还提供一种数据发送装置1200,应用于核心网设备,包括:
第二获取模块1201,用于获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI;
第一发送模块1202,用于向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
可选地,所述装置,还包括:
第七确定模块,用于根据所述目标数据,确定第三信息;
其中,所述第三信息包括以下至少一项:
感知业务的感知方式,不同的所述感知方式指示不同的感知信号的收发端;
参与感知的发送设备和接收设备。
可选地,在所述第七确定模块根据所述目标数据,确定第三信息之后,还包括:
第四发送模块,用于向发送设备或接收设备发送所述感知业务的感知方式和/或参与感知的发送设备和接收设备。
可选地,所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于预设值的延迟敏感的感知业务;
感知物理范围大于或等于预设值的感知业务;
感知物理范围小于预设值的延迟敏感的感知业务;
感知物理范围小于预设值的感知业务。
需要说明的是,上述实施例中所有关于核心网设备的描述均适用于该数据发送方法的实施例中,也能达到相同的技术效果,在此不再赘述。
优选的,本申请实施例还提供一种核心网设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于核心网设备侧的数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于核心网设备侧的数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本申请实施例还提供一种核心网设备,包括处理器和通信接口,处理器用于获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI;通信接口用于向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
该设备实施例是与上述应用于核心网设备侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该核心网设备实施例中,且 能达到相同的技术效果。
具体地,本申请实施例还提供了一种核心网设备,具体地,第一核心网设备的结构可参见图7的基站的结构,在此不再赘述。
具体地,处理器调用存储器中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为发送设备时,该程序或指令被处理器1301执行时实现上述服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为接收设备时,该程序或指令被处理器1301执行时实现上述服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为核心网设备时,该程序或指令被处理器1301执行时实现上述数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例涉及的发送设备和接收设备可以为终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端 设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的发送设备和接收设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
发送设备与接收设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2 Dimension MIMO,2D-MIMO)、三维MIMO(3 Dimension MIMO,3D-MIMO)、全维度MIMO(Full Dimension MIMO,FD-MIMO)或大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述服务质量特征参数确定方法或数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申 请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种服务质量特征参数确定方法,包括:
    发送设备确定感知服务质量QoS特征参数;
    其中,所述感知QoS特征参数包括以下至少一项:
    感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
  2. 根据权利要求1所述的方法,其中,所述发送设备确定感知服务质量QoS特征参数,包括:
    发送设备获取QoS参数集,所述QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系;
    发送设备接收核心网设备或者接收设备通知的SQI;
    根据所述SQI和所述QoS参数集,确定感知QoS特征参数。
  3. 根据权利要求2所述的方法,其中,所述QoS参数集由协议约定或核心网设备通知。
  4. 根据权利要求1所述的方法,其中,所述发送设备确定感知服务质量QoS特征参数,包括:
    发送设备接收核心网设备或者接收设备发送的第一信息;
    其中,所述第一信息用于指示感知QoS特征参数。
  5. 根据权利要求1所述的方法,其中,在所述发送设备确定感知服务质量QoS特征参数之后,还包括:
    发送设备根据所述感知QoS特征参数,确定感知参数配置信息;
    发送设备根据所述感知参数配置信息,向接收设备发送感知信号;
    其中,所述感知参数配置信息包括以下至少一项:
    感知信号的带宽、感知信号的发送天线数、感知信号发射功率、感知信号周期、感知信号脉冲数。
  6. 根据权利要求5所述的方法,其中,所述发送设备根据所述感知参数配置信息,向接收设备发送感知信号,包括:
    发送设备通过目标映射规则,将所述感知信号映射至无线承载RB;
    通过RB,向接收设备发送感知信号;
    其中,所述目标映射规则包括以下至少一项:
    多个感知信号映射到同一个RB;
    一个感知信号映射到一个RB。
  7. 根据权利要求1所述的方法,其中,在所述发送设备确定感知服务质量QoS特征参数之后,还包括:
    发送设备根据所述感知QoS特征参数,确定感知信号的测量量;
    发送设备将所述测量量发送给接收设备。
  8. 根据权利要求1所述的方法,其中,还包括以下一项:
    发送设备接收核心网设备或接收设备发送的感知业务的感知方式;
    发送设备根据所述感知QoS特征参数,确定感知业务的感知方式;
    其中,不同的所述感知方式指示不同的感知信号的收发端。
  9. 根据权利要求1所述的方法,其中,还包括以下一项:
    发送设备接收核心网设备或者接收设备发送的参与感知的发送设备和接收设备;
    发送设备根据所述感知QoS特征参数,确定参与感知的发送设备和接收设备。
  10. 根据权利要求1所述的方法,其中,所述感知优先级水平用于确定感知信号的资源调度优先级。
  11. 根据权利要求1所述的方法,其中,所述感知业务类型包括以下至少一项:
    感知物理范围大于或等于预设值的延迟敏感的感知业务;
    感知物理范围大于或等于预设值的感知业务;
    感知物理范围小于预设值的延迟敏感的感知业务;
    感知物理范围小于预设值的感知业务。
  12. 一种服务质量特征参数确定方法,包括:
    接收设备获取感知服务质量QoS特征参数;
    其中,所述感知QoS特征参数包括以下至少一项:
    感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
