WO2022100499A1 - 感知信号传输方法和装置 - Google Patents

感知信号传输方法和装置 Download PDF

Info

Publication number
WO2022100499A1
WO2022100499A1 PCT/CN2021/128512 CN2021128512W WO2022100499A1 WO 2022100499 A1 WO2022100499 A1 WO 2022100499A1 CN 2021128512 W CN2021128512 W CN 2021128512W WO 2022100499 A1 WO2022100499 A1 WO 2022100499A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
message
terminal device
network device
frame structure
Prior art date
Application number
PCT/CN2021/128512
Other languages
English (en)
French (fr)
Inventor
何佳
余子明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022100499A1 publication Critical patent/WO2022100499A1/zh
Priority to US18/195,276 priority Critical patent/US20230284251A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0236Avoidance by space multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for transmitting a sensory signal.
  • sensing nodes such as automotive radar
  • various sensing nodes will face more and more interference.
  • a typical The interference may come from the mutual interference between radars. Therefore, interference suppression techniques are needed to reduce the interference between various sensing nodes.
  • the above method can avoid mutual interference between sensing nodes when the number of sensing nodes is small, but the effect is limited in a dense RF environment, that is, when the number of sensing nodes is large, there are still sensing nodes.
  • the detection probability of the target is reduced.
  • the present application provides a sensing signal transmission method and apparatus, which can coordinate the transmission of sensing signals using communication resources, which is beneficial to reduce interference between sensing nodes.
  • a sensing signal transmission method comprising: a terminal device sending a first message to a network device, the first message including information requesting the network device to allocate sensing resources to the terminal device; the terminal device receiving information from the A second message of the network device, where the second message includes the sensing resource allocated to the terminal device; the terminal device sends a sensing signal on the allocated sensing resource.
  • the terminal device in the embodiment of the present application is a synesthesia fusion node, that is, the terminal device has both a communication function and a perception function.
  • the first message is used to request the network device to allocate sensing resource information to the terminal device.
  • the sensing resource may be one or both of hardware resources, computing resources, time resources, space resources or frequency resources.
  • the first message may carry any known message that the terminal device communicates with the network device, and the first message may also be a newly set message for communication between the terminal device and the network device.
  • the embodiment of the present application does not limit the specific form of the first message.
  • the terminal device can perform interference-free transmission on the allocated sensing resources, which can effectively avoid intensive Signal interference in the network of synaesthesia fusion nodes further improves the detectable probability of the target.
  • the first message further includes information used to indicate that the terminal device has a sensing function.
  • the indication information used to indicate that the terminal device has a sensing function may specify the terminal device that may need to perform resource management for the network device, which can save the time overhead and computing overhead of the network device.
  • the second message further includes information used to instruct the network device to agree to enable the perception function of the terminal device.
  • the network device may notify the terminal device that it agrees to enable the perception function by sending the allocated perception resource to the terminal device.
  • the second message may also carry an instruction to allow the terminal device to enable the sensing function.
  • the terminal device After receiving the instruction to enable the sensing function, the terminal device receives the sensing resource allocated by the network device to the terminal device.
  • the first message further includes interference information and a category of the interference information.
  • the network device may perform corresponding interference cancellation according to the type of the interference information.
  • the sensing resources allocated to the terminal device include the first frame structure .
  • the sensing window of the uplink frame in the first frame structure is used to transmit the sensing signal, and the length L of the sensing window satisfies 2(T r -T c ) ⁇ L ⁇ M, where M is the length of the uplink frame.
  • the sensing receiver may be used to receive sensing signals at all distances, that is, regardless of whether Tr >T c or Tr ⁇ T c , a terminal device with a sensing receiver can receive sensing signals.
  • the sensing signal is transmitted in the sensing window in the communication uplink frame, which can improve the transmission efficiency and save the hardware overhead.
  • the terminal device sends a third message to the network device, where the third message includes information used to indicate whether the terminal device has a perception receiver.
  • the terminal device when it has a sensing receiver, it can also choose not to enable the receiving function of the sensing receiver, and still transmit the sensing signal at the position of the sensing window of the uplink frame, which can effectively transmit the sensing signal. purpose, and can save hardware overhead.
  • a sensing signal transmission method including: a network device receiving a first message from a terminal device, where the first message includes information requesting the network device to allocate sensing resources to the terminal device; the network device is based on the The first message is to allocate sensing resources to the terminal device; the network device sends the second message to the terminal device, where the second message includes the sensing resources allocated to the terminal device.
  • the first message further includes information used to indicate that the terminal device has a perception function.
  • the second message further includes information used to instruct the network device to allow the terminal device to enable the perception function.
  • the first message further includes interference information and a category of the interference information.
  • the sensing resource allocated to the terminal device includes the first A frame structure, the sensing window of the upstream frame in the first frame structure is used to transmit sensing signals, and the length L of the sensing window satisfies 2(T r -T c ) ⁇ L ⁇ M, where M is the length of the upstream frame length.
  • the terminal device sends a third message to the network device, where the third message includes information used to indicate whether the terminal device has a perception receiver.
  • a third aspect provides an apparatus for transmitting a sensory signal, including: a method for performing any one of the possible implementations of the first aspect.
  • the apparatus includes a module for executing the method in any one of the possible implementation manners of the first aspect above.
  • another apparatus for transmitting a sensory signal including: a method for performing any one of the possible implementations of the second aspect above.
  • the apparatus includes a module for executing the method in any of the possible implementation manners of the second aspect above.
  • the apparatus may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the above aspects, and the modules may be hardware circuits, software, or hardware circuits combined with software accomplish.
  • the device is a communication chip, which may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device that may include a transmitter for transmitting information or data and a receiver for receiving information or data.
  • the apparatus is used to perform the above-mentioned various aspects or the methods in any possible implementation manners of the various aspects, and the apparatus may be configured in the above-mentioned terminal equipment or network equipment, or the apparatus itself is the above-mentioned terminal equipment or Network equipment.
  • another sensory signal transmission device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the device executes any of the above A method in any of the possible implementations of an aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • the transmitter and receiver can be set separately or integrated together, which is called a transceiver (transceiver).
  • a communication system including a device for implementing the above-mentioned first aspect or any possible implementation method of the first aspect, and a device for implementing any of the above-mentioned second aspect or the second aspect Apparatus for possible implementation of the method.
  • the communication system may further include other devices that interact with the terminal device and/or the network device in the solutions provided in the embodiments of the present application.
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes a computer to execute any one of the above aspects.
  • a computer program also referred to as code, or instructions
  • a computer-readable medium stores a computer program (which may also be referred to as code, or instructions) that, when executed on a computer, causes the computer to perform any one of the above-mentioned aspects.
  • a computer program (which may also be referred to as code, or instructions) that, when executed on a computer, causes the computer to perform any one of the above-mentioned aspects.
  • a communication device comprising a communication interface and a logic circuit, the communication interface is used for sending a first message and/or receiving a second message, and the logic circuit is used for acquiring allocated sensing resources according to the second message.
  • another communication device comprising a communication interface and a logic circuit, the logic circuit is used for receiving a first message and/or sending a second message, and the logic circuit is used for allocating sensing resources according to the first message to execute The method in any one possible implementation manner of the second aspect above.
  • FIG. 1 is a schematic diagram of a perception application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of different fusion types of a synaesthesia fusion node provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a scenario in which various types of synaesthesia fusion nodes coexist according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of perception performance corresponding to different synaesthesia resources provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a perceptual interference scenario provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a sensing signal transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic interaction diagram of a sensing signal transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic interaction diagram of another sensing signal transmission method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a frame structure corresponding to a sensing signal transmission provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a frame structure corresponding to another sensing signal transmission provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a frame structure corresponding to still another sensing signal transmission provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a frame structure corresponding to another sensing signal transmission provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a sensing signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of another sensing signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of still another sensing signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a perception application scenario 100 provided by an embodiment of the present application.
  • perception has three typical application scenarios, namely infrastructure 110, autonomous driving 120, and portable device 130.
  • Different application scenarios have different types of perception services, and different types of perception services correspond to different business requirements.
  • the perception function can be used to perform tasks such as security inspections and track management in airports, tasks such as personnel inventory and personnel positioning in factories, and tasks such as imaging and environmental reconstruction in buildings.
  • autonomous driving devices with sensing functions can be used for tasks such as gesture recognition, in-vehicle behavior perception, collision avoidance sensing, traffic management, and pedestrian detection.
  • electronic devices with sensing functions can be used for health detection, riding helmets with sensing functions for safety prediction, detectors with sensing functions for life detection, and police scanners with sensing functions for evidence collection and other tasks.
  • the broad definition of the above perception is the use of electromagnetic waves to understand and detect objects and signals in space, which can include positioning, radar, imaging, action recognition, object recognition, and environmental reconstruction.
  • the same frequency points may be reused for sensing and communication, so it is necessary to coordinate communication resources and sensing resources.
  • the sensing nodes do not communicate with each other and cannot know the resource usage of each other.
  • the sensing nodes can communicate with each other and coordinate with each other, so as to avoid the reuse of frequency resources and achieve the purpose of reducing interference.
  • synaesthesia fusion nodes In the future network, the mutual fusion of communication nodes and sensing nodes (hereinafter referred to as synaesthesia fusion nodes) may occur, and there will be synaesthesia fusion nodes of various fusion types.
  • the above-mentioned synaesthesia fusion node refers to the fusion design of communication nodes and sensing nodes, which can realize the efficient design of communication and perception at the same time by sharing some resources, such as hardware resources, computing resources, space resources, time resources and frequency resources, etc. In order to achieve the purpose of reducing overhead such as power loss, site location, and cost.
  • FIG. 2 is a schematic diagram of different fusion types 200 of a synaesthesia fusion node provided by an embodiment of the present application. As shown in Figure 2, there can be three different fusion types.
  • synaesthesia fusion nodes can share hardware resources, radio frequency resources, baseband resources, time resources, and spectrum resources, etc., but the communication signals and sensing signals are processed separately.
  • the advantage of this fusion method is that it can transmit communication signals and sensing signals at the same time, and has strong anti-interference ability.
  • synaesthesia fusion nodes can share radio frequency resources and baseband resources.
  • communication signals and sensing signals can be processed through time division multiplexing or frequency division multiplexing. transmitted separately.
  • time division multiplexing the waveform of time division multiplexing as an example, the advantage of this fusion method is that the independence between the communication signal and the sensing signal is strong, and the interference between the communication node and the sensing node is small.
  • synaesthesia fusion nodes can share baseband resources, and communication signals and sensing signals are transmitted using their own resources in the spatial, time, and frequency domains.
  • FIG. 3 is a schematic diagram of a scenario in which various types of synaesthesia fusion nodes coexist according to an embodiment of the present application.
  • the synaesthesia fusion network 300 includes a cooperative mode 310 and a non-cooperative mode 320.
  • the cooperative mode 310 includes a base station 311, a radar 312, a radar 313, a terminal device 314, and a customer front-end device (for example, optical Cat) (customer premise equipment, CPE) 315 and target 316.
  • optical Cat customer premise equipment
  • the non-cooperative mode 320 includes a base station 321 , a vehicle 322 , a vehicle 323 , a vehicle 324 , a target 325 , and a terminal device 326 .
  • Black solid lines represent communication signals
  • black dashed lines represent sensing signals from different sensing nodes.
  • the base station 311 and the base station 321 are resource control control management centers, which can perform resource management for various types of synaesthesia fusion nodes.
  • the cooperation mode 310 includes a variety of different types of synaesthesia fusion nodes.
  • the terminal device 314 is a synaesthesia fusion node of the first fusion type described above, which has both a communication function and a perception function, and can be used at the same time or at the same time.
  • the base station 311 transmits a communication signal (as shown by the black solid line 10 ) and the sensing signal (as shown by the black dotted line 11 ), and can also transmit a sensing signal for sensing the target 317 (as shown by the black dotted line 12 ).
  • CPE 315 is a synaesthesia fusion node of the above-mentioned second fusion type, which can transmit communication signals on one time domain resource by means of space division multiplexing (as shown by the black solid line 13), and in another The sensing signal is transmitted on a time domain resource (as shown by the black dotted line 14 ), and the communication signal and the sensing signal are distinguished by means of time division multiplexing and transmitted separately.
  • the radar 312 is a protected sensing node, and the sensing signal (as shown by the black dotted line 27 ) sent by the radar 312 may be interfered by other sensing nodes, such as the radar 313 .
  • the radar 313 is a sensing node with aggressive interference, that is, the radar 313 is an unregistered device in the base station 311 . Therefore, the signals sent by the radar 313 are offensive interference to all terminal devices in the synaesthesia fusion network 300 (as shown by the black dotted lines 23, 24, 25, 26, 29).
  • the vehicle 322, the vehicle 323, and the vehicle 324 are synaesthesia fusion nodes of the third fusion type described above.
  • the communication signal and the sensing signal are transmitted separately and do not interfere with each other, but cannot know the time domain and air domain of the other party. Or the resource usage in the frequency domain, for example, when the communication signal and the sensing signal reuse the same frequency point, interference may occur.
  • Vehicle 322, vehicle 323 and vehicle 324 can communicate with base station 321 and transmit communication signals (as shown by black solid lines 14, 16, 17), but vehicle 322, vehicle 323 and vehicle 324 cannot communicate with each other, only Transmission of perception signals (shown as black dashed line 18), vehicle 322, vehicle 323 and vehicle 324 can also transmit sensing signals for sensing target 324 (shown as black dashed lines 19, 20, 21), at the same time, vehicle 324 The sensing signal of the vehicle 323 can also be received (as shown by the black dotted line 22 ), which can ensure the smooth reception of the sensing signal of the vehicle 323 .
  • the sensing function there is no sensing node in the terminal device 326, or the sensing function is not enabled, so it only has the communication function, and can transmit communication signals with the base station 311 (as shown by the black solid line 28).
  • synaesthesia resources correspond to different perceptual performances.
  • One or more, and the perceived performance is the embodiment of different perceived service types corresponding to different service requirements.
  • FIG. 4 is a schematic diagram of perception performance corresponding to different synaesthesia resources provided by an embodiment of the present application.
  • the synaesthesia resources may include one or more of resources in different dimensions such as space, time, frequency, and power.
  • the sensing overhead may include one or more of the number of beams, the number of antennas, the length of the sensing symbol, the length of the period, the bandwidth, the transmit power, and the power loss.
  • the sensing overhead can include the number of beams allocated for the synaesthesia fusion node, and the sensing performance can be described by the sensing angle range.
  • Different sensing service types require different sensing angle ranges. For example, for the collision avoidance sensing service type, a small sensing angle is required, while for the life rescue sensing service type, a large sensing angle is required.
  • the sensing overhead can include the length of sensing symbols allocated to synaesthesia fusion nodes, and the sensing performance can be described by the sensing azimuth accuracy.
  • Different sensing service types will require different sensing azimuth accuracy.
  • the service type of gesture recognition and perception based on portable devices requires moderate azimuth and orientation accuracy.
