WO2023030273A1 - 光学镜头、摄像头模组和电子设备 - Google Patents

光学镜头、摄像头模组和电子设备 Download PDF

Info

Publication number
WO2023030273A1
WO2023030273A1 PCT/CN2022/115625 CN2022115625W WO2023030273A1 WO 2023030273 A1 WO2023030273 A1 WO 2023030273A1 CN 2022115625 W CN2022115625 W CN 2022115625W WO 2023030273 A1 WO2023030273 A1 WO 2023030273A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
focal length
image
Prior art date
Application number
PCT/CN2022/115625
Other languages
English (en)
French (fr)
Inventor
张凯元
王玘
姚秀文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22863408.5A priority Critical patent/EP4365656A1/en
Publication of WO2023030273A1 publication Critical patent/WO2023030273A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the embodiments of the present application relate to the field of lenses, and in particular to an optical lens, a camera module and electronic equipment.
  • optical lenses used in ultra-thin mobile phones need to have a smaller total optical length. How to obtain a small optical total length while ensuring the shooting effect of the optical lens is a development trend in the industry.
  • Embodiments of the present application provide an optical lens, a camera module including the optical lens, and an electronic device including the camera module, aiming to obtain a small overall optical length while ensuring the shooting effect of the optical lens.
  • the present application provides an optical lens
  • the optical lens includes a first lens and a second lens arranged in sequence from the object side to the image side along the optical axis direction, the object side of the first lens and the second lens
  • the object sides of the lenses are convex, specifically, the object sides of the first lens and the second lens are convex at the near optical axis, and the object sides of the first lens and the second lens are convex.
  • the settings are all conducive to the large aperture and miniaturized design of the optical lens and to the improvement of the imaging quality of the optical lens.
  • the Abbe number of the first lens is vd1, 60 ⁇ vd1 ⁇ 90; the refractive index of the second lens is nd2, 1.65 ⁇ nd2 ⁇ 2; the refractive index of the first lens is nd1, 0.2 ⁇ nd2-nd1 ⁇ 0.5; the Abbe number of the second lens is vd2, 40 ⁇ vd1-vd2; the total optical length of the optical lens is TTL, and the half image height of the optical lens is IH, 0.45 ⁇ TTL/(2*IH ) ⁇ 0.6.
  • the present application provides an ultra-thin optical lens with good imaging quality.
  • TTL/(2*IH) is used to represent the TTL ratio (total optical length ratio).
  • TTL ratio is An index used to evaluate the difficulty of designing an optical lens.
  • the TTL ratio of the main camera is greater than 0.6.
  • this application can achieve 0.45 ⁇ TTL/(2*IH) ⁇ 0.6.
  • the total optical length of the optical lens provided by the examples of the present application can be relatively short, so that the optical lens can be used in thinner electronic equipment.
  • the optical lens satisfies: 0 ⁇ f1/f ⁇ 1.2, where f1 is the focal length of the first lens, and f is the focal length of the optical lens.
  • This solution defines the relational expression between the focal length of the first lens and the focal length of the overall imaging optical lens, and can realize: effectively balance the spherical aberration and field curvature of the optical lens.
  • the ratio of the focal length of the first lens to the focal length of the optical lens is limited, that is, the focal power of the multiple lenses of the optical lens is reasonably allocated to a certain extent, so as to reasonably control the focal length of the first lens. It is beneficial to improve the imaging quality of the optical lens.
  • the first lens has positive refractive power and can effectively gather light. By limiting the ratio of the focal length of the first lens to the focal length of the optical lens, the total optical length can be shortened, so that the optical lens is suitable for thinner electronic equipment.
  • the optical lens satisfies: 0.4 ⁇ f1/f2 ⁇ 0, wherein f1 is a focal length of the first lens, and f2 is a focal length of the second lens.
  • This solution defines the relationship between the focal length of the first lens and the focal length of the second lens.
  • the optical lens satisfies: 1.55 ⁇ F# ⁇ 2.1, where F# is an aperture value of the optical lens.
  • F# is an aperture value of the optical lens.
  • This solution provides an optical lens with a large aperture, which can meet the light input amount of the optical lens and improve the shooting effect.
  • This solution realizes the technical effect of a large aperture by limiting the range of the aperture number. The smaller the aperture number, the larger the aperture.
  • the number of apertures of the optical lens in this embodiment can be satisfied within a smaller range, so that the optical lens has a larger aperture, and a large aperture is conducive to increasing the amount of light passing and can reduce the depth of field.
  • the large amount of light is good for the optical lens to take good images in darker environments, and the reduction of the depth of field is good for the shooting effect of background blur.
  • This implementation method is used when shooting portraits or long-distance shooting.
  • the optical lens in the camera can blur the background to highlight the shooting effect of the subject, which can meet the growing shooting needs of users.
  • the optical lens further includes a plurality of lenses arranged in sequence along the optical axis direction from the second lens to the image side, and the lens closest to the image side has a negative optical focus Spend.
  • the negative focal power of the lens closest to the image side is designed, which is conducive to correcting aberrations, and can achieve better aberration control while improving the performance of the optical lens.
  • the optical lens includes eight lenses, and the optical lens further includes a third lens, a fourth lens, a fifth lens arranged in sequence along the optical axis direction from the second lens to the image side.
  • lens, a sixth lens, a seventh lens, and an eighth lens, the third lens and the fourth lens each have negative optical power;
  • the optical lens satisfies: -0.2 ⁇ f(f3+f4)/(f3*f4) ⁇ 0;
  • f3 is the focal length of the third lens
  • f4 is the focal length of the fourth lens
  • f is the focal length of the optical lens
  • This solution realizes by limiting the number of lenses, reasonably allocating the focal lengths of the third lens and the fourth lens, and defining the relationship between the focal length of the third lens, the focal length of the fourth lens and the focal length of the optical lens. Get better image quality.
  • the fifth lens, the sixth lens, and the seventh lens all have positive refractive power
  • the eighth lens has negative refractive power.
  • This solution can improve the performance of the optical lens through the design of the fifth lens with positive refractive power, and the design of the eighth lens with negative refractive power is conducive to correcting aberrations. This solution can achieve better performance while improving the performance of the optical lens Good aberration control.
  • the optical lens includes seven lenses, and the optical lens further includes a third lens, a fourth lens, a fifth lens arranged in sequence along the optical axis direction from the second lens to the image side.
  • the lens, the sixth lens and the seventh lens, the third lens has a negative refractive power, and the optical lens satisfies: -0.4 ⁇ f/f3 ⁇ 0, wherein f3 is the focal length of the third lens, and f is The focal length of the optical lens.
  • f3 is the focal length of the third lens
  • f is The focal length of the optical lens.
  • the fourth lens, the fifth lens, and the sixth lens all have positive refractive power
  • the seventh lens has negative refractive power.
  • IR glass can also be arranged on the image side of the eighth lens, that is, an IR lens and an infrared lens, to eliminate the interference of visible light and infrared light.
  • the focal plane is shifted, so light from visible light to infrared light can be imaged on the same focal plane, so that the image can be clear and can be used for night scene shooting.
  • the optical lens satisfies:
  • ⁇ 25 wherein, vd2 is the Abbe number of the second lens, and vd3 is the Abbe number of the third lens.
  • the optical lens satisfies: 1 ⁇ d2(R3+R4)/(R3-R4) ⁇ 5, where d2 is the central thickness of the second lens, that is, the second lens is The thickness at the position of the optical axis in the axial direction, R3 is the radius of curvature of the object side of the second lens, and R4 is the radius of curvature of the image side of the second lens.
  • This scheme defines the shape of the second lens by limiting the thickness of the second lens, the radius of curvature of the object side of the second lens, and the radius of curvature of the image side of the second lens, and the second lens that satisfies this optical formula It is beneficial to achieve better image quality on the basis of ultra-low TTL.
  • the implementation mode of the present application provides a camera module.
  • the camera module includes a photosensitive element and the optical lens described in any possible implementation manner of the first aspect.
  • the photosensitive element is located on the image of the optical lens.
  • the light is projected to the photosensitive element after passing through the optical lens, and the photosensitive element is used to convert the light signal into an electrical signal, that is, convert the light projected on the photosensitive element into an image signal. Since the optical lens provided by the embodiment of the present application has an ultra-low total optical length, the camera module provided by the present application can also achieve an ultra-thin design while satisfying the imaging performance.
  • the implementation of the present application provides an electronic device, the electronic device includes an image processor and the camera module described in the second aspect, and the image processor is communicatively connected with the photosensitive element of the camera module (for example electrical connection), wherein the connection may be a direct connection or an indirect connection through other components (such as an analog-to-digital converter, etc.).
  • the camera module is used for acquiring image signals and inputting the image signals into the image processor, and the image processor is used for processing the output image signals.
  • the electronic device provided by this application can easily achieve a thinner design, and also has a high-quality photographing effect, and has a good sense of customer experience.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram of the imaging principle of the electronic device shown in FIG. 2 .
  • FIG. 4 is a schematic structural diagram of the optical lens provided in the first embodiment of the present application.
  • FIG. 5 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • FIG. 6 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided by this embodiment.
  • FIG. 7 is a graph showing distortion curves of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment.
  • FIG. 8 is a schematic structural diagram of an optical lens provided in a second embodiment of the present application.
  • FIG. 9 is a graph showing axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • FIG. 10 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • FIG. 11 is a graph of distortion of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment.
  • FIG. 12 is a schematic structural diagram of an optical lens provided in a third embodiment of the present application.
  • FIG. 13 is a graph showing axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • FIG. 14 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • FIG. 15 is a graph showing distortion curves of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment.
  • FIG. 16 is a schematic structural diagram of an optical lens provided in a fourth embodiment of the present application.
  • FIG. 17 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • FIG. 18 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • FIG. 19 is a graph showing distortion curves of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment.
  • FIG. 20 is a schematic structural diagram of an optical lens provided in a fifth embodiment of the present application.
  • FIG. 21 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • FIG. 22 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • FIG. 23 is a graph of distortion of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment.
  • FIG. 24 is a schematic structural diagram of an optical lens provided in a sixth embodiment of the present application.
  • FIG. 25 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • FIG. 26 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • FIG. 27 is a graph of distortion of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment.
  • Focal length (focal length, referred to as f), also known as focal length, is a measure of the concentration or divergence of light in optical lenses. The vertical distance from the optical center of the lens group to the focal plane.
  • Aperture refers to the entity that limits the beam of light in an optical lens. It can be the edge of a lens, a frame or a specially designed perforated screen. Its role can be divided into two aspects, limiting the beam or limiting the field of view (imaging range) size.
  • the diaphragm that restricts the most beams in an optical lens is called the aperture diaphragm, and the diaphragm that restricts the field of view (size) the most is called the field diaphragm. It can be seen from the above that both the aperture diaphragm and the field diaphragm are real objects.
  • the general rule for determining the aperture stop of an optical lens is: the aperture stop of the optical lens is determined by the one with the smallest opening angle when looking at the stop or the image of the stop from the object point. If the image with the smallest opening angle is the image of a stop, the stop itself is the aperture stop.
  • Aperture is a device used to control the amount of light passing through the lens to the photosensitive element.
  • the aperture size is expressed by F number/F value.
  • the aperture F value (F#) is the relative value (reciprocal of the relative aperture) obtained from the focal length of the lens/lens diameter. The smaller the aperture F value is, the more light will enter in the same unit time; the larger the aperture F value is, the smaller the depth of field will be, and the background content of the photo will be blurred.
  • Positive refractive power also known as positive refractive power, means that the lens has a positive focal length and has the effect of converging light.
  • Negative focal power also known as negative refractive power, means that the lens has a negative focal length and has the effect of diverging light.
  • Imaging refers to the real image projected on the light screen by light passing through refraction, diffraction, or straight-line propagation through a small hole.
  • the imaging surface refers to the plane where the image is located.
  • the image height (IH) is the radius of the imaging circle.
  • the optical axis is an imaginary line that defines how an optical lens transmits light.
  • the optical axis is generally the light that passes perpendicularly through the center of the lens.
  • the object side is bounded by the optical lens, and the side where the scene is located is the object side.
  • the image side is bounded by the optical lens, and the side where the image of the scene is located is the image side.
  • the object side, the surface of the lens facing the object side is called the object side.
  • the surface of the lens facing the like side is called like the side.
  • the total track length refers to the total length from the end of the optical lens away from the imaging surface to the imaging surface.
  • the total optical length refers to the distance from the object side of the first lens to the photosensitive element on the optical axis of the optical lens.
  • the optical lens is used in electronic equipment, and the optical total length of the optical lens is the main factor affecting the thickness of the electronic equipment.