  13. 根据权利要求12所述的方法,其中,所述接收设备获取感知QoS特征参数,包括:
    获取QoS参数集,所述QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系;
    接收设备接收核心网设备或发送设备通知的SQI;
    根据所述SQI和所述QoS参数集,确定感知QoS特征参数。
  14. 根据权利要求13所述的方法,其中,所述QoS参数集由协议约定、核心网设备通知或发送设备通知。
  15. 根据权利要求12所述的方法,其中,所述接收设备获取感知QoS特征参数,包括:
    接收核心网设备或者发送设备发送的第二信息;
    其中,所述第二信息指示感知QoS特征参数。
  16. 根据权利要求12所述的方法,其中,还包括:
    接收设备获取感知参数配置信息;
    接收设备根据所述感知参数配置信息,接收发送设备发送的感知信号;
    其中,所述感知参数配置信息包括以下至少一项:
    感知信号的带宽、感知信号的发送天线数、感知信号发射功率、感知信号周期、感知信号脉冲数。
  17. 根据权利要求16所述的方法,其中,所述接收设备获取感知参数配置信息,包括:
    所述接收设备接收发送设备或者核心网设备发送的感知参数配置信息。
  18. 根据权利要求16所述的方法,其中,所述接收设备获取感知参数配置信息,包括:
    接收设备根据所述感知QoS特征参数,确定感知参数配置信息。
  19. 根据权利要求16所述的方法,其中,所述接收发送设备发送的感知信号,包括:
    确定感知信号与无线承载RB的目标映射规则;
    根据所述目标映射规则,通过RB接收发送设备发送的感知信号;
    其中,所述目标映射规则包括以下至少一项:
    多个感知信号映射到同一个RB;
    一个感知信号映射到一个RB。
  20. 根据权利要求16所述的方法,其中,还包括:
    接收设备获取所述感知信号的测量量;
    接收设备根据所述感知信号的测量量,对所述感知信号进行测量,确定所述测量量对应的测量值。
  21. 根据权利要求20所述的方法,其中,所述接收设备获取所述感知信号的测量量,包括以下一项:
    接收设备接收所述发送设备发送的感知信号的测量量;
    接收设备根据所述感知QoS特征参数,确定感知信号的测量量。
  22. 根据权利要求12所述的方法,其中,所述感知优先级水平用于确定感知信号的资源调度优先级。
  23. 根据权利要求12所述的方法,其中,所述感知业务类型包括以下至少一项:
    感知物理范围大于或等于预设值的延迟敏感的感知业务;
    感知物理范围大于或等于预设值的感知业务;
    感知物理范围小于预设值的延迟敏感的感知业务;
    感知物理范围小于预设值的感知业务。
  24. 一种数据发送方法,包括:
    核心网设备获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI;
    核心网设备向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
    感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
  25. 根据权利要求24所述的方法,其中,还包括:
    根据所述目标数据,确定第三信息;
    其中,所述第三信息包括以下至少一项:
    感知业务的感知方式,不同的所述感知方式指示不同的感知信号的收发端;
    参与感知的发送设备和接收设备。
  26. 根据权利要求25所述的方法,其中,在所述根据所述目标数据,确定第三信息之后,还包括:
    核心网设备向发送设备或接收设备发送所述感知业务的感知方式和/或参与感知的发送设备和接收设备。
  27. 根据权利要求24所述的方法,其中,所述感知优先级水平用于确定感知信号的资源调度优先级。
  28. 根据权利要求24所述的方法,其中,所述感知业务类型包括以下至少一项:
    感知物理范围大于或等于预设值的延迟敏感的感知业务;
    感知物理范围大于或等于预设值的感知业务;
    感知物理范围小于预设值的延迟敏感的感知业务;
    感知物理范围小于预设值的感知业务。
  29. 一种服务质量特征参数确定装置,应用于发送设备,包括:
    第一确定模块,用于确定感知服务质量QoS特征参数;
    其中,所述感知QoS特征参数包括以下至少一项:
    感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
  30. 一种发送设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至11任一项所述的服务质量特征参数确定方法的步骤。
  31. 一种服务质量特征参数确定装置,应用于接收设备,包括:
    第一获取模块,用于获取感知QoS特征参数;
    其中,所述感知QoS特征参数包括以下至少一项:
    感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
  32. 一种接收设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求12至23任一项所述的服务质量特征参数确定方法的步骤。
  33. 一种数据发送装置,应用于核心网设备,包括:
    第二获取模块,用于获取目标数据,所述目标数据包括:感知QoS特征参数或感知质量索引SQI;
    第一发送模块,用于向发送设备或接收设备发送所述目标数据,所述感知QoS特征参数包括以下至少一项:
    感知业务类型、感知优先级水平、感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、感知信号质量、感知安全性、感知隐私性、检测概率、虚警概率。
  34. 一种核心网设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求24至28任一项所述的数据发送方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至23任一项所述的服务质量特征参数确定方法的步骤或权利要求24至28任一项所述的数据发送方法的步骤。
  36. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至23任一项所述的服务质量特征参数确定方法的步骤或权利要求24至28任一项所述的数据发送方法的步骤。
  37. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至23任一项所述的服务质量特征参数确定方法的步骤或权利要求24至28任一项所述的数据发送方法的步骤。
  38. 一种通信设备,其中,被配置为执行如权利要求1至23任一项所述的服务质量特征参数确定方法的步骤或权利要求24至28任一项所述的数据发送方法的步骤。
PCT/CN2022/116518 2021-09-06 2022-09-01 服务质量特征参数确定、数据发送方法、装置及设备 WO2023030448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111039127.0 2021-09-06
CN202111039127.0A CN115767622A (zh) 2021-09-06 2021-09-06 服务质量特征参数确定、数据发送方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023030448A1 true WO2023030448A1 (zh) 2023-03-09