  • the bending posture of each finger can be directly collected, and the temporal and spatial parameters of the orientation between two fingers can be processed by data normalization and smoothing. .
  • the sensing overhead can include the sensing bandwidth allocated for the synaesthesia fusion node, and the sensing performance can be described by the sensing range accuracy.
  • Different sensing service types require different sensing range accuracy. For example, for the anti-collision sensing service type, high sensing range accuracy is required, while for the gesture recognition sensing service type, moderate sensing range accuracy is required.
  • the sensing overhead can include the sensing signal power allocated to the synesthesia fusion node, and the sensing performance can be described by the sensing distance range.
  • Different sensing service types require different sensing distance ranges. For example, a medium sensing distance range is required for security inspection and intrusion detection sensing business types, while a long sensing distance range is required for industrial and agricultural production sensing business types.
  • Different sensing service types will have different sensing performance requirements according to different priorities.
  • Table 1 is a schematic diagram of sensing performance corresponding to a type of sensing service with different priorities provided by the embodiment of the present application.
  • the anti-collision sensing service type requires a large sensing range, and has high requirements on accuracy and reliability. It is a high-priority service. It can be assigned a service with a small sensing angle, a long sensing distance, and a high sensing accuracy.
  • Synaesthesia resources; the type of life rescue sensing service also requires a large sensing range, and has high requirements on reliability. It is also a high-priority service. It can be assigned synesthesia resources with a large sensing angle, a long sensing distance, and a medium sensing accuracy. .
  • Security inspection and intrusion detection sensing services have high requirements on reliability, but moderate requirements on other sensing performance, which belong to medium-priority services, and can be assigned synaesthesia resources with large sensing angles, medium sensing distances, and moderate sensing accuracy;
  • the industrial and agricultural production sensing business types also have high requirements for reliability and belong to medium-priority services. Synesthesia resources with large sensing angles, long sensing distances, and medium sensing accuracy can be allocated to them.
  • Gesture recognition, health management and respiration monitoring perception service types have medium reliability requirements and are low-priority services. Synaesthesia resources with small sensing angles, small sensing distances, and moderate sensing accuracy can be allocated to them.
  • synaesthesia fusion nodes require different synaesthesia resources.
  • Interference faced by sensing nodes includes clutter and/or spoofing.
  • Clutter interference may cause the perception to fail to detect the target signal, reducing the probability of target detection.
  • Spoofing interference can cause perception to track false targets and lose the ability to track real targets, which has a serious impact on target recognition.
  • FIG. 5 is a schematic diagram of a perceptual interference scenario 500 provided by an embodiment of the present application.
  • scene 500 includes vehicle 510 , vehicle 520 , and vehicle 530 .
  • the vehicle 510 sends a sensing signal 540 to sense information such as the shape, speed, or position of the vehicle 520.
  • the sensing signal 540 reaches the vehicle 520, it will be reflected back, and the vehicle 510 can receive the reflected sensing signal 550 at this time.
  • the sensing signal 540 and the sensing signal 550 are actually the same signal, the difference is that the powers of the two sensing signals may be different.
  • the vehicle 530 may send the sensing signal 560 to sense other vehicles, but since the sensing signal 560 and the sensing signal 550 may be the same type of signals, the vehicle 510 cannot distinguish the sensing signal 550 and the sensing signal 560.
  • the sensing signal 560 is the interference signal of the sensing signal 550 .
  • perceptual interference mitigation techniques rely on avoidance methods, which can reduce interference by using narrow beams and electronically scanned beams to reduce the possibility of overlapping in spatial dimensions.
  • a typical field of view configured for a long-range automotive cruise control radar (ACC) is ⁇ 8°, however, strong interference is still received from the antenna side lobes; the slope of the chirp can be randomly varied, In this way, the interference caused by the overlap in the time dimension can be avoided; the start frequency and cut-off frequency of the chirp can be randomly changed to reduce the interference caused by the overlap in the frequency dimension.
  • the above possible implementations can avoid accidental synchronization of sensing resources to a certain extent, but in an environment with dense sensing nodes, more and more sensing signals need to be transmitted, and the above-mentioned avoidance methods will be limited, which will reduce target detection The probability.
  • a terminal device requests a network device to allocate sensing resources, and after receiving a request message from the terminal The device allocates sensing resources, and the terminal device transmits sensing signals on the allocated sensing resources.
  • the method uses network equipment as a resource management center, and coordinates the transmission of sensing signals by means of communication, which can effectively avoid overlapping of sensing resources, thereby eliminating mutual interference between sensing signals.
  • the terminal device in this embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of the public land mobile network (PLMN) equipment, etc., which are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Interconnection, the intelligent network of the interconnection of things and things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, a narrowband (narrow band) NB technology.
  • the terminal device may also be a terminal device using a device-to-device (device-to-device, D2D) communication technology.
  • D2D technology refers to a communication method that communicates directly between two peer terminal devices.
  • each terminal device node can send and receive signals, and has automatic routing (forwarding messages).
  • the terminal device may also include sensors such as smart printers, train detectors, and gas stations, and the main functions include collecting data (part of terminal devices), receiving control information and downlink data of network devices, and sending electromagnetic waves. , to transmit uplink data to the network device.
  • sensors such as smart printers, train detectors, and gas stations
  • the main functions include collecting data (part of terminal devices), receiving control information and downlink data of network devices, and sending electromagnetic waves. , to transmit uplink data to the network device.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA) It can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an IoT base station or a narrowband object in an IoT system.
  • the NB-IoT base station in the network (narrow band internet of things, NB-IoT) system can also be an evolved NodeB (evolved NodeB, eNB or eNodeB) in the LTE system, or a cloud radio access network (cloud radio access network).
  • the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, a network device in a 5G network, or a network device in a future evolved PLMN network, etc.
  • the application examples are not limited.
  • the network device in this embodiment of the present application may be a device in a wireless network, for example, a radio access network (radio access network, RAN) node that accesses a terminal to the wireless network.
  • RAN nodes are: base station, next-generation base station gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), home base station, baseband unit (baseband unit, BBU) , or an access point (access point, AP) in a WiFi system, etc.
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • a centralized unit centralized unit, CU
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • both the above-mentioned terminal equipment and network equipment can be synaesthesia fusion nodes, that is, they have both a communication function and a perception function.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c may represent: a, or b, or c, or a and b, or a and c, or b and c, or a, b and c, wherein a, b, c can be single or multiple.
  • FIG. 6 is a schematic flow chart of a sensory signal transmission method 600 provided by an embodiment of the present application.
  • the method can be applied to the scenario shown in FIG. 3 where synaesthesia fusion nodes of various fusion types coexist, but The embodiments of the present application are not limited to this.
  • the method 600 includes the following steps:
  • a terminal device sends a first message to a network device, where the first message includes information requesting the network device to allocate sensing resources to the terminal device.
  • the network device receives the first message from the terminal device.
  • the first message is used to request the network device to allocate sensing resource information to the terminal device.
  • the sensing resource may be one or both of hardware resources, computing resources, time resources, space resources or frequency resources.
  • the first message may carry any known message that the terminal device communicates with the network device, and the first message may also be a newly set message for communication between the terminal device and the network device.
  • the embodiment of the present application does not limit the specific form of the first message.
  • the terminal device may periodically send the first message to the network device, or may send the first message to the network device aperiodically.
  • the first message may also include a perceived service type of the terminal device, and the perceived service type may include gesture recognition, anti-collision sensing, security check and intruder detection, life rescue, industrial and agricultural production, health management and breathing detection. one or more of.
  • the first message may also include channel information that has been acquired by the communication node and/or the sensing node in the terminal device, and the channel information may include additive white gaussian noise (AWGN), small scale One or more of channel information such as fading, or large-scale fading.
  • AWGN additive white gaussian noise
  • the first message may further include information for indicating whether the perceived resource of the terminal device needs to be managed, so that the terminal device that needs to be managed for the resource can be specified for the network device, thereby avoiding additional computing overhead of the network device.
  • the first message may further include a fusion type of the synaesthesia fusion node, and the fusion type may include the three fusion types shown in different fusion types 200 in FIG. 2 in the embodiment of the present application, which will not be repeated here.
  • the network device allocates sensing resources to the terminal device based on the first message.
  • the network device may analyze and determine the information included in the first message.
  • the network device may coordinate the synaesthesia resources with each other, and allocate another frequency point to the terminal device. Frequency points, to avoid the occurrence of multiplexing of communication and sensing frequency points, so as to suppress interference.
  • the network device may allocate sensing resources to terminal devices according to a fixed resource management period, or may allocate sensing resources to terminal devices in real time.
  • the network device allocates sensing resources to the terminal device according to a fixed resource management period, the computing overhead of the network device can be saved and power consumption can be reduced; if the sensing resource is allocated to the terminal device in real time, it can meet the The business needs of the perceived business type with high real-time requirements.
  • the network device can learn the priority information corresponding to the perceived service type. For the perceived service type with high priority, for example, automatic driving.
  • network equipment can allocate corresponding sensing resources to autonomous vehicles in real time, instead of waiting for the resource management cycle of network equipment to allocate sensing resources such as frequency, distance, and power to autonomous vehicles.
  • the first message includes a perceived service type
  • different perceived service types will have different service requirements, and different service requirements correspond to different perceived performance KPIs
  • the perceived performance KPIs may include the perception angle and the perception accuracy. , perceived distance, and perceived reliability.
  • the network device can assign corresponding KPIs to the terminal device according to different service requirements.
  • the autonomous vehicle may need to perform long-distance sensing. Therefore, after determining that the sensing service type of the autonomous driving vehicle is the high-speed collision avoidance sensing service, the Allocate a long sensing distance to the self-driving vehicle; for the anti-collision sensing service in the low-speed automatic driving scenario, the self-driving vehicle may need to perform short-distance sensing, so the network device is judging that the sensing service type of the self-driving vehicle is low speed. After the collision avoidance sensing service, a short sensing distance will be allocated to the autonomous vehicle.
  • the network equipment then allocates corresponding information to the terminal equipment based on other acquired information, such as sensing service type, fusion type, and priority information. Perceived resources.
  • the network device may not consider the sensing resource usage of the terminal device, which can save the overhead of the network device.
  • the network device allocates corresponding sensing resources to the terminal device.
  • the communication node and the sensing node multiplex time-frequency-space resources, and when the reception and transmission of the sensing node are in the same geographical location, the network device needs to According to the first message, the corresponding frame structure is managed.
  • the network device sends a second message to the terminal device, where the second message includes the sensing resources allocated to the terminal device.
  • the terminal device receives the second message from the network device.
  • the second message may include a time domain resource allocation result, for example, a transmission time slot and/or a transmission period allocated to the terminal device for transmitting the sensing signal.
  • the second message may include an allocation result of spatial resources, for example, the number of beams and/or transmission angles allocated for the terminal device for transmitting sensing signals.
  • the second message may include an allocation result of frequency domain resources, for example, a transmission frequency band and/or transmission sub-carriers allocated to the terminal device for transmitting sensing signals.
  • the second message may include the allocation result of the power domain resources, for example, the transmit power and/or power loss, etc., allocated to the terminal device for transmitting the sensing signal.
  • the second message may further include the resource allocation result in the hardware dimension, for example, baseband hardware and/or radio frequency hardware.
  • the terminal device transmits a sensing signal on the allocated sensing resource.
  • the coordination of perception resources by means of communication and the management of perception by the network device are realized.
  • the purpose of the resource Transmitting sensing signals on the allocated sensing resources can effectively avoid mutual interference between synaesthesia fusion nodes of various fusion types.
  • the terminal device parses out the allocated sensing resources represented by different bytes in the second message, and the terminal device transmits the sensing signal based on the allocated sensing resources.
  • the synaesthesia fusion node is the terminal device, that is, the terminal device has both a communication function and a perception function.
  • the terminal equipment can perform interference-free transmission on the allocated sensing resources, which can effectively avoid intensive Signal interference in the network of synaesthesia fusion nodes further improves the detectable probability of the target.
  • the above only takes the method 600 as an example to describe the signaling interaction process of using a network device to manage perception resources in a communication manner.
  • the resource management process in the signaling interaction process will be described in detail with reference to FIG. 7 and FIG. 8 .
  • FIG. 7 is a schematic interaction diagram of a sensing signal transmission method provided by an embodiment of the present application.
  • the pan-terminal starts or periodically sends the sensing status control word through the communication resource.
  • the sensing state control word may include one or more of the following information: whether the pan-terminal has or enables the sensing function; the type of sensing function, such as one or more of frequency band, distance, transmit power or period, etc. ; Whether sensing resources need to be managed; Type of synaesthesia fusion; Communication or sensing acquired channel information and/or interference information and other environmental sensing result information; Whether the interference information contains offensive interference information.
  • the perception status control word may be sent through the first message in method 600 .
  • the length n of the sensing state control word may be any value, which is not limited in this embodiment of the present application.
  • the sensing resource management center can calculate the collected information, such as calculating how much transmit power is suitable for a specific pan-terminal to transmit the sensing signal, and for example, calculating whether the specific pan-terminal is suitable for Transmit sensing signals on specific frequency bands.
  • the perception resource management center may be one or more of a base station, a road side unit (RSU), a CPE, or an edge computing node.
  • the sensing resource control word may be sent to the pan-terminal through the communication resource, wherein the sensing resource control word includes the information of the sensing resource allocated for the pan-terminal.
  • the pan-terminal After receiving the sensing resource control word, the pan-terminal will parse the information of the sensing resource allocated for the pan-terminal contained in the sensing resource control word to obtain the allocated sensing resource, and then the pan-terminal will use the allocated sensing resource to conduct environmental perception.
  • the pan-terminal can use single-base, dual-base or distributed networking mode to receive sensing signals.
  • the single-base networking mode means that the receiving and sending of the sensing nodes are in the same geographical location.
  • the pan-terminal A is used to send the sensing signal to sense the target, and the pan-terminal A is still used to receive the sensing signal reflected back after the sensing target.
  • the dual-base networking mode means that the receiving and sending of the sensing nodes are not in the same geographical location.
  • the pan-terminal A is used to send the sensing signal to sense the target, but the pan-terminal B is used to receive the sensing target and then reflect the perception of the pan-terminal A. Signal.
  • the distributed networking mode is an extension of the dual-base networking mode.
  • pan-terminal A and pan-terminal B are used to send sensing signals to sense the target, but pan-terminal B is used to receive the sensing target and reflect the sensing signal of pan-terminal A.
  • pan-terminal C uses the pan-terminal C to receive the sensing signal of the pan-terminal B reflected back after the sensing target, and so on, and finally multiple pan-terminals will process the received sensing signals together through the data transmission system, so that the target can be more accurately perceived. , to improve the detection probability of the target.
  • the sensing state control word can be updated.
  • FIG. 7 specifically describes the process of using communication resources to coordinate sensing resources, and the pan-terminal can perform environment sensing based on the allocated sensing resources.
  • the perception accuracy may be affected.
  • intruder shielding and target protection can be performed through the perception resource management center to improve the perception accuracy of the target.