  • TTL ratio The total optical length ratio (TTL ratio), TTL/(2*IH) is used to express the TTL ratio, which can be understood as expressing the optical total length ratio of the optical lens by half the ratio of the total optical length of the optical lens to the half-image height of the optical lens, TTL ratio is used as an index to evaluate the difficulty of lens design.
  • the Abbe number that is, the dispersion coefficient, is the difference ratio of the refractive index of an optical material at different wavelengths, and represents the degree of dispersion of the material.
  • the refractive index of the lens is the ratio of the propagation speed of light in vacuum to the propagation speed of light in the lens material, reflecting the refraction ability of the lens to light.
  • Aberration refers to the inconsistency between the results obtained by non-paraxial ray tracing and the results obtained by paraxial ray tracing in the actual optical lens, and the ideal situation of Gaussian optics (first-order approximation theory or paraxial ray) deviation.
  • the field of view represents the maximum range that the camera can observe.
  • the present application provides an electronic device or an intelligent terminal, and the electronic device may be a mobile phone, a tablet, a computer, a video camera, a still camera or other electronic devices with the function of taking pictures or taking pictures.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 according to an embodiment of the present application.
  • the electronic device 1000 is a mobile phone.
  • the electronic device 1000 may include a camera module 100 and an image processor 200 communicatively connected with the camera module 100 .
  • the camera module 100 is used for acquiring image signals and inputting the image signals into the image processor 200 so that the image processor 200 can process the image signals.
  • the communication connection between the camera module 100 and the image processor 200 may include data transmission through an electrical connection such as a wire connection, or may be realized through other methods capable of data transmission such as an optical cable connection or wireless transmission.
  • the image processor 200 can optimize and process the digital image signal through a series of complex mathematical arithmetic operations, and finally transmit the processed signal to the display or store it in the memory.
  • the image processor 200 may be an image processing chip or a digital signal processing (digital signal processing, DSP) chip.
  • the camera module 100 can be arranged on the back of the electronic device 1000 and is a rear camera of the electronic device 1000 .
  • the electronic device 1000 includes a rear cover 1001 , and the rear cover 1001 is provided with a light entrance hole 1002 , through which the light outside the electronic device 1000 enters the optical lens 10 in the camera module 100 .
  • the installation position of the camera module 100 of the electronic device 1000 in the embodiment shown in FIG. 1 is only schematic. In some other implementation manners, the camera module 100 can also be installed in other positions on the electronic device 1000 .
  • the camera module 100 can be installed on the front of the electronic device 1000 as a front camera of the electronic device 1000 .
  • the camera module 100 can be installed on the upper middle or upper right corner of the back of the electronic device 1000; or, the camera module 100 can also be arranged on a mobile or rotating part relative to the mobile phone instead of on the main body of the mobile phone, such as The part can be extended, withdrawn or rotated from the main body of the mobile phone.
  • This application does not impose any limitation on the installation position of the camera module 100 .
  • FIG. 2 is a schematic structural diagram of an electronic device 1000 according to another implementation manner of the present application.
  • the camera module 100 , the light entrance hole 1002 and the optical lens 10 in FIG. 2 are the same as those in FIG. 1 , and will not be repeated here.
  • the electronic device 1000 further includes an analog-to-digital converter (digital analog converter, DAC) 300 .
  • the analog-to-digital converter 300 is connected between the camera module 100 and the image processor 200 .
  • the analog-to-digital converter 300 is used to convert the analog image signal generated by the camera module 100 into a digital image signal and transmit it to the image processor 200, and then process the digital image signal through the image processor 200, and finally process the digital image signal through the display screen or display image or video display.
  • the electronic device 1000 can also include a memory 400, which is connected in communication with the image processor 200, and the image processor 200 processes the image digital signal before transferring the image to the memory 400, so that it can be viewed later An image can be retrieved from storage at any time and displayed on the display (see Figure 2).
  • the image processor 200 also compresses the processed image digital signal, and then stores it in the memory 400 , so as to save space in the memory 400 .
  • FIG. 2 is only a structural schematic diagram of an embodiment of the present application, and the positions and structures of the camera module 100 , the image processor 200 , the analog-to-digital converter 300 , and the memory 400 shown therein are only schematic.
  • FIG. 3 is a schematic diagram of the imaging principle of the electronic device 1000 shown in FIG. 2 .
  • the camera module 100 includes an optical lens 10 and a photosensitive element 20 .
  • the photosensitive element 20 is located on the image side of the optical lens 10 .
  • the image side of the optical lens 10 refers to the imaging side of the optical lens 10 close to the scene.
  • the camera module 100 is working, the scene is imaged on the photosensitive element 20 through the optical lens 10 .
  • the working principle of the camera module 100 is: the light L reflected by the scene generates an optical image through the optical lens 10 and is projected onto the surface of the photosensitive element 20, and the photosensitive element 20 converts the optical image into an electrical signal, that is, an analog image signal S1 and The converted analog image signal S1 is transmitted to the analog-to-digital converter 300 to be converted into a digital image signal S2 by the analog-to-digital converter 300 for the image processor 200 .
  • the photosensitive element 20 is a semiconductor device, and its surface may contain hundreds of thousands to millions of photodiodes. When irradiated by light, charges will be generated, thereby completing the conversion of optical signals into electrical signals.
  • the photosensitive element 20 may be any device capable of converting an optical signal into an electrical signal.
  • the photosensitive element 20 may be a charge coupled device (CCD), or a complementary metal-oxide semiconductor device (complementary metal-oxide semiconductor, CMOS).
  • the optical lens 10 affects the imaging quality and imaging effect.
  • the optical lens 10 includes a plurality of mirrors arranged along the optical axis from the object side to the image side, which mainly uses the principle of refraction of the mirrors to form an image. Specifically, the light of the object to be imaged passes through the optical lens 10 to form a clear image on the focal plane, and records the image of the scene through the photosensitive element 20 on the imaging plane. There may be intervals between adjacent lenses, or they may be arranged in close contact with each other. The main functions of each lens are different, and the best imaging quality can be obtained through the cooperation of different lenses.
  • the optical lens provided in the specific embodiment of the present application includes a plurality of mirrors, IR glass and imaging surface arranged in sequence along the optical axis direction from the object side to the image side.
  • the ultra-low TTL is obtained by defining the object side surfaces of the first lens and the second lens as convex surfaces, and defining the refractive index and Abbe number of the first lens and the second lens.
  • the Abbe number of the first lens is vd1, 60 ⁇ vd1 ⁇ 90; the refractive index of the second lens is nd2, 1.65 ⁇ nd2 ⁇ 2; the refractive index of the first lens is nd1, 0.2 ⁇ nd2-nd1 ⁇ 0.5; the Abbe number of the second lens is vd2, 40 ⁇ vd1-vd2; the half image height of the optical lens provided by the application is IH, 0.45 ⁇ TTL/(2*IH) ⁇ 0.6.
  • the TTL ratio of the main camera of the optical lens in the prior art is all greater than 0.6, but the present application can achieve 0.45 ⁇ TTL/(2*IH) ⁇ 0.6. Therefore, the present application provides an ultra-thin optical lens with good imaging quality.
  • the total optical length of the optical lens can be shorter, so that the optical lens can be used in thinner electronic equipment.
  • the embodiment of the present application defines the relationship between the focal length of the first lens and the focal length f of the overall imaging optical lens, namely: 0 ⁇ f1/f ⁇ 1.2, where f1 is the focal length of the first lens, f is the focal length of the optical lens,
  • the optical lens can effectively balance the spherical aberration and field curvature of the optical lens.
  • the ratio of the focal length of the first lens to the focal length of the optical lens is limited, that is, the focal power of the multiple lenses of the optical lens is reasonably allocated to a certain extent, so as to reasonably control the focal length of the first lens. It is beneficial to improve the imaging quality of the optical lens.
  • the total optical length can be shortened by limiting the ratio of the focal length of the first lens to the focal length of the optical lens, so that the optical lens is suitable for thinner electronic devices.
  • the first lens has a positive refractive power, which can effectively gather light.
  • a positive refractive power by limiting the first lens to a positive refractive power, it is beneficial to gather light, and can gather more light from the outside into the optical lens, increasing the optical lens. The amount of light incident, in order to achieve a better photo effect.
  • the tolerance sensitivity can be effectively reduced, that is, the sensitivity can be optimized, and the imaging quality of the optical lens can be improved.
  • the optical lens satisfies: 0.4 ⁇ f1/f2 ⁇ 0, wherein f1 is the focal length of the first lens, and f2 is the focal length of the second lens.
  • the optical lens provided in the embodiment of the present application includes a plurality of lenses, and the lenses adjacent to the image side have negative refractive power.
  • the negative focal power of the lens closest to the image side is designed, which is conducive to correcting aberrations, and can achieve better aberration control while improving the performance of the optical lens.
  • the optical lens includes eight lenses, which are arranged in order from the object side to the image side, and are respectively the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the Seventh lens and eighth lens.
  • both the third lens and the fourth lens have negative refractive power.
  • the optical lens satisfies: -0.2 ⁇ f(f3+f4)/(f3*f4) ⁇ 0; wherein, f3 is the focal length of the third lens, f4 is the focal length of the fourth lens, and f is the optical lens focal length.
  • the optical lens includes seven lenses, which are arranged in order from the object side to the image side, and are respectively a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens and Seventh lens.
  • the third lens has a negative focal power
  • the optical lens satisfies: -0.4 ⁇ f/f3 ⁇ 0, wherein f3 is the focal length of the third lens, and f is the focal length of the optical lens.
  • the fourth lens, the fifth lens and the sixth lens all have positive optical power, and the seventh optical lens has negative optical power.
  • This solution can improve the performance of the optical lens through the design of the fourth lens, the fifth lens and the sixth lens with positive refractive power, and the design of the seventh lens with negative refractive power is conducive to correcting aberrations. While improving the lens performance, better aberration control can be achieved.
  • the optical power of the last lens that is, the lens adjacent to the image side
  • the optical power of the eighth lens is negative optical power
  • the optical power of the seventh lens is negative optical power.
  • the optical lens satisfies:
  • the shape of the second lens is defined by defining the relationship between the central thickness of the second lens, the radius of curvature of the object side of the second lens, and the radius of curvature of the image side of the second lens, satisfying the requirements of this optical formula
  • the second lens is good for ultra-low TTL.
  • the optical lens satisfies: 1 ⁇ d2(R3+R4)/(R3-R4) ⁇ 5, wherein, d2 is the central thickness of the second lens, and R3 is the object side surface of the second lens
  • the radius of curvature, R4 is the radius of curvature of the image side of the second lens.
  • the camera module provided by the present application can also achieve an ultra-thin design while satisfying the imaging performance, and the electronic device provided by the present application can be easily thinned
  • the design also has a high-quality photo effect and a good sense of customer experience.
  • the present application may have many different embodiments, and the optical lens provided by the present application will be described in detail by taking six different specific implementation manners as examples.
  • the optical lens provided by this embodiment includes eight lenses, from left to right, from the object side to the image side, and the optical lens includes sequentially arranged: diaphragm S1, first lens L1, second lens L2, third lens Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, IR glass and imaging surface.
  • the aperture S1 is located on the object side of the first lens L1. It can be understood that the aperture S1 is located on the periphery of the object side of the first lens L1, and the object side of the first lens L1 can at least partially extend into the interior of the aperture S1.
  • the aperture S1 refers to an entity that limits the light beam in the optical lens. It can be the edge of a lens, a frame or a specially designed perforated screen. Its role can be divided into two aspects, limiting the beam or limiting the field of view (imaging range) size.
  • IR glass can also be called IR lens (that is, infrared lens). It is an optical glass material used to eliminate the focal plane shift of visible light and infrared light, so that light from visible light to infrared light can be imaged on the same focal plane. Make the image clear.
  • the object side surfaces of the first lens L1 and the second lens L2 are both convex surfaces.
  • R radius of curvature at the center of the lens
  • R1 the object side of the first lens L1;
  • R2 the image side of the first lens L1;
  • R3 the object side of the second lens L2;
  • R4 the image side of the second lens L2
  • R5 the object side of the third lens L3;
  • R6 the image side of the third lens L3;
  • R7 the object side of the fourth lens L4;
  • R8 the image side of the fourth lens L4;
  • R9 the object side of the fifth lens L5;
  • R10 the image side of the fifth lens L5;
  • R11 the object side of the sixth lens L6;
  • R12 the image side of the sixth lens L6;
  • R13 the object side of the seventh lens L7;
  • R14 the image side of the seventh lens L7;
  • R15 the object side of the eighth lens L8;
  • R16 image side of the eighth lens L8;
  • Rg1 the object side of the optical filter IR glass
  • Rg2 Image side of optical filter IR glass
  • the center thickness of the lens that is, the thickness of the lens at the position of the optical axis along the optical axis direction, which can also be called the on-axis thickness
  • the on-axis distance between the lenses that is, along the optical axis direction, the distance between the lenses on the optical axis distance at location
  • d0 the axial distance from the stop S1 to the object side of the first lens L1;