Family

ID=85332720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116518 WO2023030448A1 (zh) 2021-09-06 2022-09-01 服务质量特征参数确定、数据发送方法、装置及设备

Country Status (2)

Country Link
CN (1) CN115767622A (zh)
WO (1) WO2023030448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116074961A (zh) * 2023-03-16 2023-05-05 中国移动通信有限公司研究院 信号传输方法、装置、电子设备及可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116939592A (zh) * 2022-04-02 2023-10-24 维沃移动通信有限公司 感知信号的处理方法、装置及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106031282A (zh) * 2014-03-27 2016-10-12 英特尔公司 支持内QCI QoS感知无线电资源分配的系统、方法及设备
CN111970704A (zh) * 2020-07-21 2020-11-20 中国电子科技集团公司第三十六研究所 一种抗干扰频谱态势智能感知系统
CN112823561A (zh) * 2018-11-01 2021-05-18 苹果公司 用于nr v2x侧行链路通信的qos感知拥塞控制、资源分配和设备内共存解决方案
US20210160768A1 (en) * 2019-11-26 2021-05-27 Netsia, Inc. APPARATUS AND METHOD FOR QoS AWARE GTP-U TRANSPORT IN MOBILE NETWORKS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106031282A (zh) * 2014-03-27 2016-10-12 英特尔公司 支持内QCI QoS感知无线电资源分配的系统、方法及设备
CN112823561A (zh) * 2018-11-01 2021-05-18 苹果公司 用于nr v2x侧行链路通信的qos感知拥塞控制、资源分配和设备内共存解决方案
US20210160768A1 (en) * 2019-11-26 2021-05-27 Netsia, Inc. APPARATUS AND METHOD FOR QoS AWARE GTP-U TRANSPORT IN MOBILE NETWORKS
CN111970704A (zh) * 2020-07-21 2020-11-20 中国电子科技集团公司第三十六研究所 一种抗干扰频谱态势智能感知系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116074961A (zh) * 2023-03-16 2023-05-05 中国移动通信有限公司研究院 信号传输方法、装置、电子设备及可读存储介质
CN116074961B (zh) * 2023-03-16 2023-07-04 中国移动通信有限公司研究院 信号传输方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN115767622A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US11706593B2 (en) Terminal device, method, and recording medium
WO2022100499A1 (zh) 感知信号传输方法和装置
WO2023030448A1 (zh) 服务质量特征参数确定、数据发送方法、装置及设备
US10757709B2 (en) Communication device, communication method, and computer program for sensing of resources used in inter-device communications
US11240779B2 (en) Methods of identifying aerial user equipment in cellular networks
CN109451430A (zh) 环境感知方法和通信设备
JP2020529757A (ja) 異常な高度にあるデバイスからの干渉の低減
EP3381234B1 (en) Position-pair-dependent interference and traffic pattern database
WO2017195535A1 (ja) 通信装置、通信方法及びコンピュータプログラム
CN111328080A (zh) 资源分配的方法和通信装置
WO2023116755A1 (zh) 定位感知方法、感知测量方法、装置、终端及网络侧设备
US20230189026A1 (en) Method and device for measuring channel state information
KR20240036592A (ko) 사이드링크 위치 추정을 위한 사이드링크 앵커 그룹
CN114175772A (zh) 用户设备定位方法及装置、用户设备、存储介质
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
US20240097845A1 (en) Method and apparatus for determining transmission resource, and communication device and storage medium
WO2023030447A1 (zh) 服务质量特征参数确定、数据发送方法、装置及设备
He et al. Reliable auxiliary communication of UAV via relay cache optimization
JP6432739B2 (ja) 通信システム、端末、基地局及び通信制御方法
KR20230157323A (ko) 레인징 지원 보행자 지역화
WO2023041169A1 (en) Device positioning
JP2016189545A (ja) 通信装置及び通信制御方法
JP6601789B2 (ja) 通信装置及びセル選択方法
JP6418395B2 (ja) 通信装置、基地局及び通信制御方法
WO2023036235A1 (zh) 感知通道的建立方法、装置、通信设备、存储介质及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863583

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863583

Country of ref document: EP

Effective date: 20240408