  • FIG. 8 further describes that intruder shielding and target protection may be performed for interference information.
  • FIG. 8 is a schematic interaction diagram of another sensing signal transmission method provided by an embodiment of the present application. As shown in FIG. 8 , the signaling interaction process thereof has been described in FIG. 7 , and details are not repeated here. As shown in Figure 8, when there is interference information in the environmental perception result of the pan-terminal, artificial blind zone technology and active cancellation technology can be used to shield intruders and protect targets.
  • Active cancellation technology is a signal blanking method that reduces the echo strength of the target received by the radar receiver by means of coherent deception.
  • This technology mainly uses coherent means to coherently cancel the target scattered field and the artificially introduced radiation field in the direction of the radar, so that the radar receiver is always at the zero point of the synthetic pattern, thereby suppressing the radar's reception of the target transmitted echo.
  • the artificial blind spot is to use the active transmission system to transmit coherent wave signals, change the directional function of the radar through the interference effect of the wave, and split the beam emission of the antenna, thereby creating an artificial blind spot in the designated target area, effectively reducing the radar irradiation power density and Effective receiving area, thereby reducing the detection distance of the radar.
  • the first message further includes information used to indicate that the terminal device has a sensing function.
  • the indication information used to indicate that the terminal device has a sensing function may specify the terminal device that may need to perform resource management for the network device, which can save the time overhead and computing overhead of the network device.
  • the first message may further include information used by the terminal device to request to enable the sensing function.
  • the network device may calculate the current overhead used for environment perception, so as to decide whether to allow the terminal device to enable the perception function.
  • the network device may reject the request of the terminal device to enable the sensing function, which can relieve the load pressure of the network device.
  • the network device may not send any message to the terminal device, or may send a fourth message to the terminal device, where the fourth message includes the network device rejecting the terminal device to enable the function.
  • Information about the perception function if the network device rejects the request of the terminal device to enable the sensing function, the network device may not send any message to the terminal device, or may send a fourth message to the terminal device, where the fourth message includes the network device rejecting the terminal device to enable the function.
  • Information about the perception function may be used to the network device.
  • the second message further includes information used to instruct the network device to allow the terminal device to enable the perception function.
  • the network device may notify the terminal device that it agrees to enable the perception function by sending the allocated perception resource to the terminal device.
  • the second message may also carry an instruction to allow the terminal device to enable the sensing function.
  • the terminal device After receiving the instruction to enable the sensing function, the terminal device receives the sensing resource allocated by the network device to the terminal device.
  • the first message further includes interference information and a category of the interference information.
  • the interference information may be classified into intra-system interference and/or extra-system interference according to categories.
  • the intra-system interference is usually co-channel interference, that is, the phase interference in the LTE system Interference generated by terminal equipment using the same frequency resources in adjacent cells; the interference outside the system is usually inter-frequency interference, that is, interference generated by terminal equipment using other frequencies, such as radio and television signals, vehicle radar signals, etc., which are transmitted on designated channels.
  • inter-frequency interference that is, interference generated by terminal equipment using other frequencies, such as radio and television signals, vehicle radar signals, etc.
  • the interference information can also be divided into offensive interference and non-aggressive interference according to the category.
  • the offensive interference is the interference signal emitted by the terminal equipment that has not been registered at the network device
  • the non-aggressive interference is the interference signal that is registered at the network device.
  • the interference signal from the terminal equipment that has passed through is illustrated in FIG. 3 .
  • the radar 313 shown in FIG. 3 has not been registered with the base station 311 , so the signals emitted by the radar 313 are offensive jamming to all terminal devices in the synaesthesia fusion network 300 .
  • the network device after receiving the interference information and the type of the interference information in the first message, the network device will perform corresponding interference cancellation according to the type of the interference information.
  • active cancellation technology and artificial blind zone technology can be used for interference cancellation.
  • the terminal device sends a third message to the network device, where the third message includes information used to indicate whether the terminal device has a sensing receiver.
  • the network device can manage the corresponding frame structure for the terminal device according to whether the terminal device has a sensing receiver.
  • sensing receiver refers to whether the terminal device has a sensing receiving module or sensing receiving unit specially used for sensing.
  • the terminal device does not have a sensing receiver, other ways can still be used to complete the sensing function, for example, the following described receiver using communication can be used to complete the sensing function.
  • the sensing resources allocated to the terminal device include a first frame structure.
  • the sensing window of the uplink frame is used to transmit the sensing signal, and the length L of the sensing window satisfies 2(T r -T c ) ⁇ L ⁇ M, where M is the length of the uplink frame.
  • the length S of the sensing signal satisfies S ⁇ L
  • the sensing window can transmit various other types of signals, such as pilot signals, orthogonal frequency division multiplexing (orthogonal frequency division multiplexing), in addition to transmitting the sensing signal. frequency division multi) symbols, etc.
  • signals such as pilot signals, orthogonal frequency division multiplexing (orthogonal frequency division multiplexing), in addition to transmitting the sensing signal. frequency division multi) symbols, etc.
  • various types of signals can be used to complete the task of sensing the target, and the sensing result is transmitted in the sensing window.
  • the sensing receiver may be used to receive sensing signals at all distances, that is, regardless of whether Tr >T c or Tr ⁇ T c , a terminal device with a sensing receiver can receive sensing signals.
  • the terminal device when it has a sensing receiver, it can also choose not to enable the receiving function of the sensing receiver, and still transmit the sensing signal at the position of the sensing window of the uplink frame, which can effectively transmit the sensing signal. purpose, and can save hardware overhead.
  • the terminal device is a synaesthesia fusion node of the first fusion type
  • the communication node and the sensing node multiplex time-frequency-space resources, and when the sensing node receives and transmits in the same geographical location
  • the network device needs to manage the frame structure in the resource allocation result according to the first message, so as to realize the purpose of transmitting the sensing signal.
  • FIG. 9 is a schematic diagram of a frame structure corresponding to sensing signal transmission provided by an embodiment of the present application.
  • the communication is in a time division duplex (time division duplex, TDD) mode
  • the synaesthesia fusion node is a terminal device.
  • the end device does not have a perceptual receiver.
  • TDD time division duplex
  • the following includes schematic diagrams of frame structures under two perceptual distances: Tr >T c and Tr ⁇ T c .
  • the base station sends the frame structure a to the terminal device, and the terminal device receives the frame structure b after a delay of Tc .
  • the terminal device sends the frame structure c to the base station by a timing advance (TA) of 2T c , so that the communication frame structure i of the terminal device is obtained after another T c delay.
  • TA timing advance
  • the uplink data sent by the terminal device is also used to perceive the target.
  • the target will receive the frame structure d after the Tr delay.
  • the terminal device receives the frame structure e reflected by the target after the Tr delay. In this way, a total of 2T r delay is required for the terminal device to perceive the frame structure h from sending to receiving.
  • the terminal device When receiving the downlink frame in the frame structure i sent by the base station, the terminal device also receives the sensing signal in the sensing frame structure h (that is, the uplink data in the frame structure h). It should be understood that since the uplink data will be reflected back as a sensing signal after reaching the target, therefore, the sensing signal is actually the uplink data sent by the terminal device.
  • the sensing signal and the downlink frame in the frame structure i received by the terminal equipment have a time overlap part (as shown by the shaded part in the frame structure h), the overlapping part is the sensing window, the length L of the sensing window satisfies 2(T r -T c ) ⁇ L ⁇ M, where M is the length of the uplink frame, so the sensing signal can be transmitted in the position of the sensing window, and use A receiver for communication in a terminal device receives the sensing signal.
  • the target will receive the frame structure f after the Tr delay time.
  • the terminal device will receive the frame structure after Tr The frame structure g reflected back by the target, in this way, the terminal device needs a total of 2T r delay from sending to receiving to perceive the frame structure j.
  • the terminal device When receiving the downlink frame in the frame structure i sent by the base station, the terminal device also receives the sensing signal in the sensing frame structure j (that is, the uplink frame in the frame structure j).
  • the sensing signal and the downlink frame in the frame structure i received by the terminal device have no time overlapping part, so there is no sensing window.
  • FIG. 9 describes the frame structure management process corresponding to two different sensing distances ( ie , Tr > T c and Tr ⁇ T c ) by taking the terminal device without a sensing receiver as an example.
  • the synaesthesia fusion node is a terminal device and the terminal device does not have a perception receiver
  • there is a perception window in the uplink frame sent by the terminal device which can be used to transmit the perception signal.
  • the terminal device can perform long-distance perception (that is, T r >T c ), detect the target beyond the communication distance.
  • T r >T c there is no sensing window in the uplink frame sent by the terminal device, so short-range sensing cannot be performed, and a sensing receiver needs to be used to receive sensing signals.
  • FIG. 10 takes FIG. 10 as an example to describe in detail the frame structure management process corresponding to two different sensing distances when the terminal device has a sensing receiver.
  • FIG. 10 is a schematic diagram of a frame structure corresponding to another sensing signal transmission provided by an embodiment of the present application.
  • the communication is in the TDD mode
  • the synaesthesia fusion node is a terminal device
  • the terminal device has a sensing receiver.
  • the following includes schematic diagrams of frame structures under two perceptual distances: Tr >T c and Tr ⁇ T c .
  • the base station sends the frame structure a to the terminal device, and the terminal device receives the frame structure b after a delay of Tc .
  • the terminal device sends the frame structure c to the base station by a TA of 2T c in advance, so that the communication frame structure e of the terminal device will be obtained after a delay of T c .
  • the terminal device since the terminal device is a synaesthesia fusion node, the uplink data sent by the terminal device is also used to perceive the target.
  • the terminal device After the terminal device sends the frame structure c, the terminal device will receive the induction frame structure d after a delay of 2T r .
  • the terminal device When receiving the downlink frame in the communication frame structure e, the terminal device also receives the sensing signal in the sensing frame structure d (that is, the uplink data in the frame structure d).
  • the perceptual receiver can be used to receive perceptual signals beyond the communication distance (ie, T r >Tc).
  • T r the communication distance
  • the sensing receiver there is a sensing window in the frame structure g received by the sensing receiver (as shown by the shaded part in the frame structure g), and the length of the sensing window is equal to the length of the uplink frame in the sensing frame structure d received by the terminal device.
  • the device needs to vacate the time slot for transmitting uplink data to transmit the sensing signal.
  • the terminal device since the terminal device is a synaesthesia fusion node, the uplink data sent by the terminal device is also used to perceive the target. After the terminal device sends the frame structure c, the terminal device will receive the perception frame structure f after a delay of 2T r .
  • the terminal device When receiving the downlink frame in the communication frame structure e, the terminal device also receives the sensing signal in the sensing frame structure f (that is, the uplink data in the frame structure d).
  • the perceptual receiver can be used to receive a perceptual signal within a communication distance (ie, T r ⁇ T c ).
  • T r ⁇ T c
  • the sensing window there is a sensing window in the frame structure h received by the sensing receiver (as shown by the shaded part in the frame structure h), and the length of the sensing window is equal to the length M of the uplink frame in the sensing frame structure f received by the terminal device.
  • the terminal equipment needs to vacate the time slot for transmitting uplink data to transmit the sensing signal.
  • the terminal device may also choose not to enable the receiving function of the sensing receiver, and still transmit the sensing signal in the manner shown in FIG. 7 .
  • the terminal device when the terminal device has a sensing receiver, it can receive sensing information at all distances without affecting the data transmission rates of uplink and downlink communication.
  • the above Figures 9 and 10 take the synaesthesia fusion node as the terminal device as an example, and describe the process of managing the frame structure with and without the sensing receiver.
  • the frame structure management process when the synesthesia fusion node is a network device.
  • FIG. 11 is a schematic diagram of a frame structure corresponding to still another sensing signal transmission provided by an embodiment of the present application.
  • the communication is in TDD mode
  • the synaesthesia fusion node is a base station
  • the base station does not have a sensing receiver.
  • the following includes schematic diagrams of frame structures under two perceptual distances: Tr >T c and Tr ⁇ T c .
  • the base station described in the embodiments of the present application does not have a sensing receiver, which means that the base station does not have a sensing receiving module or sensing receiving unit specially used for sensing.
  • the base station does not have a sensing receiver, other methods can still be used to complete the sensing function.
  • the sensing function can be implemented by using the receiver used by the base station for communication described in this embodiment.
  • the base station sends frame structure a to the terminal device, and the terminal device receives frame structure b after Tc delay.
  • the base station will receive the frame structure d after a delay of T c . In this way, the communication frame structure j of the base station can be obtained.
  • the base station since the base station is a synaesthesia fusion node, the downlink data sent by the base station is also used for sensing the target. After the base station sends the frame structure a, the target will receive the frame structure e after the Tr delay, and the base station will receive the frame structure f reflected by the target after the Tr delay. In this way, the base station perceives the frame structure i from sending to receiving. A total of 2T r delay is required.
  • the base station When the base station receives the uplink data in the frame structure c sent by the terminal device, it also receives the sensing signal in the sensing frame structure i (that is, the downlink data in the frame structure i). It should be understood that since the downlink data will be reflected back as a sensing signal after reaching the target, the sensing signal is actually the downlink data sent by the base station.
  • the sensing signal and the uplink frame in the communication frame structure j of the base station have a time overlapping part (as shown by the shaded part in the frame structure i), and the overlapping part is is the sensing window, and the length L of the sensing window satisfies 2(T c -T r )+T switch ⁇ L ⁇ N, where N is the length of the downlink frame, and T switch is the switching time required for switching the downlink frame to the uplink frame , so the sensing signal can be transmitted in the position of the sensing window and received using the receiver for communication in the base station.
  • the base station when the synesthesia fusion node is a base station and the base station does not have a sensing receiver, the base station will first notify the terminal device to delay sending uplink data, and the base station can transmit the sensing signal in the sensing window before receiving the transmission from the terminal device. upstream data. This improves the transmission efficiency of the sensing signal and reduces hardware overhead since no additional sensing receiver is required.
  • the target will receive the frame structure g after the Tr delay, and the base station will receive the frame structure h reflected by the target after the Tr delay. , in this way, the base station needs a total of 2T r delay from sending to receiving the perception frame structure k.
  • the base station When receiving the uplink data in the frame structure c sent by the terminal device, the base station also receives the sensing signal in the sensing frame structure k (ie, the downlink data in the frame structure k). It should be understood that since the downlink data will be reflected back as a sensing signal after reaching the target, the sensing signal is actually the downlink data sent by the base station.
  • the sensing signal and the uplink frame in the communication frame structure j of the base station have no time overlap, so there is no sensing window in which the sensing signal can be transmitted.
  • FIG. 11 describes the frame structure management process corresponding to two different sensing distances ( ie , Tr >T c and Tr ⁇ T c ) by taking the base station without a sensing receiver as an example.
  • the synaesthesia fusion node is a base station and the base station does not have a sensing receiver
  • there is a sensing window in the downlink frame sent by the base station which can be used to transmit sensing signals.
  • the base station can perform long-distance sensing (that is, T r >T c ), the target outside the communication distance is detected.