  • d2 the axial distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d11 central thickness of the sixth lens L6;
  • d12 On-axis distance from the image side of the sixth lens L6 to the object side of the seventh lens L7;
  • d16 the axial distance from the image side of the eighth lens L8 to the object side of the optical filter IR glass;
  • dg1 the central thickness of the optical filter IR glass
  • dg2 On-axis distance from the image side of the optical filter IR glass to the image plane;
  • nd Refractive index of d-line (d-line is green light with a wavelength of 550nm);
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • nd8 the refractive index of the d-line of the eighth lens L8;
  • ndg the refractive index of the d-line of the optical filter IR glass
  • v1 the Abbe number of the first lens L1;
  • v3 the Abbe number of the third lens L3
  • v4 the Abbe number of the fourth lens L4
  • v5 the Abbe number of the fifth lens L5
  • v6 the Abbe number of the sixth lens L6
  • v7 the Abbe number of the seventh lens L7;
  • vdg Abbe number of optical filter (IR glass).
  • Table 1C is the aspherical coefficient of each lens
  • the optical lens provided in this embodiment includes 16 aspheric surfaces in total.
  • all even-order aspheric surface types z can be defined by but not limited to the following aspherical formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A4, A6, A8...A30 are the coefficients of the aspheric surface.
  • FIG. 5 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • the abscissa in FIG. 5 represents the size of the spherical aberration, and the unit is millimeter, and the ordinate represents the normalized aperture, and the unit is millimeter. It can be seen from FIG. 5 that in this embodiment, the axial aberration of light rays of different wavelengths passing through the optical lens of this embodiment can be controlled within a relatively small range.
  • FIG. 6 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided by this embodiment.
  • S is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridian direction
  • the abscissa indicates the magnitude of the curvature of field
  • the transverse distance between T and S represents the magnitude of astigmatism
  • the ordinate represents the field of view.
  • FIG. 7 is a graph showing distortion curves of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment. Distortion is the difference between the actual position of points in an image and their position in an ideal optical lens. Figure 7 shows the difference between the imaging distortion and the ideal optical lens, the abscissa is the magnitude of the distortion, and the ordinate is the field of view.
  • the axial aberration, astigmatism field curvature, and distortion after the light passes through the optical lens of this embodiment are all small, that is, the optical lens of this embodiment can achieve a better imaging effect.
  • the optical lens provided by this embodiment includes eight lenses, from left to right from the object side to the image side, the optical lens includes sequentially arranged: diaphragm S1, first lens L1, second lens L2, third lens Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, IR glass and imaging surface.
  • the stop S1 is located on the object side of the first lens L1. It can be understood that the stop S1 is located on the periphery of the object side of the first lens L1, and the object side of the first lens L1 can at least partially extend into the interior of the stop S1.
  • the explanation of the stop S1 and the IR glass refers to the first embodiment.
  • the object side surfaces of the first lens L1 and the second lens L2 are both convex surfaces.
  • Table 2C is the aspheric coefficient of each lens
  • the optical lens provided in this embodiment includes a total of 16 aspheric surfaces.
  • all even-order aspheric surface types z can be defined by but not limited to the following aspherical formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A4, A6, A8...A30 are the coefficients of the aspheric surface.
  • FIG. 9 is a graph showing axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • the abscissa in FIG. 9 represents the size of the spherical aberration, and the unit is millimeter, and the ordinate represents the normalized aperture, and the unit is millimeter. It can be seen from FIG. 9 that in this embodiment, the axial aberration of light rays of different wavelengths passing through the optical lens of this embodiment can be controlled within a relatively small range.
  • FIG. 10 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • S is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction
  • the abscissa indicates the magnitude of the curvature of field
  • the transverse distance between T and S represents the magnitude of astigmatism
  • the ordinate represents the field of view.
  • FIG. 11 is a graph of distortion of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment. Distortion is the difference between the actual position of points in an image and their position in an ideal optical lens.
  • Figure 11 shows the difference between the imaging distortion and the ideal optical lens, the abscissa is the magnitude of the distortion, and the ordinate is the field of view.
  • the axial aberration, astigmatism field curvature, and distortion after the light passes through the optical lens of this embodiment are all small, that is, the optical lens of this embodiment can achieve a better imaging effect.
  • the optical lens provided by this embodiment includes seven lenses, from left to right from the object side to the image side, the optical lens includes sequentially arranged: diaphragm S1, first lens L1, second lens L2, third lens Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, IR glass and imaging surface.
  • the stop S1 is located on the object side of the first lens L1. It can be understood that the stop S1 is located on the periphery of the object side of the first lens L1, and the object side of the first lens L1 can at least partially extend into the interior of the stop S1.
  • the explanation of the stop S1 and the IR glass refers to the first embodiment.
  • the object side surfaces of the first lens L1 and the second lens L2 are both convex surfaces.
  • Half image height IH 5.20mm TTL ratio 0.48 design wavelength 650nm, 610nm, 555nm, 510nm, 470nm
  • Table 3C is the aspherical coefficient of each lens
  • the optical lens provided in this embodiment includes 14 aspheric surfaces in total.
  • all even-order aspheric surface types z can be defined by but not limited to the following aspherical formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A4, A6, A8...A30 are the coefficients of the aspheric surface.
  • FIG. 13 is a graph showing axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • the abscissa in FIG. 13 represents the size of the spherical aberration, and the unit is millimeter, and the ordinate represents the normalized aperture, and the unit is millimeter. It can be seen from FIG. 13 that in this embodiment, the axial aberration of light rays of different wavelengths passing through the optical lens of this embodiment can be controlled within a relatively small range.
  • FIG. 14 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • S is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridian direction
  • the abscissa indicates the magnitude of the curvature of field
  • the transverse distance between T and S represents the magnitude of astigmatism
  • the ordinate represents the field of view.
  • FIG. 15 is a graph showing distortion curves of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment. Distortion is the difference between the actual position of points in an image and their position in an ideal optical lens. Figure 15 shows the difference between the imaging distortion and the ideal optical lens, the abscissa is the magnitude of the distortion, and the ordinate is the field of view.
  • the axial aberration, astigmatism field curvature, and distortion after the light passes through the optical lens of this embodiment are all small, that is, the optical lens of this embodiment can achieve a better imaging effect.
  • the optical lens provided by this embodiment includes seven lenses, from left to right from the object side to the image side, the optical lens includes sequentially arranged: diaphragm S1, first lens L1, second lens L2, third lens Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, IR glass and imaging surface.
  • the stop S1 is located on the object side of the first lens L1. It can be understood that the stop S1 is located on the periphery of the object side of the first lens L1, and the object side of the first lens L1 can at least partially extend into the interior of the stop S1.
  • the explanation of the stop S1 and the IR glass refers to the first embodiment.
  • the object side surfaces of the first lens L1 and the second lens L2 are both convex surfaces.
  • the refractive index nd2 of the second lens L2 is 1.8564.
  • Table 4C is the aspherical coefficient of each lens
  • the optical lens provided in this embodiment includes a total of 14 aspheric surfaces.
  • all even-order aspheric surface types z can be defined by but not limited to the following aspherical formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A4, A6, A8...A30 are the coefficients of the aspheric surface.
  • FIG. 17 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • the abscissa in FIG. 17 represents the magnitude of the spherical aberration, in millimeters, and the ordinate represents the normalized aperture, in millimeters. It can be seen from FIG. 17 that in this embodiment, the axial aberration of light rays of different wavelengths passing through the optical lens of this embodiment can be controlled within a relatively small range.
  • FIG. 18 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • S is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction
  • the abscissa indicates the magnitude of the curvature of field
  • the transverse distance between T and S represents the magnitude of astigmatism
  • the ordinate represents the field of view.
  • FIG. 19 is a graph showing distortion curves of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment. Distortion is the difference between the actual position of points in an image and their position in an ideal optical lens. Fig. 19 shows the difference between the imaging distortion and the ideal optical lens, the abscissa is the magnitude of the distortion, and the ordinate is the field of view.
  • the axial aberration, astigmatism field curvature, and distortion after the light passes through the optical lens of this embodiment are all small, that is, the optical lens of this embodiment can achieve a better imaging effect.
  • the optical lens provided by this embodiment includes seven lenses, from left to right from the object side to the image side, the optical lens includes sequentially arranged: diaphragm S1, first lens L1, second lens L2, third lens Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, IR glass and imaging surface.
  • the stop S1 is located on the object side of the first lens L1. It can be understood that the stop S1 is located on the periphery of the object side of the first lens L1, and the object side of the first lens L1 can at least partially extend into the interior of the stop S1.
  • the explanation of the stop S1 and the IR glass refers to the first embodiment.
  • the object side surfaces of the first lens L1 and the second lens L2 are both convex surfaces.
  • Table 5C is the aspherical coefficient of each lens
  • the optical lens provided in this embodiment includes a total of 14 aspheric surfaces.
  • all even-order aspheric surface types z can be defined by but not limited to the following aspherical formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A4, A6, A8...A30 are the coefficients of the aspheric surface.
  • FIG. 21 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • the abscissa in FIG. 21 represents the size of the spherical aberration, and the unit is millimeter, and the ordinate represents the normalized aperture, and the unit is millimeter. It can be seen from FIG. 21 that in this embodiment, the axial aberration of light rays of different wavelengths passing through the optical lens of this embodiment can be controlled within a relatively small range.
  • FIG. 22 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • S is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridian direction
  • the abscissa indicates the magnitude of the curvature of field
  • the transverse distance between T and S represents the magnitude of astigmatism
  • the ordinate represents the field of view.
  • FIG. 23 is a graph of distortion of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment. Distortion is the difference between the actual position of points in an image and their position in an ideal optical lens. Figure 23 shows the difference between the imaging distortion and the ideal optical lens, the abscissa is the magnitude of the distortion, and the ordinate is the field of view.
  • the axial aberration, astigmatism field curvature, and distortion after the light passes through the optical lens of this embodiment are all small, that is, the optical lens of this embodiment can achieve a better imaging effect.
  • the optical lens provided by this embodiment includes eight lenses, from left to right from the object side to the image side, the optical lens includes sequentially arranged: diaphragm S1, first lens L1, second lens L2, third lens Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, IR glass and imaging surface.
  • the stop S1 is located on the object side of the first lens L1. It can be understood that the stop S1 is located on the periphery of the object side of the first lens L1, and the object side of the first lens L1 can at least partially extend into the interior of the stop S1.
  • the explanation of the stop S1 and the IR glass refers to the first embodiment.
  • the object side surfaces of the first lens L1 and the second lens L2 are both convex surfaces.
  • Table 6C is the aspheric coefficient of each lens
  • the optical lens provided in this embodiment includes a total of 16 aspheric surfaces.
  • all even-order aspheric surface types z can be defined by but not limited to the following aspherical formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A4, A6, A8...A30 are the coefficients of the aspheric surface.
  • FIG. 25 is a graph of axial aberrations of light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm passing through the optical lens provided in this embodiment.
  • the abscissa in FIG. 25 represents the magnitude of the spherical aberration, in millimeters, and the ordinate represents the normalized aperture, in millimeters. It can be seen from FIG. 25 that in this embodiment, the axial aberration of light rays of different wavelengths passing through the optical lens of this embodiment can be controlled within a relatively small range.
  • FIG. 26 is a graph of astigmatism after light with a wavelength of 555 nm passes through the optical lens provided in this embodiment.
  • S is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridian direction
  • the abscissa indicates the magnitude of the curvature of field
  • the transverse distance between T and S represents the magnitude of astigmatism
  • the ordinate represents the field of view.
  • FIG. 27 is a graph of distortion of light with a wavelength of 555 nm passing through the optical lens provided in this embodiment. Distortion is the difference between the actual position of points in an image and their position in an ideal optical lens. Fig. 27 shows the difference between the imaging distortion and the ideal optical lens, the abscissa is the magnitude of the distortion, and the ordinate is the field of view.
  • the axial aberration, astigmatism field curvature, and distortion etc. are all small after the light passes through the optical lens of this embodiment, that is to say, the optical lens of this embodiment can achieve a better imaging effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(10)、摄像头模组(100)和电子设备(1000)。光学镜头(10)包括自物侧至像侧按序排列的第一镜片(L1)和第二镜片(L2),第一镜片(L1)的物侧面和第二镜片(L2)的物侧面均为凸面;第一镜片(L1)的阿贝数为vd1,60≤vd1≤90;第二镜片(L2)的折射率为nd2,1.65≤nd2≤2;第一镜片(L1)折射率为nd1,0.2≤nd2-nd1≤0.5;第二镜片(L2)的阿贝数为vd2,40<vd1-vd2;光学镜头(10)的光学总长为TTL,光学镜头(10)的半像高为IH,0.45≤TTL/(2*IH)≤0.6。能够保证光学镜头(10)的拍摄效果的同时获得小尺寸的光学总长TTL。

Description

光学镜头、摄像头模组和电子设备
本申请要求于2021年8月31日提交中国专利局、申请号为202111011058.2,发明名称为“光学镜头、摄像头模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施方式涉及镜头领域,具体涉及一种光学镜头、摄像头模组和电子设备。
背景技术
随着人们对镜头拍摄场景的要求越来越多元和复杂,镜头需要满足在不同的场景下均能够完成高质量的拍摄效果。移动终端等电子设备的薄型化亦为发展趋势,以手机为例,应用在超薄手机中的光学镜头,需要具有较小的光学总长。如何在保证光学镜头的拍摄效果的同时获得小尺寸的光学总长,为业界发展的趋势。
发明内容
本申请实施方式提供一种光学镜头、包括所述光学镜头的摄像头模组、以及包括所述摄像头模组的电子设备,旨在保证光学镜头的拍摄效果的同时获得小尺寸的光学总长。
第一方面,本申请提供一种光学镜头,光学镜头包括沿光轴方向自物侧至像侧按序排列的第一镜片和第二镜片,所述第一镜片的物侧面和所述第二镜片的物侧面均为凸面,具体地,所述第一镜片的物侧面和所述第二镜片的物侧面于近光轴处均为凸面,第一镜片和第二镜片的物侧面为凸面的设置均有利于光学镜头大光圈、小型化的设计且有利于提高光学镜头的成像质量。所述第一镜片的阿贝数为vd1,60≤vd1≤90;所述第二镜片的折射率为nd2,1.65≤nd2≤2;所述第一镜片折射率为nd1,0.2≤nd2-nd1≤0.5;所述第二镜片的阿贝数为vd2,40<vd1-vd2;所述光学镜头的光学总长为TTL,所述光学镜头的半像高为IH,0.45≤TTL/(2*IH)≤0.6。
本申请提供一种具备良好成像品质的超薄型光学镜头,在本实施方式中,通过定义第一镜片和第二镜片的折射率和阿贝数,获得了超低TTL。TTL/(2*IH)用于表示TTL ratio(光学总长比率),可以理解为,通过光学镜头的光学总长与光学镜头半像高的比值的一半来表达光学镜头的光学总长比率,TTL ratio被用来评价光学镜头的设计难易程度的指标。目前已有的光学镜头,其主摄TTL ratio均大于0.6。而本申请可以做到0.45≤TTL/(2*IH)≤0.6。本申请实例子提供的光学镜头的光学总长能够较短,以使得光学镜头能够适用于薄型化的电子设备内。
一种可能的实现方式中,0.52≤TTL/(2*IH)≤0.58。本方案限定光学总长和光学镜头的半像高的比值范围在0.52至0.58之间,其好处在于:在目前的加工制作水平的基础上,本方案能够在保证基本像高需求及光学总长较小的情况下,同时容易满足量产需求及可加工性的光学镜头。可以理解的是,当光学总长和光学镜头的半像高的比值范围在0.45至0.52之间的范围,光学总长确实很低,但是,对生产制作工艺的要求也是非常严格的。随着科技的发展、加工制作水平的提升,本申请可以实现光学总长和光学镜头的半像高的比值范围在0.45至0.52之间的范围。
一种可能的实现方式中,所述光学镜头满足:0<f1/f≤1.2,其中,f1为所述第一镜片的焦距,f为所述光学镜头的焦距。本方案定义了第一镜片的焦距与整体成像光学镜头的焦距的关系式,能够实现:有效平衡光学镜头的球差及场曲量。具体而言,本实施方式中通过限定第一镜片的焦距与光学镜头的焦距的比值,即对光学镜头的多个镜片的光焦度进行一定的合理分配,从而合理控制第一镜片的光焦度,有利于提高光学镜头的成像质量。第一镜片为正光焦度,能有效汇聚光线,通过限定第一镜片的焦距与光学镜头的焦距的比值能够缩短光学总长,使得光学镜头适用于薄型化的电子设备。
一种可能的实现方式中,所述光学镜头满足:0.4≤f1/f2≤0,其中,f1为所述第一镜片的焦距,f2为所述第二镜片的焦距。本方案定义了第一镜片的焦距与第二镜片的焦距的关系,通过组合控制第一镜片和第二镜片的焦距,能够实现:有效降低光学镜头的公差敏感性,即优化敏感度,提升光学镜头的成像品质。
一种可能的实现方式中,所述光学镜头满足:1.55≤F#≤2.1,其中,F#为所述光学镜头的光圈值。本方案提供一种大光圈的光学镜头,能够满足光学镜头的进光量,提升拍摄效果。本方案通过限定光圈数的范围实现大光圈的技术效果。光圈数值越小,光圈越大。在上述光学镜头的结构下,本实施方式中光学镜头的光圈数能够满足在较小的范围内,以使光学镜头具有较大的光圈,大光圈有利于增大通光量且能够减小景深,增大通光量有利于光学镜头在较暗的环境下也能够很好的拍摄成像,减小景深有利于实现背景虚化的拍摄效果,在进行人像拍摄或者远距离拍摄时等场景时,采用本实施方式中的光学镜头可以实现背景虚化以突出被摄主体的拍摄效果,能够满足用户日益增长的拍摄需求。
一种可能的实现方式中,所述光学镜头还包括沿光轴方向自所述第二镜片至所述像侧按序排列多个镜片,最邻近所述像侧的所述镜片具有负光焦度。本方案通过最靠近像侧的镜片为负光焦度的设计,有利于校正像差,在提升光学镜头性能的同时,能够实现较好的像差控制。
一种可能的实现方式中,光学镜头包括八片镜片,所述光学镜头还包括沿光轴方向自所述第二镜片至所述像侧按序排列的第三镜片、第四镜片、第五镜片、第六镜片、第七镜片和第八镜片,所述第三镜片和所述第四镜片均具有负光焦度;
所述光学镜头满足:-0.2<f(f3+f4)/(f3*f4)<0;
其中,f3为所述第三镜片的焦距,f4为所述第四镜片的焦距,f为所述光学镜头的焦距。
本方案通过限定镜片的数量,以及合理分配第三镜片和第四镜片的焦距,以及通过第三镜片的焦距、第四镜片的焦距及所述光学镜头的焦距之间的关系式的定义,实现获得较好的成像品质。
一种可能的实现方式中,所述第五镜片、所述第六镜片和所述第七镜片均具有正光焦度,所述第八镜片具有负光焦度。本方案通过第五镜片为正光焦度的设计,能提高光学镜头性能,通过第八镜片为负光焦度的设计,有利于校正像差,本方案在提升光学镜头性能的同时,能够实现较好的像差控制。
一种可能的实现方式中,光学镜头包括七片镜片,所述光学镜头还包括沿光轴方向自所述第二镜片至所述像侧按序排列的第三镜片、第四镜片、第五镜片、第六镜片和第七镜片,所述第三镜片具有负光焦度,所述光学镜头满足:-0.4<f/f3<0,其中,f3为所述第三镜片的焦距,f为所述光学镜头的焦距。本方案通过限定镜片的数量,以及合理分配第三镜片的焦距,以及通过第三镜片的焦距及所述光学镜头的焦距之间的关系式的定义,实现获得较好的成像品质。
一种可能的实现方式中,所述第四镜片、所述第五镜片和所述第六镜片均具有正光焦度,所述第七镜片具有负光焦度。本方案通过第四镜片、第五镜片和第六镜片为正光焦度的设计,能提高光学镜头性能,通过第七镜片为负光焦度的设计,有利于校正像差,本方案在提升光学镜头性能的同时,能够实现较好的像差控制。
具体而言,一种实施方式中,相邻的镜片之间不设置其它光学元件,在第八镜片的像侧还可以设置IR玻璃,即IR镜头、红外镜头,用于消除可见光和红外光的焦面偏移,因此从可见光到红外光区的光线都可以在同一个焦面成像,使图像都能清晰,可以用于夜景拍摄。
一种可能的实现方式中,所述光学镜头满足:|vd2-vd3|<25,其中,vd2为所述第二镜片的阿贝数,vd3为所述第三镜片的阿贝数。本方案通过限定第二镜片的阿贝数和第三镜片的阿贝数之间的关系,能够实现:有利于像质校正。
一种可能的实现方式中,所述光学镜头满足:1<d2(R3+R4)/(R3-R4)<5,其中,d2为所述第二镜片的中心厚度,即第二镜片沿光轴方向在光轴位置处的厚度,R3为所述第二镜片的物侧面的曲率半径,R4为所述第二镜片的像侧面的曲率半径。本方案通过限定第二镜片的厚度、第二镜片的物侧面的曲率半径、第二镜片的像侧面的曲率半径之间的关系,限定了第二镜片的形状,满足此光学式的第二镜片有利于实现在超低TTL的基础上获得较佳像质。
第二方面,本申请实施试方式提供一种摄像头模组,摄像头模组包括感光元件和第一方面任意一种可能的实施方式所述的光学镜头,所述感光元件位于所述光学镜头的像侧,光线经所述光学镜头后投射至所述感光元件,感光元件用于将光信号转换为电信号,即将投射在感光元件上的光线转化成图像信号。由于本申请实施例提供的光学镜头具有超低的光学总长,使得本申请提供的摄像头模组在满足摄像性能的情况下,也能够实现超薄的设计。
第三方面,本申请实施试方式提供一种电子设备,电子设备包括图像处理器和第二方面所述的摄像头模组,所述图像处理器与所述摄像头模组的感光元件通信连接(例如电连接),其中,连接可以是直接连接,也可以是通过其他部件(例如模数转换器等)的间接连接。所述摄像头模组用于获取图像信号并将所述图像信号输入到所述图像处理器中,所述图像处理器用于对输出其中的所述图像信号进行处理。本申请提供的电子设备容易实现薄型化的设计,亦具优质的拍照效果,具有良好的客户体验感。
附图说明
图1为本申请一种实施方式的电子设备的结构示意图。
图2为本申请另一种实施方式的电子设备的结构示意图。
图3为图2所示的电子设备的成像原理示意图。
图4为本申请第一种实施方式提供的光学镜头的结构示意图。
图5为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。
图6为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。
图7为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。
图8为本申请第二种实施方式提供的光学镜头的结构示意图。
图9为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。
图10为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。
图11为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。
图12为本申请第三种实施方式提供的光学镜头的结构示意图。
图13为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。
图14为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。
图15为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。
图16为本申请第四种实施方式提供的光学镜头的结构示意图。
图17为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。
图18为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。
图19为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。
图20为本申请第五种实施方式提供的光学镜头的结构示意图。
图21为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。
图22为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。
图23为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。
图24为本申请第六种实施方式提供的光学镜头的结构示意图。
图25为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。
图26为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。
图27为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。
具体实施方式
为方便理解,在结合附图对本申请各个实施例进行描述前,先对本申请所涉及的技术术语进行解释和描述。
焦距(focal length,简称f),也称为焦长,是光学镜头中衡量光的聚集或发散的度量方式,指无限远的景物通过镜片或镜片组在焦平面结成清晰影像时,镜片或镜片组的光学中心至焦平面的垂直距离。
光阑,是指在光学镜头中对光束起着限制作用的实体。它可以是透镜的边缘、框架或特别设置的带孔屏。其作用可分两方面,限制光束或限制视场(成像范围)大小。光学镜头中限制光束最多的光阑,称为孔径光阑,限制视场(大小)最多的光阑,称为视场光阑。由上可知,孔径光阑和视场光阑两者都是实物。决定光学镜头的孔径光阑的一般规则是:从物点看光阑或光阑的像,由其中张角最小的那一个,来决定光学镜头的孔径光阑。如果张角最小的是某光阑的像,则该光阑本身就是孔径光阑。
光圈,是用来控制光线透过镜头照射至感光元件的光量的装置。表达光圈大小用F数/F值表示。
光圈F值(F#),是镜头的焦距/镜头通光直径得出的相对值(相对孔径的倒数)。光圈F值愈小,在同一单位时间内的进光量便愈多;光圈F值越大,景深越小,拍照的背景内容将会虚化。
正光焦度,也可以称为正折光力,表示镜片有正的焦距、有会聚光线的效果。
负光焦度,也可以称为负折光力,表示镜片有负的焦距、有发散光线的效果。
成像面:成像是指光线经过折射、衍射或由小孔直线传播而在光屏投下的实像,成像面 是指成像所在的平面。
半像高(image height,IH),即成像圆的半径。
光轴,是一条假想的线,定义光学镜头如何传导光线,光轴一般是垂直穿过镜片中心的光线。
物侧,以光学镜头为界,景物所在的一侧为物侧。
像侧,以光学镜头为界,景物的成像所在的一侧为像侧。
物侧面,镜片朝向物侧的表面称为物侧面。
像侧面,镜片朝向像侧的表面称为像侧面。
光学总长(total track length,TTL),指从光学镜头远离成像面的一端至成像面的总长度。本申请中,光学总长是指在光学镜头的光轴上,第一镜片的物侧面至感光元件的距离。光学镜头应用在电子设备中,光学镜头的光学总长是影响电子设备的厚度的主要因素。
光学总长比率(TTL ratio),TTL/(2*IH)用于表示TTL ratio,可以理解为,通过光学镜头的光学总长与光学镜头半像高的比值的一半来表达光学镜头的光学总长比率,TTL ratio被用来评价镜头设计难易程度的指标。
阿贝数,即色散系数,是光学材料在不同波长下的折射率的差值比,代表材料色散程度。
镜片折射率,是光在真空中的传播速度与光在镜片材料中的传播速度之比,反映了镜片对光线的折射能力。
像差(aberration),是指实际光学镜头中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,与高斯光学(一级近似理论或近轴光线)的理想状况的偏差。
视场,代表着摄像头能够观察到的最大范围。
本申请提供一种电子设备或智能终端,电子设备可以为手机、平板、电脑、摄像机、照相机或其他形态的具有拍照或摄像功能的电子设备。
请参阅图1,图1所示为本申请一种实施方式的电子设备1000的结构示意图。本实施方式中,电子设备1000为手机。电子设备1000可以包括摄像头模组100以及与摄像头模组100通信连接的图像处理器200。摄像头模组100用于获取图像信号并将图像信号输入到图像处理器200中,以便图像处理器200对图像信号进行处理。其中,摄像头模组100与图像处理器200的通信连接可以包括通过走线连接等电连接方式进行数据传输,也可以通过光缆连接或无线传输等其它能够实现数据传输的方式实现通信连接。