  • T r >T c there is no sensing window that can be used to transmit sensing signals, and short-range sensing cannot be performed, so a sensing receiver needs to be used to receive sensing signals.
  • FIG. 12 takes FIG. 12 as an example to describe in detail the frame structure management process corresponding to two different sensing distances in the case that the base station has a sensing receiver.
  • the base station described in the embodiments of the present application has a sensing receiver, which means that the base station has a sensing receiving module or sensing receiving unit specially used for sensing.
  • the sensing receiver can be adopted to complete the sensing function.
  • FIG. 12 is a schematic diagram of a frame structure corresponding to another sensing signal transmission provided by an embodiment of the present application.
  • the communication is in TDD mode
  • the synaesthesia fusion node is a base station
  • the base station has a sensing receiver.
  • the following includes schematic diagrams of frame structures under two perceptual distances: Tr >T c and Tr ⁇ T c .
  • the base station sends frame structure a to the terminal device, and the terminal device receives frame structure b after Tc delay.
  • the base station will receive the frame structure d after a delay of T c . In this way, the communication frame structure j of the base station can be obtained.
  • the base station since the base station is a synaesthesia fusion node, the downlink data sent by the base station is also used for sensing the target. Therefore, when the base station receives the uplink frame in the communication frame structure e, it will also receive the sensing signal in the sensing frame structure d (that is, the downlink data in the frame structure d) after a delay of 2T r .
  • the sensing receiver can be used to receive sensing signals beyond the communication distance (ie, T r >T c ).
  • the sensing receiver there is a sensing window in the frame structure g received by the sensing receiver (as shown by the shaded part in the frame structure g), and the length of the sensing window is equal to the length of the downlink frame in the sensing frame structure d received by the base station.
  • the time slots for transmitting downlink data are vacated to transmit sensing signals.
  • the base station since the base station is a synaesthesia fusion node, the downlink data sent by the base station is also used for sensing the target. Therefore, when the base station receives the uplink frame in the communication frame structure e, it will also receive the sensing signal in the sensing frame structure f (ie, the downlink data in the frame structure f) after a delay of 2T r .
  • the sensing receiver can be used to receive sensing signals within a communication distance (ie, T r ⁇ T c ).
  • a communication distance ie, T r ⁇ T c
  • the sensing receiver can be used to receive sensing signals within a communication distance (ie, T r ⁇ T c ).
  • the sensing window is equal to the length N of the downlink frame in the sensing frame structure f received by the base station.
  • the time slot for transmitting downlink data needs to be vacated to transmit sensing signals.
  • the receiving and sending of sensing signals belong to the single-base networking mode. In addition, it can also receive dual-base or distributed networking modes.
  • the sensing signal is not limited in this embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a sensing signal transmission apparatus 1300 provided by an embodiment of the present application.
  • the apparatus 1300 may be a terminal device or a chip in the terminal device.
  • the apparatus 1300 includes: a sending module 1310 and a receiving module 1320 .
  • the sending module 1310 is configured to: send a first message to the network device, where the first message includes information requesting the network device to allocate sensing resources to the device; the receiving module 1320 is configured to: receive the second message from the network device, The second message includes the sensing resource allocated to the terminal device; the sending module 1310 is further configured to: send a sensing signal on the allocated sensing resource.
  • the first message further includes information used to indicate that the device has a sensing function.
  • the second message further includes information used to indicate that the network device agrees to enable the awareness function of the device.
  • the first message further includes interference information and a category of the interference information.
  • the sensing resource allocated to the device includes a first frame structure, in which the The sensing window of the uplink frame is used to transmit the sensing signal, and the length L of the sensing window satisfies 2(T r -T c ) ⁇ L ⁇ M, where M is the length of the uplink frame.
  • the sending module 1310 is configured to: send a third message to the network device, where the third message includes information used to indicate whether the apparatus has a perception receiver.
  • the apparatus 1300 may be specifically an application of the terminal device in the foregoing embodiment, or the functions of the application of the terminal device in the foregoing embodiment may be integrated in the apparatus 1300 .
  • the above functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned receiving module 1320 may be a communication interface, such as a transceiver interface.
  • the apparatus 1300 may be configured to execute each process and/or step corresponding to the application of the terminal device in the foregoing method embodiments.
  • FIG. 14 is a schematic block diagram of another sensing signal transmission apparatus 1400 provided by an embodiment of the present application.
  • the apparatus 1400 may be a network device or a chip in the network device.
  • the apparatus 1400 includes: a receiving module 1410 , a processing module 1420 and a sending module 1430 .
  • the receiving module 1410 is configured to: receive a first message from the terminal device, where the first message includes information requesting the device to allocate sensing resources to the terminal device; the processing module 1420 is configured to: based on the first message, provide the terminal The device allocates sensing resources; the sending module 1430 is configured to: send the second message to the terminal device, where the second message includes the sensing resources allocated to the terminal device.
  • the first message further includes information used to indicate that the device has a sensing function.
  • the second message further includes information used to indicate that the network device agrees to enable the awareness function of the device.
  • the first message further includes interference information and a category of the interference information.
  • the sensing resource allocated to the device includes a first frame structure, in which the The sensing window of the uplink frame is used to transmit the sensing signal, and the length L of the sensing window satisfies 2(T r -T c ) ⁇ L ⁇ M, where M is the length of the uplink frame.
  • the receiving module 1410 is configured to: receive a third message from the terminal device, where the third message includes information used to indicate whether the terminal device has a sensing receiver.
  • the apparatus 1400 may be specifically the network device in the foregoing embodiment, or the functions of the network device in the foregoing embodiment may be integrated in the apparatus 1400 .
  • the above functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned receiving module 1410 may be a communication interface, such as a transceiver interface.
  • the apparatus 1400 may be configured to execute each process and/or step corresponding to the network device in the foregoing method embodiments.
  • module may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a dedicated processor, or a group of processors, etc.) and memory, merge logic, and/or other suitable components to support the described functions.
  • ASIC application specific integrated circuit
  • firmware programs eg, a shared processor, a dedicated processor, or a group of processors, etc.
  • the device 1300 and the device 1400 in FIG. 13 and FIG. 14 may also be a chip or a chip system, for example, a system on chip (system on chip, SoC).
  • the receiving module 1410 may be a transceiver circuit of the chip, which is not limited herein.
  • the perceptual receiver described above can be integrated in the apparatus 1300 shown in FIG. 13 (the apparatus 1300 is embodied as a terminal device) and/or the apparatus 1400 shown in FIG. 14 (the apparatus 1400 is embodied as a network device), or May exist alone, coupled with device 1300 and/or device 1400 via a transmission line or wirelessly.
  • FIG. 15 shows a schematic block diagram of still another sensing signal transmission apparatus 1500 provided by an embodiment of the present application.