图像处理器200可以通过一系列复杂的数学算法运算,对数字图像信号进行优化处理,最后把处理后的信号传到显示器上或存储至存储器中。图像处理器200可以是图像处理芯片或数字信号处理(digital signal processing,DSP)芯片。
图1所示实施方式中,摄像头模组100可以设于电子设备1000的背面,为电子设备1000的后置摄像头。本申请中,电子设备1000包括后盖板1001,后盖板1001上开设有入光孔1002,电子设备1000外的光线经入光孔1002入射至摄像头模组100中的光学镜头10。应理解,图1所示实施方式的电子设备1000的摄像头模组100的安装位置仅仅是示意性的。在一些其他的实施方式中,摄像头模组100也可以安装于电子设备1000上的其他位置。例如,摄像头模组100可以安装于电子设备1000的正面,作为电子设备1000的前置摄像头。或者,摄像头模组100可以安装于电子设备1000的背面的上部中间或右上角;或者,摄像头模组100还可以不设置在手机主体上,而设置在相对手机可移动或转动的部件上,例如该部件可以从手机主体上外伸、收回或旋转等。本申请对摄像头模组100的安装位置不做任何限定。
请参阅图2,图2是本申请另一种实施方式的电子设备1000的结构示意图。图2中摄像头模组100、入光孔1002以及光学镜头10和图1中的相同,在此不做赘述。在图2所示的实施方式中,相比于图1所示的实施方式,电子设备1000还包括模数转换器(digital analog converter,DAC)300。请参见图2,模数转换器300连接于摄像头模组100与图像处理器200之间。模数转换器300用于将摄像头模组100产生的模拟图像信号转换为数字图像信号并传输至图像处理器200,再通过图像处理器200对数字图像信号进行处理,最终通过显示屏或者显示器进行图像或者影像显示。
一些实施方式中,电子设备1000还可以包括存储器400,存储器400与图像处理器200通信连接,图像处理器200对图像数字信号加工处理以后再将图像传输至存储器400中,以便于在后续需要查看图像时能够随时从存储中查找图像并在显示屏上进行显示(请参见图2)。一些实施方式中,图像处理器200还会对处理后的图像数字信号进行压缩,再存储至存储器400中,以节约存储器400空间。需要说明的是,图2仅为本申请实施方式的结构示意图,其中所示的摄像头模组100、图像处理器200、模数转换器300、存储器400的位置结构等均仅为示意。
请参阅图3,图3为图2所示电子设备1000的成像原理示意图。摄像头模组100包括光学镜头10以及感光元件20。感光元件20位于光学镜头10的像侧。其中,光学镜头10的像侧是指光学镜头10靠近景物的成像的一侧。当摄像头模组100进行工作时,景物通过光学镜头10在感光元件20上成像。具体的,摄像头模组100的工作原理为:景物反射的光线L通过光学镜头10生成光学图像并投射到感光元件20的表面,感光元件20将光学图像转为电信号即模拟图像信号S1并将转换得到的模拟图像信号S1传输至模数转换器300,以通过模数转换器300转换为数字图像信号S2给图像处理器200。
感光元件20是一种半导体器件,表面可包含有几十万到几百万的光电二极管,受到光照射时,会产生电荷,从而完成将光学信号转化为电信号。可选的,感光元件20可以为任意能够将光学信号转化为电信号的器件。例如,感光元件20可以是电荷耦合元件(charge coupled device,CCD),也可以是互补金属氧化物导体器件(complementary metal-oxide semiconductor,CMOS)。
光学镜头10影响成像质量和成像效果。光学镜头10包括沿光轴方向从物侧至像侧排列的多片镜片,其主要利用镜片的折射原理进行成像。具体的,待成像物体的光线通过光学镜头10在焦平面上形成清晰的影像,并通过位于成像面上的感光元件20记录景物的影像。相邻的镜片之间可以具有间隔,也可以紧贴设置。各片镜片起到的主要作用不同,通过不同镜片之间的配合以得到最佳的成像质量。
本申请具体实施方式提供的光学镜头包括沿光轴方向从物侧至像侧面依次排列的多片镜片、IR玻璃和成像面。本申请实施方式通过限定第一镜片的物侧面和第二镜片的物侧面均为凸面,且定义第一镜片和第二镜片的折射率和阿贝数,获得了超低TTL。具体而言,所述第一镜片的阿贝数为vd1,60≤vd1≤90;所述第二镜片的折射率为nd2,1.65≤nd2≤2;所述第一镜片折射率为nd1,0.2≤nd2-nd1≤0.5;所述第二镜片的阿贝数为vd2,40<vd1-vd2;本申请提供的光学镜头的半像高为IH,0.45≤TTL/(2*IH)≤0.6。
相较现有技术中的光学镜头,现有技术中的光学镜头的主摄TTL ratio均大于0.6,而本申请可以做到0.45≤TTL/(2*IH)≤0.6。因此,本申请提供一种具备良好成像品质的超薄型光学镜头,光学镜头的光学总长能够较短,以使得光学镜头能够适用于薄型化的电子设备内。
本申请实施方式通过定义第一镜片的焦距与整体成像光学镜头的焦距f的关系式,即:0<f1/f≤1.2,其中,f1为第一镜片的焦距,f为光学镜头的焦距,使得光学镜头能够有效平衡光学镜头的球差及场曲量。具体而言,本实施方式中通过限定第一镜片的焦距与光学镜头的焦距的比值,即对光学镜头的多个镜片的光焦度进行一定的合理分配,从而合理控制第一镜片的光焦度,有利于提高光学镜头的成像质量。本申请实施方式通过限定第一镜片的焦距与光学镜头的焦距的比值还能够缩短光学总长,使得光学镜头适用于薄型化的电子设备。
第一镜片为正光焦度,能有效汇聚光线,本申请实施方式通过限定第一镜片为正光焦度,有利于聚光,能够更多的将外界的光线汇聚至光学镜头内,增加光学镜头的入光量,以实现更好的拍照效果。
本申请实施方式通过定义第一镜片的焦距与第二镜片的焦距的组合控制,能够有效降低公差敏感性,即优化敏感度,提升光学镜头的成像品质,具体而言,光学镜头满足:0.4≤f1/f2≤0,其中,f1为所述第一镜片的焦距,f2为所述第二镜片的焦距。
本申请实施方式通过合理分配中间几片镜片的光焦度,有利于获得较好的成像品质。
一种实施方式中,本申请实施例提供的光学镜头包括多片镜片,邻近所述像侧的所述镜片具有负光焦度。本方案通过最靠近像侧的镜片为负光焦度的设计,有利于校正像差,在提升光学镜头性能的同时,能够实现较好的像差控制。
一种实施方式中,光学镜头包括八片镜片,自物侧至像侧按序排列,分别为第一镜片、第二镜片、第三镜片、第四镜片、第五镜片、第六镜片、第七镜片和第八镜片。其中,所述第三镜片和所述第四镜片均具有负光焦度。所述光学镜头满足:-0.2<f(f3+f4)/(f3*f4)<0;其中,f3为所述第三镜片的焦距,f4为所述第四镜片的焦距,f为光学镜头的焦距。本方案通过限定镜片的数量,以及合理分配第三镜片和第四镜片的焦距,以及通过第三镜片的焦距、第四镜片的焦距及光学镜头的焦距之间的关系式的定义,实现获得较好的成像品质。第五镜片、第六镜片和第七镜片均具有正光焦度,第八镜片具有负光焦度。本方案通过第五镜片为正光焦度的设计,能提高光学镜头性能,通过第八镜片为负光焦度的设计,有利于校正像差,本方案在提升光学镜头性能的同时,能够实现较好的像差控制。
另一种实施方式中,光学镜头包括七片镜片,自物侧至像侧按序排列,分别为第一镜片、第二镜片、第三镜片、第四镜片、第五镜片、第六镜片和第七镜片。其中,第三镜片具有负光焦度,光学镜头满足:-0.4<f/f3<0,其中,f3为所述第三镜片的焦距,f为光学镜头的焦距。本方案通过限定镜片的数量,以及合理分配第三镜片的焦距,以及通过第三镜片的焦距及光学镜头的焦距之间的关系式的定义,实现获得较好的成像品质。第四镜片、第五镜片和第六镜片均具有正光焦度,所述第七镜片具有负光焦度。本方案通过第四镜片、第五镜片和第六镜片为正光焦度的设计,能提高光学镜头性能,通过第七镜片为负光焦度的设计,有利于校正像差,本方案在提升光学镜头性能的同时,能够实现较好的像差控制。
本申请实施方式通过定义最后一片镜片(即邻近像侧的镜片)的光焦度,有利于校正像差。例如上述八片镜片的实施方式中,第八镜片的光焦度为负光焦度;上述七片镜片的实施方式中,第七镜片的光焦度为负光焦度。
本申请实施方式通过限定第二镜片的阿贝数和第三镜片的阿贝数之间的关系,能够实现:有利于像质校正和实现超低TTL。具体而言,所述光学镜头满足:|vd2-vd3|<25,其中,vd2为所述第二镜片的阿贝数,vd3为所述第三镜片的阿贝数。
本申请实施方式通过限定第二镜片的中心厚度、第二镜片的物侧面的曲率半径、第二镜片的像侧面的曲率半径之间的关系,限定了第二镜片的形状,满足此光学式的第二镜片有利 于获得超低TTL。具体而言,所述光学镜头满足:1<d2(R3+R4)/(R3-R4)<5,其中,d2为所述第二镜片的中心厚度,R3为所述第二镜片的物侧面的曲率半径,R4为所述第二镜片的像侧面的曲率半径。
由于本申请实施例提供的光学镜头具有超低的光学总长,使得本申请提供的摄像头模组在满足摄像性能的情况下,也能够实现超薄的设计,本申请提供的电子设备容易实现薄型化的设计,亦具优质的拍照效果,具有良好的客户体验感。
本申请可以具有多种不同的实施例,接下来以六个不同具体实施方式为例,展开详细说明本申请提供的光学镜头。
第一实施方式
参阅图4,本实施方式提供的光学镜头包括八片镜片,从左至右为物侧至像侧,光学镜头包括依次排列的:光阑S1、第一镜片L1、第二镜片L2、第三镜片L3、第四镜片L4、第五镜片L5、第六镜片L6、第七镜片L7、第八镜片L8、IR玻璃和成像面。光圈S1位于第一镜片L1的物侧,可以理解为,光阑S1位于第一镜片L1的物侧面的外围,第一镜片L1的物侧面可以至少部分伸入光阑S1的内部。
其中,光阑S1是指在光学镜头中对光束起着限制作用的实体。它可以是透镜的边缘、框架或特别设置的带孔屏。其作用可分两方面,限制光束或限制视场(成像范围)大小。IR玻璃也可以称为IR镜头(即红外镜头),为光学玻璃材料,用于消除可见光和红外光的焦面偏移,使得从可见光到红外光区的光线都可以在同一个焦面成像,使图像都能清晰。
第一镜片L1和第二镜片L2的物侧面(具体为物侧面近光轴处的位置)均为凸面。
所述第一镜片L1为高阿贝数正光焦度镜片,第一镜片L1的阿贝数vd1=81.61,第一镜片L1的焦距f1与所述光学镜头的焦距f的比值满足如下关系式:f1/f=0.88。
所述第二镜片L2为高折射率负光焦度镜片,第二镜片L2的折射率nd2=1.8385。第二镜片L2的焦距f2与所述光学镜头的焦距f的比值满足如下关系式:f2/f=-3.58。
所述第一镜片L1的折射率nd1与第二镜片L2的折射率nd2差值满足如下关系式:nd2-nd1=0.34;第一镜片L1的阿贝数vd1与第二镜片L2的阿贝数vd2差值满足如下关系式:vd1-vd2=44.33;所述第二镜片L2的阿贝数vd2和第三镜片L3阿贝数vd3差值满足如下关系式:vd2-vd3=19.17。
所述第三镜片L3和第四镜片L4具有负光焦度,且第三镜片L3的焦距f3、第四镜片L4的焦距f4和所述光学镜头的焦距f之间满足如下关系式:f(f3+f4)/(f3f4)=-0.05。
所述第五镜片L5具有正光焦度,第五镜片L5的焦距f5与所述光学镜头的焦距f的比值满足如下关系式:f5/f=3.87。
所述第六镜片L6具有正光焦度,第六镜片L6的焦距f6与所述光学镜头的焦距f的比值满足如下关系式:f6/f=137.60。
所述第七镜片L7具有正光焦度,第七镜片L7的焦距f7与所述光学镜头的焦距f的比值满足如下关系式:f7/f=2.95。
所述第八镜片L8具有负光焦度,第八镜片L8的焦距f8与所述光学镜头的焦距f的比值满足如下关系式:f8/f=-0.64。
本实施方式提供的光学镜头为一种超低总高、大光圈、大靶面光学成像光学镜头,其光学F#=1.87。
本实施方式提供的光学镜头的光学总长TTL与半像高IH的比值满足如下关系式:TTL/(2*IH)=0.56。
本实施方式提供的光学镜头的光学总长TTL与所述光学镜头的焦距f的比值满足如下关系式:TTL/f=1.08。
本实施方式达到的技术效果如下表(表1A、表1B、表1C)所示:
表1A、光学镜头基本参数
  光学参数
焦距f 5.38mm
F值(F#) 1.87
半像高IH 5.2mm
TTL ratio 0.56
设计波长 650nm,610nm,555nm,510nm,470nm
表1B、光学镜头各镜片曲率半径、中心厚度、镜片间轴上距离、折射率、阿贝数
Figure PCTCN2022115625-appb-000001
表1B中各符号的含义如下:
S1:光圈
R:镜片中心处的曲率半径;
R1:第一镜片L1的物侧面;
R2:第一镜片L1的像侧面;
R3:第二镜片L2的物侧面;
R4:第二镜片L2的像侧面;
R5:第三镜片L3的物侧面;
R6:第三镜片L3的像侧面;
R7:第四镜片L4的物侧面;
R8:第四镜片L4的像侧面;
R9:第五镜片L5的物侧面;
R10:第五镜片L5的像侧面;
R11:第六镜片L6的物侧面;
R12:第六镜片L6的像侧面;
R13:第七镜片L7的物侧面;
R14:第七镜片L7的像侧面;
R15:第八镜片L8的物侧面;
R16:第八镜片L8的像侧面;
Rg1:光学过滤片IR玻璃的物侧面;
Rg2:光学过滤片IR玻璃的像侧面;
d:镜片的中心厚度(即镜片沿光轴方向在光轴位置处的厚度,也可以称为轴上厚度)或镜片之间的轴上距离(即沿光轴方向,镜片之间在光轴位置处的距离);
d0:光阑S1到第一镜片L1的物侧面的轴上距离;
d1:第一镜片L1的中心厚度;
d2:第一镜片L1的像侧面到第二镜片L2的物侧面的轴上距离;
d3:第二镜片L2的中心厚度;
d4:第二镜片L2的像侧面到第三镜片L3的物侧面的轴上距离;
d5:第三镜片L3的中心厚度;
d6:第三镜片L3的像侧面到第四镜片L4的物侧面的轴上距离;
d7:第四镜片L4的中心厚度;
d8:第四镜片L4的像侧面到第五镜片L5的物侧面的轴上距离;
d9:第五镜片L5的中心厚度;
d10:第五镜片L5的像侧面到第六镜片L6的物侧面的轴上距离;
d11:第六镜片L6的中心厚度;
d12:第六镜片L6的像侧面到第七镜片L7的物侧面的轴上距离;
d13:第七镜片L7的中心厚度;
d14:第七镜片L7的像侧面到第八镜片L8的物侧面的轴上距离;
d15:第八镜片L8的中心厚度;
d16:第八镜片L8的像侧面到光学过滤片IR玻璃的物侧面的轴上距离;
dg1:光学过滤片IR玻璃的中心厚度;
dg2:光学过滤片IR玻璃的像侧面到像面的轴上距离;
nd:d线的折射率(d线为波长为550nm的绿光);
nd1:第一镜片L1的d线的折射率;
nd2:第二镜片L2的d线的折射率;
nd3:第三镜片L3的d线的折射率;
nd4:第四镜片L4的d线的折射率;
nd5:第五镜片L5的d线的折射率;
nd6:第六镜片L6的d线的折射率;
nd7:第七镜片L7的d线的折射率;
nd8:第八镜片L8的d线的折射率;
ndg:光学过滤片IR玻璃的d线的折射率;
vd:阿贝数;
v1:第一镜片L1的阿贝数;
v2:第二镜片L2的阿贝数;
v3:第三镜片L3的阿贝数;
v4:第四镜片L4的阿贝数;
v5:第五镜片L5的阿贝数;
v6:第六镜片L6的阿贝数;
v7:第七镜片L7的阿贝数;
v8:第八镜片L8的阿贝数;
vdg:光学过滤片(IR玻璃)的阿贝数。
需要说明的是,上述符号表示的意义除另有说明外,在后续再次出现时表示的意思相同,将不再进行赘述。
表1C为各镜片非球面系数
Figure PCTCN2022115625-appb-000002
Figure PCTCN2022115625-appb-000003
由表1C可知,本实施方式提供的光学镜头一共包含16个非球面。
在本实施例中,所有偶次非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022115625-appb-000004
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A4、A6、A8…A30为非球面系数。
图5为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。图5的横坐标表示球差的大小,单位为毫米,纵坐标表示归一化的孔径,单位为毫米。从图5可以看出,本实施方式中,不同波长的光线经本实施方式的光学镜头后的轴向像差能够控制在一个较小的范围内。
图6为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。图6中S为弧矢方向的场曲,T为子午方向的场曲,横坐标表示场曲的大小,T和S之间的横向距离表示像散的大小,纵坐标表示视场。从图6可以看出,光经本实施方式的光学镜头后在弧矢方向和子午方向的像散场曲均较小,即本实施方式的光学镜头的成像的像散场曲较小。
图7为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。畸变(distortion),是指图像中点的实际显示位置与它们在理想光学镜头中所处位置之间的差距。图7表示成像变形与理想光学镜头之间的差异,横坐标为畸变大小,纵坐标表示视场。
因此,本实施方式中,光线经本实施方式的光学镜头后轴向像差、像散场曲及畸变等均较小,也即本实施方式的光学镜头能够实现具有较好的成像效果。
第二实施方式
参阅图8,本实施方式提供的光学镜头包括八片镜片,从左至右为物侧至像侧,光学镜头包括依次排列的:光阑S1、第一镜片L1、第二镜片L2、第三镜片L3、第四镜片L4、第五镜片L5、第六镜片L6、第七镜片L7、第八镜片L8、IR玻璃和成像面。光阑S1位于第一镜片L1的物侧,可以理解为,光阑S1位于第一镜片L1的物侧面的外围,第一镜片L1的物侧面可以至少部分伸入光阑S1的内部。光阑S1和IR玻璃的解释参照第一实施方式。
第一镜片L1和第二镜片L2的物侧面(具体为物侧面近光轴处的位置)均为凸面。
所述第一镜片L1为高阿贝数正光焦度镜片,第一镜片L1的阿贝数vd1=60.00,第一镜片L1的焦距f1与所述光学镜头的焦距f的比值满足如下关系式:f1/f=1.20。
所述第二镜片L2为高折射率负光焦度镜片,第二镜片L2的折射率nd1=2.0000。第二镜片L2的焦距f2与所述光学镜头的焦距f的比值满足如下关系式:f2/f=-7.77。
所述第一镜片L1的折射率nd1与第二镜片L2的折射率nd2差值满足如下关系式:nd2-nd1=0.51;第一镜片L1的阿贝数vd1与第二镜片L2的阿贝数vd2差值满足如下关系式:vd1-vd2=40.67;所述第二镜片L2的阿贝数vd2和第三镜片L3的阿贝数vd3差值满足如下关系式:vd2-vd3=1.23。
所述第三镜片L3和第四镜片L4具有负光焦度,且第三镜片L3的焦距f3、第四镜片L4的焦距f4和所述光学镜头的焦距f之间满足如下关系式:f(f3+f4)/(f3f4)=-0.06。
所述第五镜片L5具有正光焦度,第五镜片L5的焦距f5与所述光学镜头的焦距f的比值满足如下关系式:f5/f=2.56。
所述第六镜片L6具有正光焦度,第六镜片L6的焦距f6与所述光学镜头的焦距f的比值满足如下关系式:f6/f=12.75。
所述第七镜片L7具有正光焦度,第七镜片L7的焦距f7与所述光学镜头的焦距f的比值满足如下关系式:f7/f=3.71。
所述第八镜片L8具有负光焦度,第八镜片L8的焦距f8与所述光学镜头的焦距f的比值满足如下关系式:f8/f=-0.76。
本实施方式提供的光学镜头为一种超低总高、大光圈、大靶面光学成像光学镜头,其光学F#=1.55。
本实施方式提供的光学镜头的光学总长TTL与半像高IH的比值满足如下关系式:TTL/(2*IH)=0.599。
本实施方式提供的光学镜头的光学总长TTL与所述光学镜头的焦距f的比值满足如下关系式:TTL/f=1.17。
本实施方式达到的技术效果如下表(表2A、表2B、表2C)所示:
表2A、光学镜头基本参数
  光学参数
焦距f 5.32mm
F值(F#) 1.55
半像高IH 5.20mm
TTL ratio 0.599
设计波长 650nm,610nm,555nm,510nm,470nm
表2B、光学镜头各镜片曲率半径、中心厚度、镜片间轴上距离、折射率、阿贝数
Figure PCTCN2022115625-appb-000005
表2B中各符号的含义与前述第一实施方式中的表1B中各符号的含义相同。
表2C为各镜片非球面系数
Figure PCTCN2022115625-appb-000006
Figure PCTCN2022115625-appb-000007
由表2C可知,本实施方式提供的光学镜头一共包含16个非球面。
在本实施例中,所有偶次非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022115625-appb-000008
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A4、A6、A8…A30为非球面系数。
图9为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。图9的横坐标表示球差的大小,单位为毫米,纵坐标表示归一化的孔径,单位为毫米。从图9可以看出,本实施方式中,不同波长的光线经本实施方式的光学镜头后的轴向像差能够控制在一个较小的范围内。
图10为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。图10中S为弧矢方向的场曲,T为子午方向的场曲,横坐标表示场曲的大小,T和S之间的横向距离表示像散的大小,纵坐标表示视场。从图10可以看出,光经本实施方式的光学镜头后在弧矢方向和子午方向的像散场曲均较小,即本实施方式的光学镜头的成像的像散场曲较小。
图11为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。畸变(distortion),是指图像中点的实际显示位置与它们在理想光学镜头中所处位置之间的差距。图11表示成像变形与理想光学镜头之间的差异,横坐标为畸变大小,纵坐标表示视场。
因此,本实施方式中,光线经本实施方式的光学镜头后轴向像差、像散场曲及畸变等均较小,也即本实施方式的光学镜头能够实现具有较好的成像效果。
第三实施方式
参阅图12,本实施方式提供的光学镜头包括七片镜片,从左至右为物侧至像侧,光学镜头包括依次排列的:光阑S1、第一镜片L1、第二镜片L2、第三镜片L3、第四镜片L4、第五镜片L5、第六镜片L6、第七镜片L7、IR玻璃和成像面。光阑S1位于第一镜片L1的物侧,可以理解为,光阑S1位于第一镜片L1的物侧面的外围,第一镜片L1的物侧面可以至少部分伸入光阑S1的内部。光阑S1和IR玻璃的解释参照第一实施方式。
第一镜片L1和第二镜片L2的物侧面(具体为物侧面近光轴处的位置)均为凸面。
所述第一镜片L1为高阿贝数正光焦度镜片,第一镜片L1的阿贝数vd1=90.00,第一镜片L1的焦距f1与所述光学镜头的焦距f的比值满足如下关系式:f1/f=0.79。
所述第二镜片L2为高折射率负光焦度镜片,第二镜片L2的折射率nd2=1.9363。第二镜片L2的焦距f2与所述光学镜头的焦距f的比值满足如下关系式:f2/f=-2.88。
所述第一镜片L1的折射率nd1与第二镜片L2的折射率nd2差值满足如下关系式:nd2-nd1=0.50;第一镜片L1的阿贝数vd1与第二镜片L2的阿贝数vd2差值满足如下关系式:vd1-vd2=65.28;所述第二镜片L2的阿贝数vd2和第三镜片L3的阿贝数vd3差值满足如下关系式:vd2-vd3=3.00。
所述第三镜片L3具有负光焦度,第三镜片L3的焦距f3与所述光学镜头的焦距f的比值满足如下关系式:f3/f=-5.96。
所述第四镜片L4具有正光焦度,第四镜片L4的焦距f4与所述光学镜头的焦距f的比值满足如下关系式:f4/f=6.87。
所述第五镜片L5具有正光焦度,第五镜片L5的焦距f5与所述光学镜头的焦距f的比值满足如下关系式:f5/f=2.78。
所述第六镜片L6具有正光焦度,第六镜片L6的焦距f6与所述光学镜头的焦距f的比值满足如下关系式:f6/f=6.33。
所述第七镜片L7具有负光焦度,第七镜片L7的焦距f7与所述光学镜头的焦距f的比值满足如下关系式:f7/f=-0.43。
本实施方式提供的光学镜头为一种超低总高、大光圈、大靶面光学成像光学镜头,其光学F#=2.09。
本实施方式提供的光学镜头的光学总长TTL与半像高IH的比值满足如下关系式:TTL/(2*IH)=0.48。
本实施方式提供的光学镜头的光学总长TTL与所述光学镜头的焦距f的比值满足如下关系式:TTL/f=0.95。
本实施方式达到的技术效果如下表(表3A、表3B、表3C)所示:
表3A、光学镜头基本参数
  光学参数
焦距f 5.27mm
F值(F#) 2.09
半像高IH 5.20mm
TTL ratio 0.48
设计波长 650nm,610nm,555nm,510nm,470nm
表3B、光学镜头各镜片曲率半径、中心厚度、镜片间轴上距离、折射率、阿贝数
Figure PCTCN2022115625-appb-000009
表3B中各符号的含义与前述第一实施方式中的表1B中各符号的含义相同。
表3C为各镜片非球面系数
Figure PCTCN2022115625-appb-000010
Figure PCTCN2022115625-appb-000011
由表3C可知,本实施方式提供的光学镜头一共包含14个非球面。
在本实施例中,所有偶次非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022115625-appb-000012
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A4、A6、A8…A30为非球面系数。
图13为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。图13的横坐标表示球差的大小,单位为毫米,纵坐标表示归一化的孔径,单位为毫米。从图13可以看出,本实施方式中,不同波长的光线经本实施方式的光学镜头后的轴向像差能够控制在一个较小的范围内。
图14为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。图14中S为弧矢方向的场曲,T为子午方向的场曲,横坐标表示场曲的大小,T和S之间的横向距离表示像散的大小,纵坐标表示视场。从图14可以看出,光经本实施方式的光学镜头后在弧矢方向和子午方向的像散场曲均较小,即本实施方式的光学镜头的成像的像散场曲较小。
图15为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。畸变(distortion),是指图像中点的实际显示位置与它们在理想光学镜头中所处位置之间的差距。图15表示成像变形与理想光学镜头之间的差异,横坐标为畸变大小,纵坐标表示视场。
因此,本实施方式中,光线经本实施方式的光学镜头后轴向像差、像散场曲及畸变等均较小,也即本实施方式的光学镜头能够实现具有较好的成像效果。
第四实施方式
参阅图16,本实施方式提供的光学镜头包括七片镜片,从左至右为物侧至像侧,光学镜头包括依次排列的:光阑S1、第一镜片L1、第二镜片L2、第三镜片L3、第四镜片L4、第五镜片L5、第六镜片L6、第七镜片L7、IR玻璃和成像面。光阑S1位于第一镜片L1的物侧,可以理解为,光阑S1位于第一镜片L1的物侧面的外围,第一镜片L1的物侧面可以至少部分伸入光阑S1的内部。光阑S1和IR玻璃的解释参照第一实施方式。
第一镜片L1和第二镜片L2的物侧面(具体为物侧面近光轴处的位置)均为凸面。
所述第一镜片L1为高阿贝数正光焦度镜片,第一镜片L1的阿贝数vd1=90.00,第一镜片L1的焦距f1与所述光学镜头的焦距f的比值满足如下关系式:f1/f=0.71。
所述为高折射率负光焦度镜片,第二镜片L2的折射率nd2=1.8564。第二镜片L2的焦距f2与所述光学镜头的焦距f的比值满足如下关系式:f2/f=-2.11。
所述第一镜片L1的折射率nd1与第二镜片L2的折射率nd2差值满足如下关系式:nd2-nd1=0.42;第一镜片L1的阿贝数vd1与第二镜片L2的阿贝数vd2差值满足如下关系式:vd1-vd2=50.27;所述第二镜片L2的阿贝数vd2和第三镜片L3的阿贝数vd3差值满足如下关系式:vd2-vd3=20.49。
所述第三镜片L3具有负光焦度,第三镜片L3的焦距f3与所述光学镜头的焦距f的比值满足如下关系式:f3/f=-25.63。
所述第四镜片L4具有正光焦度,第四镜片L4的焦距f4与所述光学镜头的焦距f的比值满足如下关系式:f4/f=49.27。
所述第五镜片L5具有正光焦度,第五镜片L5的焦距f5与所述光学镜头的焦距f的比值满足如下关系式:f5/f=3.47。
所述第六镜片L6具有正光焦度,第六镜片L6的焦距f6与所述光学镜头的焦距f的比值满足如下关系式:f6/f=17.78。
所述第七镜片L7具有负光焦度,第七镜片L7的焦距f7与所述光学镜头的焦距f的比值满足如下关系式:f7/f=-0.51。
本实施方式提供的光学镜头为一种超低总高、大光圈、大靶面光学成像光学镜头,其光学F#=2.09。
本实施方式提供的光学镜头的光学总长TTL与半像高IH的比值满足如下关系式:TTL/(2*IH)=0.51。
本实施方式提供的光学镜头的光学总长TTL与所述光学镜头的焦距f的比值满足如下关系式:TTL/f=0.98。
本实施方式达到的技术效果如下表(表4A、表4B、表4C)所示:
表4A、光学镜头基本参数
  光学参数
焦距f 5.39mm
F值(F#) 2.09
半像高IH 5.20mm
TTL ratio 0.51
设计波长 650nm,610nm,555nm,510nm,470nm
表4B、光学镜头各镜片曲率半径、中心厚度、镜片间轴上距离、折射率、阿贝数
Figure PCTCN2022115625-appb-000013
表4B中各符号的含义与前述第一实施方式中的表1B中各符号的含义相同。
表4C为各镜片非球面系数
Figure PCTCN2022115625-appb-000014
Figure PCTCN2022115625-appb-000015
由表4C可知,本实施方式提供的光学镜头一共包含14个非球面。
在本实施例中,所有偶次非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022115625-appb-000016