  • the apparatus 1500 includes a processor 1510 , a transceiver 1520 and a memory 1530 .
  • the processor 1510, the transceiver 1520 and the memory 1530 communicate with each other through an internal connection path, the memory 1530 is used to store instructions, and the processor 1510 is used to execute the instructions stored in the memory 1530 to control the transceiver 1520 to send signals and / or receive signals.
  • the apparatus 1500 may be specifically a terminal device or a network device in the above-mentioned embodiments, or the functions of the terminal equipment or network equipment in the above-mentioned embodiments may be integrated in the apparatus 1500, and the apparatus 1500 may be used to execute the above-mentioned method embodiments.
  • the memory 1530 may include read only memory and random access memory and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 1510 may be configured to execute the instructions stored in the memory, and when the processor executes the instructions, the processor may execute various steps and/or processes corresponding to the terminal device or the network device in the foregoing method embodiments.
  • the processor 1510 may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits ( ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the present application also provides a communication device on the side of a terminal device, including a communication interface and a logic circuit, where the communication interface is used for sending a first message and/or receiving a second message, and the logic circuit is used for obtaining an allocation according to the second message
  • the perception resource performs the method in any one of the possible implementation manners of the first aspect above.
  • the present application also provides a communication device on the network device side, including a communication interface and a logic circuit, where the communication interface is used for receiving a first message and/or sending a second message, and the logic circuit is used for allocating awareness according to the first message
  • the resource executes the method in any of the possible implementations of the second aspect above.
  • the implementation of the present application also provides a communication system, and the communication system may include the terminal device shown in FIG. 13 (the apparatus 1300 is embodied as a terminal device).
  • the implementation of the present application also provides a communication system, and the communication system may include the network device shown in FIG. 14 (the apparatus 1400 is embodied as a network device).
  • the implementation of the present application also provides a communication system, which may include the terminal equipment shown in FIG. 15 (the apparatus 1500 is embodied as terminal equipment) or the network equipment shown in FIG. 15 (the apparatus 1500 is embodied as network equipment).
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种感知信号传输方法和装置,能够使用通信资源协调感知信号的传输,有利于降低感知节点之间的干扰。该方法包括:终端设备向网络设备发送第一消息,该第一消息包括请求该网络设备为该终端设备分配感知资源的信息;该网络设备接收来自该终端设备的该第一消息;该网络设备基于该第一消息,为该终端设备分配感知资源;该网络设备向该终端设备发送第二消息,该第二消息包括分配给终端设备的感知资源;该终端设备接收来自该网络设备的该第二消息;该终端设备在该分配的感知资源上发送感知信号。

Description

感知信号传输方法和装置
本申请要求于2020年11月11日提交中国专利局、申请号为202011257952.3、申请名称为“感知信号传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种感知信号传输方法和装置。
背景技术
随着汽车雷达等感知节点越来越广泛的应用,大量的感知射频频谱将城市变成了一个“电磁波空间”,各种感知节点将面临越来越多的干扰,以汽车雷达为例,典型的干扰可能来自于雷达之间的相互干扰。因此,需要采用干扰抑制技术来减少各种感知节点之间的干扰。
目前,基本的感知干扰抑制技术大多依赖于规避方法,通过降低空间、时间和频率等感知资源重叠的概率来进行干扰抑制。例如,使用窄波束和电子扫描波束以减少空间上的干扰;将线性调频连续波的斜率随机变化以减少时间上的干扰;将线性调频连续波的开始频率和截止频率随机变化以减少频率上的干扰。
然而,上述方法在感知节点的数量较少的情况下可以避免感知节点之间的相互干扰,但是在密集的射频环境中却效果有限,即感知节点数量较多的情况下,仍存在感知节点之间的相互干扰的情况,降低了目标的可检测概率。
发明内容
本申请提供一种感知信号传输方法和装置,能够使用通信资源协调感知信号的传输,有利于降低感知节点之间的干扰。
第一方面,提供了一种感知信号传输方法,包括:终端设备向网络设备发送第一消息,该第一消息包括请求该网络设备为该终端设备分配感知资源的信息;该终端设备接收来自该网络设备的第二消息,该第二消息包括分配给该终端设备的感知资源;该终端设备在该分配的感知资源上发送感知信号。
应理解,本申请实施例中的终端设备为通感融合节点,即该终端设备既具有通信功能,又具有感知功能。
本申请实施例中,第一消息用于请求该网络设备为终端设备分配感知资源的信息。其中,感知资源可以为硬件资源、计算资源、时间资源、空间资源或频率资源中的一种或所中。第一消息可以携带终端设备与网络设备通信的已知的任意消息,第一消息也可以是新设置的终端设备与网络设备通信的消息,本申请实施例对第一消息的具体形式不作限定。
本申请实施例的感知信号传输方法,通过使用网络设备作为资源管理中心,并以通信的方式来协调感知资源的分配,终端设备可以在分配的感知资源上进行无干扰传输,能有 效避免具有密集通感融合节点的网络中的信号干扰,进一步提高了目标的可检测概率。
结合第一方面,在第一方面的某些实现方式中,该第一消息还包括用于指示该终端设备具有感知功能的信息。
本申请实施例中,该用于指示终端设备具有感知功能的指示信息可以为网络设备明确可能需要进行资源管理的终端设备,这样可以节省网络设备的时间开销和计算开销。
结合第一方面,在第一方面的某些实现方式中,该第二消息中还包括用于指示网络设备同意终端设备开启感知功能的信息。
在本申请实施例中,可选地,网络设备可以通过向终端设备发送分配的感知资源的方式告知终端设备同意开启感知功能。
可选地,该第二消息中也可以携带同意终端设备开启感知功能的指令,终端设备在接收到该指令开启感知功能之后,再接收网络设备为终端设备分配的感知资源。
结合第一方面,在第一方面的某些实现方式中,该第一消息中还包括干扰信息以及干扰信息的类别。
在本申请实施例中,可选地,网络设备在接收到第一消息中的干扰信息以及干扰信息的类别之后,可以根据干扰信息的类别,进行相应的干扰消除。
结合第一方面,在第一方面的某些实现方式中,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,分配给终端设备的感知资源包括第一帧结构,该第一帧结构中的上行帧的感知窗口用于传输感知信号,该感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为该上行帧的长度。
在本申请实施例中,感知接收器可用于全距离接收感知信号,即无论T r>T c,还是T r≤T c,具有感知接收器的终端设备均可接收感知信号。并且在通信上行帧中的感知窗口来传输感知信号,可以提高传输效率,节省硬件开销。
结合第一方面,在第一方面的某些实现方式中,该终端设备向该网络设备发送第三消息,该第三消息包括用于指示该终端设备是否具有感知接收器的信息。
可选地,当终端设备具有感知接收器时,也可以选择不开启该感知接收器的接收功能,仍然在该上行帧的感知窗口的位置来传输感知信号,这样可以起到高效传输感知信号的目的,并能够节省硬件开销。
第二方面,提供了一种感知信号传输方法,包括:网络设备接收来自终端设备的第一消息,该第一消息包括请求该网络设备为该终端设备分配感知资源的信息;该网络设备基于该第一消息,为该终端设备分配感知资源;该网络设备向该终端设备发送该第二消息,该第二消息包括分配给该终端设备的感知资源。
结合第二方面,在第二方面的某些实现方式中,该第一消息还包括用于指示该终端设备具有感知功能的信息。
结合第二方面,在第二方面的某些实现方式中,该第二消息还包括用于指示该网络设备同意该终端设备开启感知功能的信息。
结合第二方面,在第二方面的某些实现方式中,该第一消息还包括干扰信息以及所述干扰信息的类别。
结合第二方面,在第二方面的某些实现方式中,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,该分配给所述终端设备的感知资源包括第一帧结构,该第 一帧结构中的上行帧的感知窗口用于传输感知信号,该感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为该上行帧的长度。
结合第二方面,在第二方面的某些实现方式中,该终端设备向该网络设备发送第三消息,该第三消息包括用于指示该终端设备是否具有感知接收器的信息。
第三方面,提供了一种感知信号传输装置,包括:用于执行上述第一方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面中任一种可能的实现方式中的方法的模块。
第四方面,提供了另一种感知信号传输装置,包括:用于执行上述第二方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面中任一种可能的实现方式中的方法的模块。
在一种设计中,该装置可以包括执行上述各个方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
在另一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
在另一种设计中,该装置用于执行上述各个方面或各个方面任意可能的实现方式中的方法,该装置可以配置在上述终端设备或网络设备中,或者该装置本身即为上述终端设备或网络设备。
第五方面,提供了另一种感知信号传输装置,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该装置执行上述任一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该通信设备还包括,发射机(发射器)和接收机(接收器),发射机和接收机可以分离设置,也可以集成在一起,称为收发机(收发器)。
第六方面,提供了一种通信系统,包括用于实现上述第一方面或第一方面的任一种可能实现的方法的装置,以及用于实现上述第二方面或第二方面的任一种可能实现的方法的装置。
在一个可能的设计中,该通信系统还可以包括本申请实施例所提供的方案中与终端设备和/或网络设备进行交互的其他设备。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信装置,包括通信接口和逻辑电路,该通信接口用于发送第 一消息和/或接收第二消息,该逻辑电路用于根据该第二消息获取分配的感知资源执行上述第一方面中任一种可能实现方式中的方法。
第十方面,提供了另一种通信装置,包括通信接口和逻辑电路,该逻辑电路用于接收第一消息和/或发送第二消息,该逻辑电路用于根据该第一消息分配感知资源执行上述第二方面中任一种可能实现方式中的方法。
附图说明
图1是本申请实施例提供的一种感知应用场景的示意图;
图2是本申请实施例提供的一种通感融合节点的不同融合类型的示意图;
图3是本申请实施例提供的一种各种类型的通感融合节点共存的场景示意图;
图4是本申请实施例提供的一种不同通感资源对应的感知性能示意图;
图5是申请实施例提供的一种感知干扰场景的示意图;
图6是本申请实施例提供的一种感知信号传输方法的示意性流程图;
图7是本申请实施例提供的一种感知信号传输方法的示意性交互图;
图8是本申请实施例提供的另一种感知信号传输方法的示意性交互图;
图9是本申请实施例提供的一种感知信号传输对应的帧结构示意图;
图10是本申请实施例提供的另一种感知信号传输对应的帧结构示意图;
图11是本申请实施例提供的再一种感知信号传输对应的帧结构示意图;
图12是本申请实施例提供的又一种感知信号传输对应的帧结构示意图;
图13是本申请实施例提供的一种感知信号传输装置的示意性框图;
图14是本申请实施例提供的另一种感知信号传输装置的示意性框图;
图15是本申请实施例提供的再一种感知信号传输装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
下面将结合附图,对本申请中的技术方案进行描述。
示例性地,图1是本申请实施例提供的一种感知应用场景100的示意图。如图1所示,感知具有三大典型应用场景,分别为基础设施110、自动驾驶120和便携式设备130,不同的应用场景有不同的感知业务类型,不同的感知业务类型对应不同的业务需求。
对于基础设施110场景,可以利用感知功能在机场进行安全检查、轨道管理等任务,在工厂进行人员清点和人员定位等任务,在建筑物中进行成像和环境重构等任务。
对于自动驾驶120场景,可以利用具有感知功能的自动驾驶设备进行姿势识别、车内行为感知、防撞感应、交通管理和行人探测等任务。
对于便携式设备130场景,可以利用具有感知功能的电子设备进行健康检测、具有感知功能的骑行头盔进行安全预测、具有感知功能的探测仪进行生命探测和具有感知功能的警用扫描仪进行证据搜集等任务。
上述感知的广泛定义是使用电磁波了解和探知空间中的物体和信号等,可以包含定位、雷达、成像、动作识别、物体识别和环境重构等含义。
目前,由于频谱资源十分有限,还可能出现感知与通信复用相同的频点的情况,因此 需要进行通信资源和感知资源的相互协调。在非合作模式下,感知节点相互之间不进行通信,无法获知对方的资源使用情况。但在合作模式下,感知节点之间可以相互通信,相互协调,以此可以避免频率资源复用的情况,进而达到减小干扰的目的。
在未来的网络中,可能会出现通信节点和感知节点的相互融合(以下称为通感融合节点),并且会有各种不同融合类型的通感融合节点。上述通感融合节点是指通信节点和感知节点的融合设计,可通过共享部分资源,例如硬件资源、计算资源、空间资源、时间资源以及频率资源等的方式,同时实现通信和感知的高效设计,以达到降低功率损耗、站址、成本等开销的目的。
示例性地,图2为本申请实施例提供的一种通感融合节点的不同融合类型200的示意图。如图2所示,可以有三种不同的融合类型。
在第一种融合类型中,通感融合节点可以共享硬件资源、射频资源、基带资源、时间资源和频谱资源等,但是通信信号和感知信号是分开进行处理的。以联合波形为例,这种融合方式的优点在于可以同时传输通信信号和感知信号,并且抗干扰能力强。
在第二种融合类型中,通感融合节点可以共享射频资源和基带资源,这种情况下除了通信信号和感知信号分开进行处理之外,通信信号和感知信号可以通过时分复用或者频分复用的方式分开进行传输。以时分复用的波形为例,这种融合方式的优点在于通信信号和感知信号之间的独立性强,并且通信节点和感知节点之间的干扰小。
在第三种融合类型中,通感融合节点可以共享基带资源,通信信号和感知信号在空域、时域和频域上都是使用各自的资源进行传输。
应理解,还可以有其他不同的融合类型,本申请实施例在此不作限制。
在上述通感融合网络中,也可能会有各种融合类型的通感融合节点共存的情况。示例性地,图3为本申请实施例提供的一种各种类型的通感融合节点共存的场景示意图。如图3所示,在通感融合网络300中,包括合作模式310和非合作模式320,合作模式310中包括基站311、雷达312、雷达313、终端设备314、客户前置设备(例如,光猫)(customer premise equipment,CPE)315以及目标物316。非合作模式320包括基站321、车辆322、车辆323、车辆324、目标物325以及终端设备326。黑色实线代表通信信号,黑色虚线代表来自不同感知节点的感知信号。其中,基站311和基站321为资源控制控制管理中心,可以为各种不同类型的通感融合节点进行资源管理。
合作模式310中包括多种不同类型的通感融合节点,例如,终端设备314是一个如上述第一种融合类型的通感融合节点,既具有通信功能,也具有感知功能,并且可以同时或者同频向基站311传输通信信号(如黑色实线10所示)和感知信号(如黑色虚线11所示),也可以传输用于感知目标物317的感知信号(如黑色虚线12所示)。又例如,CPE 315是一个如上述第二种融合类型的通感融合节点,可以通过空分复用的方式,在一个时域资源上传输通信信号(如黑色实线13所示),在另一个时域资源上传输感知信号(如黑色虚线14所示),通过时分复用的方式将通信信号和感知信号进行区分,分别进行传输。