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A4、A6、A8…A30为非球面系数。
图17为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。图17的横坐标表示球差的大小,单位为毫米,纵坐标表示归一化的孔径,单位为毫米。从图17可以看出,本实施方式中,不同波长的光线经本实施方式的光学镜头后的轴向像差能够控制在一个较小的范围内。
图18为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。图18中S为弧矢方向的场曲,T为子午方向的场曲,横坐标表示场曲的大小,T和S之间的横向距离表示像散的大小,纵坐标表示视场。从图18可以看出,光经本实施方式的光学镜头后在弧矢方向和子午方向的像散场曲均较小,即本实施方式的光学镜头的成像的像散场曲较小。
图19为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。畸变(distortion),是指图像中点的实际显示位置与它们在理想光学镜头中所处位置之间的差距。图19表示成像变形与理想光学镜头之间的差异,横坐标为畸变大小,纵坐标表示视场。
因此,本实施方式中,光线经本实施方式的光学镜头后轴向像差、像散场曲及畸变等均较小,也即本实施方式的光学镜头能够实现具有较好的成像效果。
第五实施方式
参阅图20,本实施方式提供的光学镜头包括七片镜片,从左至右为物侧至像侧,光学镜头包括依次排列的:光阑S1、第一镜片L1、第二镜片L2、第三镜片L3、第四镜片L4、第五镜片L5、第六镜片L6、第七镜片L7、IR玻璃和成像面。光阑S1位于第一镜片L1的物侧,可以理解为,光阑S1位于第一镜片L1的物侧面的外围,第一镜片L1的物侧面可以至少部分伸入光阑S1的内部。光阑S1和IR玻璃的解释参照第一实施方式。
第一镜片L1和第二镜片L2的物侧面(具体为物侧面近光轴处的位置)均为凸面。
所述第一镜片L1为高阿贝数正光焦度镜片,第一镜片L1的阿贝数vd1=90.00,第一镜片L1的焦距f1与所述光学镜头的焦距f的比值满足如下关系式:f1/f=0.77。
所述第二镜片L2为高折射率负光焦度镜片,第二镜片L2的折射率nd2=1.6776。第二镜片L2的焦距f2与所述光学镜头的焦距f的比值满足如下关系式:f2/f=-2.55。
所述第一镜片L1的折射率nd1与第二镜片L2的折射率nd2的差值满足如下关系式:nd2-nd1=0.24.;第一镜片L1的阿贝数vd1与第二镜片L2的阿贝数vd2的差值满足如下关系式:vd1-vd2=45.89;所述第二镜片L2的阿贝数vd2和第三镜片L3的阿贝数vd3的差值满足如下关系式:vd2-vd3=24.86。
所述第三镜片L3具有负光焦度,第三镜片L3的焦距f3与所述光学镜头的焦距f的比值满足如下关系式:f3/f=-2.73。
所述第四镜片L4具有正光焦度,第四镜片L4的焦距f4与所述光学镜头的焦距f的比值满足如下关系式:f4/f=4.07。
所述第五镜片L5具有正光焦度,第五镜片L5的焦距f5与所述光学镜头的焦距f的比值满足如下关系式:f5/f=6.04。
所述具有正光焦度,第六镜片L6的焦距f6与所述光学镜头的焦距f的比值满足如下关系式:f6/f=2.82。
所述具有负光焦度,第七镜片L7的焦距f7与所述光学镜头的焦距f的比值满足如下关系式:f7/f=-1.16。
本实施方式提供的光学镜头为一种超低总高、大光圈、大靶面光学成像光学镜头,其光学F#=2.09。
本实施方式提供的光学镜头的光学总长TTL与半像高IH的比值满足如下关系式:TTL/(2*IH)=0.599。
本实施方式提供的光学镜头的光学总长TTL与所述光学镜头的焦距f的比值满足如下关系式:TTL/f=1.12。
本实施方式达到的技术效果如下表(表5A、表5B、表5C)所示:
表5A、光学镜头基本参数
  光学参数
焦距f 5.57mm
F值(F#) 2.09
半像高IH 5.20mm
TTL ratio 0.599
设计波长 650nm,610nm,555nm,510nm,470nm
表5B、光学镜头各镜片曲率半径、中心厚度、镜片间轴上距离、折射率、阿贝数
Figure PCTCN2022115625-appb-000017
表5B中各符号的含义与前述第一实施方式中的表1B中各符号的含义相同。
表5C为各镜片非球面系数
Figure PCTCN2022115625-appb-000018
Figure PCTCN2022115625-appb-000019
由表5C可知,本实施方式提供的光学镜头一共包含14个非球面。
在本实施例中,所有偶次非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022115625-appb-000020
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A4、A6、A8…A30为非球面系数。
图21为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。图21的横坐标表示球差的大小,单位为毫米,纵坐标表示归一化的孔径,单位为毫米。从图21中可以看出,本实施方式中,不同波长的光线经本实施方式的光学镜头后的轴向像差能够控制在一个较小的范围内。
图22为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。图22中S为弧矢方向的场曲,T为子午方向的场曲,横坐标表示场曲的大小,T和S之间的横向距离表示像散的大小,纵坐标表示视场。从图22可以看出,光经本实施方式的光学镜头后在弧矢方向和子午方向的像散场曲均较小,即本实施方式的光学镜头的成像的像散场曲较小。
图23为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。畸变(distortion),是指图像中点的实际显示位置与它们在理想光学镜头中所处位置之间的差距。图23表示成像变形与理想光学镜头之间的差异,横坐标为畸变大小,纵坐标表示视场。
因此,本实施方式中,光线经本实施方式的光学镜头后轴向像差、像散场曲及畸变等均较小,也即本实施方式的光学镜头能够实现具有较好的成像效果。
第六实施方式
参阅图24,本实施方式提供的光学镜头包括八片镜片,从左至右为物侧至像侧,光学镜 头包括依次排列的:光阑S1、第一镜片L1、第二镜片L2、第三镜片L3、第四镜片L4、第五镜片L5、第六镜片L6、第七镜片L7、第八镜片L8、IR玻璃和成像面。光阑S1位于第一镜片L1的物侧,可以理解为,光阑S1位于第一镜片L1的物侧面的外围,第一镜片L1的物侧面可以至少部分伸入光阑S1的内部。光阑S1和IR玻璃的解释参照第一实施方式。
第一镜片L1和第二镜片L2的物侧面(具体为物侧面近光轴处的位置)均为凸面。
所述第一镜片L1为高阿贝数正光焦度镜片,第一镜片L1的阿贝数vd1=77.63,第一镜片L1的焦距f1与所述光学镜头的焦距f的比值满足如下关系式:f1/f=0.91。
所述第二镜片L2为高折射率负光焦度镜片,第二镜片L2的折射率nd2=1.8469。第二镜片L2的焦距f2与所述光学镜头的焦距f的比值满足如下关系式:f2/f=-4.21。
所述第一镜片L1的折射率nd1与第二镜片L2的折射率nd2的差值满足如下关系式:0.36,即nd2-nd1=0.36;第一镜片L1的阿贝数vd1与第二镜片L2的阿贝数vd2的差值满足如下关系式:55.71,即vd1-vd2=55.71;所述第二镜片L2的阿贝数vd2和第三镜片L3的阿贝数vd3的差值满足如下关系式:vd2-vd3=1.53。
所述第三镜片L3和第四镜片L4具有负光焦度,且第三镜片L3的焦距f3、第四镜片L4的焦距f4和所述光学镜头的焦距f之间的关系满足如下关系式:f(f3+f4)/(f3f4)=-0.048。
所述第五镜片L5具有正光焦度,第五镜片L5的焦距f5与所述光学镜头的焦距f的比值满足如下关系式:f5/f=4.07。
所述第六镜片L6具有正光焦度,第六镜片L6的焦距f6与所述光学镜头的焦距f的比值满足如下关系式:f6/f=10.43。
所述第七镜片L7具有正光焦度,第七镜片L7的焦距f6与所述光学镜头的焦距f的比值满足如下关系式:f7/f=2.91。
所述第八镜片L8具有负光焦度,第八镜片L8的焦距f7与所述光学镜头的焦距f的比值满足如下关系式:f8/f=-0.57。
本实施方式提供的光学镜头为一种超低总高、大光圈、大靶面光学成像光学镜头,其光学F#=1.82。
本实施方式提供的光学镜头的光学总长TTL与半像高IH的比值满足如下关系式:TTL/(2*IH)=0.542。
本实施方式提供的光学镜头的光学总长TTL与所述光学镜头的焦距f的比值满足如下关系式:TTL/f=1.06。
本实施方式达到的技术效果如下表(表6A、表6B、表6C)所示:
表6A、光学镜头基本参数
  光学参数
焦距f 4.84mm
F值(F#) 1.82
半像高IH 5.20mm
TTL ratio 0.542
设计波长 650nm,610nm,555nm,510nm,470nm
表6B、光学镜头各镜片曲率半径、中心厚度、镜片间轴上距离、折射率、阿贝数
Figure PCTCN2022115625-appb-000021
表6B中各符号的含义与前述第一实施方式中的表1B中各符号的含义相同。
表6C为各镜片非球面系数
Figure PCTCN2022115625-appb-000022
Figure PCTCN2022115625-appb-000023
由表6C可知,本实施方式提供的光学镜头一共包含16个非球面。
在本实施例中,所有偶次非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022115625-appb-000024
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A4,A6,A8…A30为非球面系数。
图25为波长分别为650nm、610nm、555nm、510nm、470nm的光经过本实施方式提供的光学镜头后的轴向像差曲线图。图25的横坐标表示球差的大小,单位为毫米,纵坐标表示归一化的孔径,单位为毫米。从图25中可以看出,本实施方式中,不同波长的光线经本实施方式的光学镜头后的轴向像差能够控制在一个较小的范围内。
图26为波长为555nm的光经过本实施方式提供的光学镜头后的像散曲线图。图26中S为弧矢方向的场曲,T为子午方向的场曲,横坐标表示场曲的大小,T和S之间的横向距离表示像散的大小,纵坐标表示视场。从图26可以看出,光经本实施方式的光学镜头后在弧矢方向和子午方向的像散场曲均较小,即本实施方式的光学镜头的成像的像散场曲较小。
图27为波长为555nm的光经本实施方式提供的光学镜头后的畸变曲线图。畸变(distortion),是指图像中点的实际显示位置与它们在理想光学镜头中所处位置之间的差距。图27表示成像变形与理想光学镜头之间的差异,横坐标为畸变大小,纵坐标表示视场。
因此,本实施方式中,光线经本实施方式的光学镜头后轴向像差、像散场曲及畸变等均 较小,也即本实施方式的光学镜头能够实现具有较好的成像效果。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种光学镜头,其特征在于,包括沿光轴方向自物侧至像侧按序排列的第一镜片和第二镜片,所述第一镜片的物侧面和所述第二镜片的物侧面均为凸面;所述第一镜片的阿贝数为vd1,60≤vd1≤90;所述第二镜片的折射率为nd2,1.65≤nd2≤2;所述第一镜片折射率为nd1,0.2≤nd2-nd1≤0.5;所述第二镜片的阿贝数为vd2,40<vd1-vd2;所述光学镜头的光学总长为TTL,所述光学镜头的半像高为IH,0.45≤TTL/(2*IH)≤0.6。
  2. 根据权利要求1所述的光学镜头,其特征在于,0.52≤TTL/(2*IH)≤0.58。
  3. 根据权利要求1或2所述的光学镜头,其特征在于,所述第一镜片的焦距为f1,所述光学镜头的焦距为f,0<f1/f≤1.2。
  4. 根据权利要求1-3任一项所述的光学镜头,其特征在于,所述第一镜片的焦距为f1,所述第二镜片的焦距为f2,0.4≤f1/f2≤0。
  5. 根据权利要求1-4任一项所述的光学镜头,其特征在于,所述光学镜头的光圈值为F#,1.55≤F#≤2.1。
  6. 根据权利要求1-5任一项所述的光学镜头,其特征在于,所述光学镜头还包括沿所述光轴方向自所述第二镜片至所述像侧按序排列多个镜片,其中,最邻近所述像侧的镜片具有负光焦度。
  7. 根据权利要求6所述的光学镜头,其特征在于,所述多个镜片包括沿所述光轴方向自所述第二镜片至所述像侧按序排列的第三镜片、第四镜片、第五镜片、第六镜片、第七镜片和第八镜片,所述第三镜片和所述第四镜片均具有负光焦度,所述第三镜片的焦距为f3,所述第四镜片的焦距为f4,所述光学镜头的焦距为f,-0.2<f(f3+f4)/(f3*f4)<0。
  8. 根据权利要求7所述的光学镜头,其特征在于,所述第五镜片、所述第六镜片和所述第七镜片均具有正光焦度。
  9. 根据权利要求6所述的光学镜头,其特征在于,所述多个镜片包括沿所述光轴方向自所述第二镜片至所述像侧按序排列的第三镜片、第四镜片、第五镜片、第六镜片和第七镜片;所述第三镜片具有负光焦度,所述第三镜片的焦距为f3,所述光学镜头的焦距为f,-0.4<f/f3<0。
  10. 根据权利要求9所述的光学镜头,其特征在于,所述第四镜片、所述第五镜片和所述第六镜片均具有正光焦度。
  11. 根据权利要求7-10任一项所述的光学镜头,其特征在于,所述第三镜片的阿贝数为vd3,|vd2-vd3|<25。
  12. 根据权利要求1-11任一项所述的光学镜头,其特征在于,所述第二镜片的中心厚度为d2,所述第二镜片的物侧面的曲率半径为R3,所述第二镜片的像侧面的曲率半径为R4,1<d2(R3+R4)/(R3-R4)<5。
  13. 一种摄像头模组,其特征在于,包括感光元件和如权利要求1-12任一项所述的光学镜头,所述感光元件位于所述光学镜头的像侧,光线经所述光学镜头后投射至所述感光元件,所述感光元件用于将投射在所述感光元件的光线转化成图像信号。
  14. 一种电子设备,其特征在于,包括图像处理器和如权利要求13所述的摄像头模组,所述图像处理器与所述摄像头模组的所述感光元件通信连接,所述图像处理器用于对所述感光元件输出的所述图像信号进行处理。
PCT/CN2022/115625 2021-08-31 2022-08-29 光学镜头、摄像头模组和电子设备 WO2023030273A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22863408.5A EP4365656A1 (en) 2021-08-31 2022-08-29 Optical lens, camera module, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111011058.2 2021-08-31
CN202111011058.2A CN115728907A (zh) 2021-08-31 2021-08-31 光学镜头、摄像头模组和电子设备

Publications (1)

Publication Number Publication Date
WO2023030273A1 true WO2023030273A1 (zh) 2023-03-09

Family

ID=85291354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115625 WO2023030273A1 (zh) 2021-08-31 2022-08-29 光学镜头、摄像头模组和电子设备

Country Status (3)

Country Link
EP (1) EP4365656A1 (zh)
CN (1) CN115728907A (zh)
WO (1) WO2023030273A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716287A (zh) * 2019-11-01 2020-01-21 浙江舜宇光学有限公司 光学成像镜头
US20200393648A1 (en) * 2019-06-12 2020-12-17 Largan Precision Co.,Ltd. Photographing lens assembly, image capturing unit and electronic device
CN113267879A (zh) * 2021-05-27 2021-08-17 浙江舜宇光学有限公司 光学成像镜头
CN113608336A (zh) * 2021-09-02 2021-11-05 浙江舜宇光学有限公司 一种光学成像镜头
CN114415354A (zh) * 2022-03-30 2022-04-29 江西联益光学有限公司 光学镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200393648A1 (en) * 2019-06-12 2020-12-17 Largan Precision Co.,Ltd. Photographing lens assembly, image capturing unit and electronic device
CN110716287A (zh) * 2019-11-01 2020-01-21 浙江舜宇光学有限公司 光学成像镜头
CN113267879A (zh) * 2021-05-27 2021-08-17 浙江舜宇光学有限公司 光学成像镜头
CN113608336A (zh) * 2021-09-02 2021-11-05 浙江舜宇光学有限公司 一种光学成像镜头
CN114415354A (zh) * 2022-03-30 2022-04-29 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN115728907A (zh) 2023-03-03
EP4365656A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
CN107229105B (zh) 光学摄像镜头、取像装置及可携式装置
CN107505686B (zh) 光学影像拾取系统以及取像装置
CN109407271B (zh) 电子装置
CN107462974B (zh) 光学成像镜组以及取像装置
TWI452334B (zh) 光學影像拾取系統鏡組
CN110471167B (zh) 摄像光学镜头
TW201305652A (zh) 結像系統鏡頭組
CN108983397B (zh) 影像撷取镜组及取像装置
CN113946038B (zh) 光学镜头、摄像模组及电子设备
WO2022033326A1 (zh) 光学系统、镜头模组和电子设备
CN113741006A (zh) 光学镜头、摄像模组及电子设备
JP2022022067A (ja) 撮像光学レンズ
CN211786312U (zh) 光学系统、摄像模组及电子装置
CN115480364A (zh) 光学镜头、摄像模组及电子设备
TWI789015B (zh) 成像透鏡組及攝像模組
JP7035157B2 (ja) 撮像光学レンズ
TW202240235A (zh) 成像透鏡組及攝像模組
WO2023066339A1 (zh) 光学镜头、摄像模组及电子设备
CN113985569B (zh) 光学系统、镜头模组和电子设备
CN113741005B (zh) 光学系统、取像模组及电子设备
WO2023030273A1 (zh) 光学镜头、摄像头模组和电子设备
CN212989754U (zh) 光学镜头、摄像模组及电子设备
CN212540857U (zh) 一种光学镜组、取像装置以及电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN210401819U (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863408

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022863408

Country of ref document: EP

Effective date: 20240130

NENP Non-entry into the national phase

Ref country code: DE