在通感融合网络300中,雷达312为受保护的感知节点,雷达312发出的感知信号(如黑色虚线27所示)可能会受到其他感知节点,如雷达313的干扰。雷达313为具有攻击性干扰的感知节点,即雷达313为基站311中的未注册设备。因此雷达313发出的信号对通感融合网络300中的所有终端设备而言均为攻击性干扰(如黑色虚线23、24、25、26、 29所示)。
在非合作模式320中,车辆322、车辆323和车辆324是如上述第三种融合类型的通感融合节点,通信信号和感知信号分开传输,互不干扰,但是无法获知对方在时域、空域或者频域等的资源使用情况,例如,当通信信号和感知信号复用相同的频点时,可能会产生干扰。车辆322、车辆323和车辆324可以与基站321进行通信,传输通信信号(如黑色实线14、16、17所示),但是车辆322、车辆323和车辆324之间无法进行通信,只能进行感知信号的传输(如黑色虚线18所示),车辆322、车辆323和车辆324也可以传输用于感知目标物324的感知信号(如黑色虚线19、20、21所示),同时,车辆324也可以接收车辆323的感知信号(如黑色虚线22所示),这样可以保证车辆323的感知信号的顺利接收。
示例性地,终端设备326中不存在感知节点,或者并未开启感知功能,因此只具有通信功能,可以与基站311传输通信信号(如黑色实线28所示)。
上述不同的通感融合节点共享的资源(以下称为通感资源)对应着不同的感知性能,感知性能包括如感知角度、感知距离以及感知精度等关键性能指标(key performance index,KPI)中的一种或多种,而感知性能则是不同的感知业务类型对应不同的业务需求的体现。
示例性地,图4为本申请实施例提供的一种不同通感资源对应的感知性能示意图。如图4所示,通感资源可以包括空间、时间、频率以及功率等不同维度的资源中的一种或多种,在传输感知信号时,会在不同维度的感知资源上产生不同的感知开销,感知开销可以包括波束个数、天线个数、感知符号长度、周期长度、带宽、发射功率、功率损耗中的一种或多种。
对于空间维度的通感资源,其感知开销可以包括为通感融合节点分配的波束的个数,而感知性能则可以使用感知角度范围来描述,不同的感知业务类型会需要不同的感知角度范围。例如,对于防撞感应感知业务类型,需要小的感知角度,而对于生命救援感知业务类型,则需要大的感知角度。
对于时间维度的通感资源,其感知开销可以包括为通感融合节点分配的感知符号长度,而感知性能则可以使用感知方位向精度来描述,不同的感知业务类型会需要不同的感知方位向精度。例如,基于便携式设备的手势识别感知业务类型,需要中度的感知方位向精度,可以直接采集每根手指的弯曲姿态,通过数据归一化和平滑处理两根手指之间方位的时间和空间参数。
对于频率维度的通感资源,其感知开销可以包括为通感融合节点分配的感知带宽,而感知性能则可以使用感知距离向精度来描述,不同的感知业务类型会需要不同的感知距离向精度。例如,对于防撞感应感知业务类型,需要高的感知距离向精度,而对于手势识别感知业务类型,则需要中度的感知距离向精度。
对于功率维度的通感资源,其感知开销可以包括为通感融合节点分配的感知信号功率,而感知性能则可以使用感知距离范围来描述,不同的感知业务类型会需要不同的感知距离范围。例如,对于安检与入侵检测感知业务类型,需要中度的感知距离范围,而对于工业和农业生产感知业务类型,则需要长的感知距离范围。
不同的感知业务类型根据优先级的不同也会有不同的感知性能要求,同时对于资源管理周期等会有不同的调度需求,例如,可以为高优先级的业务实时分配需要的资源,而不 用等到资源管理周期到来时再进行资源分配。
示例性地,表1为本申请实施例提供的一种不同优先级感知业务类型对应的感知性能示意图。如表1所示,防撞感应感知业务类型需要大的感知范围,并且对精度和可靠性的要求高,属于高优先级业务,可以为其分配感知角度小、感知距离长以及感知精度高的通感资源;生命救援感知业务类型同样需要大的感知范围,并且对可靠性的要求高,也属于高优先级业务,可以为其分配感知角度大、感知距离长以及感知精度中等的通感资源。
安检与入侵检测感知业务类型对可靠性的要求高,但对其他感知性能的要求适中,属于中优先级业务,可以为其分配感知角度大、感知距离中等、感知精度中等的通感资源;对于工业和农业生产感知业务类型,同样对可靠性的要求高,属于中优先级业务,可以为其分配感知角度大、感知距离长、感知精度中等的通感资源。
手势识别和健康管理与呼吸监测感知业务类型对可靠性的要求为中等,属于低优先级业务,可以为其分配感知角度小、感知距离小、感知精度中等的通感资源。
表1
业务类型 优先级 感知角度 感知距离 感知精度 感知可靠度
防撞感应
生命救援
安检与入侵检测
工业和农业生产
手势识别
健康管理
这些类型不同的通感融合节点需要不同的通感资源,在复杂的网络中为了避免通感资源相互干扰,需要基站本地或者上层进行资源管理,并以通信的方式来管理通感资源。
随着汽车雷达、车联网、泛终端(例如,通感融合的用户设备、车辆、物联网(internet of things,IoT)等)和感知基站等越来越广泛的应用,随之会产生越来越多的感知射频频谱,这些感知射频频谱之间可能会产生相互干扰。以汽车雷达为例,典型的干扰可能来自于雷达之间的相互干扰,或是使用廉价硬件制作干扰器,向雷达发射高功率的调频连续波(frequency modulated continuous wave,FMCW),当FMCW雷达工作在同一频段时,密集的射频信号环境就会产生干扰。
感知节点所面临的干扰包括杂波干扰和/或欺骗干扰。杂波干扰可能会导致感知无法检测到目标信号,降低目标检测的概率。欺骗干扰会导致感知跟踪虚假目标,失去了跟踪真实目标的能力,从而对目标识别产生严重影响。
示例性地,图5为本申请实施例提供的一种感知干扰场景500的示意图。如图5所示,场景500包括车辆510、车辆520和车辆530。其中,车辆510发送感知信号540来感知车辆520的形状、速度或位置等信息,当感知信号540达到车辆520之后,会被反射回来,此时车辆510可以接收反射回来的感知信号550。感知信号540和感知信号550实际上为同一个信号,区别在于两个感知信号的功率可能不同。同时,车辆530可能会发送感知信号560来感知其他车辆,但由于感知信号560和感知信号550可能为相同类型的信号,因此车辆510无法对感知信号550和感知信号560进行区分,此时感知信号560便是感知信号550的干扰信号。
可能的实现方式中,感知干扰抑制技术依赖于规避方法,可以使用窄波束和电子扫描 波束降低空间维度上重叠的可能性,以此来减小干扰。例如,为远距汽车巡航控制雷达(adaptive cruise control,ACC)配置的典型视场为±8°,但是,仍然会从天线旁瓣接收到强干扰;可以将线性调频连续波的斜率随机变化,以此来避免时间维度上重叠造成的干扰;可以将线性调频连续波的开始频率和截止频率随机变化,以此来减小频率维度上重叠造成的干扰。
上述可能的实现方式可以一定程度上避免感知资源的意外同步,但是在具有密集的感知节点的环境中需要传输越来越多的感知信号,上述采用规避的方式会受到限制,从而会降低目标检测的概率。
有鉴于此,本申请实施例提供了一种感知信号传输方法和装置,在通感融合网络中,终端设备向网络设备请求分配感知资源,网络设备在接收到终端设备的请求消息之后,为终端设备分配感知资源,终端设备在该分配的感知资源上传输感知信号。该方法以网络设备作为资源管理中心,并通过通信的方式来协调感知信号的传输,能有效避免感知资源的重叠,从而消除感知信号之间的相互干扰。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以是采用设备到设备(device-to-device,D2D)通信技术的终端设备。D2D技术是指两个对等的终端设备之间直接进行通信的一种通信方式,在由D2D终端设备组成的分散式网络中,每个终端设备节点都能发送和接收信号,并且具有自动路由(转发消息)的功能。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据, 并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),也可以是IoT系统中的IoT基站或者窄带物联网(narrow band internet of things,NB-IoT)系统中的NB-IoT基站,还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、发送接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
应理解,上述的终端设备和网络设备均可为通感融合节点,即既具有通信功能,又具有感知功能。
在介绍本申请实施例提供的感知信号传输方法之前,先做出以下几点说明。
第一,在下文示出的实施例中,各术语及英文缩略语,如第一消息、第一帧结构、感知信号等,均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的消息等。
第三,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或b,或c,或a和b,或a和c,或b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
下面结合图6,对本申请提供的方法进行详细说明。
示例性地,图6是本申请实施例提供的一种感知信号传输方法600的示意性流程图,该方法可以应用于图3所示的各种融合类型的通感融合节点共存的场景,但本申请实施例不限于此。如图6所示,该方法600包括以下步骤:
S601,终端设备向网络设备发送第一消息,该第一消息包括请求该网络设备为该终端设备分配感知资源的信息。相应地,网络设备接收来自终端设备的第一消息。
本申请实施例中,第一消息用于请求该网络设备为终端设备分配感知资源的信息。其 中,感知资源可以为硬件资源、计算资源、时间资源、空间资源或频率资源中的一种或所中。第一消息可以携带终端设备与网络设备通信的已知的任意消息,第一消息也可以是新设置的终端设备与网络设备通信的消息,本申请实施例对第一消息的具体形式不作限定。
可选地,终端设备可以周期性向网络设备发送第一消息,也可以非周期性向网络设备发送第一消息。
可选地,第一消息中还可以包括终端设备的感知业务类型,该感知业务类型可以包括手势识别、防撞感应、安检与入侵者检测、生命救援、工业和农业生产以及健康管理和呼吸检测中的一种或多种。
可选地,第一消息中还可以包括终端设备中的通信节点和/或感知节点已经获取的信道信息,该信道信息中可以包括加性高斯白噪声(additive white gaussian noise,AWGN)、小尺度衰落、或大尺度衰落等信道信息中的一种或多种。
可选地,第一消息中还可以包括用于指示终端设备的感知资源是否需要管理的信息,这样可以为网络设备明确需要进行资源管理的终端设备,避免网络设备的额外计算开销。
可选地,第一消息中还可以包括通感融合节点的融合类型,该融合类型可以包括本申请实施例图2中的不同融合类型200所示的三种融合类型,在此不做赘述。
S602,网络设备基于该第一消息,为该终端设备分配感知资源。
在本申请实施例中,网络设备在接收到第一消息之后,可以对该第一消息中包括的信息进行分析判断。示例性地,在当前一个特定的频点已经被用于传输通信信号,并且终端设备请求该频点传输感知信号的情况下,网络设备可以进行通感资源的互相协调,为终端设备分配另外的频点,避免通信和感知的频点发生复用的情况发生,以此来进行干扰抑制。
可选地,网络设备可以根据固定的资源管理周期为终端设备分配感知资源,也可以实时为终端设备分配感知资源。
在本申请实施例中,若网络设备根据固定的资源管理周期为终端设备分配感知资源,则可以节省网络设备的计算开销,减小功率损耗;若实时为终端设备分配感知资源,则可以及时满足高实时性要求的感知业务类型的业务需求。
可选地,在第一消息中包括感知业务类型的情况下,基于该感知业务类型,网络设备可获知该感知业务类型对应的优先级信息,对于优先级高的感知业务类型,例如,自动驾驶业务,网络设备可以实时为自动驾驶车辆分配相应的感知资源,而不用等待网络设备的资源管理周期到来时再为自动驾驶车辆分配如频点、距离、功率等感知资源。
可选地,在第一消息中包括感知业务类型的情况下,不同的感知业务类型会有不同的业务需求,不同的业务需求对应不同的感知性能KPI,感知性能KPI可以包括感知角度、感知精度、感知距离以及感知可靠度等。网络设备可以根据不同的业务需求为终端设备分配相应的感知性能KPI。
示例性地,对于高速自动驾驶场景下的防撞感应业务而言,自动驾驶车辆可能需要进行长距离感知,因而网络设备在判断该自动驾驶车辆的感知业务类型为高速防撞感应业务之后,会为该自动驾驶车辆分配长的感知距离;对于低速自动驾驶场景下的防撞感应业务而言,自动驾驶车辆可能需要进行短距离感知,因而网络设备在判断该自动驾驶车辆的感知业务类型为低速防撞感应业务之后,会为该自动驾驶车辆分配短的感知距离。
可选地,在第一消息中包括终端设备的感知资源需要管理的信息的情况下,网络设备 再基于获取的其他信息,例如感知业务类型、融合类型和优先级信息等为终端设备分配相应的感知资源。
可选地,在第一消息中包括终端设备的感知资源不需要管理的信息的情况下,网络设备可以不考虑该终端设备的感知资源使用情况,这样可以节省网络设备的开销。
可选地,在第一消息中包括通感融合节点的融合类型的情况下,基于该融合类型,网络设备为终端设备分配相应的感知资源。
示例性地,对于上述不同融合类型200所示的第一种融合类型,通信节点和感知节点复用时-频-空资源,并且当感知节点的接收和发送处于同一地理位置时,网络设备需要根据第一消息,管理相应的帧结构。
S603,网络设备向终端设备发送第二消息,该第二消息包括分配给终端设备的感知资源。相应地,终端设备接收来自网络设备的第二消息。
可选地,第二消息中可以包括时域资源的分配结果,例如,为终端设备分配的用于传输感知信号的传输时隙和/或传输周期等。
可选地,第二消息中可以包括空域资源的分配结果,例如,为终端设备分配的用于传输感知信号的波束个数和/或传输角度等。
可选地,第二消息中可以包括频域资源的分配结果,例如,为终端设备分配的用于传输感知信号的传输频段和/或传输子载波等。
可选地,第二消息中可以包括功率域资源的分配结果,例如,为终端设备分配的用于传输感知信号的发射功率和/或功率损耗等。
可选地,第二消息中还可以包括硬件维度的资源分配结果,例如,基带硬件和/或射频硬件等。
S604,终端设备在分配的感知资源上传输感知信号。
应理解,本申请实施例中通过终端设备向网络设备发送第一消息、网络设备向终端设备发送第二消息的通信信令交互的过程,实现了以通信方式协调感知资源、以网络设备管理感知资源的目的。在分配的感知资源上传输感知信号可以有效避免各种融合类型的通感融合节点之间的相互干扰。
可选地,终端设备在接收到第二消息之后,解析出第二消息中不同字节代表的分配的感知资源,终端设备基于该分配的感知资源传输感知信号。
应理解,在上述方法600中,通感融合节点为该终端设备,即该终端设备既具有通信功能,又具有感知功能。
本申请实施例的感知信号传输方法,通过使用网络设备作为资源管理中心,并以通信的方式来协调感知资源的分配,终端设备可以在分配的感知资源上进行无干扰传输,能有效避免具有密集通感融合节点的网络中的信号干扰,进一步提高了目标的可检测概率。
以上仅以方法600为例,描述了以通信的方式使用网络设备管理感知资源的信令交互过程。下面,将结合图7和图8对信令交互过程中的资源管理流程进行详细说明。
示例性地,图7为本申请实施例提供的一种感知信号传输方法的示意性交互图。如图7所示,泛终端通过通信资源,启动或者周期性发送感知状态控制字。其中,感知状态控制字中可以包括以下信息中的一种或多种:泛终端是否具有或者开启感知功能;感知功能类型,例如频段、距离、发送功率或周期等类型中的一种或多种;感知资源是否需要管理; 通感融合类型;通信或感知已获取的信道信息和/或干扰信息等环境感知结果信息;干扰信息中是否包含攻击性干扰信息。
应理解,感知状态控制字可以通过方法600中的第一消息进行发送。此外,感知状态控制字的长度n可以为任意数值,本申请实施例在此不作限制。
感知资源管理中心在接收到泛终端的感知状态控制字之后,可以对收集到的信息进行计算,例如计算特定的泛终端适合多大的发射功率来传输感知信号,又例如计算特定的泛终端是否适合在特定的频段上传输感知信号。其中,感知资源管理中心可以为基站、路侧单元(road side unit,RSU)、CPE或边缘计算节点中的一种或多种。
在感知资源管理中心计算完之后,可以通过通信资源向泛终端发送感知资源控制字,其中感知资源控制字中包含为泛终端分配的感知资源的信息。
泛终端在接收到感知资源控制字之后,会对感知资源控制字中包含的为泛终端分配的感知资源的信息进行解析,得到分配的感知资源,之后泛终端会使用该分配的感知资源进行环境感知。
在进行环境感知的过程中,泛终端可以使用单基、双基或者分布式的组网模式接收感知信号。其中,单基组网模式是指感知节点的接收和发送都处于同一地理位置。例如,使用泛终端A发送感知信号来感知目标,仍然使用泛终端A接收感知目标之后反射回来的感知信号。
双基组网模式是指感知节点的接收和发送未处于同一地理位置,例如,使用泛终端A发送感知信号来感知目标,但是使用泛终端B来接收感知目标之后反射回来的泛终端A的感知信号。
分布式的组网模式是双基组网模式的扩展,例如,使用泛终端A和泛终端B发送感知信号来感知目标,但是使用泛终端B接收感知目标之后反射回来的泛终端A的感知信号,使用泛终端C接收感知目标之后反射回来的泛终端B的感知信号,以此类推,最终多个泛终端将接收到的感知信号经过数据传送系统集中到一起处理,这样可以更加准确地感知目标,提高目标的可检测概率。
可选地,泛终端中的感知节点根据分配的感知资源完成环境感知之后,可以更新感知状态控制字。
上述图7具体描述了使用通信资源来协调感知资源的过程,泛终端可基于分配的感知资源进行环境感知。但是当泛终端的环境感知结果中存在干扰信息的时候,可能会影响感知精度。针对影响感知的干扰信息,可以通过感知资源管理中心来进行入侵者屏蔽和目标保护,提高对目标的感知精度。
基于上述图7的描述,图8进一步描述了针对干扰信息可进行入侵者屏蔽和目标保护。示例性地,图8为本申请实施例提供的另一种感知信号传输方法的示意性交互图。如图8所示,其信令交互过程已在图7中进行描述,在此不再赘述。如图8所示,当泛终端的环境感知结果中存在干扰信息的时候,可以使用人为盲区技术和有源对消技术来进行入侵者屏蔽和目标保护。
有源对消技术是一种通过相干欺骗的手段来减小雷达接收机接收到目标回波强度的信号消隐方式。该技术主要采用相干手段使目标散射场和人为引入的辐射场在雷达方向相干对消,让雷达接收机始终处于合成方向图的零点,从而抑制雷达对目标发射回波的接收。
人为盲区是利用有源发射系统发射相干波信号,通过波的干涉效应,改变雷达的方向性函数,使天线的波束发射分裂,从而在制定的目标区产生人为盲区,有效降低雷达照射功率密度和有效接收面积,从而减小雷达的探测距离。
作为一个可选的实施例,第一消息中还包括用于指示终端设备具有感知功能的信息。
本申请实施例中,该用于指示终端设备具有感知功能的指示信息可以为网络设备明确可能需要进行资源管理的终端设备,这样可以节省网络设备的时间开销和计算开销。
作为一个可选的实施例,第一消息中还可以包括终端设备用于请求开启感知功能的信息。
在本申请实施例中,网络设备在接收到第一消息中的用于请求开启感知功能的信息之后,可以计算当前用于环境感知的开销,以此来决定是否同意终端设备开启感知功能。
作为一个可选的实施例,在网络设备当前用于环境感知的开销已经负载的情况下,网络设备可以拒绝终端设备开启感知功能的请求,这样可以缓解网络设备的负载压力。
示例性地,若网络设备拒绝终端设备开启感知功能的请求,则网络设备可以不向终端设备发送任何消息,也可以向终端设备发送第四消息,该第四消息中包括网络设备拒绝终端设备开启感知功能的信息。
作为一个可选的实施例,第二消息中还包括用于指示网络设备同意终端设备开启感知功能的信息。
在本申请实施例中,可选地,网络设备可以通过向终端设备发送分配的感知资源的方式告知终端设备同意开启感知功能。
可选地,该第二消息中也可以携带同意终端设备开启感知功能的指令,终端设备在接收到该指令开启感知功能之后,再接收网络设备为终端设备分配的感知资源。
作为一个可选的实施例,第一消息中还包括干扰信息以及干扰信息的类别。
在本申请实施例中,干扰信息按类别可以分为系统内干扰和/或系统外干扰,示例性地,以LTE系统为例,该系统内干扰通常为同频干扰,即LTE系统内的相邻小区使用相同频率资源的终端设备产生的干扰;该系统外干扰通常为异频干扰,即使用其他频率的终端设备产生的干扰,例如广播电视信号、车载雷达信号等,这些信号在指定信道发射的同时会泄露部分功率到LTE系统内的终端设备使用的频率,因此产生了系统外干扰。5G系统也类似。
此外,干扰信息按类别还可以分为攻击性干扰和非攻击性干扰,攻击性干扰由未在网络设备处注册过的终端设备发射出的干扰信号,而非攻击性干扰为在网络设备处注册过的终端设备发出的干扰信号。示例性地,图3中所示的雷达313未在基站311中注册过,因此雷达313发出的信号对于通感融合网络300中的所有终端设备而言均为攻击性干扰。
作为一个可选的实施例,网络设备在接收到第一消息中的干扰信息以及干扰信息的类别之后,会根据干扰信息的类别,进行相应的干扰消除。示例性地,可以采用有源对消技术和人为盲区技术来进行干扰消除。
作为一个可选的实施例,终端设备向网络设备发送第三消息,第三消息包括用于指示终端设备是否具有感知接收器的信息。这样,网络设备可以根据终端设备是否有感知接收器来为终端设备管理相应的帧结构。
应理解,本申请实施例描述的终端设备是否具有感知接收器,是指终端设备是否具有 专门用于感知的感知接收模块或感知接收单元。当该终端设备不具有感知接收器时,仍然可以采取其他方式来完成感知功能,如可以采用下文中描述的使用通信的接收机来完成感知功能。
作为一个可选的实施例,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,分配给终端设备的感知资源包括第一帧结构,该第一帧结构中的上行帧的感知窗口用于传输感知信号,该感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为该上行帧的长度。
应理解,该感知信号的长度S满足S≤L,并且该感知窗口除了用于传输感知信号之外,还可以传输其他各种类型的信号,例如导频信号、正交频分复用(orthogonal frequency division multi)符号等,本申请实施例在此不做限定。可能的实现方式中,可以使用各种类型的信号来完成感知目标的任务,并将感知结果在该感知窗口中进行传输。
在本申请实施例中,感知接收器可用于全距离接收感知信号,即无论T r>T c,还是T r≤T c,具有感知接收器的终端设备均可接收感知信号。
可选地,当终端设备具有感知接收器时,也可以选择不开启该感知接收器的接收功能,仍然在该上行帧的感知窗口的位置来传输感知信号,这样可以起到高效传输感知信号的目的,并能够节省硬件开销。
在上述通感融合网络中,如果终端设备是第一种融合类型的通感融合节点,则通信节点和感知节点复用时-频-空资源,并且当感知节点的接收和发送处于同一地理位置时,网络设备需要根据第一消息,管理资源分配结果中的帧结构,以实现传输感知信号的目的。
示例性地,图9为本申请实施例提供的一种感知信号传输对应的帧结构示意图,在图9中,通信处于时分双工(time division duplex,TDD)模式,通感融合节点为终端设备,并且终端设备不具有感知接收器。以下包括T r>T c和T r≤T c两种感知距离下的帧结构示意图。
在通信的过程中,基站向终端设备发送帧结构a,终端设备在经过T c时延后接收到帧结构b。为了保证时间同步,终端设备提前2T c的定时提前(timing advance,TA)向基站发送帧结构c,这样,再经过一个T c时延后会得到终端设备的通信帧结构i。
同时,在T r>T c的情况下,由于终端设备为通感融合节点,因此终端设备发送的上行数据也会用于感知目标。在终端设备发送帧结构c之后,目标经过T r时延会接收到帧结构d,当帧结构d到达目标之后,终端设备经过T r时延接收到目标反射回来的帧结构e。这样,终端设备从发送到接收感知帧结构h一共需要2T r时延。
终端设备在接收基站发送的帧结构i中的下行帧的时候,也会接收感知帧结构h中的感知信号(即帧结构h中的上行数据)。应理解,由于上行数据在到达目标之后会被反射回来作为感知信号,因此,该感知信号实际为终端设备发送的上行数据。当T r>T c,并且没有感知接收器时,该感知信号与终端设备接收的帧结构i中的下行帧有时间重叠的部分(如帧结构h中的阴影部分所示),该重叠部分即为感知窗口,该感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为该上行帧的长度,因此可在该感知窗口的位置中传输感知信号,并使用终端设备中用于通信的接收机来接收感知信号。
同上,在T r≤T c的情况下,在终端设备发送帧结构c之后,目标经过T r时延会接收到帧结构f,当帧结构f到达目标之后,终端设备经过T r时间接收到目标反射回来的帧结 构g,这样,终端设备从发送到接收感知帧结构j一共需要2T r时延。
终端设备在接收基站发送的帧结构i中的下行帧的时候,也会接收感知帧结构j中的感知信号(即帧结构j中的上行帧)。当T r≤T c,并且没有感知接收器时,该感知信号与终端设备接收的帧结构i中的下行帧没有时间重叠的部分,因此不存在感知窗口。
上述图9以终端设备不具有感知接收器为例,描述了两种不同感知距离(即T r>T c和T r≤T c)相应的帧结构管理过程。在通感融合节点为终端设备,并且终端设备不具有感知接收器的情况下,终端设备发送的上行帧中存在感知窗口,可用于传输感知信号,此时终端设备可以进行长距离感知(即T r>T c),探测通信距离之外的目标。但是由于T r≤T c时,终端设备发送的上行帧中不存在感知窗口,因此无法进行短距离感知,需要使用感知接收器来接收感知信号。
有鉴于此,下面以图10为例,详细描述在终端设备具有感知接收器的情况下两种不同感知距离相应的帧结构管理过程。
示例性地,图10为本申请实施例提供的另一种感知信号传输对应的帧结构示意图,在图10中,通信处于TDD模式,通感融合节点为终端设备,并且终端设备具有感知接收器。以下包括T r>T c和T r≤T c两种感知距离下的帧结构示意图。
在通信的过程中,基站向终端设备发送帧结构a,终端设备在经过T c时延后接收到帧结构b。为了保证时间同步,终端设备提前2T c的TA向基站发送帧结构c,这样,再经过一个T c时延后会得到终端设备的通信帧结构e。
同时,在T r>T c的情况下,由于终端设备为通感融合节点,因此终端设备发送的上行数据也会用于感知目标。在终端设备发送帧结构c之后,经过2T r时延后终端设备会接收到感应帧结构d。终端设备在接收通信帧结构e中的下行帧时,也会接收感知帧结构d中的感知信号(即帧结构d中的上行数据)。
在终端设备具有感知接收器的情况下,可以使用感知接收器接收通信距离之外的感知信号(即T r>Tc)。此时感知接收器接收的帧结构g中存在感知窗口(如帧结构g中的阴影部分所示),该感知窗口的长度与终端设备接收的感知帧结构d中的上行帧的长度相等,终端设备需要将传输上行数据的时隙空出来以传输感知信号。
同上,在T r≤T c的情况下,由于终端设备为通感融合节点,因此终端设备发送的上行数据也会用于感知目标。在终端设备发送帧结构c之后,经过2T r时延后终端设备会接收到感知帧结构f。
终端设备在接收通信帧结构e中的下行帧时,也会接收感知帧结构f中的感知信号(即帧结构d中的上行数据)。在终端设备具有感知接收器的情况下,可以使用感知接收器接收通信距离之内的感知信号(即T r≤T c)。此时感知接收器接收的帧结构h中存在感知窗口(如帧结构h中的阴影部分所示),该感知窗口的长度与终端设备接收的感知帧结构f中的上行帧的长度M相等,终端设备需要将传输上行数据的时隙空出来以传输感知信号。
可选地,在终端设备具有感知接收器情况下,终端设备也可以选择不开启感知接收器的接收功能,仍使用如图7中所示的方式传输感知信号。
在图8所示的帧结构管理过程中,当终端设备具有感知接收器时,可以全距离接收感知信息,不影响通信上行和下行的数据传输速率。
上述图9和图10以通感融合节点为终端设备为例,描述了具有感知接收器和不具有 感知接收器两种情况下管理帧结构的过程,下面将结合图11和图12,详细描述当通感融合节点为网络设备时帧结构的管理过程。
示例性地,图11为本申请实施例提供的再一种感知信号传输对应的帧结构示意图,在图11中,通信处于TDD模式,通感融合节点为基站,并且基站不具有感知接收器。以下包括T r>T c和T r≤T c两种感知距离下的帧结构示意图。
应理解,本申请实施例描述的基站不具有感知接收器,是指基站不具有专门用于感知的感知接收模块或感知接收单元。当该基站不具有感知接收器时,仍然可以采取其他方式来完成感知功能,如可以采用本实施例中描述的使用基站用于通信的接收机来完成感知功能。
在通信的过程中,基站向终端设备发送帧结构a,终端设备在经过T c时延后接收到帧结构b,为了保证时间同步,终端设备提前2T c的TA向基站发送帧结构c,再经过T c时延后基站会接收到帧结构d。这样,可以得到基站的通信帧结构j。
同时,在T r>T c的情况下,由于基站为通感融合节点,因此基站发送的下行数据也会用于感知目标。在基站发送帧结构a之后,目标经过T r时延会接收到帧结构e,基站再经过T r时延会接收到目标反射回来的帧结构f,这样,基站从发送到接收感知帧结构i一共需要2T r时延。
基站在接收终端设备发送的帧结构c中的上行数据时,也会接收感知帧结构i中的感知信号(即帧结构i中的下行数据)。应理解,由于下行数据在到达目标之后会被反射回来作为感知信号,因此,该感知信号实际为基站发送的下行数据。当T r>T c,并且没有感知接收器时,该感知信号与基站的通信帧结构j中的上行帧有时间重叠的部分(如帧结构i中的阴影部分所示),该重叠部分即为感知窗口,该感知窗口的长度L满足2(T c-T r)+T switch≤L≤N,其中,N为该下行帧的长度,T switch为下行帧切换到上行帧需要的切换时间,因此可在该感知窗口的位置中传输感知信号,并使用基站中用于通信的接收机来接收感知信号。
在本申请实施例中,当通感融合节点为基站,并且基站不具有感知接收器时,基站会先通知终端设备延迟发送上行数据,基站可以在感知窗口中传输感知信号之后再接收终端设备发送的上行数据。这样可以提高感知信号的传输效率,并且由于不需要额外的感知接收器,因此可以减少硬件开销。
同上,在T r≤T c的情况下,在基站发送帧结构a之后,目标经过T r时延会接收到帧结构g,基站再经过T r时延会接收到目标反射回来的帧结构h,这样,基站从发送到接收感知帧结构k一共需要2T r时延。
基站在接收终端设备发送的帧结构c中的上行数据时,也会接收感知帧结构k中的感知信号(即帧结构k中的下行数据)。应理解,由于下行数据在到达目标之后会被反射回来作为感知信号,因此,该感知信号实际为基站发送的下行数据。当T r≤T c,并且没有感知接收器时,该感知信号与基站的通信帧结构j中的上行帧没有时间重叠的部分,因此不存在可以传输感知信号的感知窗口。
上述图11以基站不具有感知接收器为例,描述了两种不同感知距离(即T r>T c和T r≤T c)相应的帧结构管理过程。由图11可知,在通感融合节点为基站,并且基站不具有感知接收器的情况下,基站发送的下行帧中存在感知窗口,可用于传输感知信号,此时基 站可以进行长距离感知(即T r>T c),探测通信距离之外的目标。但是由于T r≤T c时,不存在可用于传输感知信号的感知窗口,无法进行短距离感知,因此需要使用感知接收器来接收感知信号。
有鉴于此,下面以图12为例,详细描述在基站具有感知接收器的情况下两种不同感知距离相应的帧结构管理过程。
应理解,本申请实施例描述的基站具有感知接收器,是指基站具有专门用于感知的感知接收模块或感知接收单元。当该基站具有感知接收器时,可以采取该感知接收器来完成感知功能。
示例性地,图12为本申请实施例提供的又一种感知信号传输对应的帧结构示意图,在图12中,通信处于TDD模式,通感融合节点为基站,并且基站具有感知接收器。以下包括T r>T c和T r≤T c两种感知距离下的帧结构示意图。
在通信的过程中,基站向终端设备发送帧结构a,终端设备在经过T c时延后接收到帧结构b,为了保证时间同步,终端设备提前2T c的TA向基站发送帧结构c,再经过T c时延后基站会接收到帧结构d。这样,可以得到基站的通信帧结构j。
同时,在T r>T c的情况下,由于基站为通感融合节点,因此基站发送的下行数据也会用于感知目标。因此基站在接收通信帧结构e中的上行帧时,经过2T r时延后也会接收到感知帧结构d中的感知信号(即帧结构d中的下行数据)。
在基站具有感知接收器的情况下,可以使用感知接收器接收通信距离之外的感知信号(即T r>T c)。此时感知接收器接收的帧结构g中存在感知窗口(如帧结构g中的阴影部分所示),该感知窗口的长度与基站接收的感知帧结构d中的下行帧的长度相等,基站需要将传输下行数据的时隙空出来以传输感知信号。
同上,在T r≤T c的情况下,由于基站为通感融合节点,因此基站发送的下行数据也会用于感知目标。因此基站在接收通信帧结构e中的上行帧时,经过2T r时延后也会接收感知帧结构f中的感知信号(即帧结构f中的下行数据)。
在基站具有感知接收器的情况下,可以使用感知接收器接收通信距离之内的感知信号(即T r≤T c)。此时感知接收器接收的帧结构h中存在感知窗口(如帧结构h中的阴影部分所示),该感知窗口的长度与基站接收的感知帧结构f中的下行帧的长度N相等,基站需要将传输下行数据的时隙空出来以传输感知信号。
在上述图9-图12的描述中,无论通感融合节点为终端设备还是基站,接收和发送感知信号都属于单基组网模式,此外,还可以双基或者分布式的组网模式来接收感知信号,本申请实施例在此不作限制。
图13是本申请实施例提供的一种感知信号传输装置1300的示意性框图。该装置1300可以是终端设备,也可以是终端设备中的芯片。该装置1300包括:发送模块1310、接收模块1320。
其中,发送模块1310用于:向网络设备发送第一消息,该第一消息包括请求该网络设备为该装置分配感知资源的信息;接收模块1320用于:接收来自该网络设备的第二消息,该第二消息包括分配给该终端设备的感知资源;该发送模块1310还用于:在该分配的感知资源上发送感知信号。
可选地,该第一消息还包括用于指示该装置具有感知功能的信息。
可选地,该第二消息还包括用于指示该网络设备同意该装置开启感知功能的信息。
可选地,该第一消息还包括干扰信息以及该干扰信息的类别。
可选地,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,该分配给所述装置的所述感知资源包括第一帧结构,该第一帧结构中的上行帧的感知窗口用于传输感知信号,该感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为该上行帧的长度。
可选地,发送模块1310用于:向所述网络设备发送第三消息,所述第三消息包括用于指示所述装置是否具有感知接收器的信息。
在一个可选的例子中,本领域技术人员可以理解,装置1300可以具体为上述实施例中的终端设备的应用,或者,上述实施例中终端设备的应用的功能可以集成在装置1300中。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述接收模块1320可以为通信接口,例如收发接口。装置1300可以用于执行上述方法实施例中与终端设备的应用对应的各个流程和/或步骤。
图14是本申请实施例提供的另一种感知信号传输装置1400的示意性框图。该装置1400可以是网络设备,也可以是网络设备中的芯片。该装置1400包括:接收模块1410、处理模块1420和发送模块1430。
其中,接收模块1410用于:接收来自终端设备的第一消息,该第一消息包括请求该装置为该终端设备分配感知资源的信息;处理模块1420用于:基于该第一消息,为该终端设备分配感知资源;发送模块1430用于:向该终端设备发送该第二消息,该第二消息包括分配给该终端设备的感知资源。
可选地,该第一消息还包括用于指示该装置具有感知功能的信息。
可选地,该第二消息还包括用于指示该网络设备同意该装置开启感知功能的信息。
可选地,该第一消息还包括干扰信息以及该干扰信息的类别。
可选地,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,该分配给所述装置的所述感知资源包括第一帧结构,该第一帧结构中的上行帧的感知窗口用于传输感知信号,该感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为该上行帧的长度。
可选地,接收模块1410用于:接收来自该终端设备的第三消息,该第三消息包括用于指示该终端设备是否具有感知接收器的信息。
在一个可选的例子中,本领域技术人员可以理解,装置1400可以具体为上述实施例中的网络设备,或者,上述实施例中网络设备的功能可以集成在装置1400中。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述接收模块1410可以为通信接口,例如收发接口。装置1400可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤。
应理解,这里的装置1300和装置1400以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
在本申请的实施例,图13和图14中的装置1300、和装置1400也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收模块1410可以是该芯片 的收发电路,在此不做限定。
应理解,上述描述的感知接收器可以集成于如图13所示的装置1300(装置1300体现为终端设备)和/或如图14所示的装置1400(装置1400体现为网络设备)中,也可以单独存在,通过传输线或者无线方式与装置1300和/或装置1400耦合。
图15示出了本申请实施例提供的再一种感知信号传输装置1500的示意性框图。该装置1500包括处理器1510、收发器1520和存储器1530。其中,处理器1510、收发器1520和存储器1530通过内部连接通路互相通信,该存储器1530用于存储指令,该处理器1510用于执行该存储器1530存储的指令,以控制该收发器1520发送信号和/或接收信号。
应理解,装置1500可以具体为上述实施例中的终端设备或网络设备,或者,上述实施例中终端设备或网络设备的功能可以集成在装置1500中,装置1500可以用于执行上述方法实施例中与终端设备或网络设备对应的各个步骤和/或流程。可选地,该存储器1530可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1510可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器可以执行上述方法实施例中与终端设备或网络设备对应的各个步骤和/或流程。
应理解,在本申请实施例中,该处理器1510可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请还提供了终端设备侧的一种通信装置,包括通信接口和逻辑电路,该通信接口用于发送第一消息和/或接收第二消息,该逻辑电路用于根据该第二消息获取分配的感知资源执行上述第一方面中任一种可能实现方式中的方法。
本申请还提供了网络设备侧的一种通信装置,包括通信接口和逻辑电路,该通信接口用于接收第一消息和/或发送第二消息,该逻辑电路用于根据该第一消息分配感知资源执行上述第二方面中任一种可能实现方式中的方法。
本申请实施还提供了一种通信系统,该通信系统可以包括上述图13所示的终端设备(装置1300体现为终端设备)。
本申请实施还提供了一种通信系统,该通信系统可以包括上述图14所示的网络设备(装置1400体现为网络设备)。
本申请实施还提供了一种通信系统,该通信系统可以包括上述图15所示的终端设备(装置1500体现为终端设备)或上述图15所示的网络设备(装置1500体现为网络设备)。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也不表示先后顺序。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种感知信号传输方法,其特征在于,所述方法包括:
    终端设备向网络设备发送第一消息,所述第一消息包括请求所述网络设备为所述终端设备分配感知资源的信息;
    所述终端设备接收来自所述网络设备的第二消息,所述第二消息包括分配给所述终端设备的感知资源;
    所述终端设备在所述分配的感知资源上发送感知信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息还包括用于指示所述终端设备具有感知功能的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二消息还包括用于指示所述网络设备同意所述终端设备开启所述感知功能的信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一消息还包括干扰信息以及所述干扰信息的类别。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,所述分配给所述终端设备的所述感知资源包括第一帧结构,所述第一帧结构中的上行帧的感知窗口用于传输所述感知信号,所述感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为所述上行帧的长度。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第三消息,所述第三消息包括用于指示所述终端设备是否具有感知接收器的信息。
  7. 一种感知信号传输方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的第一消息,所述第一消息包括请求所述网络设备为所述终端设备分配感知资源的信息;
    所述网络设备基于所述第一消息,为所述终端设备分配感知资源;
    所述网络设备向所述终端设备发送所述第二消息,所述第二消息包括所述分配给所述终端设备的感知资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一消息还包括用于指示所述终端设备具有感知功能的信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二消息还包括用于指示所述网络设备同意所述终端设备开启所述感知功能的信息。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述第一消息还包括干扰信息以及所述干扰信息的类别。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,所述分配给所述终端设备的所述感知资源包括第一帧结构,所述第一帧结构中的上行帧的感知窗口用于传输所述感知信号,所述感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为所述上行帧的长度。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第三消息,所述第三消息包括用于指示所述终端设备是否具有感知接收器的信息。
  13. 一种感知信号传输装置,其特征在于,包括:
    发送模块,用于所述装置向网络设备发送第一消息,所述第一消息包括请求所述网络设备为所述装置分配感知资源的信息;
    接收模块,用于所述装置接收来自所述网络设备的第二消息,所述第二消息包括分配给所述终端设备的感知资源;
    所述发送模块还用于:所述装置在所述分配的感知资源上发送感知信号。
  14. 根据权利要求13所述的装置,其特征在于,所述第一消息还包括用于指示所述装置具有感知功能的信息。
  15. 根据权利要求13或14所述的装置,其特征在于,所述第二消息还包括用于指示所述网络设备同意所述装置开启所述感知功能的信息。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,所述第一消息还包括干扰信息以及所述干扰信息的类别。
  17. 根据权利要求13至16中任一项所述的装置,其特征在于,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,所述分配给所述装置的所述感知资源包括第一帧结构,所述第一帧结构中的上行帧的感知窗口用于传输所述感知信号,所述感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为所述上行帧的长度。
  18. 根据权利要求13至17中任一项所述的装置,其特征在于,所述发送模块,具体用于:
    所述装置向所述网络设备发送第三消息,所述第三消息包括用于指示所述装置是否具有感知接收器的信息。
  19. 一种感知信号传输装置,其特征在于,包括:
    接收模块,用于所述装置接收来自终端设备的第一消息,所述第一消息包括请求所述装置为所述终端设备分配感知资源的信息;
    处理模块,用于所述装置基于所述第一消息,为所述终端设备分配感知资源;
    发送模块,用于所述装置向所述终端设备发送所述第二消息,所述第二消息包括所述分配给所述终端设备的感知资源。
  20. 根据权利要求19所述的装置,其特征在于,所述第一消息还包括用于指示所述终端设备具有感知功能的信息。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第二消息还包括用于指示所述装置同意所述终端设备开启所述感知功能的信息。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,所述第一消息还包括干扰信息以及所述干扰信息的类别。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,在感知信号单程传播时延T r大于通信信号单程传播时延T c的情况下,所述分配给所述终端设备的所述感知资源包括第一帧结构,所述第一帧结构中的上行帧的感知窗口用于传输所述感知信号,所述感知窗口的长度L满足2(T r-T c)≤L≤M,其中,M为所述上行帧的长度。
  24. 根据权利要求19至23中任一项所述的装置,其特征在于,所述接收模块,具体 用于:
    所述装置接收来自所述终端设备的第三消息,所述第三消息包括用于指示所述终端设备是否具有感知接收器的信息。
  25. 一种通信系统,其特征在于,包括权利要求13至18中任一项所述的装置和权利要求19至24中任一项所述的装置。
  26. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1至12中任一项所述的方法的指令。
  27. 一种通信装置,其特征在于,包括:通信接口和逻辑电路,所述通信接口用于发送第一消息和/或接收第二消息,所述逻辑电路用于根据所述第二消息获取分配的感知资源执行权利要求1至6中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:通信接口和逻辑电路,所述通信接口用于接收第一消息和/或发送第二消息,所述逻辑电路用于根据所述第一消息分配感知资源执行权利要求7至12中任一项所述的方法。
PCT/CN2021/128512 2020-11-11 2021-11-03 感知信号传输方法和装置 WO2022100499A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/195,276 US20230284251A1 (en) 2020-11-11 2023-05-09 Sensing signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011257952.3 2020-11-11
CN202011257952.3A CN114501346A (zh) 2020-11-11 2020-11-11 感知信号传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/195,276 Continuation US20230284251A1 (en) 2020-11-11 2023-05-09 Sensing signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022100499A1 true WO2022100499A1 (zh) 2022-05-19

Family

ID=81489725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128512 WO2022100499A1 (zh) 2020-11-11 2021-11-03 感知信号传输方法和装置

Country Status (3)

Country Link
US (1) US20230284251A1 (zh)
CN (1) CN114501346A (zh)
WO (1) WO2022100499A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115665875A (zh) * 2022-12-27 2023-01-31 成都爱瑞无线科技有限公司 通感一体化系统的通信方法、装置及存储介质
CN116667972A (zh) * 2023-08-01 2023-08-29 南京朗立微集成电路有限公司 一种用于感知的WiFi帧结构及WiFi探测方法
WO2023225863A1 (zh) * 2022-05-24 2023-11-30 北京小米移动软件有限公司 一种提供感知服务的方法、装置、设备以及存储介质
WO2023231919A1 (zh) * 2022-05-30 2023-12-07 维沃移动通信有限公司 无线感知条件切换方法及设备
WO2023240479A1 (zh) * 2022-06-15 2023-12-21 北京小米移动软件有限公司 无线感知处理方法及装置、通信设备及存储介质
WO2023246781A1 (zh) * 2022-06-23 2023-12-28 中兴通讯股份有限公司 通信感知系统、信号处理方法、电子设备及可读存储介质
WO2024007326A1 (en) * 2022-07-08 2024-01-11 Zte Corporation Coordination of wireless sensing with multiple network nodes
WO2024017349A1 (zh) * 2022-07-22 2024-01-25 北京紫光展锐通信技术有限公司 功率控制方法、装置以及设备
WO2024027536A1 (zh) * 2022-08-01 2024-02-08 维沃移动通信有限公司 感知处理方法、装置、终端及网络侧设备
WO2024050209A1 (en) * 2022-09-01 2024-03-07 Qualcomm Incorporated Resource allocation for sensing services
WO2024055176A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 通信方法、装置、设备以及存储介质
WO2024083044A1 (zh) * 2022-10-20 2024-04-25 维沃移动通信有限公司 侦听方法、装置及相关设备
WO2024087224A1 (zh) * 2022-10-28 2024-05-02 Oppo广东移动通信有限公司 感知测量方法、装置、设备、介质和程序产品

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000455A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 一种工作模式的切换方法、装置及程序产品
CN117751660A (zh) * 2022-07-22 2024-03-22 北京小米移动软件有限公司 接收参数调整方法、系统、装置、通信装置及存储介质
WO2024016349A1 (zh) * 2022-07-22 2024-01-25 北京小米移动软件有限公司 提供感知服务的方法、装置、通信设备及存储介质
CN117499945A (zh) * 2022-07-25 2024-02-02 展讯半导体(南京)有限公司 通信方法及装置、计算机可读存储介质
WO2024040521A1 (zh) * 2022-08-25 2024-02-29 华为技术有限公司 一种感知信号的发送或接收方法及装置
CN117793730A (zh) * 2022-09-21 2024-03-29 中兴通讯股份有限公司 通信方法、设备及存储介质
CN117792429A (zh) * 2022-09-29 2024-03-29 华为技术有限公司 通信方法和通信装置
WO2024065787A1 (zh) * 2022-09-30 2024-04-04 北京小米移动软件有限公司 发送接收指示信息的方法、装置以及可读存储介质
WO2024077612A1 (zh) * 2022-10-14 2024-04-18 华为技术有限公司 一种通信方法及装置
CN115843119A (zh) * 2022-11-21 2023-03-24 北京电子科技职业学院 一种通信感知一体化的方法、设备和系统
WO2024113385A1 (zh) * 2022-12-02 2024-06-06 Oppo广东移动通信有限公司 基于代理的感知方法、装置、设备及存储介质
CN118200955A (zh) * 2022-12-13 2024-06-14 中国移动通信有限公司研究院 一种感知请求方法、感知节点及计算机可读存储介质
CN118264265A (zh) * 2022-12-28 2024-06-28 中兴通讯股份有限公司 通信设备、感知设备和通感一体化设备
CN118283676A (zh) * 2022-12-29 2024-07-02 维沃移动通信有限公司 感知方法及装置
CN116506947B (zh) * 2023-04-20 2023-11-10 中国人民解放军93209部队 一种基于有源无源协同的时空频资源智能调度方法与系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190018408A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated Systems and methods for verifying integrity of a sensing system
CN111757280A (zh) * 2019-03-27 2020-10-09 阿里巴巴集团控股有限公司 道路交通环境中的感知基站及其消息发送控制方法、装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190018408A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated Systems and methods for verifying integrity of a sensing system
CN111757280A (zh) * 2019-03-27 2020-10-09 阿里巴巴集团控股有限公司 道路交通环境中的感知基站及其消息发送控制方法、装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225863A1 (zh) * 2022-05-24 2023-11-30 北京小米移动软件有限公司 一种提供感知服务的方法、装置、设备以及存储介质
WO2023231919A1 (zh) * 2022-05-30 2023-12-07 维沃移动通信有限公司 无线感知条件切换方法及设备
WO2023240479A1 (zh) * 2022-06-15 2023-12-21 北京小米移动软件有限公司 无线感知处理方法及装置、通信设备及存储介质
WO2023246781A1 (zh) * 2022-06-23 2023-12-28 中兴通讯股份有限公司 通信感知系统、信号处理方法、电子设备及可读存储介质
WO2024007326A1 (en) * 2022-07-08 2024-01-11 Zte Corporation Coordination of wireless sensing with multiple network nodes
WO2024017349A1 (zh) * 2022-07-22 2024-01-25 北京紫光展锐通信技术有限公司 功率控制方法、装置以及设备
WO2024027536A1 (zh) * 2022-08-01 2024-02-08 维沃移动通信有限公司 感知处理方法、装置、终端及网络侧设备
WO2024050209A1 (en) * 2022-09-01 2024-03-07 Qualcomm Incorporated Resource allocation for sensing services
WO2024055176A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 通信方法、装置、设备以及存储介质
WO2024083044A1 (zh) * 2022-10-20 2024-04-25 维沃移动通信有限公司 侦听方法、装置及相关设备
WO2024087224A1 (zh) * 2022-10-28 2024-05-02 Oppo广东移动通信有限公司 感知测量方法、装置、设备、介质和程序产品
CN115665875A (zh) * 2022-12-27 2023-01-31 成都爱瑞无线科技有限公司 通感一体化系统的通信方法、装置及存储介质
CN116667972B (zh) * 2023-08-01 2023-12-12 南京朗立微集成电路有限公司 一种用于感知的WiFi帧结构及WiFi探测方法
CN116667972A (zh) * 2023-08-01 2023-08-29 南京朗立微集成电路有限公司 一种用于感知的WiFi帧结构及WiFi探测方法

Also Published As

Publication number Publication date
CN114501346A (zh) 2022-05-13
US20230284251A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2022100499A1 (zh) 感知信号传输方法和装置
CN109451430B (zh) 环境感知方法和通信设备
WO2022110923A1 (zh) 用于感知和通信的方法和装置
EP2717499B1 (en) Method and device for acquiring idle frequency spectrum
CN106922013B (zh) 同频段双射频模块的无线接入点和降低信号干扰的方法
CN117917159A (zh) 用于无线通信系统中的通信和感测的功率控制和波束管理
WO2023030448A1 (zh) 服务质量特征参数确定、数据发送方法、装置及设备
US20220095151A1 (en) Adapting a radar transmission based on a congestion level
CN110506432A (zh) 一种协作小区确定方法及网络设备
US20240214866A1 (en) Quality of service characteristic parameter determining method and apparatus, data sending method and apparatus, and device
US20240302488A1 (en) Transmitter detection in shared spectrum band
EP4239362A1 (en) Resource allocation in joint communication and sensing
US10721626B2 (en) Method and system for limiting collisions in cellular networks
Abdulla et al. Fine-grained reliability for V2V communications around suburban and urban intersections
US20240004049A1 (en) User equipment coordinated radar sensing
JP2024522315A (ja) スマートサーフェス機器の識別方法、通信機器及びスマートサーフェス機器
US20230232399A1 (en) Method for transmitting information, and communication device
CN116419144A (zh) 感知信号周期的确定方法、装置、通信设备及存储介质
CN114554421A (zh) 一种通信方法及装置
Li et al. Spectrum sharing for 5G
EP4391602A1 (en) Method and apparatus for establishing sensing channel, communication device, storage medium and system
Shukla et al. Interference mitigation techniques in cellular vehicle-to-everything (CV2X) communications
US20240324032A1 (en) Sensing Channel Establishment Method and Apparatus, Communication Device, Storage Medium, and System
EP4432716A1 (en) Perception method and apparatus, and communication device
CN108076466A (zh) 无线局域网的通信方法、通信装置和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891026

Country of ref document: EP

Kind code of ref document: A1